EP2288388B1 - Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire - Google Patents

Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire Download PDF

Info

Publication number
EP2288388B1
EP2288388B1 EP09758718.2A EP09758718A EP2288388B1 EP 2288388 B1 EP2288388 B1 EP 2288388B1 EP 09758718 A EP09758718 A EP 09758718A EP 2288388 B1 EP2288388 B1 EP 2288388B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
group
compound
peptides
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09758718.2A
Other languages
German (de)
English (en)
Other versions
EP2288388A1 (fr
Inventor
Hartmuth C. Kolb
Joseph C. Walsh
Kai Chen
Dhanalakshmi Kasi
Umesh B. Gangadharmath
Peter J.H. Scott
Gang Chen
Vani P. Mocharla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Medical Solutions USA Inc
Original Assignee
Siemens Medical Solutions USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Solutions USA Inc filed Critical Siemens Medical Solutions USA Inc
Publication of EP2288388A1 publication Critical patent/EP2288388A1/fr
Application granted granted Critical
Publication of EP2288388B1 publication Critical patent/EP2288388B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/082Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the peptide being a RGD-containing peptide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Embodiments of the present invention are directed to polyfunctional compounds comprising radiolabeled targeting agents linked to therapeutic agents, pharmaceutical compositions thereof, and methods of using polyfunctional compounds comprising radiolabeled targeting agents linked to therapeutic agents.
  • the present invention also includes embodiments that are further directed to methods of preparing the polyfunctional compounds.
  • Such polyfunctional compounds, as disclosed herein, may be used in imaging studies and as therapeutics for treatment of disease.
  • Chemotherapeutic interventions for combating metastatic cancer are one of the most widely accepted forms of cancer therapy.
  • chemotherapeutics were developed largely independently of their biochemical mechanism of action.
  • Chemotherapeutic regimens have undergone various refinements as a result of extensive preclinical and clinical investigations, yet the fundamentally inherent treatment drawbacks of chemotherapeutics still exist.
  • their relatively narrow therapeutic index coupled with systemic toxicity and low selectivity for neoplastic cells, signals a major drawback in chemotherapeutic-based patient care.
  • chemotherapeutic regimens may not necessarily take advantage of a tumor's prevailing biochemical profile, thus leading to therapies that are not personalized for the patient, and may ultimately fail to elicit an effective outcome.
  • Molecular imaging helps elucidate the biochemical profile of a given tumor leading to both potentially more focused and effective treatments. Cancer patients, whose tumors respond to specific tracers, provide therapeutic clues towards treatments with the highest percentages of success. In addition, after treatment has begun, follow up imaging can help determine the efficacious nature of the therapy and can quickly guide decisions regarding the need possible for alternative therapies. For example, there exists a sub-population of cancer patients that may benefit from anti-angiogenesis or anti-carbonic anhydrase IX (CA-IX) therapy. In these circumstances, the use of very expensive antibody-based therapeutics or very toxic treatments (i.e. chemotherapies) should be qualified prior to patient treatment, and a predictive molecular imaging test would have clear health and cost benefits.
  • CA-IX anti-carbonic anhydrase IX
  • molecular imaging or marker agents are described, for example in USSN 11/399,294 ; 11/413,596 ; 11/673,909 ; 11/901,704 ; 11/901,730 ; 12/074,583 ; and 12/180,444 .
  • MI molecular imaging
  • molecular imaging can be employed in an effort to conduct more effective clinical trials for highly specific cancer therapeutics. More specifically, the patient recruitment population would reflect those whose tumor biology matched the mechanism of action of the cancer drug.
  • clinical trials of anti-angiogenic therapies for example, would include only those patients whose tumors show positive uptake of 18 F-angiogenesis tracers as revealed by PET imaging, indicating tumor angiogenesis.
  • Molecular imaging also plays a beneficial role in guiding personalized therapies.
  • the patient is first imaged using biomarkers to establish the presence or absence of a specific cancer target at the tumor site (e.g. CA-IX or integrin- ⁇ v ⁇ thereby illuminating the decision path regarding whether a given treatment, that may be toxic or expensive, would be successful.
  • a specific cancer target at the tumor site e.g. CA-IX or integrin- ⁇ v ⁇ thereby illuminating the decision path regarding whether a given treatment, that may be toxic or expensive, would be successful.
  • angiogenic therapies would be considered a possible treatment strategy if molecular imaging revealed angiogenic factors at the tumor site.
  • molecular imaging is uniquely situated to monitor a patient's treatment response.
  • Molecular imaging with an appropriate biomarker can help visualize biochemical changes as a function of both time and treatment.
  • Clinicians, in parallel, can determine whether or not a current therapeutic regimen has elicited the desired biological effect as measured, for example, by the reduction of blood vessel growth, tumor shrinkage or cell death.
  • This complimentary analysis approach provides both biochemical and biophysical feedback allowing for potentially more sensitive estimation of a patient's response to therapy.
  • Such treatment protocol may include the administration of a chemotherapeutic agent or an antibody.
  • Positron Emission Tomography (PET) imaging with small molecule PET biomarkers are best suited for this approach, due to their very fast tracer kinetics, which allows imaging ("Painting") and initiation of treatment (“Destroying") to be performed within a few hours.
  • PET Positron Emission Tomography
  • the pro-drug may be inactive, relatively inactive or may exhibit low biological activity when compared to the active chemotherapeutic drugs.
  • a targeting agent linked to a therapeutic for a method comprises two stages of diagnosis followed by treatment ( Figure 1 ).
  • a PET image is performed with a labeled agent, such as an 18 F-labeled target-specific agent, "targeting agent” 18 F-TA, to determine whether or not the tumor is associated or carries this target ("Paint the Target”).
  • a labeled agent such as an 18 F-labeled target-specific agent, "targeting agent” 18 F-TA
  • target 18 F-labeled target-specific agent
  • targeting agent 18 F-TA
  • the treatment involves administration, such as by injection, a targeting agent (TA) that is linked to a chemotherapeutic agent into the patient.
  • TA targeting agent
  • Such chemotherapeutic agent may include, for example, doxorubicin, which is a cytotoxic agent, see, for example USSN 11/399,294 .
  • doxorubicin which is a cytotoxic agent
  • the TA-Chemotherapeutic conjugate will preferentially bind to the tumor, resulting in a high local concentration of the therapeutic agent, and thereby treat the target (i.e, "Destroy the Target.")
  • This highly localized concentration of the therapeutic agent increases effectiveness of the chemotherapeutic and minimizes the harmful side effects, ultimately leading to a desired high therapeutic index.
  • the PET isotope such as 18 F
