EP2286904A1 - Statische Mischvorrichtung für fliessfähige Stoffe - Google Patents

Statische Mischvorrichtung für fliessfähige Stoffe Download PDF

Info

Publication number
EP2286904A1
EP2286904A1 EP09405136A EP09405136A EP2286904A1 EP 2286904 A1 EP2286904 A1 EP 2286904A1 EP 09405136 A EP09405136 A EP 09405136A EP 09405136 A EP09405136 A EP 09405136A EP 2286904 A1 EP2286904 A1 EP 2286904A1
Authority
EP
European Patent Office
Prior art keywords
webs
flow channel
mixing device
static mixing
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09405136A
Other languages
English (en)
French (fr)
Other versions
EP2286904B1 (de
Inventor
Alain Georg
Günther Schwald
Daniel Altenburger
Tobias Vögeli
Silvano Andreoli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLUITEC INVEST AG
Original Assignee
FLUITEC INVEST AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLUITEC INVEST AG filed Critical FLUITEC INVEST AG
Priority to EP09405136A priority Critical patent/EP2286904B1/de
Priority to AT09405136T priority patent/ATE553839T1/de
Priority to US12/855,295 priority patent/US8807826B2/en
Publication of EP2286904A1 publication Critical patent/EP2286904A1/de
Application granted granted Critical
Publication of EP2286904B1 publication Critical patent/EP2286904B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0422Numerical values of angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof

Definitions

  • the present invention relates to a static mixing device having a tubular, a longitudinal axis and an inner diameter having flow channel with at least one arranged in the flow channel mixing element of a length and a substantially the inner diameter of the flow channel corresponding diameter, each mixing element arranged a plurality of crosswise, with the Longitudinal axis of the flow channel having an angle greater than 0 ° including webs, wherein the webs are arranged in two intersecting, a plurality of mutually parallel, mutually separated by an equal distance planes levels and when projecting the two levels of crowd on a perpendicular to the longitudinal axis lying on the flow channel projection plane adjacent webs have an intermediate distance.
  • helical mixer static mixer has helically curved, sheet-like, alternately left and right-hand plates or mixing elements, which lined up with intersecting front edges divide the flow of substances to be mixed as they enter each element.
  • the flow channel is the same in shape and cross section in each of the elements.
  • the spiral mixer is used in particular for mixing in the turbulent range. In the laminar field, the spiral mixer is only partially usable because of its moderate mixing performance.
  • a special family of static mixers are the so-called X-mixers. These consist of intersecting webs or plates.
  • X-mixer On off AT 330 135 B
  • Known X-mixer has in a tube at least one mixing insert in the form of a webs and slots having plate pair. In each case, the webs of a plate extend through the slots of the other plate crossing therethrough.
  • the plates are arranged inclined to one another and to the axis of the tube.
  • the supplied stream of substances to be mixed is split by the webs as a result of the inclination of the plates in terms of time and place offset into partial streams.
  • the web approaches form strong dead zones, which can unnecessarily increase the residence time and damage critical fluids.
  • the plates must be positioned with countless welds, which can lead to increased corrosion.
  • the assembly of the plates is very time consuming and therefore costly.
  • This known device is used in particular for mixing in the laminar range. In the turbulent range, it is only partially usable because of its high pressure loss.
  • CSE-X mixer The geometry known as CSE-X mixer is in CH 693 560 A5 described.
  • This patent shows a device for static mixing, consisting of a tubular housing with at least one mixing insert arranged therein in the form of a webs and slots having plate which is bent.
  • the plates Preferably, the plates have projections at the web edges and have elliptical peripheral shapes.
  • Two curved plates, each with the webs of one plate passing through the slits of the other plate, are attached to the protrusions.
  • the mixing inserts can be positioned one behind the other in the tubular housing, wherein the mixing inserts can touch directly or can also have spacings between the inserts.
  • the device can mix well with this simple geometry in all flow areas.
  • the mixing quality is determined only by the number of mixing inserts and their installation position.
  • the mixed use was known on the market especially as 4-, 6- and 8-bar construction and also has an increasing with increasing number of webs, high pressure loss.
  • EP 0 154 013 A1 shows a mixing device for plastic melt processing machines.
  • the mixing element has intersecting webs whose end pieces penetrate the openings of the pipe or a sleeve.
