EP2289082B1 - Method for producing a magnetizable metal shaped body - Google Patents

Method for producing a magnetizable metal shaped body Download PDF

Info

Publication number
EP2289082B1
EP2289082B1 EP09741823.0A EP09741823A EP2289082B1 EP 2289082 B1 EP2289082 B1 EP 2289082B1 EP 09741823 A EP09741823 A EP 09741823A EP 2289082 B1 EP2289082 B1 EP 2289082B1
Authority
EP
European Patent Office
Prior art keywords
compression
surface coating
particles
raw material
insulating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09741823.0A
Other languages
German (de)
French (fr)
Other versions
EP2289082A1 (en
Inventor
Paul Gümpel
Stefan GLÄSER
Beat Hofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Europe GmbH
ETO Magnetic GmbH
Original Assignee
Kennametal Europe GmbH
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Europe GmbH, ETO Magnetic GmbH filed Critical Kennametal Europe GmbH
Publication of EP2289082A1 publication Critical patent/EP2289082A1/en
Application granted granted Critical
Publication of EP2289082B1 publication Critical patent/EP2289082B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing a magnetizable metallic shaped article, a molded article produced by such a method and uses of such a shaped article.
  • magnetizable metallic bodies are known in the prior art for realizing various electromagnetic devices, such as electromagnetic actuators, transformers or the like. All these applications have in common that a material used for the production of the magnetizable components and assemblies on the one hand should have favorable magnetic properties in the form of the highest possible (saturation) flux density with low excitation and low coercive force, with pure iron (or materials of iron or made of iron-silicon alloys) in view of such magnetic properties is particularly favorable.
  • Eddy current losses are also highly frequency-dependent, so that it is also known, especially in high-frequency applications, to increase the specific electrical resistance powder composite materials from a metal powder, which with a z. B. polymeric binder is pressed.
  • a procedure In addition to the relatively high electrical resistance relative to a sheet such a procedure also has the advantage that eddy currents can be suppressed three-dimensional.
  • the magnetic properties of such powder composites are often insufficient, such as a typical saturation flux density of a metal is 1.5 to about 5 times higher than such plastic bound metal powders.
  • a shaped article produced in this way has poor mechanical properties, for example in the form of mechanical strength.
  • powder composite materials shows the US 5,993,729 with metal oxide compounds between particles.
  • Object of the present invention is therefore to provide a magnetizable metallic molded body and a method for producing such, on the one hand energetically adverse eddy currents can be effectively suppressed or minimized, on the other hand still favorable magnetic properties, especially high magnetic (saturation) Flux density and low coercive field, can be ensured, wherein such a shaped body should also have improved mechanical properties (as compared to known powder or sintered materials). Furthermore, suitable uses for such a method or molded bodies realized thereby are to be created.
  • the invention is based first of all on the knowledge that when eddy currents are already in the micro range (ie in the range of the particle size or particle size of the pulverulent particle) ferromagnetic starting material) are limited, favorable magnetic properties of the resulting molded body can be achieved.
  • the method according to the invention makes it possible, by precompression in the form of the step of first compressing the starting material, to create a (mechanically stable) body through the material bond in the form of bridges between the adjacent particles, wherein in the subsequent step of producing the electrically insulating surface coating on the particles according to the invention, the cavities (further education by the introduction of a corresponding reactive gas) are used to those surface portions of the particles that are outside the connecting portions (bridges) to a respective adjacent particles, with a (relative to the particle size) very thin partial coating to provide.
  • the subsequent second compaction then leads to the cavities being eliminated or greatly reduced, so that the result is a highly compressed particle structure with layer sections of the isolated (surface) coating which - distributed in micro size and in the body - the effect intended according to the invention cause eddy current barriers in the micro range.
  • the invention makes it possible to produce a magnetizable metallic material as a shaped body, in which (three-dimensionally) electrically non-conductive, thin layer layers (usually only in the nanometer range in the layer thickness) are distributed, which serve as effective eddy current barriers.
  • the shaped body thus produced not only has the desired high magnetic power density (which potentially comes close to pure iron material), also the Eddy current losses significantly reduced by the effect of the three-dimensionally distributed in the body layer sections. This then creates about the possibility, with improved energy efficiency (resource-saving) electromagnetic units, eg. As actuators to make, with the high flux density realized at low excitation compact devices that save space and bring other benefits.
  • a further advantage of the invention resides in the fact that a shaped body realized according to the invention has outstanding mechanical properties, in particular with regard to stability, tensile strength and breaking strength, in particular over traditionally known materials and material arrangements for minimizing eddy current losses.
  • electromagnetic properties of a molded article made in accordance with the present invention may be achieved that correspond to a typical reference material such as FeSi3, but have significantly improved mechanical properties with respect to this material. This seems plausible against the background, for example, that in an advantageous embodiment of the invention, the production of the insulating surface coating according to the invention takes place after the adjacent particles in the first step of compacting the starting material via bridge formation or the like. have been joined together and accordingly cause a favorable basic strength of the body.
  • a oxidizing or nitriding the particle surfaces outside of the connecting portions (bridges) causing gas wherein such gas may also be a carbon, nitrogen, oxygen, sulfur and / or boron-containing gas. It is also within the scope of the invention not to supply such a gas separately, but to use as a reactive gas that (residual) is already present in the powdery starting material and / or formed or formed during the first compression process, in which case the Step of generating the electrically insulating surface coating is carried out with the first compression.
  • a (preferably isostatic and / or cold hydrostatic) pressing with the first pressing pressure of more than 300 bar, typically 1000 bar or more is the second compaction after the production the insulating surface coating a process typically carried out by hot hydrostatic pressing with a significantly higher compression pressure of up to about 4000 bar.
  • the layer portions of the insulating surface coating (each, with a thickness in the typical Nanometer range have a longitudinal extent corresponding to approximately the starting material particle sizes) in the resulting shaped body distributed and allow the intended vortex current inhibiting effect at the micro level.
  • a forming step such as rolling, drawing or the like can suitably ensure that an isotropy of the layer sections distributed in the shaped body can be specifically changed.
  • the shaped body produced according to the invention in the described manner is in principle accessible to a large number of magnetic applications, the advantages described above being suitable with regard to efficiency, magnetic behavior, mechanical compactness and stability
  • the potential range of application of the present invention extends from magnetic actuators or drive devices (such as electromagnetic actuators and electric motors) to use in transformers and other areas of power electronics, to electromagnetic bearings and high frequency engineering tasks.
  • powdered iron raw material of a typical average grain size in the range of about 10 ⁇ m to 500 ⁇ m is provided; the reference numeral 10 illustrate the process step S1, the presence of such powder particles in the uncoated state.
  • Typical commercial powder materials in view of a comparatively small grain size are e.g. Pure iron powder (Fe2) with grain size ⁇ 30 ⁇ m, D50 (average grain size) 9 ⁇ m to 11 ⁇ m manufacturer ThyssenKrupp metallurgy, in the case of a larger grain size is exemplified in the product Ampersint (atomized Fe-base powder from HC Starck GmbH), here is the Grain size Fe to at least 99.5 (wt)% less than 350 microns.
  • Alternative Fe base powders of this manufacturer are FeSi3 or FeSi6 with corresponding grain size.
  • Process step S2 as an optional process step provides the possibility that prior to a subsequent first compaction (Step S3), the powder particles of the raw material, such as by plasma coating or the like are provided with a metallization or semiconductor coating.
  • This optional layer to be applied in step S2 is thin relative to the respective particle diameter and is typically in the range between 5 and 50 nm.
  • step S3 a first precompression of the (coated or uncoated) raw material takes place, typical is a cold hydrostatic pressing with a compression pressure of about 1000 bar. It arises in the FIG. 2 (with uncoated raw material) illustrated image of a precompressed body, in which by means of sintered bridges, the particles 10 mechanically firmly adhere to each other.
  • an oxidizing gas in the present case oxygen, at a pressure of 0.01 bar and a temperature of 350 ° C is introduced into the molding such that this gas enters the cavities 14 and correspondingly the particles 10 with a (electrically insulating) thin oxide layer 14 provides in all those peripheral areas, which are not connecting portions with a respective adjacent particles.
  • a typical resulting coating thickness on the particles after the gas treatment step S4 is about 10 nanometers. For example, by changing the pressure or temperature or exposure time, this layer thickness can be influenced.
  • a subsequent second densification step S5 is typically performed as high temperature compression, in particular by means of hot hydrostatic Pressing performed; typical process parameters are a pressure of up to 4000 bar at 1200 ° C temperature.
  • typical process parameters are a pressure of up to 4000 bar at 1200 ° C temperature.
  • These very shallow oxide layer sections thus have typical lengths in the range of about 10 to 150% of the original particle size of the particles and are very thin compared to this dimension, namely again in the nanometer range (usually 5 to about 30 nanometers).
  • the final compacted material (which in the exemplary embodiment shown in a subsequent step S6 by rolling still allows a transformation into an intended final shape and also a subsequent cutting step in step S7 Post-treatment) has very favorable magnetic properties in terms of high saturation flux density and low coercive force, and even at the scale of a known free-cutting steel (eg, 1.0715), which is often used for DC applications, favorable behavior is realized.
  • a material thus produced is also significantly superior to a typical reference material for AC applications (such as FeSi3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines magnetisierbaren metallischen Formkörpers, einen durch ein solches Verfahren hergestellten Formkörper sowie Verwendungen eines derartigen Formkörpers.The present invention relates to a method for producing a magnetizable metallic shaped article, a molded article produced by such a method and uses of such a shaped article.