  • the PET isotope may be attached directly to the TA-Chemotherapeutic conjugate, as this may also allow "real time” PET imaging to determine whether or not the 18 F-labeled TA-CA conjugate does indeed bind to the tumor.
  • FIG. 2 There is also provided a method whereby the targeting agent is linked to an antibody ( Figure 2 ).
  • the similar principles may be employed, however the method of treatment varies slightly.
  • An initial assessment of the tumor is carried out with an imaging procedure, such as PET imaging with an 18 F-labeled target-specific agent, i.e., a "targeting agent" ( 18 F-TA), to determine whether or not the tumor carries this target ("Paint the Target").
  • 18 F-TA 18 F-labeled target-specific agent
  • the targeting agent may be an 18 F-labeled tracer that targets integrin- ⁇ v ⁇ 3. If the target is present, the treatment therapy may proceed along two possible paths. First, the treatment may commence by administering a TA that is linked to a catalytic antibody, followed by the admistration of a pro-drug that is selectively activated by the catalytic antibody. Because the catalytic antibody uniquely converts the inactive pro-drug into an active chemotherapeutic agent locally, there is a high local concentration of the active chemotherapeutic, which will "destroy the target", leading to increased effectiveness and minimized side effects (i.e., achieving high therapeutic index).
  • the 18 F-TA imaging agent may be employed wherein the agent already comprises a binding site for the catalytic antibody.
  • This alternative embodiment may provide a more seamless method of PET imaging (“Paint”) and treatment (“Destroy”) protocol.
  • the treatment may commence by administering a targeting agent TA that is linked to an antibody AB.
  • Antibody targeting compounds are described, for example, in USSN 10/420,373 .
  • the TA confers specificity of the antibody and the localization of such complexes at the tumor site are known to decrease a tumor's size ( Popkov, M.; Rader, C.; Gonzalez, B.; Sinha, S.; Barbas, C. F. Int. J. Cancer 2006, 119, 1194-1207 ) which "destroys the target".
  • the 1g F-TA imaging agent may also already comprise a binding site for the catalytic antibody.
  • salts of amino acids such as arginate, gluconate, and galacturonate.
  • Some of the compounds of the invention may form inner salts or zwitterions.
  • Certain of the compounds of the present invention may also exist in unsolvated forms as well as solvated forms, including hydrated forms, and are intended to be within the scope of the present invention.
  • Certain of the above compounds may also exist in one or more solid or crystalline phases or polymorphs, the variable biological activities of such polymorphs or mixtures of such polymorphs are also included within the scope of this invention.
  • pharmaceutical compositions comprising pharmaceutically acceptable excipients and a therapeutically effective amount of at least one compound of the invention.
  • compositions of the compounds of the invention, or derivatives thereof may be formulated as solutions or lyophilized powders for parenteral administration.
  • Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use.
  • the liquid formulation may generally exist as a buffered, isotonic, aqueous solution.
  • suitable diluents are normal isotonic saline solution, 5% dextrose in water or buffered sodium, or ammonium acetate solution.
  • Such formulations are especially suitable for parenteral administration, but may also be used for oral administration.
  • Excipients such as, by way of non-limiting example, polyvinylpyrrolidinone, gelatin, hydroxycellulose, acacia, polyethylene glycol, mannitol, sodium chloride or sodium citrate, may also be added. Alternatively, these compounds may be encapsulated, tableted, or prepared in an emulsion or syrup for oral administration.
  • Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition.
  • Non-limiting examples of liquid carriers may include syrup, peanut oil, olive oil, glycerin, saline, alcohols, and/or water.
  • Non-limiting examples of solid carriers may include starch, lactose, calcium sulfate, dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar, and/or gelatin.
  • the carrier may also include a sustained release material such as, for example glyceryl monostearate or glyceryl distearate, alone or with a wax.
  • the amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit.
  • the pharmaceutical preparations may be made following the conventional techniques of pharmacy involving, by way of non-limiting example, milling, mixing, granulation, and compressing, when necessary, for tablet forms; or milling, mixing, and filling for hard gelatin capsule forms.
  • a liquid carrier When a liquid carrier is used, the preparation may be in the form of, by way of non-limiting example, a syrup, elixir, emulsion, or an aqueous or non-aqueous suspension.
  • Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule.
  • Suitable formulations for each of these methods of administration may be found in, by way of non-limiting example, Remington: The Science and Practice of Pharmacy, A. Gennaro, ed., 20th edition, Lippincott, Williams & Wilkins, Philadelphia, Pa .
  • the compounds of the invention may exist in the form of a single stereoisomer or mixture of stereoisomers thereof
  • the compounds of the invention may exist in the form of a mixture of stereoisomers.
  • alkyl is a straight, branched, saturated or unsaturated, aliphatic group having a chain of carbon atoms, optionally with oxygen, nitrogen or sulfur atoms inserted between the carbon atoms in the chain or as indicated. Alkyl groups may be optionally substituted.
  • An alkyl group may include a (C 1 -C 20 )afkyl.
  • a (C 1- C 6 )alkyl includes alkyl groups that have a chain of between 1 and 6 carbon atoms, and include, by way of non-limiting example, the groups methyl, ethyl, propyl, isopropyl, vinyl, allyl, 1-propenyl, isopropenyl, ethynyl, 1-propynyl, 2-propynyl, 1,3-butadienyl, penta-1,3-dienyl.
  • alkyl group such as a "C 1 -C 6 alkyl,” that forms a part of a group or linker is a divalent alkyl group, and also may be referred to as an "alkylene” group.
  • alkenyl group, alkynyl group, aryl group, etc in a structure that is shown as a divalent group may be referred to as an alkenylenyl, alkynylenyl, arylenyl group respectively.
  • alkyl as noted with another group such as an aryl group, represented as "arylalkyl” for example, is intended to be a straight, branched, saturated or unsaturated aliphatic divalent group with the number of atoms indicated in the alkyl group (as in (C 1- C 6 )alkyl, by way of non-limiting example) and/or aryl group or when no atoms are indicated means a bond between the aryl and the alkyl group.
  • Nonexclusive examples of such groups include benzyl, phenylethyl.
  • alkylene group or “alkylenyl group” is a straight, branched, saturated or unsaturated aliphatic divalent group with the number of atoms indicated in the alkyl group; for example a -(C 1 -C 3 )alkylene- or -(C 1- C 3 )alkylenyl-.
  • alkenyl refers to unsaturated groups which contain at least one carbon-carbon double bond and includes straight-chain, branched-chain and cyclic groups. Alkene groups may be optionally substituted. Exemplary groups include 1-butenyl, 2-butenyl, 3-butenyl, isobutenyl, 1-propenyl, 2-propenyl and ethenyl.
  • alkoxy or "alkyloxy” includes linear or branched alkyl groups that are attached to divalent oxygen.
  • the alkyl group is as defined above. Examples of such substituents include methoxy, ethoxy, t-butoxy.