  • the webs have between the intersection points free spaces and reduce the pressure loss significantly.
  • the stable welded construction can be significantly distorted at greater temperature differences, which can lead to jamming of the sleeve in the pipe.
  • WO 2009/000642 A1 shows a mixing device of the type mentioned, in which wie in EP 0 154 013 A1 - The webs have clear spaces between the intersections.
  • the in WO 2009/000642 A1 in Fig. 3 illustrated 5-bar mixer has an L / D ratio of 1 on. With this geometry, the pressure loss is significantly reduced.
  • the construction is mechanically very weak and can hardly be expertly welded. Soldered versions are very time-consuming and as a rule barely gap-free.
  • Micro-chromosomes are understood as the targeted use of Static mixers of different geometries and nominal widths. Basically, first a uniform pre-distribution in the macro mixer must be achieved, then in the micro mixer the best possible fine distribution is achieved. The basics typically used are the CSE-X mixers.
  • CH 642 564 A5 The investigations in CH 642 564 A5 show that the number of web layers directly influences the layer formation and thus the mixing quality. The more web layers are used, the more layers are produced, which has a positive effect on the mixing quality. However, the pressure loss increases as the number of webs increases.
  • An ideal geometry according to CH 642 564 A5 six or eight webs and an L / D ratio of 0.75 to 1.5.
  • the invention has for its object to provide a static mixing device of the type mentioned with further improved mixing effect without substantial increase in pressure drop, which does not have the aforementioned disadvantages of prior art mixers.
  • the mixing device should preferably be able to be used in the laminar flow range and ensure a largely complete mixing.
  • the mixing elements should be simple and inexpensive to manufacture, have a significantly reduced pressure drop and mechanically stable can be assembled to mixer bars.
  • the mixing elements should be able to be positioned as short as possible as well as long designs in the flow channel.
  • the flow channel should have a round, rectangular, or square cross-section.
  • the webs are formed waisted between adjacent intersections and in the middle between adjacent intersections, the webs their smallest width and adjacent webs have their greatest distance, and the inner wall of the flow channel adjacent webs between the front edge edges one of Sidecut of the webs corresponding recess having the smallest width to form a largest in the middle between the front edge edges wall distance, wherein the measured over the diameter of the mixing element sum of the smallest widths of the webs is at least 35% of the diameter of the mixing element.
  • the static mixing device according to the present invention is particularly suitable for mixing media, at least one of which is a flowable, laminar flowing medium, in particular a polymer melt or another highly viscous fluid.
  • the size z is called pressure loss manifold and represents the ratio of the pressure loss for a static mixer in a round hollow body to the empty tube.
  • stands for the dynamic viscosity
  • w for the flow rate
  • L for the length
  • D for the diameter.
  • the z-factor is a conventional laminar resistance factor in static mixing technology and is regularly used for the comparison of static mixers.
  • the mixing intensity allows the comparison of static mixers with a uniform diameter D.
  • the mixing intensity M used as Mischgütemass referred to in the present comparative experiments on the basis of 100% set intensity of the previously applicable as a mixer with the smallest mixing intensity spiral mixer, the disadvantage, however, a high L / D ratio of 25 and consequently a large Length required. This applies to two media to be mixed for a viscosity ratio of 1: 1.
  • tubular flow channel 10 having a longitudinal axis x and an inner diameter D has two adjoining, a length L having identical mixing elements 12 with a substantially the inner diameter D of the flow channel 10 corresponding Umhüllungs trimmesser.
  • the two mixing elements 12 are with respect to the longitudinal axis x of the flow channel 10 by a Angle of 90 ° rotated against each other.
  • the mixing element 12 consists of a plurality of intersecting webs 14A, 14B.
  • the webs 14A, 14B are arranged in mutually parallel planes separated from each other by an equal distance and forming two intersecting planes A, B.
  • the two level shares A, B close with the longitudinal axis x of the flow channel an angle ⁇ of 45 ° and with each other an angle of 90 °.
  • the mixing element 12 shown by way of example in the drawing has four web layers, each with two webs 14A, 14B which intersect alternately, and thus corresponds to a 4-web mixer.
  • All webs 14A, 14B extend within the mixing element 12 via their respective maximum length which is limited by the end faces of the mixing element 12 and by the inner wall of the flow channel 10, the contour of the webs 14A, 14B close to the wall being the circular cross-section of the wall Flow channel 10 is only partially adapted so that in the near-wall webs 14A, 14B - as in the other webs - only front end portions 22 adjoin the inner wall of the flow channel 10 with little play.