Aus dem Stand der Technik sind zahlreiche magnetisierbare metallische Körper zum Realisieren verschiedenster elektromagnetischer Vorrichtungen, etwa elektromagnetischer Aktoren, Transformatoren oder dergleichen, bekannt. All diesen Anwendungen ist gemeinsam, dass ein zur Herstellung der magnetisierbaren Bestandteile und Baugruppen verwendetes Material einerseits günstige magnetische Eigenschaften in Form einer möglichst hohen (Sättigungs-)Flussdichte bei kleiner Erregung und geringer Koerzitivfeldstärke aufweisen soll, wobei Reineisen (bzw. Werkstoffe aus Eisen bzw. aus Eisen-Silizium-Legierungen) im Hinblick auf derartige magnetische Eigenschaften besonders günstig ist.Numerous magnetizable metallic bodies are known in the prior art for realizing various electromagnetic devices, such as electromagnetic actuators, transformers or the like. All these applications have in common that a material used for the production of the magnetizable components and assemblies on the one hand should have favorable magnetic properties in the form of the highest possible (saturation) flux density with low excitation and low coercive force, with pure iron (or materials of iron or made of iron-silicon alloys) in view of such magnetic properties is particularly favorable.

Andererseits entstehen insbesondere bei mit Wechselströmen angesteuerten Magneten (hier werden die Werkstoffe im Takt der Wechselstromfrequenz ummagnetisiert) Verluste insbesondere in Form von Wirbelstromverlusten; diese sind das Ergebnis von durch das magnetische Wechselfeld induzierten Spannungen, die Wirbelströme senkrecht zum magnetischen Wechselfeld bewirken und das magnetische Feld schwächen (mithin einen Energieverlust bewirken). Zur Verminderung derartiger Wirbelstromverluste ist es wiederum bekannt, das magnetisierbare Material widerstandserhöhend zu beeinflussen, etwa in Form von Blechen bei Transformatoren oder durch das Bilden von Mischkristallen (z. B. FeNi) im magnetischen Werkstoff. Eine derartige Erhöhung des (spezifischen) elektrischen Widerstands reduziert die beschriebenen Wirbelstromverluste, setzt jedoch gleichzeitig die magnetische Sättigungsflussdichte herab und beeinträchtigt zudem mechanische Eigenschaften, etwa die Festigkeit.On the other hand, in particular in the case of magnets controlled by alternating currents (here the materials are reversed in the cycle of the alternating current frequency) losses occur, in particular in the form of eddy current losses; These are the result of induced by the magnetic alternating field voltages that cause eddy currents perpendicular to the alternating magnetic field and weaken the magnetic field (thus cause an energy loss). To reduce such eddy current losses, it is again known to increase the magnetizable material to increase resistance, for example in the form of sheets in transformers or by forming mixed crystals (eg FeNi) in the magnetic material. Such an increase in the (specific) electrical resistance reduces the described eddy current losses, but at the same time reduces the magnetic saturation flux density and also impairs mechanical properties, such as strength.