  • alkoxyalkyl refers to an alkyl group that is substituted with one or more alkoxy groups. Alkoxy groups may be optionally substituted.
  • aryloxy refers to an aryl group that is attached to an oxygen, such as phenyl-O-, etc.
  • alkynyl refers to unsaturated groups which contain at least one carbon-carbon triple bond and includes straight-chain, branched-chain and cyclic groups. Alkyne groups may be optionally substituted. Exemplary groups include 1-butynyl, 2-butynyl, 3-butynyl, 1-propynyl, 2-propynyl and ethynyl.
  • carbocycle refers to a C 3 to C 8 monocyclic, saturated, partially saturated or aromatic ring. Carbocycles may be optionally substituted.
  • Non-exclusive examples of carbocycle include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclopentene, cyclohexene, cycloheptene, cyclooctene, benzyl, naphthene, anthracene, phenanthracene, biphenyl and pyrene.
  • heterocyclyl or “heterocycle” is a carbocycle group wherein one or more of the atoms forming the ring is a heteroatom that is a N, O, or S.
  • the heterocycle may be saturated, partially saturated or aromatic. Heterocycles may be optionally substituted.
  • heterocyclyl examples include piperidyl, 4-morpholyl, 4-piperazinyl, pyrrolidinyl, 1,4-diazaperhydroepinyl, acetonidyl-4-one, 1,3-dioxanyl, thiophenyl, furanyl, pyrrolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyranyl.
  • a "cyclyl” such as a monocyclyl or polycyclyl group includes monocyclic, or linearly fused, angularly fused or bridged polycycloalkyl, or combinations thereof. Such cyclyl group is intended to include the heterocyclyl analogs.
  • a cyclyl group may be saturated, partially saturated or aromatic.
  • Halogen or "halo" means fluorine, chlorine, bromine or iodine.
  • substituents independently selected from alkyl, aryl, alkylene-aryl, hydroxy, alkoxy, aryloxy, perhaloalkoxy, heterocycle, azido, amino, guanidino, amidino, halo, alkylthio
  • the term "optionally substituted” or “substituted,” including in reference to the moiety Z, includes groups substituted by one to four substituents, as identified above, or that comprises a metal chelating agent or moiety, that further comprise a positron or gamma emitter.
  • positron emitters include 11 C, 13 N, 15 O, 18 F, 61 Cu, 62 Cu, 64 Cu, 67 Cu, 68 Ga, 124 I, 125 I 131 I, 99 Tc, 75 Br, 153 Gd and 32 P.
  • side chain of a natural or unnatural amino acid refers to "Q" group in the amino acid formula, as exemplified by NH 2 CH(Q)CO 2 H.
  • polar amino acid moiety refers to the side chain, Q, of a polar natural or unnatural amino acid.
  • Polar natural amino acids include arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, histidine and lysine.
  • natural amino acid refers to the naturally occurring amino acids: glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and lysine.
  • unnatural amino acid refers to any derivative of a natural amino acid including, for example, D and L forms, and ⁇ - and ⁇ -amino acid derivatives. It is noted that certain amino acids, e.g., hydroxyproline, that are classified as a non-natural amino acid herein, may be found in nature within a certain organism or a particular protein.
  • non-natural amino acids and amino acid derivatives may be used according to the application (common abbreviations in parentheses): ⁇ -alanine ( ⁇ -ALA), ⁇ -aminobutyric acid (GABA), ornithine, 2-aminobutyric acid (2-Abu), ⁇ -dehydro-2-aminobutyric acid (8-AU), 1-aminocyclopropane-1-carboxylic acid (ACPC), aminoisobutyric acid (Aib), ⁇ -carboxyglutamic acid, 2-amino-thiazoline-4-carboxylic acid, 5-aminovaleric acid (5-Ava), 6-aminohexanoic acid (6-Ahx), 8-aminooctanoic acid (8-Aoc), 11-aminoundecanoic acid (11-Aun), 12-aminododecanoic acid (12-Ado), 2-aminobenzoic acid (2-Abz), 3-amino
  • protecting group or "PG” as used herein is intended to be defined as commonly practiced by the skilled artisan.
  • Non-limiting examples of protecting groups are summarized in Greene et al., Protective Groups in Organic Synthesis, Second Edition, John Wiley and Sons, New York, 1991 . Judicious choice of protecting groups may be dependant on the particular synthetic methods and routes employed, and may be governed by the skilled artisan. When multiple protecting groups are present in a molecule, they may or may not be identical, depending on their specific purpose and the scenario of the synthetic method.
  • Linker refers to a chain comprising 1 to 200 atoms and may comprise atoms or groups, such as C, -NR-, O, S, -S(O)-, -S(O) 2 CO, -C(NR)-, a polyethylene glycol (PEG) moiety and wherein R is H or is selected from the group consisting of (C 1 - 10 )alkyl, (C 3-8 )cycloalkyl, aryl(C 1 - 5 )alkyl, heteroaryl(C 1 - 5 )alkyl, amino, aryl, heteroaryl, hydroxy, (C 1 - 10 )alkoxy, aryloxy, heteroaryloxy, each substituted or unsubstituted.
  • the linker chain may also comprise part of a saturated, unsaturated or aromatic ring, including monocyclic (e.g. a 1,5-cyclohexylenyl group, sugar mimetic, and sugar moiety), polycyclic and heteroaromatic rings (e.g. a 2,4-pyridinyl group etc ).
  • monocyclic e.g. a 1,5-cyclohexylenyl group, sugar mimetic, and sugar moiety
  • polycyclic and heteroaromatic rings e.g. a 2,4-pyridinyl group etc .
  • (C 1-3 )alkyl for example, is used interchangeably with "C 1 -C 3 alkyl" to mean the same.
  • a divalent group such as a linker
  • a linker is represented by a generic structure -A-B-, as shown below, it is intended to also represent a group that may be attached in both possible permutations, as noted in the two structures as follows:
  • a “mimetic" of a peptidic structure includes compounds in which chemical structures of the peptidic structure necessary for functional activity of the peptidic structure have been replaced with other chemical structures which mimic the conformation of the peptidic structure.
  • the term “isostere” includes chemical structures that can be substituted for a second chemical structure because the steric conformation of the first structure that may fit a binding site specific for the second structure.
  • the term specifically includes peptide backbone modifications (i.e., amide bond mimetics) well-known to those skilled in the art.
  • Such modifications include, by way of non-limiting example, modifications of the amide nitrogen, the ⁇ -carbon, amide carbonyl, complete replacement of the amide bond, extensions or deletions.
  • indicates the absence of an amide bond.
  • the structure that replaces the amide group is specified within the brackets.
  • Other possible modifications include an N-alkyl (or aryl) substitution ( ⁇ [CONR]).
  • Non-limiting examples of otherther derivatives of the compounds include C-terminal hydroxymethyl derivatives, O-modified derivatives (e.g., C-terminal hydroxymethyl benzyl ether), N-terminally modified derivatives including substituted amides such as alkylamides and hydrazides and compounds in which a C-terminal phenylalanine structure is replaced with a phenethylamide analog (e.g., Val-Phe-phenethylamide as an analog of the tripeptide Val-Phe-Phe).
  • Protein mimetics may be in their free acid form or may be amidated at the C-terminal carboxylate group.
  • the homologs of the peptides as provided herein typically have structural similarity with such peptides.
  • a "homolog" of a polypeptide includes one or more conservative amino acid substitutions, which may be selected from the same or different members of the class to which the amino acid belongs.
  • an amino acid belonging to a grouping of amino acids having a particular size or characteristic may generally be substituted for another amino acid without substantially altering the structure of a polypeptide.