  • the adjoining the inner wall of the flow channel 10 webs 14A, 14B are provided on the directed against the inner wall side with a recess 24 which extends between the end-side end portions or butt edges 22 with the inner wall of the flow channel 10 and corresponding to the waist of the webs largest Wall distance c have, which in the present case is 50% of the greatest distance between a adjacent bars 14A, 14B.
  • the webs 14A, 14B have on each provided Junction 16 a notch 18 or the notch depth of the notch 18 corresponding, a projection 20 generating cutback on.
  • the assembly of the mixing element 12 is carried out in a simple manner of two in Fig. 3 shown web plates 26 with four arranged alternately, the four in Fig. 4 shown webs 14A, 14B corresponding half webs 14A ', 14B' and the four in Fig. 4 illustrated webs 14A, 14B.
  • two web plates 26 are bent about an axis s at an angle of 90 ° and in the in Fig. 1 shown connected by ends 28 of the two middle web halves 14A ', 14B' by welding together.
  • four webs 14A, 14B are placed over the notches 18 and projections 20 at the intersections 16 on the curved and welded together web plates 24 and partially welded at the intersections 16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Eine statische Mischvorrichtung weist einen Strömungskanal (10) mit mindestens einem im Strömungskanal (10) angeordneten Mischelement (12). Jedes Mischelement (12) weist eine Vielzahl von kreuzweise angeordneten, mit der Längsachse (x) des Strömungskanals (10) einen Winkel (±) grösser 0° einschliessenden Stegen (14A, 14B) auf. Die Stege (14A, 14B) zwischen benachbarten Kreuzungsstellen (16) sind tailliert ausgebildet, und in der Mitte zwischen benachbarten Kreuzungsstellen (16) weisen die Stege (14A, 14B) ihre kleinste Breite (b) und einander benachbarte Stege (14A, 14B) ihren grössten Zwischenabstand (a) auf. Die der Innenwand des Strömungskanals (10) benachbarten Stege (14A, 14B) weisen zwischen stirnseitigen Stosskanten (22) eine der Taillierung der Stege (14A, 14B) entsprechende Ausnehmung unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten (22) grössten Wandabstandes (c) auf, wobei die über den Durchmessers des Mischelementes (12) gemessene Summe der kleinsten Breiten (b) der Stege (14A, 14B) mindestens 35 % des Durchmessers des Mischelementes (12) beträgt.

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft eine statische Mischvorrichtung, mit einem rohrförmigen, eine Längsachse und einen Innendurchmesser aufweisenden Strömungskanal mit mindestens einem im Strömungskanal angeordneten Mischelement einer Länge und einem im Wesentlichen dem Innendurchmesser des Strömungskanals entsprechenden Durchmesser, wobei jedes Mischelement eine Vielzahl von kreuzweise angeordneten, mit der Längsachse des Strömungskanals einen Winkel grösser 0° einschliessenden Stegen aufweist, wobei die Stege in zwei sich kreuzenden, eine Vielzahl von parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen aufweisenden Ebenenscharen angeordnet sind und bei Projektion der beiden Ebenenscharen auf eine senkrecht zur Längsachse des Strömungskanals liegende Projektionsebene einander benachbarte Stege einen Zwischenabstand aufweisen.
  • STAND DER TECHNIK
  • Statische Mischer werden heute in allen Bereichen des Chemie-Ingenieur-Wesens eingesetzt. Charakteristisch für statische Mischer ist, dass nur die zu mischenden Flüssigkeiten oder Gase bewegt werden. Im Gegensatz zu dynamischen Mischsystemen findet kein Rühren statt, sondern Pumpen, Gebläse oder Kompressoren fördern kontinuierlich die zu mischenden Medien zum Mischrohr, welches mit den Mischelementen ausgerüstet ist. Statische Mischer können generell in folgenden Anwendungsbereichen eingesetzt werden:
    • Vermischen von pumpbaren Flüssigkeiten
    • Dispergieren und Emulgieren von ineinander unlöslichen Komponenten
    • Mischen von reaktiven Flüssigkeiten
    • Mischen und Homogenisieren von Kunststoffschmelzen
    • Gas-Flüssig-Kontaktieren
    • Mischen von Gasen
    • Wärmeaustausch von viskosen Stoffen
  • Eine aus US 3 286 992 A bekannte, als Wendelmischer bezeichneter statischer Mischer weist schraubenförmig gekrümmte, blattartige, abwechselnd links- und rechtsgängige Platten bzw. Mischelemente auf, die mit sich kreuzenden Stirnkanten aneinandergereiht den Strom der zu mischenden Stoffe beim Eintritt in jedes Element aufteilen. Der Strömungskanal ist in jedem der Elemente in Form und Querschnitt gleich bleibend. Der Wendelmischer dient insbesondere zum Mischen im turbulenten Bereich. Im laminaren Bereich ist der Wendelmischer wegen seiner mässigen Mischleistung nur bedingt einsetzbar.