Auch bei Gleichstromanwendungen sind jedoch die negativen Auswirkungen von Wirbelströmen nicht gänzlich unbeachtlich; so führt etwa das mit einem Schaltvorgang verbundene Aufmagnetisieren zu Wirbelströmen, welche magnetisch entgegenwirken und die Dynamik bzw. erreichbare Bewegungsgeschwindigkeit von Aktoren oder dergleichen mit Gleichstrom betriebenen Magnetanwendungen begrenzen.Even with DC applications, however, the negative effects of eddy currents are not completely irrelevant; For example, the magnetization associated with a switching operation leads to eddy currents which counteract magnetically and limit the dynamics or achievable speed of movement of actuators or the like with DC-operated magnet applications.

Wirbelstromverluste sind zudem stark frequenzabhängig, sodass insbesondere bei Hochfrequenzanwendungen es auch etwa bekannt ist, zur Erhöhung des spezifischen elektrischen Widerstands Pulververbundwerkstoffe aus einem Metallpulver einzusetzen, welches mit einem z. B. polymeren Bindemittel verpresst wird. Neben dem relativ hohen elektrischen Widerstand relativ etwa zu einem Blech besitzt eine derartige Vorgehensweise zudem den Vorteil, dass Wirbelströme dreidimensional unterdrückt werden können. Allerdings sind die magnetischen Eigenschaften derartiger Pulververbundwerkstoffe häufig ungenügend, so liegt etwa eine typische Sättigungsflussdichte eines Metalls um das 1,5 bis etwa 5-fache höher als bei derartigen in Kunststoff gebundenen Metallpulvern. Auch hier weist ein so hergestellter Formkörper mangelhafte mechanische Eigenschaften, etwa in Form der mechanischen Festigkeit, auf.Eddy current losses are also highly frequency-dependent, so that it is also known, especially in high-frequency applications, to increase the specific electrical resistance powder composite materials from a metal powder, which with a z. B. polymeric binder is pressed. In addition to the relatively high electrical resistance relative to a sheet such a procedure also has the advantage that eddy currents can be suppressed three-dimensional. However, the magnetic properties of such powder composites are often insufficient, such as a typical saturation flux density of a metal is 1.5 to about 5 times higher than such plastic bound metal powders. Here too, a shaped article produced in this way has poor mechanical properties, for example in the form of mechanical strength.

Ein Beispiel derartiger Pulververbundwerkstoffe zeigt die US 5,993,729 mit Metalloxidverbindungen zwischen Partikeln.An example of such powder composite materials shows the US 5,993,729 with metal oxide compounds between particles.

Aus dem bekannten Stand der Technik ist es daher eine bekannte Herausforderung, durch geeignete Auswahl und Ausbildung des metallisierbaren Materials die beschriebenen, zueinander potenziell gegensätzlichen Eigenschaften im Hinblick auf die jeweilige Anwendung zu optimieren, nämlich möglichst günstige magnetische Eigenschaften mit möglichst geringen Wirbelstromverlusten, bei notwendigen mechanischen Eigenschaften, etwa akzeptabler Festigkeit, in Einklang zu bringen.From the known state of the art it is therefore a known challenge to optimize the described, mutually potentially conflicting properties with respect to the respective application by suitable selection and design of the metallizable material, namely the best possible magnetic properties with the lowest possible eddy current losses, necessary mechanical Properties, such as acceptable strength.

Aufgabe der vorliegenden Erfindung ist es daher, einen magnetisierbaren metallischen Formkörper sowie ein Verfahren zum Herstellen eines solchen zu schaffen, womit einerseits energetisch nachteilige Wirbelströme wirksam unterdrückt bzw. minimiert werden können, andererseits nach wie vor günstige magnetische Eigenschaften, insbesondere hohe magnetische (Sättigungs-)Flussdichte und niedrige Koerzitivfeldstärke, gewährleistet werden können, wobei ein solcher Formkörper auch verbesserte mechanische Eigenschaften (etwa gegenüber bekannten Pulver- bzw. Sinterwerkstoffen) aufweisen soll. Ferner sind geeignete Verwendungen für ein derartiges Verfahren bzw. dadurch realisierte Formkörper zu schaffen.Object of the present invention is therefore to provide a magnetizable metallic molded body and a method for producing such, on the one hand energetically adverse eddy currents can be effectively suppressed or minimized, on the other hand still favorable magnetic properties, especially high magnetic (saturation) Flux density and low coercive field, can be ensured, wherein such a shaped body should also have improved mechanical properties (as compared to known powder or sintered materials). Furthermore, suitable uses for such a method or molded bodies realized thereby are to be created.

Die Aufgabe wird durch das Verfahren mit den Merkmalen des Hauptanspruchs, den durch das Verfahren hergestellten Formkörper sowie Verwendungen des Formkörpers gelöst; vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.The object is achieved by the method having the features of the main claim, the molded body produced by the method and uses of the molding; advantageous developments of the invention are described in the subclaims.