  • Conservative amino acid substitutions are defined to result from exchange of amino acids residues from within one of the following classes of residues: Class I: Ala, Gly, Ser, Thr and Pro (representing small aliphatic side chains and hydroxyl group side chains); Class II: Cys, Ser, Thr and Tyr (representing side chains including an -OH or -SH group); Class III: Glu, Asp, Asn and Gln (carboxyl group containing side chains): Class IV: His, Arg and Lys (representing basic side chains); and Class V: Ile, Val, Leu, Phe, Met, Phe, Trp, Tyr and His (representing hydrophobic side chains).
  • the classes also include related amino acids such as 3Hyp and 4Hyp in Class I; homocysteine in Class II; 2-aminoadipic acid, 2-aminopimelic acid, ⁇ -carboxyglutamic acid, ⁇ -carboxyaspartic acid, and the corresponding amino acid amides in Class III; ornithine, homoarginine, N-methyl lysine, dimethyl lysine, trimethyl lysine, 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, homoarginine, sarcosine and hydroxylysine in Class IV; substituted phenylalanines, norleucine, norvaline, 2-aminooctanoic acid, 2-aminoheptanoic acid, statine and ⁇ -valine in Class V; and naphthylalanines, substituted phenylalanines, tetrahydroisoquinoline-3-carboxylic acid and
  • Head-to-tail (backbone) peptide cyclization has been used to rigidify the structure of small peptides (see Camarero and Muir, J. Am. Chem. Soc., 121:5597-5598 (1999 )).
  • Hruby, V.J., et al. "Conformational restrictions of biologically active peptides via amino acid side chain groups," Life Sci. 31(3):189-199 (Jul. 1982 ).
  • Koivunen, E., et al. "Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins," Biotechnology 13(3):265-270 (Mar. 1995 ).
  • Polypeptide homologs include modified polypeptides. Modifications of polypeptides include chemical and/or enzymatic derivatizations at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors.
  • Catalytic antibodies refers to large proteins that are naturally produced by the immune system and have the capability of initiating diverse chemical reactions similarly to enzymes. Catalystic antibodies are elicited against small molecules that are bound to carrier proteins and contain a specific binding site. In their native form, catalytic antibodies are constructed of two pairs of polypeptide chains that differ in length and are connected to each other by disulfide bridges. Various antibody molecules are known in the art, and share a common structure, but they differ in the N-terminal regions of antibody light and heavy chains which are responsible for antigen recognition. These regions vary greatly in the sequence and number of their constituent amino acids and therefore provide an enormous diversity of antigen-binding domains.
  • Chemotherapeutic agents may be agents for treatment of a variety of afflictions and diseases, including central nervous system diseases, neurodegenerative diseases such as Alzheimer's or Parkinson's disease, cancers, autoimmune diseases such as HIV, cardiovascular diseases, inflammatory diseases, infectious diseases.
  • Examplary agents include anti-neoplastic agents, anti-angiogenic agents, anti-tumor agents, antimicrobial agents, antiviral agents, and antifungal agents.
  • Targeting agents may be compounds comprised of moieties that recognize, bind or adhere to a target moiety of a target molecule located, for example, in an organism, tissue, cell or extracellular fluid, or any combination thereof
  • Targeting agents include peptide targeting agents such as, for example, integrin targeting agents, proteins, antibodies, drugs, peptidomimetics, glycoproteins, glycolipids, glycans, lipids, nucleic acids, carbohydrates, phospholipids.
  • Targeting agents include organic molecules comprised of a mass of 5,000 daltons or less.
  • “Pharmaceutically acceptable salts” means salt compositions that are generally considered to have the desired pharmacological activity, are considered to be safe, non-toxic and acceptable for veterinary and human pharmaceutical applications.
  • Non-limiting examples of such salts include acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid; or with organic acids such as acetic acid, propionic acid, hexanoic acid, malonic acid, succinic acid, malic acid, citric acid, gluconic acid, salicylic acid.
  • “Therapeutically effective amount” means a drug amount that elicits any of the biological effects listed in the specification.
  • “Substituted or unsubstituted” or “optionally substituted” means that a group such as, for example alkyl, aryl, heterocyclyl, (C 1 -C 8 )cycloalkyl, hetrocyclyl(C 1 -C 8 )alkyl, aryl(C 1 -C 8 )alkyl, heteroaryl, heteroaryl(C 1 -C 8 )alkyl unless specifically noted otherwise, may be unsubstituted or, may substituted by 1, 2 or 3 substituents selected from the group such as halo, nitro, trifluoromethyl, trifluoromethoxy, methoxy, ethoxy, carboxy, -NH 2 , -OH, -SH, -NHCH 3 , -N(CH 3 ) 2 , -SMe, cyano.
  • the following procedures may, by way of non-limiting example, be employed for the preparation of the compounds of the present invention.
  • the starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as the Aldrich Chemical Company (Milwaukee, Wis.), Bachem (Torrance, Calif.), Sigma (St. Louis, Mo.), or are prepared by methods well known to a person of ordinary skill in the art, following procedures described in such references including, but not limited to Fieser and Fieser's Reagents for Organic Synthesis, vols. 1-17, John Wiley and Sons, New York, N.Y., 1991 ; Rodd's Chemistry of Carbon Compounds, vols.
  • protective groups may be introduced and finally removed. Suitable protective groups for amino, hydroxy, and carboxy groups are described, for example, in Greene et al., Projective Groups in Organic Synthesis, Second Edition, John Wiley and Sons, New York, 1991 . Standard organic chemical reactions may be achieved using a number of different reagents including, but not limited to those described in Larock: Comprehensive Organic Transformations, VCH Publishers, New York, 1989 .
  • the Paint and Destroy conjugates may be prepared using a polyfunctional linker.
  • the polyfunctional linker is generically represented as the variable "A".
  • the polyfunctional linker may be a tri-functional linker ( Figure 3 ), the linker comprised of three sites for conjugation to link a targeting agent, a macromolecule and a radio labeling site.
  • the three sites for conjugation may comprise an amine reactive moiety, a sulfur reactive moiety and an azide for both direct and indirect radiolabeling.
  • the linker may be readily assembled in four steps.
  • a protected amino acid such as lysine (wherein PG is a protecting group, see, e.g. Greene et al., Protective Groups in Organic Synthesis, Second Edition, John Wiley and Sons, New York, 1991 )
  • the side chain amine may be acylated, for example via the N-Hydroxysuccinamide (NHS) ester of glycine azide (2) (Scheme 1).
  • the protecting group may then be removed, followed by acylation of the amine group using, for example, a linker to afford the new maleimide derivative such as 6.
  • the free acid may be activated as the NHS ester 8.
  • the linker may be readily assembled as shown, for example, in scheme 2.
  • a protected amino acid derivative such as 9 (wherein PG is again a protecting group)
  • the protecting group may be removed, followed by acylation of the amino group using, for example, a linker to afford a maleimide derivative such as 11.
  • the free acid may then be activated as the NHS ester to provide an alkyne-derived trifunctional linker such as 12.