  • Eine spezielle Familie der statischen Mischer sind die so genannten X-Mischer. Diese bestehen aus sich kreuzenden Stegen oder Platten. Ein aus AT 330 135 B bekannter X-Mischer weist in einem Rohr mindestens einen Mischeinsatz in Form eines Stege und Schlitze aufweisenden Plattenpaares auf. Dabei erstrecken sich jeweils die Stege der einen Platte durch die Schlitze der anderen Platte kreuzend hindurch. Die Platten sind zueinander und zur Achse des Rohres geneigt angeordnet. Der zugeführte Strom der zu mischenden Stoffe wird durch die Stege infolge der Schrägstellung der Platten zeitlich und örtlich versetzt in Teilströme aufgespaltet. Bei diesem bekannten Mischer bilden die Stegansätze starke Totzonen, die die Verweilzeit unnötig erhöhen und kritische Flüssigkeiten beschädigen können. Zudem müssen die Platten mit unzähligen Schweissnähten positioniert werden, was zu erhöhter Korrosion führen kann. Das Zusammenstellen der Platten ist sehr zeitaufwändig und daher kostenintensiv. Diese bekannte Vorrichtung dient insbesondere zum Mischen im laminaren Bereich. Im turbulenten Bereich ist sie wegen ihres hohen Druckverlustes nur bedingt einsetzbar.
  • Die Entwicklung des Mischers gemäss CH 642 564 A5 im Jahr 1979 stellte eine Verbesserung der statischen Mischtechnik für laminar strömende Medien dar. Seither hat sich dieser Mischer bewährt und er wird in einem sehr breiten Feld von Anwendungen mit meist hochviskosen Medien erfolgreich eingesetzt. Er ist in CH 642 564 A5 in Fig. 1 dargestellt als Mischer mit 8 Steglagen, auch als 8-Steg-Mischer bezeichnet, mit einem L/D-Verhältnis von 1. Der Mischer besitzt einen sehr hohen Druckverlust.
  • Die als CSE-X Mischer bekannte Geometrie ist in CH 693 560 A5 beschrieben. Diese Patentschrift zeigt eine Vorrichtung zum statischen Mischen, bestehend aus einem rohrartigen Gehäuse mit mindestens einem darin angeordneten Mischeinsatz in Form einer Stege und Schlitze aufweisenden Platte, welche gebogen wird. Vorzugsweise weisen die Platten an den Stegkanten Vorsprünge auf und besitzen elliptische Umfangsformen. Zwei gebogene Platten, bei denen jeweils die Stege der einen Platte durch die Schlitze der anderen Platte hindurchreichen, werden an den Vorsprüngen befestigt. Die Mischeinsätze können im rohrartigen Gehäuse hintereinander positioniert werden, wobei sich die Mischeinsätze direkt berühren oder auch Abstände zwischen den Einsätzen aufweisen können. Die Vorrichtung kann mit dieser einfachen Geometrie in sämtlichen Strömungsbereichen hervorragend mischen. Die Mischgüte wird nur durch die Anzahl der Mischeinsätze und deren Einbaulage bestimmt. Der Mischeinsatz wurde am Markt insbesondere als 4-, 6- und 8-Steg-Konstruktion bekannt und weist ebenfalls einen mit steigender Anzahl Stege zunehmenden, hohen Druckverlust auf.