Der Erfindung liegt zunächst die Erkenntnis zugrunde, dass dann, wenn Wirbelströme bereits im Mikrobereich (d. h. im Bereich der Korn- bzw. Partikelgröße des pulverförmigen ferromagnetischen Ausgangsmaterials) begrenzt werden, günstige magnetische Eigenschaften des resultierenden Formkörpers erreicht werden. Dementsprechend ermöglicht es das erfindungsgemäße Verfahren, durch ein Vorverdichten in Form des Schrittes des erstes Verdichtens des Ausgangsmaterials bereits einen (mechanisch stabilen) Körper durch den Stoffschluss in Form von Brücken zwischen den benachbarten Partikeln zu schaffen, wobei im nachfolgenden Schritt des Erzeugens der elektrisch isolierenden Oberflächenbeschichtung auf den Partikeln erfindungsgemäß die Hohlräume (weiterbildungsgemäß durch das Einleiten eines entsprechend reaktiven Gases) genutzt werden, um diejenigen Oberflächenabschnitte der Partikel, die außerhalb der Verbindungsabschnitte (Brücken) zu einem jeweils benachbarten Partikel liegen, mit einer (relativ zur Partikelgröße) sehr dünnen partiellen Beschichtung zu versehen. Das anschließende zweite Verdichten führt dann dazu, dass die Hohlräume beseitigt oder stark verkleinert werden, sodass im Ergebnis eine stark komprimierte Partikelstruktur mit Schichtabschnitten der isolierten (Oberflächen-)Beschichtung vorliegt, die -- in Mikrogröße und im Körper verteilt -- den erfindungsgemäß beabsichtigten Effekt der Wirbelstrombarrieren im Mikrobereich bewirken. Mit anderen Worten, die Erfindung ermöglicht das Erzeugen eines magnetisierbaren metallischen Werkstoffs als Formkörper, in welchen (dreidimensional) elektrisch nicht leitende, dünne (in der Schichtdicke üblicherweise lediglich im Nanometerbereich liegende) Schichtabschnitte verteilt vorliegen, welche als wirksame Wirbelstrombarrieren dienen.The invention is based first of all on the knowledge that when eddy currents are already in the micro range (ie in the range of the particle size or particle size of the pulverulent particle) ferromagnetic starting material) are limited, favorable magnetic properties of the resulting molded body can be achieved. Accordingly, the method according to the invention makes it possible, by precompression in the form of the step of first compressing the starting material, to create a (mechanically stable) body through the material bond in the form of bridges between the adjacent particles, wherein in the subsequent step of producing the electrically insulating surface coating on the particles according to the invention, the cavities (further education by the introduction of a corresponding reactive gas) are used to those surface portions of the particles that are outside the connecting portions (bridges) to a respective adjacent particles, with a (relative to the particle size) very thin partial coating to provide. The subsequent second compaction then leads to the cavities being eliminated or greatly reduced, so that the result is a highly compressed particle structure with layer sections of the isolated (surface) coating which - distributed in micro size and in the body - the effect intended according to the invention cause eddy current barriers in the micro range. In other words, the invention makes it possible to produce a magnetizable metallic material as a shaped body, in which (three-dimensionally) electrically non-conductive, thin layer layers (usually only in the nanometer range in the layer thickness) are distributed, which serve as effective eddy current barriers.

Der so erzeugte Formkörper besitzt dann nicht nur die erwünschte hohe magnetische Leistungsdichte (welche potenziell an Reineisenmaterial heranreicht), auch werden die Wirbelstromverluste durch Wirkung der dreidimensional im Körper verteilten Schichtabschnitte signifikant reduziert. Damit entsteht dann etwa die Möglichkeit, mit verbessertem energetischen Wirkungsgrad (ressourcenschonend) elektromagnetische Einheiten, z. B. Aktoren, zu gestalten, wobei die realisierte hohe Flussdichte bei kleiner Erregung kompakte Vorrichtungen ermöglicht, die entsprechend Bauraum einsparen und andere Vorteile bringen.The shaped body thus produced not only has the desired high magnetic power density (which potentially comes close to pure iron material), also the Eddy current losses significantly reduced by the effect of the three-dimensionally distributed in the body layer sections. This then creates about the possibility, with improved energy efficiency (resource-saving) electromagnetic units, eg. As actuators to make, with the high flux density realized at low excitation compact devices that save space and bring other benefits.

Ein weiterer Vorteil der Erfindung liegt zudem darin, dass ein erfindungsgemäß realisierter Formkörper herausragende mechanische Eigenschaften aufweist, insbesondere im Hinblick auf Stabilität, Zug- und Bruchfestigkeit, vor allem gegenüber traditionell bekannten Werkstoffen und Werkstoffanordnungen zur Minimierung von Wirbelstromverlusten. So scheint es etwa ohne weiteres realisierbar, dass gemäß der vorliegenden Erfindung elektromagnetische Eigenschaften eines erfindungsgemäß realisierten Formkörpers erreicht werden, welche die einem typischen Referenzmaterial wie etwa FeSi3 entsprechen, jedoch in mechanischer Hinsicht diesem Material gegenüber signifikant verbesserte Eigenschaften aufweisen. Dies erscheint etwa vor dem Hintergrund plausibel, dass in vorteilhafter Realisierung der Erfindung die erfindungsgemäße Erzeugung der isolierenden Oberflächenbeschichtung erfolgt, nachdem im ersten Schritt des Verdichtens des Ausgangsmaterials zueinander benachbarte Partikel über Brückenbildung od.dgl. miteinander verbunden wurden und dementsprechend eine günstige Grundfestigkeit des Körpers bewirken.A further advantage of the invention resides in the fact that a shaped body realized according to the invention has outstanding mechanical properties, in particular with regard to stability, tensile strength and breaking strength, in particular over traditionally known materials and material arrangements for minimizing eddy current losses. For example, it may be readily realized that, in accordance with the present invention, electromagnetic properties of a molded article made in accordance with the present invention may be achieved that correspond to a typical reference material such as FeSi3, but have significantly improved mechanical properties with respect to this material. This seems plausible against the background, for example, that in an advantageous embodiment of the invention, the production of the insulating surface coating according to the invention takes place after the adjacent particles in the first step of compacting the starting material via bridge formation or the like. have been joined together and accordingly cause a favorable basic strength of the body.

In erfindungsgemäß günstiger Weise ist in der praktischen Durchführung das reaktive Gas, welches in die Hohlräume (in der Art eines zusammenhängenden Porenraums) nach dem ersten Verdichtungsschritt eingebracht wird, ein ein Oxidieren oder Nitrieren der Partikeloberflächen außerhalb der Verbindungsabschnitte (Brücken) bewirkendes Gas, wobei ein solches Gas auch ein kohlenstoff-, stickstoff-, sauerstoff-, schwefel- und/oder bor-haltiges Gas sein kann. Auch liegt es im Rahmen der Erfindung, ein solches Gas nicht gesondert zuzuführen, sondern als reaktives Gas dasjenige zu benutzen, welches (residual) bereits im pulverförmigen Ausgangsmaterial vorliegt und/oder während des ersten Verdichtungsvorgangs entsteht bzw. gebildet wird, wobei in diesem Fall der Schritt des Erzeugens der elektrisch isolierenden Oberflächenbeschichtung mit dem ersten Verdichten erfolgt.In accordance with the invention in a favorable manner in the practical implementation of the reactive gas, which in the cavities (in the manner of a coherent pore space) after the first Compressing step is introduced, a oxidizing or nitriding the particle surfaces outside of the connecting portions (bridges) causing gas, wherein such gas may also be a carbon, nitrogen, oxygen, sulfur and / or boron-containing gas. It is also within the scope of the invention not to supply such a gas separately, but to use as a reactive gas that (residual) is already present in the powdery starting material and / or formed or formed during the first compression process, in which case the Step of generating the electrically insulating surface coating is carried out with the first compression.