  • the targeting agent may be first conjugated to a tri-functional linker, followed by conjugation of a macromolecule, and then followed by radio labeling with a radionuclide such as 18F.
  • the clearance properties of the macromolecule may be compatible with 18F-imaging.
  • non-radio labeled standards may be synthesized using non-radio labeled precursors and reagents.
  • 19F may be used in lieu of 18F to provide a non-radiolabled standard.
  • the compound may include a substrate that chelates a radionuclide (Scheme 6).
  • the targeting agent may be first conjugated to the linker, macromolecule is then conjugated to the compound comprising the targeting agent, and the chelating agent, such as 1,4,7,10-tetraazacyclododecane'-N,N',N",N"'-tetraacetic acid (DOTA) and derivatives thereof, may be attached to the linker via a azide.
  • a radioactive metal such as 64Cu
  • Other chelators may be employed, including diethylenetriaminopentaacetic acid (DTPA) and derivatives thereof.
  • the targeting agent may be first conjugated to the linker, followed by attachment of an antibody tethering moiety ( Guo, F.; Das, S.; Mueller, B. M.; Barbas III, C. F.; Lerner, R. A.; Sinha, S. Proc. Natl. Acad. Sci. 2006, 103, 11009-11014 ), and may be further followed by the attachment of DOTA to the linker via the azide (Scheme 7).
  • the antibody may then be conjugated via attachment to the tethering moiety.
  • a radioactive metal such as Cu-64) may be added to chelate to the DOTA group.
  • a typical labelling sequence is shown below. Briefly, an [F-18] intermediate is prepared and conjugated to an elaborated scaffold to afford the final [F-18]-labeled tracer. In this particular example, the conjugation is effected via click chemistry.
  • Fluorine-18 [F-18] is produced by proton bombardment of the stable isotope, oxygen-18 (O-18) as illustrated by the reaction scheme as follows: 18 O (p, n) 18 F
  • the chemical form of the enriched O-18 is [O-18]H 2 O.
  • the [F-18]Fluorine produced is aqueous [F-18]fluoride ion.
  • the target water is loaded into an approximately 1-2 mL target and pressurized to approximately 350 psi.
  • the tantalum target body is outfitted with a high strength, durable metal foil.
  • the foil is an alloy referred to as, "Havar ® ".
  • the major components of Havar ® are cobalt, nickel, chromium, and iron. This thin Havar ® foil window permits entry of the protons, yet is sufficiently durable to withstand the pressurized water and proton irradiation.
  • Both targets are made of tantalum metal and are used exclusively for the production of F-18.
  • the [O-18]H 2 O containing the [F-18]fluoride ion is transferred to a shielded enclosure ("hot cell").
  • the aqueous [F-18]Fluoride is then separated from the [O-18]H 2 O.
  • the [O-18]H 2 O readily passes through the anion exchange resin while [F-18]fluoride is retained.
  • the [F-18]fluoride is eluted from the column using a solution of potassium carbonate (3 mg) in water (0.4 mL) and is collected in a reaction vessel.
  • Kryptofix ® 222 (20 mg) dissolved in acetonitrile (1 mL) is added to the aqueous [F-18]fluoride mixture in the reaction vessel.
  • the Kryptofix sequesters the potassium ions preventing the formation of strong K + /F ion-pairs. This increases the chemical reactivity of the [F-18]fluoride ions.
  • TBA-HCO 3 may be used in place of potassium carbonate and Kryptofix® 222.
  • the use of TBA-HCO 3 to generate [F-18]TBAF to perform 18 F-labeling reactions is well known in the art.
  • the mixture is dried by heating between 70-95°C under a stream of inert gas and/or reduced pressure (250 mbar) and additional aliquots of acetonitrile may added to insure the fluoride mixture is sufficiently dry for fluorinations.
  • This evaporation step removes the water and converts the [F-18] to an anhydrous form, which is much more reactive than aqueous [F-18]fluoride.
  • a solution of the tosylate precursor (20 mg ⁇ 5 mg, 75 ⁇ mol) dissolved in a polar aprotic solvent compatible with 18 F-fluorination such as DMSO, tetrhydrofuran, DMF or MeCN (0.5 mL) is added to the reaction vessel containing the anhydrous [F-18]Fluoride.
  • the vessel is heated to approximately 110 ⁇ 5°C for 3 minutes to induce displacement of the tosylate leaving group by [F-18]fluoride as illustrated in Scheme 11.
  • the 18 F-fluoropentyne is distilled from the reaction vessel into the mixture containing a click precursor. This distillation may begin as soon as the tosylate is added to the reaction mixture.
  • the 18 F-pentyne is distilled into a solution containing the Targeting Agent precursor (TA-precursor) 41 (3.0-4.0 mg) dissolved in 200 uL of EtOH:water 1:1, TBTA (15 mg), sodium ascorbate (40 mg), and 250 ⁇ L of 0.1 M CuSO 4 .
  • the reaction is allowed to react at room temperature for 10-20 min. Prior to purification by HPLC, the reaction is diluted with water (3.5 mL) for loading onto a 4 mL HPLC load loop.
  • the reaction mixture containing the crude [F-18]TA (18F- 42 ) is transferred to the HPLC sample loop and purified via chromatographic separation using a semi-preparative HPLC column (Either ACE C18 Pyramid, 7 ⁇ , 250 x 10 mm, Phenomenex Luna,C18, 5 ⁇ , 10 X 250 mm, Phenomenex Gemini C18, 250 x 10 mm or Phenomenex Synergi Hydro-RP C18, 250 x 10 mm, using a gradient system, up to 5.5 mL/min, however lower flow rates may be used if there is a high backpressure, or the system may start at a lower flow rate and then increase to the maximum flowrate).
  • a semi-preparative HPLC column either ACE C18 Pyramid, 7 ⁇ , 250 x 10 mm, Phenomenex Luna,C18, 5 ⁇ , 10 X 250 mm, Phenomenex Gemini C18, 250 x 10 mm or Phenomenex Synergi Hydro-RP
  • the column effluent is monitored using UV (254 or 280 nm) and radiometric detectors connected in series.
  • the purified [F-18]TA tracer is collected from the column at the retention time window determined for the corresponding TA reference standard which coincides with the time that the radiometric detectors begin showing the main peak.
  • the retention time of the [F-18]TA in this system varies between approximately 20-40 minutes.
  • the purified [F-18]TA fraction (18F- 42 ) eluted from the HPLC purification column is diluted with water (40 - 100 mL) and captured onto a C18 SepPak cartridge.
  • the C18 SepPak cartridge is washed with water (10 mL) followed by elution of the product with 0.5-1.0 mL of EtOH.
  • the sample is then diluted with sterile water (4.5-9.0 mL of water) to afford a final formulation of [F-18]TA in a maximum of 10% EtOH:water.
  • Non-invasive microPET imaging studies were carried out using the U87MG tumor model (human glioblastoma, integrin ⁇ v ⁇ 3 positive) or BXPC3 tumor model (human pancreas adenocarcinoma) under isoflurane anesthesia and capturing either static (30 min scan beginning at 90 min after injection) or dynamic imaging (continuous scan for 120 min). Each mouse received between 100 and 300 uCi of tracer. A baseline scan with 18 F-RGDK5 was performed to show that the tumors were indeed integrin ⁇ v ⁇ 3 positive. A subsequent scan was carried out with 18 F- 42 and also showed that the tracer localized favorably at the tumor site with a tumor:muscle ratio of ⁇ 1.5 to 1. The targeting agent, RGD, was successful in localizing glutathione to the tumor site.
  • Figure 4 shows the baseline dynamic scan with 18 F-RGD-K5 on a U87MG xenograft tumor.
  • Figure 5 shows the static scan with 18 F-RGD-K5 on a BXPC3 xenograft tumor.
  • Figure 6 shows the baseline dynamic scan with 18 F- 42 on a U87MG xenograft tumor.
  • Figure 7 shows the static scan with 18 F- 42 on a BXPC3 xenograft tumor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)