  • EP 0 154 013 A1 zeigt eine Mischeinrichtung für Kunststoffschmelzen verarbeitende Maschinen. Das Mischelement weist sich kreuzende Stege auf, deren Endstücke die Öffnungen des Rohres oder einer Hülse durchdringen. Die Stege weisen zwischen den Kreuzungsstellen freie Zwischenräume auf und reduzieren der Druckverlust markant. Die stabile Schweisskonstruktion kann sich bei grösseren Temperaturunterschieden erheblich verziehen, was zu einem Verklemmen der Hülse im Rohr führen kann.
  • WO 2009/000642 A1 zeigt eine Mischvorrichtung der eingangs genannten Art, bei derwie in EP 0 154 013 A1 -- die Stege freie Zwischenräume zwischen den Kreuzungsstellen aufweisen. Der in WO 2009/000642 A1 in Fig. 3 dargestellte 5-Steg-Mischer weist ein L/D-Verhältnis von 1 auf. Mit dieser Geometrie wird der Druckverlust erheblich reduziert. Die Konstruktion ist jedoch mechanisch sehr schwach und lässt sich kaum fachmännisch schweissen. Gelötete Versionen sind sehr aufwändig und in der Regel kaum spaltfrei auszuführen.
  • Die Fachzeitschrift Pharma und Food 2/2004 beschreibt die mikromakro® Technologie mit statischen Mischern. Unter Mikromakromischen versteht man den gezielten Einsatz von Statikmischern verschiedener Geometrien und Nennweiten. Grundsätzlich muss zuerst eine gleichmäßige Vorverteilung im Makro-Mischer erreicht werden, danach wird im Mikro-Mischer eine bestmögliche Feinverteilung erzielt. Als Grundlagen werden typischerweise die CSE-X Mischer eingesetzt.
  • Fasst man die Untersuchungen an X-Mischern der letzen Jahre zusammen, so wurden jeweils folgende mögliche Parameter variiert:
    • das L/D-Verhältnis eine Mischelementes
    • die Anzahl Steglagen
    • die Dicke der Stege
    • die Winkellage der Stege
    • die Form der Stege
    • die Breite der Stege
  • Die Untersuchungen in CH 642 564 A5 zeigen, dass die Anzahl der Steglagen die Schichtenbildung und damit die Mischgüte direkt beeinflusst. Je mehr Steglagen eingesetzt werden, desto mehr Schichten werden erzeugt, was sich positiv auf die Mischgüte auswirkt. Allerdings erhöht sich mit steigender Anzahl Steglagen auch der Druckverlust. Eine ideale Geometrie weist gemäss CH 642 564 A5 sechs oder acht Steglagen und ein L/D Verhältnis von 0.75 bis 1.5 auf.
  • Weitere Versuche mit Geometrien gemäss CH 642 564 A5 haben ergeben, dass mit einer grösseren Anzahl von Steglagen deutlich höhere Druckverluste bei lediglich geringfügig verbesserter Mischgüte erzeugen werden. Auf dem Markt findet man demzufolge statische Mischelemente mit vier Steglagen, die vorzugsweise ein L/D-Verhältnis von 0.5 bis 1.0 aufweisen. In der Tat zeigt der 4-Steg-Mischer hervorragende Eigenschaften, weist allerdings auch einen hohen Druckverlust auf.
  • Mit der aus WO 2009/000642 A1 bekannten Geometrie, bei der die Stege freie Zwischenräume zwischen den Kreuzungsstellen aufweisen, lässt sich zwar der Druckverlust des vorstehend beschriebenen 4-Steg-Mischers erheblich reduzieren, wobei allerdings auch die Mischgüte abnimmt. Mit der Anordnung von Zwischenräumen lässt sich jedoch bereits eine gute Mischwirkung bei einem annehmbaren Druckabfall erreichen.
  • DARSTELLUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, eine statische Mischvorrichtung der eingangs genannten Art mit weiter verbesserter Mischwirkung ohne wesentliche Zunahme eines Druckabfalls zu schaffen, welche die vorstehend erwähnten Nachteile von Mischern nach dem Stand der Technik nicht aufweist. Die Mischvorrichtung soll vorzugsweise im laminaren Strömungsbereich eingesetzt werden können und eine weitgehend vollständige Durchmischung gewährleisten. Die Mischelemente sollen einfach und kostengünstig gefertigt werden können, einen deutlich reduzierten Druckverlust aufweisen und mechanisch stabil zu Mischerstangen zusammengestellt werden können. Die Mischelemente sollen als möglichst kurze wie auch als lange Bauformen im Strömungskanal positioniert werden können. Der Strömungskanal soll einen runden, rechteckigen, oder quadratischen Querschnitt aufweisen können.
  • Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Stege zwischen benachbarten Kreuzungsstellen tailliert ausgebildet sind und in der Mitte zwischen benachbarten Kreuzungsstellen die Stege ihre kleinste Breite und einander benachbarte Stege ihren grössten Zwischenabstand aufweisen, und die der Innenwand des Strömungskanals benachbarten Stege zwischen stirnseitigen Stosskanten eine der Taillierung der Stege entsprechende Ausnehmung mit der kleinsten Breite unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten grössten Wandabstandes aufweisen, wobei die über den Durchmessers des Mischelementes gemessene Summe der kleinsten Breiten der Stege mindestens 35 % des Durchmessers des Mischelementes beträgt.
  • Bevorzugte Ausführungen der erfindungsgemässen statischen Mischvorrichtung weisen eine oder mehrere der nachfolgend angeführten Merkmale auf:
    • Alle Stege schliessen mit der Längsachse des Strömungskanals einen Winkel von 45° ein.
    • Alle Stege weisen die gleiche kleinste Breite auf.
    • Alle einander benachbarten Stege weisen den gleichen grössten Zwischenabstand auf.
    • Die kleinste Breite der Stege beträgt 50 % ihrer Breite an den Kreuzungsstellen der Stege.
    • Die kleinste Breite der Stege ist gleich gross ist wie der grösste Zwischenabstand benachbarter Stege.
    • Der grösste Wandabstand beträgt 50% der kleinsten Breite der Stege und 50% des grössten Zwischenabstandes benachbarter Stege.
    • Das Mischelement weist vier Steglagen auf.
    • Aufeinanderfolgende Mischelemente sind bezüglich der Längsachse des Strömungskanals um einen Winkel von 90° gegeneinander verdreht angeordnet.
    • Aufeinanderfolgende Mischelemente sind von einander beabstandet.
  • Die statische Mischvorrichtung gemäss vorliegender Erfindung ist insbesondere geeignet zum Mischen von Medien, wobei mindestens eines davon ein fliessfähiges, laminar strömendes Medium, insbesondere eine Polymerschmelze oder ein anderes hochviskoses Fluid, ist.
  • Um die Effizienz statischer Mischer vergleichen zu können, muss der Energiebedarf und die Mischgüte zum Vergleich herangezogen werden. Der Energiebedarf der statischen Mischer ist direkt proportional zum Druckverlust. Im laminaren Strömungsbereich gilt für einen statischen Mischer in einem runden Hohlkörper: Δ p L = 32 z η w L D 2
    Figure imgb0001
  • Die Grösse z wird als Druckverlustvielfaches bezeichnet und stellt das Verhältnis des Druckverlustes für einen statischen Mischer in einem runden Hohlkörper zum Leerrohr dar. η steht für die dynamische Viskosität, w für die Strömungsgeschwindigkeit, L für die Länge und D für den Durchmesser. Der z-Faktor ist ein in der statischen Mischtechnik üblicher laminarer Widerstandsfaktor und wird regelmässig für den Vergleich von statischen Mischern herangezogen.
  • Für den Vergleich der Mischleistung setzt man generell die relative Standardabweichung S/SO ein. Bei diesem bekannten Mischgütemass ist zu beachten, dass sich nur Messresultate bei gleichen Messanalysen erfassen lassen. In der Literatur findet man Messungen mittels Leitfähigkeitsmessung, Entfärbung, laserinduzierter Fluoreszenz (LIF) oder mittel fotometrischer Analyse FIP (Fluitec Image Processing). Es dürfen also nur Messungen mit gleicher Methode verglichen werden, da sonst erhebliche Abweichungen entstehen.
  • Um die Mischleistung unterschiedlicher statischer Mischergeometrien vergleichen zu können, bedient man sich üblicherweise der Mischintensität M, die wie folgt ermittelt wird: M = Δ p L D η w = 32 z L D wobei L D = f S S 0
    Figure imgb0002
  • Die Mischintensität ermöglicht den Vergleich von statischen Mischern bei einheitlichem Durchmesser D.
  • Der Vergleich der statischen Mischergeometrien erfolgt bei einer relativen Standardabweichung S/S0 von 0.05, was bei der fotometrischen Analyse FIP einer praktisch homogenen Mischung entspricht.