Während zudem im Rahmen bevorzugter Ausführungsformen der Erfindung beim Schritt des ersten Verdichtens ein (bevorzugt isostatisches und/oder kaltes hydrostatisches) Pressen mit dem ersten Pressdruck von mehr als 300 bar, typischerweise von 1000 bar oder mehr, erfolgt, ist das zweite Verdichten nach dem Erzeugen der isolierenden Oberflächenbeschichtung ein typischerweise durch heißes hydrostatisches Pressen mit einem signifikant höheren Pressdruck von bis zu ca. 4000 bar durchgeführter Prozess. Dieser Pressdruck bei einer typischen Temperatur oberhalb 1000°C führt zu einem Fließen des Materials, mit dem Ergebnis, dass sich (bei einem signifikanten Reduzieren der Poren bzw. gar deren Verschwinden) die Schichtabschnitte der isolierenden Oberflächenbeschichtung (die jeweils, bei einer Dicke im typischen Nanometerbereich eine Längenerstreckung entsprechend ungefähr der Ausgangsmaterial-Korngrößen besitzen) im resultierenden Formkörper verteilt vorliegen und die beabsichtigte wirbelstromhemmende Wirkung auf Mikroebene ermöglichen. Weiterbildungsgemäß ist es von der Erfindung umfasst, den metallischen Formkörper nach dem zweiten Verdichten einem mechanischen Umformschritt und/oder einer spanenden Nachbehandlung zu unterziehen, um in soweit den Formkörper für den beabsichtigten Einsatzzweck auszuformen. Geeignet kann zudem ein Umformschritt wie Walzen, Ziehen oder dergleichen dafür sorgen, dass eine Isotropie der im Formkörper verteilten Schichtabschnitte gezielt verändert werden kann.In addition, while in the context of preferred embodiments of the invention in the step of the first compaction, a (preferably isostatic and / or cold hydrostatic) pressing with the first pressing pressure of more than 300 bar, typically 1000 bar or more, is the second compaction after the production the insulating surface coating a process typically carried out by hot hydrostatic pressing with a significantly higher compression pressure of up to about 4000 bar. This pressing pressure at a typical temperature above 1000 ° C leads to a flow of the material, with the result that (with a significant reduction of the pores or even their disappearance), the layer portions of the insulating surface coating (each, with a thickness in the typical Nanometer range have a longitudinal extent corresponding to approximately the starting material particle sizes) in the resulting shaped body distributed and allow the intended vortex current inhibiting effect at the micro level. According to the invention, it is encompassed by the invention to subject the metallic shaped body to a mechanical forming step and / or a subsequent treatment after the second compacting in order to mold the shaped body for the intended purpose. In addition, a forming step such as rolling, drawing or the like can suitably ensure that an isotropy of the layer sections distributed in the shaped body can be specifically changed.

Während es einerseits von der Erfindung umfasst ist, als ferromagnetisches Ausgangsmaterial unbeschichtete ferromagnetische Partikel, etwa Reineisenpartikel, zu verwenden, sieht eine alternative Ausführungsform der Erfindung vor, dass dem erfinderischen Prozess in Pulverform vorliegende Partikel zugeführt werden, welche selbst als beschichtete Partikel, z. B. Eisenpartikel, mit (anderer) Metallbeschichtung oder Halbleiterbeschichtung, vorliegen (z. B. durch vorgelagerte Plasmabeschichtung). Damit lässt sich dann einerseits das mechanische Verbindungsverhalten (z. B. die Qualität der Sinterbrücken) nach dem Schritt des ersten Verdichtens beeinflussen, andererseits ermöglicht eine derartige Vorbeschichtung der Partikel, durch gezielte Ausbildung des in den Porenraum einzubringenden reaktiven Gases günstige isolierende Oberflächen herzustellen (z. B. eine Aluminiumoxid-Oberflächenbeschichtung durch Oxidation eines mit Aluminium vorbeschichteten Eisenpartikels mit Hilfe des Beschichtungsschrittes).While it is on the one hand encompassed by the invention to use as ferromagnetic raw material uncoated ferromagnetic particles, such as pure iron particles, provides an alternative embodiment of the invention that the inventive process in powder form present particles are supplied, which themselves as coated particles, for. Example, iron particles, with (other) metal coating or semiconductor coating, present (eg., By upstream plasma coating). On the one hand, this makes it possible on the one hand to influence the mechanical connection behavior (for example the quality of the sintered bridges) after the step of the first compacting, on the other hand enables such precoating of the particles to produce favorable insulating surfaces by targeted formation of the reactive gas to be introduced into the pore space (eg B. an aluminum oxide surface coating by oxidation of an aluminum precoated iron particle by means of the coating step).