Claims (31)

  1. Utilisation d'un composé polyfonctionnel selon la formule I :
    Figure imgb0053
    où :
    A est un échafaudage de bas poids moléculaire sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2 et L3 est de façon indépendante une liaison, un segment de liaison sélectionné dans le groupe constitué par un résidu d'acide aminé, -0-, -S-, -S(O)-, -S(O)2-, -NRa-, un alkyle en C1-6 et - (CH2CH2O) 1-15,
    où Ra est H, un alkyle en C1-5, un hétérocyclyle, un aryle ou un hétéroaryle, et
    où 1 ou 2 atomes de carbone de l'alkyle en C1-6 sont facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR' -, R' étant H ou un alkyle en C1-5 et l'alkyle en C1-6 étant facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    V est -N3 ou un alcynyle en C2-C4 ;
    X est un fragment activé d'un groupe carboxyle ;
    Y est un groupe électrophile ;
    m, n et p sont chacun de façon indépendante un entier allant de 1 à 10,
    ou un de leurs sels de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou de mélanges de leurs stéréoisomères, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  2. Utilisation du composé selon la revendication 1, étant entendu que A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  3. Utilisation du composé selon la revendication 1, étant entendu que A est un résidu d'acide aminé ou un dipeptide, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  4. Utilisation du composé selon la revendication 1, étant entendu que A est un résidu de lysine, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  5. Utilisation du composé selon la revendication 1, étant entendu :
    que A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques et des peptidomimétiques ;
    que chaque L1, L2 et L3 est de façon indépendante une liaison ou un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O), -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR' -, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué par 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle, et
    m, n et p sont chacun égaux à 1, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  6. Utilisation du composé selon la revendication 1, étant entendu :
    que A est sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    que chaque L1, L2 et L3 est de façon indépendante une liaison ou un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR' -, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    que X est de la 1-oxypyrrolidine-2,5-dione ou de la 1-oxycarbonyl-2,5-dione ;
    que Y est du maléimidyle ou du -C(O)CH2CH2-maléimidyle, et
    que m, n et p sont chacun égaux à 1, pour préparer un composé selon l'une quelconque des revendications 7-12 ou 13-17.
  7. Composé selon la formule II
    Figure imgb0054
    où :
    A est un échafaudage de bas poids moléculaire d'au moins 10 daltons sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2, L3 et L4 est de façon indépendante une liaison, un segment de liaison sélectionné dans le groupe constitué par un résidu d'acide aminé, -0-, -S-, -S(O)-, -S(O)2-, -NRa-, un alkyle en C1-6 et - (CH2CH2O)1-15 ;
    où Ra est H ou un alkyle en C1-5, un hétérocyclyle, un aryle ou un hétéroaryle, et
    étant entendu que 1 ou 2 atomes de carbone de l'alkyle en C1-6, sont facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR' - ou -NR' -, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    E est un agent de ciblage possédant une masse de 5.000 daltons ou moins sélectionné parmi un dérivé de RGD et un ligand de la CA-IX ;
    G est un agent chimiothérapique sélectionné dans le groupe constitué par la doxorubicine, le cyclophosphamide, la vincristine, la streptozotocine, le bévacizumab, la prednisone et le paclitaxel, ou un anticorps ;
    W est un triazole ;
    Z est un fragment comprenant un radionucléide sélectionné dans le groupe constitué par un émetteur de positons ou un émetteur gamma, ou un chélateur d'un émetteur de positons ou d'un émetteur gamma, ledit chélateur étant chélaté à un émetteur de positons ou à un émetteur gamma; et
    m, n et p sont chacun de façon indépendante un entier allant de 1 à 10;
    ou un de leurs sels de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou de mélanges de leurs stéréoisomères.
  8. Composé selon la revendication 7, dans lequel A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques et des peptidomimétiques.
  9. Composé selon la revendication 7, dans lequel A est un résidu d'acide aminé ou un dipeptide.
  10. Composé selon la revendication 7, dans lequel A est un résidu de lysine.
  11. Composé selon la revendication 7, dans lequel :
    A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques ;
    chaque L1, L2, L3 et L4 est de façon indépendante une liaison ou un alkyle en C1-6,
    étant entendu que 1 ou 2 atomes de carbone de l'alkyle en C1-6 sont facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR'-, R' étant H ou un alkyle en C1-5 et l'alkyle en C1-6 étant facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle, et
    m, n et p sont chacun égaux à 1.
  12. Composé selon la revendication 7, dans lequel :
    A est sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2 et L3 est de façon indépendante une liaison ou un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6, étant facultativement remplacés par un -O-, -C(O)-, -C(O)NR'-, -S-, -S(O) -, -S(O)2-, -S(O)2NR'- ou -NR'-, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    L4 est un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O) -, -S(O)2-, -S(O)2NR'- ou -NR'-, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    E est un dérivé de RGD ou un ligand de la CA-IX ;
    G est un agent chimiothérapique sélectionné dans le groupe constitué par la doxorubicine, le cyclophosphamide, la vincristine, la streptozotocine, le bévacizumab, la prednisone et le paclitaxel, ou un anticorps ;
    W est un triazole, et
    Z est un radionucléide sélectionné dans le groupe constitué par un émetteur de positons ou un émetteur gamma, ou un chélateur d'un émetteur de positons ou d'un émetteur gamma, ledit chélateur étant chélaté à un émetteur de positons ou à un émetteur gamma, et
    m, n et p sont chacun égaux à 1.
  13. Composé selon la revendication 12, dans lequel l'anticorps est un anticorps catalytique.
  14. Composé selon la revendication 13, dans lequel l'anticorps catalytique convertit un promédicament en un médicament actif.
  15. Composé selon la revendication 12, dans lequel le radionucléide est sélectionné dans le groupe constitué par le 11C, le 13N, le 15O, le 18F,le 61Cu, le 62Cu, le 64Cu, le 67Cu, le 68Ga, le 124I, le 125I, le 131I,le 99Tc, le 75Br, le 153Gd et le 32P.
  16. Composé selon la revendication 15, dans lequel le radionucléide est sélectionné dans le groupe constitué par le 11C, le 18F, le 125I et le 64Cu.
  17. Composé consistant en l'une quelconque des formules :
    Figure imgb0055
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
  18. Composition pharmaceutique comprenant une quantité thérapeutiquement efficace d'un composé selon l'une quelconque des revendications 7 ou 17, et un excipient de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou d'un mélange de leurs stéréoisomères.
  19. Composés selon la formule III destinés à une utilisation dans le traitement du cancer, leur utilisation comprenant les étapes consistant :
    a) à présélectionner le traitement thérapeutique d'un patient en appliquant au patient un examen par imagerie moléculaire au moyen d'un biomarqueur marqué spécifique d'une cible oncologique sur le site tumoral, ledit biomarqueur étant constitué d'un composé selon l'une quelconque des revendications 7-17, et
    b) à administrer une quantité thérapeutiquement efficace d'un composé selon la formule III :
    Figure imgb0062
    où :