Der auf die beschriebene Weise erfindungsgemäß erzeugte Formkörper ist prinzipiell einer großen Anzahl von magnetischen Anwendungen zugänglich, wobei die vorbeschriebenen Vorteile im Hinblick auf Wirkungsgrad, magnetisches Verhalten, mechanische Kompaktheit und Stabilität jeweils geeignet instrumentalisiert werden können - so erstreckt sich die potenzielle Einsatzbreite der vorliegenden Erfindung von magnetischen Aktoren oder Antriebsvorrichtungen (wie etwa elektromagnetischen Stellgliedern und Elektromotoren) über den Einsatz in Transformatoren und anderen Gebieten der Leistungselektronik bis hin zu elektromagnetischen Lagern und Aufgaben der Hochfrequenztechnik.The shaped body produced according to the invention in the described manner is in principle accessible to a large number of magnetic applications, the advantages described above being suitable with regard to efficiency, magnetic behavior, mechanical compactness and stability Thus, the potential range of application of the present invention extends from magnetic actuators or drive devices (such as electromagnetic actuators and electric motors) to use in transformers and other areas of power electronics, to electromagnetic bearings and high frequency engineering tasks.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen; diese zeigen in

Figur 1:
Ein Flussablaufdiagramm mit Prozessschritten S1 bis S7 zum Durchführen des erfindungsgemäßen Verfahrens gemäß einer ersten Ausführungsform und
Figur 2:
Eine Ansicht mit einer Mehrzahl von schematischen Illustrationen, welche entlang der Schritte S1 bis S6 von Figur 1 die prozessgemäß veränderte Formgebung des Formkörpers bzw. der Partikel des Ausgangsmaterials illustrieren.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawings; these show in
FIG. 1:
A flowchart with process steps S1 to S7 for performing the method according to the invention according to a first embodiment and
FIG. 2:
A view with a plurality of schematic illustrations, which along the steps S1 to S6 of FIG. 1 illustrate the modified process shape of the molding or the particles of the starting material.

Gemäß einem ersten Prozessschritt wird pulverförmiges Eisen-Rohmaterial einer typischen durchschnittlichen Korngröße im Bereich von ca. 10µm bis 500µm bereitgestellt; die Bezugszeichen 10 verdeutlichen zum Prozessschritt S1 das Vorliegen derartiger Pulverpartikel im unbeschichteten Zustand. Typische, handelsübliche Pulvermaterialien im Hinblick auf eine vergleichsweise kleine Korngröße sind z.B. Reineisenpulver (Fe2) mit Korngröße < 30µm, D50 (mittlere Korngröße) 9µm bis 11µm des Herstellers ThyssenKrupp Metallurgie, im Fall einer größeren Korngröße sei exemplarisch auf das Produkt Ampersint (verdüste Fe-Basis Pulver der Firma HC Starck GmbH) verwiesen, hier beträgt die Korngröße Fe zu mindestens 99,5 (Gew-)% kleiner 350 µm. Alternative Fe-Basispulver dieses Herstellers sind FeSi3 oder FeSi6 mit entsprechender Korngröße.According to a first process step, powdered iron raw material of a typical average grain size in the range of about 10 μm to 500 μm is provided; the reference numeral 10 illustrate the process step S1, the presence of such powder particles in the uncoated state. Typical commercial powder materials in view of a comparatively small grain size are e.g. Pure iron powder (Fe2) with grain size <30μm, D50 (average grain size) 9μm to 11μm manufacturer ThyssenKrupp metallurgy, in the case of a larger grain size is exemplified in the product Ampersint (atomized Fe-base powder from HC Starck GmbH), here is the Grain size Fe to at least 99.5 (wt)% less than 350 microns. Alternative Fe base powders of this manufacturer are FeSi3 or FeSi6 with corresponding grain size.

Prozessschritt S2 als fakultativer Prozessschritt sieht die Möglichkeit vor, dass vor einem nachfolgenden ersten Verdichten (Schritt S3) die Pulverpartikel des Rohmaterials, etwa mittels Plasmabeschichten oder dergleichen mit einer Metallisierung oder Halbleiterbeschichtung versehen werden. Diese im Schritt S2 fakultativ aufzubringende Schicht ist dünn gegenüber dem betreffenden Partikeldurchmesser und liegt typischerweise im Bereich zwischen 5 und 50nm.Process step S2 as an optional process step provides the possibility that prior to a subsequent first compaction (Step S3), the powder particles of the raw material, such as by plasma coating or the like are provided with a metallization or semiconductor coating. This optional layer to be applied in step S2 is thin relative to the respective particle diameter and is typically in the range between 5 and 50 nm.

Im nachfolgenden Prozessschritt S3 findet ein erstes Vorverdichten des (beschichteten oder unbeschichteten) Rohmaterials statt, typisch ist ein kaltes hydrostatisches Pressen mit einem Pressdruck von ca. 1000 bar. Es entsteht das in der Figur 2 (bei unbeschichtetem Rohmaterial) illustrierte Bild eines vorverdichteten Körpers, bei welchem mittels Sinterbrücken die Partikel 10 mechanisch fest aneinander haften.In the following process step S3, a first precompression of the (coated or uncoated) raw material takes place, typical is a cold hydrostatic pressing with a compression pressure of about 1000 bar. It arises in the FIG. 2 (with uncoated raw material) illustrated image of a precompressed body, in which by means of sintered bridges, the particles 10 mechanically firmly adhere to each other.

Im nachfolgenden Prozessschritt S4 wird ein oxidierendes Gas, im vorliegenden Fall Sauerstoff, bei einem Druck von 0,01 bar und einer Temperatur von 350°C so in den Formkörper eingebracht, dass dieses Gas in die Hohlräume 14 eintritt und entsprechend die Partikel 10 mit einer (elektrisch isolierenden) dünnen Oxidschicht 14 in all jenen Umfangsbereichen versieht, die keine Verbindungsabschnitte mit einem jeweils benachbarten Partikel sind. Eine typische resultierende Beschichtungsdicke auf den Partikeln nach dem Gasbehandlungsschritt S4 (Dauer im beschriebenen Beispiel 30 min) liegt bei ca. 10 Nanometern. Beispielsweise durch Veränderung von Druck oder Temperatur oder Einwirkzeit lässt sich diese Schichtdicke beeinflussen.In the following process step S4, an oxidizing gas, in the present case oxygen, at a pressure of 0.01 bar and a temperature of 350 ° C is introduced into the molding such that this gas enters the cavities 14 and correspondingly the particles 10 with a (electrically insulating) thin oxide layer 14 provides in all those peripheral areas, which are not connecting portions with a respective adjacent particles. A typical resulting coating thickness on the particles after the gas treatment step S4 (duration in the example described 30 minutes) is about 10 nanometers. For example, by changing the pressure or temperature or exposure time, this layer thickness can be influenced.

Ein nachfolgender zweiter Verdichtungsschritt S5 (sogenanntes Konsolidieren) wird typischerweise als Verpressen bei hoher Temperatur, insbesondere mittels heißen hydrostatischen Pressens durchgeführt; typische Prozessparameter sind ein Pressdruck von bis zu ca. 4000 bar bei 1200°C Temperatur. Dies führt dazu, dass -- vergleiche die Illustration in Figur 2 zu S5 -- die Poren (Zwischenräume) 12 verschwinden bzw. sich deutlich verkleinern, sodass im endverdichteten Material am Ende des Prozessschritts S5 im Wesentlichen nur noch Oxidschichtabschnitte 14 verteilt im Material verbleiben, welche den ursprünglichen Beschichtungsabschnitten auf den Umfangsflächen der Partikel bzw. komprimierten Poren entsprechen. Diese sehr flachen OxidschichtAbschnitte weisen damit typische Längen im Bereich von ca. 10 bis 150 % der ursprünglichen Korngröße der Partikel auf und sind gegenüber dieser Dimension sehr dünn, nämlich wiederum im Nanometer-Bereich (üblicherweise 5 bis ca. 30 Nanometer).A subsequent second densification step S5 (so-called consolidation) is typically performed as high temperature compression, in particular by means of hot hydrostatic Pressing performed; typical process parameters are a pressure of up to 4000 bar at 1200 ° C temperature. This leads to - compare the illustration in FIG. 2 to S5 - the pores (gaps) 12 disappear or significantly shrink, so that in the end-compacted material at the end of the process step S5 substantially only oxide layer portions 14 remain distributed in the material, which the original coating sections on the peripheral surfaces of the particles or compressed pores correspond. These very shallow oxide layer sections thus have typical lengths in the range of about 10 to 150% of the original particle size of the particles and are very thin compared to this dimension, namely again in the nanometer range (usually 5 to about 30 nanometers).

Durch ihre Verteilung im endverdichteten Material wirken diese Oxidschichtabschnitte als erfindungsgemäß wirksame Wirbelstromhemmnisse im Mikrobereich, gleichzeitig ermöglicht das so realisierte endverdichtete Material (welches im gezeigten Ausführungsbeispiel in einem nachfolgenden Schritt S6 durch Walzen noch eine Umformung in eine beabsichtigte Endform sowie im nachfolgenden Schritt S7 noch eine spanende Nachbehandlung erfährt) sehr günstige magnetische Eigenschaften im Hinblick auf hohe Sättigungsflussdichte und niedrige Koerzitivfeldstärke, wobei selbst am Maßstab eines bekannten Automatenstahls (z. B. 1.0715), welcher häufig für Gleichstromanwendungen herangezogen wird, günstiges Verhalten realisiert wird. Ein so hergestelltes Material ist ferner einem typischen Referenzmaterial für Wechselstromanwendungen (etwa FeSi3) deutlich überlegen.Due to their distribution in the finely compacted material, these oxide layer sections act as eddy current inhibitors in the micro range according to the invention; at the same time, the final compacted material (which in the exemplary embodiment shown in a subsequent step S6 by rolling still allows a transformation into an intended final shape and also a subsequent cutting step in step S7 Post-treatment) has very favorable magnetic properties in terms of high saturation flux density and low coercive force, and even at the scale of a known free-cutting steel (eg, 1.0715), which is often used for DC applications, favorable behavior is realized. A material thus produced is also significantly superior to a typical reference material for AC applications (such as FeSi3).

Claims (15)

  1. A method for producing a magnetisable metal shaped body formed of a ferromagnetic raw material (10) present in powdery and in particle form, comprising the following steps:
    - preliminary compression, as first compression, of the raw material (S3), such that adjacent particles are interconnected by integral bonding in portions at their peripheral surface by means of sinter bridges, thus forming cavities (12),
    - production of an electrically insulating surface coating (14) on the peripheral surfaces of the particles in regions outside the connection portions (S4), and
    - second compression of the particles (S5) provided with the surface coating, such that the cavities are reduced in size or eliminated.
  2. The method according to Claim 1, characterised in that the electrically insulating surface coating (S4) is produced by introducing into the cavities a gas that produces the surface coating by reaction with the peripheral surfaces.
  3. The method according to Claim 1 or 2, characterised in that the electrically insulating surface coating is produced by a gas that is already present in or with the raw material during the step of first compression of the raw material or that is created during the first compression.
  4. The method according to Claim 2 or 3, characterised in that the gas is a carbon-containing, nitrogen-containing, oxygen-containing, sulphur-containing and/or boron-containing gas and/or causes a chemical reaction, such that the peripheral surface outside the connection portions experiences the electrically insulating surface coating.
  5. The method according to one of Claims 1 to 4, characterised in that the electrically insulating surface coating has a layer thickness in the range between 2 nm and 50 nm.
  6. The method according to one of Claims 1 to 5, characterised in that the first compression is carried out by sintering and/or preliminary sintering of a powder, which is compressed by shaking, as ferromagnetic raw material.
  7. The method according to Claim 6, characterised in that the sintering or preliminary sintering is carried out by thermal treatment and without pressing.
  8. The method according to one of Claims 1 to 5, characterised in that the second compression (S5) involves pressing the particles which have been compressed by the first compression and provided with the electrically insulating surface coating at a second pressing pressure, which is higher than the first pressing pressure, in particular at least 10 % higher, preferably at least 200 % higher, the first pressing pressure being the pressure at which the raw material is pressed during the first compression (S3).
  9. The method according to Claim 8, characterised in that the first and/or the second compression is carried out by means of hot hydrostatic or isostatic pressing.
  10. The method according to Claim 9, characterised in that the hot hydrostatic or isostatic pressing during the second compression (S5) is carried out at a temperature and a pressing pressure which result in a flowing of the particles and/or the layer portions of the insulating surface coating.
  11. The method according to one of Claims 1 to 10, characterised in that a reforming of the shaped body after the second compression results in a change to and/or elimination of an isotropy of layer portions of the insulating surface coating that are present in the shaped body after the second compression.
  12. The method according to one of Claims 1 to 11, characterised in that the ferromagnetic raw material has iron particles coated by a metal material or semiconductor material, the coating of the iron particles in the raw material preferably having a thickness of < 1000 nm, preferably < 100 nm, more preferably < 10 nm.
  13. The method according to one of Claims 1 to 12, characterised in that a mean particle size of the particles, present as powder, of the ferromagnetic raw material lies in the range between 5 µm and 1000 µm.
  14. The method according to one of Claims 1 to 13, characterised in that the metal shaped body is used to produce magnetisable components of electromagnetic actuator and/or drive apparatuses, in particular of an electromagnetic actuating element or of an electric motor, of a magnetic bearing or of a transformer.
  15. The method according to one of Claims 1 to 14, characterised in that the shaped body is used to produce a high-frequency component or a high-frequency module.
EP09741823.0A 2008-05-09 2009-04-27 Method for producing a magnetizable metal shaped body Active EP2289082B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008023059A DE102008023059B4 (en) 2008-05-09 2008-05-09 Method for producing a magnetizable metallic shaped body
PCT/EP2009/003041 WO2009135604A1 (en) 2008-05-09 2009-04-27 Method for producing a magnetizable metal shaped body