    A est un échafaudage de bas poids moléculaire sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2, L3 et L4 est de façon indépendante une liaison, un segment de liaison sélectionné dans le groupe constitué par un résidu d'acide aminé, -0-, -S-, -S(O)-, -S(O)2-, -NRa-, un alkyle en C1-6 et - (CH2CH2O)1-15 ;
    où Ra est H ou un alkyle en C1-5, un hétérocyclyle, un aryle ou un hétéroaryle, et
    étant entendu que 1 ou 2 atomes de carbone de l'alkyle en C1-6, sont facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O) -, -S(O)2-, -S(O)2NR' - ou -NR'-, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    E est un agent de ciblage sélectionné parmi un dérivé de RGD et un ligand de la CA-IX ;
    G est un agent chimiothérapique sélectionné dans le groupe constitué par la doxorubicine, le cyclophosphamide, la vincristine, la streptozotocine, le bévacizumab, la prednisone et le paclitaxel, ou un anticorps ;
    W est un triazole ;
    Z est un fragment comprenant un élément non radioactif ou un chélateur d'un émetteur de positons ou d'un émetteur gamma ;
    m, n et p sont chacun de façon indépendante un entier allant de 1 à 10,
    ou un de leurs sels de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou de mélanges de leurs stéréoisomères, et
    étant entendu que le composé selon la formule III est l'analogue non radiomarqué du composé utilisé à l'étape a.
  20. Composés destinés à une utilisation selon la revendication 19, étant entendu que l'examen par imagerie moléculaire est une tomographie par émission de positons (TEP).
  21. Composés destinés à une utilisation selon la revendication 19, étant entendu que la quantité thérapeutiquement efficace est efficace pour traiter le cancer.
  22. Composés destinés à une utilisation selon la revendication 19, étant entendu que, pour le composé selon la formule III, A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques et des peptidomimétiques.
  23. Composés destinés à une utilisation selon la revendication 19, étant entendu que, pour le composé selon la formule III, A est un résidu d'acide aminé ou un dipeptide.
  24. Composés destinés à une utilisation selon la revendication 19, étant entendu que, pour le composé selon la formule III, A est un résidu de lysine.
  25. Composés destinés à une utilisation selon la revendication 19, étant entendu que, pour le composé selon la formule III :
    A est sélectionné dans le groupe constitué par un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques ;
    chaque L1, L2, L3 et L4 est de façon indépendante une liaison ou un alkyle en C1-6,
    étant entendu que 1 ou 2 atomes de carbone de l'alkyle en C1-6 sont facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR' -, R' étant H ou un alkyle en C1-5 et l'alkyle en C1-6 étant facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle, et
    m, n et p sont chacun égaux à 1.
  26. Composés selon la formule II destinés à être utilisés dans le traitement du cancer, l'utilisation comprenant les étapes consistant :
    a) à présélectionner le traitement thérapeutique d'un patient en appliquant au patient un examen par imagerie moléculaire au moyen d'un biomarqueur marqué spécifique d'une cible oncologique sur le site tumoral, ledit biomarqueur étant constitué d'un composé selon la formule II :
    Figure imgb0063
    où :
    A est sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2 et L3 est de façon indépendante une liaison ou un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR'-, où R' est H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    L4 est un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR' -, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    E est un dérivé de RGD ou un ligand de la CA-IX ;
    G est un agent chimiothérapique sélectionné dans le groupe constitué par la doxorubicine, le cyclophosphamide, la vincristine, la streptozotocine, le bévacizumab, la prednisone et le paclitaxel, ou un anticorps ;
    W est un triazole, et
    Z est un radionucléide sélectionné dans le groupe constitué par un émetteur de positons ou un émetteur gamma, ou un chélateur d'un émetteur de positons ou d'un émetteur gamma, ledit chélateur étant chélaté à un émetteur de positons ou à un émetteur gamma, et
    m, n et p sont chacun égaux à 1, ou
    un de leurs sels de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou de mélanges de leurs stéréoisomères, et
    b) à administrer une quantité thérapeutiquement efficace d'un composé selon la formule III :
    Figure imgb0064
    où A est sélectionné dans le groupe constitué par des hydrocarbures monocycliques et polycycliques fonctionnalisés, des hétérocycles monocycliques et polycycliques fonctionnalisés, un résidu d'acide aminé, des peptides linéaires, des peptides cycliques, des peptides synthétiques, des peptides semi-synthétiques, des peptidomimétiques et l'acide hyaluronique ;
    chaque L1, L2 et L3 est de façon indépendante une liaison ou un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -0-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR'-, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    L4 est un alkyle en C1-6, 1 ou 2 atomes de carbone de l'alkyle en C1-6 étant facultativement remplacés par un -O-, -C(O)-, -C(O)NR'-, -S-, -S(O)-, -S(O)2-, -S(O)2NR'- ou -NR'-, R' étant H ou un alkyle en C1-5, et
    étant entendu que l'alkyle en C1-6 est facultativement substitué au moyen de 1 ou 2 substituants sélectionnés dans le groupe constitué par -OH, -SH, -NH2, un hétérocyclyle, un aryle et un hétéroaryle ;
    E est un dérivé de RGD ou un ligand de la CA-IX ;
    G est un agent chimiothérapique sélectionné dans le groupe constitué par la doxorubicine, le cyclophosphamide, la vincristine, la streptozotocine, le bévacizumab, la prednisone et le paclitaxel, ou un anticorps ;
    W est un triazole, et
    Z est un élément non radioactif ou un chélateur d'un émetteur de positons ou d'un émetteur gamma, et
    m, n et p sont chacun égaux à 1, ou
    un de leurs sels de qualité pharmaceutique, facultativement sous la forme d'un de leurs stéréoisomères simples ou de mélanges de leurs stéréoisomères, et
    étant entendu que le composé selon la formule III est l'analogue non radiomarqué du composé selon la formule II.
  27. Composés destinés à une utilisation selon la revendication 26, dans lesquels l'anticorps est un anticorps catalytique.
  28. Composés destinés à une utilisation selon la revendication 26, dans lesquels l'anticorps catalytique convertit un promédicament en un médicament actif.
  29. Composés destinés à une utilisation selon la revendication 26, dans lesquels l'élément non radioactif du composé selon la formule II est sélectionné dans le groupe constitué par F, I et Br, et le radionucléide du composé selon la formule III est sélectionné dans le groupe constitué par le 11C, le 13N, le 15O, le 18F, le 61Cu, le 62Cu, le 64Cu, le 67Cu, le 68Ga, le 124I, le 125I, le 131I, le etc, le 75Br, le 153Gd et le 32P.
  30. Composés destinés à une utilisation selon la revendication 29, dans lesquels le radionucléide est sélectionné dans le groupe constitué par le 11C, le 18F, le 125I et le 64Cu.
  31. Composés destinés à une utilisation selon l'une quelconque des revendications 19-29, étant entendu que le composé selon la formule II consiste en l'une quelconque des formules :
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    et
    que le composé selon la formule III consiste en un composé selon l'une quelconque des formules :
    Figure imgb0069
    Figure imgb0070
    Figure imgb0071
    Figure imgb0072
    et étant entendu que le composé selon la formule III est l'analogue non radiomarqué du composé selon la formule II.
EP09758718.2A 2008-05-30 2009-06-01 Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire Not-in-force EP2288388B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5777408P 2008-05-30 2008-05-30
PCT/US2009/003309 WO2009148554A1 (fr) 2008-05-30 2009-06-01 Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire

Publications (2)

Publication Number Publication Date
EP2288388A1 EP2288388A1 (fr) 2011-03-02
EP2288388B1 true EP2288388B1 (fr) 2016-08-31

Family

ID=40904366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09758718.2A Not-in-force EP2288388B1 (fr) 2008-05-30 2009-06-01 Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire

Country Status (6)

Country Link
US (1) US8293206B2 (fr)
EP (1) EP2288388B1 (fr)
JP (1) JP5681102B2 (fr)
KR (1) KR20110020874A (fr)
CA (1) CA2726050A1 (fr)
WO (1) WO2009148554A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395992A2 (fr) 2009-02-10 2011-12-21 The Scripps Research Institute Vaccination programmée chimiquement
AU2013308494B2 (en) 2012-08-31 2018-03-01 Sutro Biopharma, Inc. Modified amino acids comprising an azido group
EP3082875B1 (fr) * 2013-12-16 2020-11-25 Genentech, Inc. Composés peptidomimétiques et conjugués anticorps-médicament de ceux-ci
WO2016205176A1 (fr) 2015-06-15 2016-12-22 Genentech, Inc. Anticorps et immunoconjugués
EP3334462B8 (fr) 2015-08-14 2022-04-20 RemeGen Biosciences, Inc. Lieurs covalents dans des conjugués anticorps-médicament et leurs procédés de production et d'utilisation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769271A (en) * 1971-04-15 1973-10-30 Lilly Co Eli N-protected amino acids and peptides
US5188816A (en) 1984-10-18 1993-02-23 Board Of Regents, The University Of Texas System Using polyazamacrocyclic compounds for intracellular measurement of metal ions using MRS
DE3688613T2 (de) 1985-11-18 1994-01-13 Access Pharma Inc Polychelierende stoffe für abbildung- und spektralerhöhung (und spektrale verschiebung).
US4885363A (en) 1987-04-24 1989-12-05 E. R. Squibb & Sons, Inc. 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs
US5219553A (en) 1986-08-04 1993-06-15 Salutar, Inc. Composition of a n-carboxymethylated tetraazacyclododecane chelating agent, a paramagnetic metal and excess calcium ions for MRI
US5087440A (en) 1989-07-31 1992-02-11 Salutar, Inc. Heterocyclic derivatives of DTPA used for magnetic resonance imaging
US5262532A (en) 1991-07-22 1993-11-16 E.R. Squibb & Sons, Inc. Paramagnetic metalloporphyrins as contrast agents for magnetic resonance imaging
US5358704A (en) 1993-09-30 1994-10-25 Bristol-Myers Squibb Hepatobiliary tetraazamacrocyclic magnetic resonance contrast agents
DE19728524A1 (de) 1997-07-04 1999-01-07 Merck Patent Gmbh Cyclische Azapeptide
US6537520B1 (en) 1998-03-31 2003-03-25 Bristol-Myers Squibb Pharma Company Pharmaceuticals for the imaging of angiogenic disorders
US20030125243A1 (en) 2000-07-20 2003-07-03 Jun Liu Synthesis of cyclic peptides
US20090104119A1 (en) * 2004-08-25 2009-04-23 Majoros Istvan J Dendrimer Based Compositions And Methods Of Using The Same
CN101438252A (zh) * 2004-10-07 2009-05-20 爱莫里大学 多功能纳米粒子共轭体及其应用
EP1733742A1 (fr) 2005-06-17 2006-12-20 Universiteit Utrecht Holding B.V. Dendrimères substitués de façon multivalente par des groupes actifs
US8158590B2 (en) * 2005-08-05 2012-04-17 Syntarga B.V. Triazole-containing releasable linkers, conjugates thereof, and methods of preparation
EP2061519B1 (fr) * 2006-09-15 2016-03-30 Siemens Medical Solutions USA, Inc. Derives cyclopeptidiques derives de la chimie clic utilises en tant qu'agents d'imagerie des integrines
WO2008033557A2 (fr) * 2006-09-15 2008-03-20 Siemens Medical Solutions Usa, Inc. Peptidomimétiques cycliques dérivés de la chimie clic et utilisés en tant que marqueurs d'intégrine
US8043601B2 (en) 2007-07-27 2011-10-25 Siemens Medical Solutions Usa, Inc. Cyclic azapeptides as integrin markers

Also Published As

Publication number Publication date
WO2009148554A1 (fr) 2009-12-10
JP5681102B2 (ja) 2015-03-04
EP2288388A1 (fr) 2011-03-02
US20100074910A1 (en) 2010-03-25
US8293206B2 (en) 2012-10-23
KR20110020874A (ko) 2011-03-03
JP2011521947A (ja) 2011-07-28
CA2726050A1 (fr) 2009-12-10

Similar Documents

Publication Publication Date Title
AU725827B2 (en) Radiometal-binding peptide analogues
EP2061519B1 (fr) Derives cyclopeptidiques derives de la chimie clic utilises en tant qu'agents d'imagerie des integrines
US6921526B2 (en) Gastrin receptor-avid peptide conjugates
EP2288388B1 (fr) Obtention d'un indice thérapeutique élevé par traitement médicamentaux ciblé guidé par l'imagerie moléculaire
CN114401947A (zh) 靶向前列腺特异性膜抗原的放射性标记化合物
WO2003006070A2 (fr) Conjugues de chelateurs ameliores
AU2002317317A1 (en) Improved chelator conjugates
US7060247B2 (en) Gastrin receptor-avid peptide conjugates
US20060067886A1 (en) Gastrin receptor-avid peptide conjugates
CA2722858A1 (fr) Nouveaux agents d'imagerie tep bases sur un substrat
CA2485339C (fr) Formulations radiopharmaceutiques
US7481993B2 (en) Chelators for radioactively labeled conjugates comprising a stabilizing sidechain
Failla et al. Peptide-based positron emission tomography probes: Current strategies for synthesis and radiolabelling
WO1993015770A1 (fr) Composes de peptides radiomarques
JP7502801B2 (ja) ガストリン放出ペプチド受容体(grpr)のインビボイメージングおよびgrpr関連障害の治療のための放射性標識ボンベシン由来化合物
CN114364690A (zh) 用于诊断和治疗的新型放射性标记的cxcr4靶向化合物
MXPA05004418A (es) Conjugados de complejos de tc y porciones enfocadoras y su uso en diagnostico de mri.
EP3494998A1 (fr) Inhibiteurs de psma glycosylés pour l'imagerie et l'endoradiothérapie
EP1700608A1 (fr) Agents chélatants comportant une chaîne latérale stabilisante pour des conjugués radiomarqués
Floresta et al. RSC Medicinal Chemistry
Decristoforo et al. Technetium-99m labelling of RGD peptides targeting integrin receptors: Comparison of different conjugates of cRGDyK utilizing different technetium-99m cores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASI, DHANALAKSHMI

Inventor name: CHEN, KAI

Inventor name: GANGADHARMATH, UMESH, B.

Inventor name: CHEN, GANG

Inventor name: KOLB, HARTMUTH, C.

Inventor name: WALSH, JOSEPH, C.

Inventor name: SCOTT, PETER, J.H.

Inventor name: MOCHARLA, VANI, P.

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009040805

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 824402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 824402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009040805

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200611

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200615

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200819

Year of fee payment: 12

Ref country code: GB

Payment date: 20200708

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009040805

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630