Publications (2)

Publication Number Publication Date
EP2289082A1 EP2289082A1 (en) 2011-03-02
EP2289082B1 true EP2289082B1 (en) 2014-05-07

Family

ID=40908483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09741823.0A Active EP2289082B1 (en) 2008-05-09 2009-04-27 Method for producing a magnetizable metal shaped body

Country Status (5)

Country Link
US (1) US8845957B2 (en)
EP (1) EP2289082B1 (en)
CN (1) CN102165540A (en)
DE (1) DE102008023059B4 (en)
WO (1) WO2009135604A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872342B2 (en) * 2016-10-18 2021-05-19 株式会社ディスコ Cutting blade
CA3097333C (en) * 2018-05-30 2023-08-01 Jfe Steel Corporation Electrical steel sheet having insulating coating, method for producing the same, transformer core and transformer using the electrical steel sheet, and method for reducing dielectric loss in transformer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT119411B (en) * 1928-02-11 1930-10-25 Siemens Ag Process for the production of bodies which are composed of grains or powder particles coated with an insulating layer.
DE1195882B (en) * 1955-06-08 1965-07-01 Siemens Ag Process for the production of a soft magnetic sintered body
JPS63199801A (en) * 1987-02-12 1988-08-18 Chisso Corp Stabilization treatment device for ferromagnetic metal powder
EP0406580B1 (en) * 1989-06-09 1996-09-04 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same
US5993729A (en) * 1997-02-06 1999-11-30 National Research Council Of Canada Treatment of iron powder compacts, especially for magnetic applications
US6548012B2 (en) 1999-05-28 2003-04-15 National Research Council Of Canada Manufacturing soft magnetic components using a ferrous powder and a lubricant
DE10066419B8 (en) * 1999-08-30 2015-09-17 Hitachi Metals, Ltd. A method of preserving (maintaining) an alloy powder material for an R-Fe-B type sintered magnet
JP2001223107A (en) * 2000-02-09 2001-08-17 Kobe Steel Ltd Method of compression molding soft magnetic powder
JP2005079511A (en) * 2003-09-03 2005-03-24 Sumitomo Electric Ind Ltd Soft magnetic material and its manufacturing method
EP1675137B1 (en) * 2003-10-15 2012-02-08 Sumitomo Electric Industries, Ltd. Process for producing soft magnetism material

Also Published As

Publication number Publication date
WO2009135604A1 (en) 2009-11-12
DE102008023059A1 (en) 2010-02-25
CN102165540A (en) 2011-08-24
US8845957B2 (en) 2014-09-30
EP2289082A1 (en) 2011-03-02
DE102008023059B4 (en) 2010-06-10
US20110058976A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
DE10314564B4 (en) Soft magnetic powder material, soft magnetic green compact and manufacturing method for a soft magnetic green compact
EP1514282B1 (en) Soft magnetic powder composite material, method for the production thereof and use of the same
DE102016119650A1 (en) Process for producing a soft magnetic core material
DE112012000967T5 (en) Process for producing a rare earth magnet
DE102016119654A1 (en) Process for producing a soft magnetic core material
EP3295540A1 (en) Stack system of an electric machine, electric machine, and method for producing the stack system
EP2582477B1 (en) Structural component made of an iron-based sinter-alloy having reduced metal adhesion and method for its production
EP2289082B1 (en) Method for producing a magnetizable metal shaped body
DE10059155A1 (en) Process for improving the compactibility of a powder and articles molded therewith
JPWO2005013294A1 (en) Soft magnetic material, dust core, transformer core, motor core, and method for manufacturing dust core
DE102020130671A1 (en) COMPOSITE MAGNETS AND METHOD FOR MANUFACTURING COMPOSITE MAGNETS
EP2242602A1 (en) Method for producing a metal powder and metal powder produced by this method
WO2015118099A1 (en) Magnetic material
WO2014000916A1 (en) Soft-magnetic component and method for the production thereof
DE102020130672A1 (en) COMPOSITE MAGNETS AND METHOD FOR MANUFACTURING COMPOSITE MAGNETS
EP3281212A1 (en) Soft magnetic composite and corresponding method for producing a soft magnetic composite
EP2376245A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
DE19945592A1 (en) Soft magnetic material and process for its production
JP4586399B2 (en) Soft magnetic material, dust core, and method for producing soft magnetic material
DE102017131291A1 (en) Method for producing a sintered gradient material, sintered gradient material and its use
AT511919B1 (en) METHOD FOR PRODUCING AN SINTER COMPONENT
EP3715018B1 (en) Texturing of electrical sheets
DE102023134317A1 (en) Method for producing a component with soft magnetic properties
EP4342672A1 (en) Additively manufactured magnetic sheet, lamination stack, and electric machine
EP4075461A1 (en) Method of manufacturing an electric component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETO MAGNETIC GMBH

Owner name: KENNAMETAL EUROPE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 667234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009359

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BODENSEEPATENT GMBH, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140507

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009359

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009359

Country of ref document: DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150427

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160329

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 667234

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ETO MAGNETIC GMBH, CH

Free format text: FORMER OWNER: ETO MAGNETIC GMBH, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 15

Ref country code: CH

Payment date: 20230502

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009009359

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWALTSKANZLEI DAUB, DE