  • In Tabelle 1 sind die Mischintensitäten eines erfindungsgemässen Mischers und von vier Mischern nach dem Stand der Technik einander gegenübergestellt. Die Mischgüte der folgenden Mischertypen wurden miteinander verglichen:
  • I
    Wendelmischer
    II
    CSE-X-Mischer (4-Steg-Mischer), z.B. gemäss CH 693 560 A5
    III
    X-Mischer (8-Steg-Mischer), z.B. gemäss CH 642 564 A5
    IV
    X-Mischer (6-Steg-Mischer, gekreuzte Stege seitlich beabstandet), gemäss WO 2009/000642 A1
    V
    X-Mischer (4-Steg-Mischer, gekreuzte Stege seitlich beabstandet), gemäss vorliegender Erfindung
    Tabelle 1: Mischintensität unterschiedlicher Mischertypen
    Mischertyp Anzahl Steglagen L/D z Winkel a S/S0 M %
    I 1 25 6.5 - 0.05 5200 100
    II 4 11 23 45° 0.05 8096 166
    III 8 8 37 45° 0.05 9472 182
    IV 6 10 18 45° 0.05 5760 111
    V 4 10 15 45° 0.05 4800 92
  • Das L/D-Verhältnis bei einer relativen Standardabweichung S/S0 von 0.05 ergibt sich für die einzelnen Mischertypen aus dem in Fig. 5 dargestellten Diagramm.
  • Die als Mischgütemass verwendete Mischintensität M ist bei den vorliegenden Vergleichsversuchen auf die als Basis mit 100% gesetzte Mischintensität des bis anhin als Mischer mit der kleinsten Mischintensität geltenden Wendelmischers bezogen, dessen Nachteil allerdings ein hohes L/D-Verhältnis von 25 und der demzufolge eine grosse Baulänge erfordert. Die gilt bei zwei zu mischenden Medien für ein Viskositätsverhältnis von 1:1.
  • Die Versuchsergebnisse in Tabelle 1 zeigen deutlich den positiven Einfluss von freien Zwischenräumen zwischen seitlich benachbarten Stegen in der Projektionsebene senkrecht zur Mischerlängsachse auf die Mischgüte beim Mischertyp IV und beim Mischertyp V, wobei die Anordnung von zwei zusätzlichen Zwischenräumen zwischen den wandnahen Stegen und der Innenwand des Strömungskanals beim erfindungsgemässen Mischertyp V zu einer weiteren markanten Reduktion der Mischintensität führt, die sogar kleiner ist als die Mischintensität des Wendelmischers. Dies steht scheinbar im Widerspruch zu der Erfahrung, dass wandnahe Zwischenräume zu einer Randgängigkeit führen. Durch die Taillierung der Stege kann jedoch eine Randgängigkeit verhindert werden.
  • Festigkeitsberechnungen haben zudem ergeben, dass ein Mischelement durch die Taillierung der Stege gegenüber einem Mischerelement mit nicht taillierten Stegen eine höhere Druckdifferenz erträgt. Durch die Taillierung wird das Mischelement flexibler und die Lasten verteilen sich besser über die Stege.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung, die lediglich zur Erläuterung dient und nicht einschränkend auszulegen ist. Die Zeichnung zeigt schematisch in
  • Fig. 1
    eine Seitenansicht eines Teils eines Strömungskanals mit zwei aneinander grenzenden Mischelementen;
    Fig. 2
    die Sicht auf ein Mischelement im Strömungskanal von Fig. 1 in Blickrichtung der Längsachse des Strömungskanals;
    Fig. 3
    die Draufsicht auf eine Stegplatte eines Mischelementes mit vier Stegteilen vor dem Biegen;
    Fig. 4
    die Draufsicht auf vier mit zwei Stegplatten von Fig. 4 nach dem Biegen zu einem Mischelement zu verbindenden Stegen;
    Fig. 5
    ein Diagramm zur Bestimmung des L/D-Verhältnisses unterschiedlicher Mischer bei gleicher relativer Standardabweichung S/S0.
    BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
  • Ein in Fig. 1 gezeigter, rohrförmiger Strömungskanal 10 mit einer Längsachse x und einem Innendurchmesser D weist zwei aneinander grenzende, eine Länge L aufweisende identische Mischelemente 12 mit einem im Wesentlichen dem Innendurchmesser D des Strömungskanals 10 entsprechenden Umhüllungsdurchmesser auf. Die beiden Mischelemente 12 sind bezüglich der Längsachse x des Strömungskanals 10 um einen Winkel von 90° gegeneinander verdreht angeordnet. Das Mischelement 12 besteht aus einer Vielzahl von sich kreuzenden Stegen 14A, 14B. Die Stege 14A, 14B liegen in parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen, die zwei sich kreuzende Ebenenscharen A, B bilden. Die beiden Ebenenscharen A, B schliessen mit der Längsachse x des Strömungskanals einen Winkel α von 45° und untereinander einen Winkel von 90° ein. Das in der Zeichnung beispielhaft dargestellte Mischelement 12 weist vier Steglagen mit je zwei sich alternierend kreuzenden Stegen 14A, 14B auf und entspricht somit einem 4-Steg-Mischer.
  • Aus der in Fig. 2 dargestellten Projektion der beiden Ebenenscharen A, B auf eine senkrecht zur Längsachse x des Strömungskanals 10 liegende Projektionsebene ist erkennbar, dass die Stege 14A, 14B zwischen Kreuzungsstellen 16 symmetrisch tailliert ausgebildet sind und alle eine in der Mitte zwischen benachbarten Kreuzungsstellen 16 gleiche kleinste Breite b aufweisen, die 50% der Breite b' an den Kreuzungsstellen 16 beträgt. Alle Stege 14A, 14B sind in gleicher Weise tailliert und weisen gleiche Dimensionen auf. Im vorliegenden Fall entspricht der grösste Zwischenabstand a benachbarter Stege 14A, 14B der kleinsten Stegbreite b.
  • Sämtliche Stege 14A, 14B erstrecken sich innerhalb des Mischelements 12 über jeweils ihre durch die Stirnseiten des Mischelements 12 und durch die Innenwand des Strömungskanals 10 begrenzte, maximal mögliche Länge, wobei die Kontur der wandnahen Stege 14A, 14B zur Wahrung eines Wandabstandes dem kreisförmigen Querschnitt des Strömungskanals 10 nur teilweise so angepasst ist, dass bei den wandnahen Stegen 14A, 14B -- wie bei den übrigen Stegen -- nur stirnseitige Endbereiche 22 mit kleinem Spiel an die Innenwand des Strömungskanals 10 angrenzen. Die an die Innenwand des Strömungskanals 10 angrenzenden Stege 14A, 14B sind auf der gegen die Innenwand gerichteten Seite mit einer Ausnehmung 24 versehen, die sich zwischen den stirnseitigen Endbereichen oder Stosskanten 22 mit der Innenwand des Strömungskanals 10 erstreckt und entsprechend der Taillierung der Stege einen grössten Wandabstand c aufweisen, der im vorliegenden Fall 50% des grössten Zwischenabstandes a benachbarter Stege 14A, 14B beträgt.
  • Wie aus den Fig. 3 und 4 erkennbar, weisen die Stege 14A, 14B an jeder vorgesehenen Kreuzungsstelle 16 eine Einkerbung 18 oder einen der Kerbtiefe der Einkerbung 18 entsprechenden, einen Vorsprung 20 erzeugenden Rückschnitt auf.
  • Der Zusammenbau des Mischelements 12 erfolgt auf einfache Weise aus zwei in Fig. 3 gezeigten Stegplatten 26 mit vier alternierend angeordneten, den vier in Fig. 4 dargestellten Stegen 14A, 14B entsprechenden halben Stegen 14A', 14B' und den vier in Fig. 4 dargestellten Stegen 14A, 14B. Hierbei werden zwei Stegplatten 26 um eine Achse s um einen Winkel von 90° gebogen und in der in Fig. 1 gezeigten Art über Enden 28 der beiden mittleren Steghälften 14A', 14B' durch Schweissen miteinander verbunden. Die in Fig. 4 dargestellten vier Stege 14A, 14B werden über die Einkerbungen 18 und Vorsprünge 20 an den Kreuzungsstellen 16 auf die gebogenen und miteinander verschweissten Stegplatten 24 aufgesteckt und an den Kreuzungsstellen 16 teilweise verschweisst.
  • BEZUGSZEICHENLISTE
  • 10
    Strömungskanal
    12
    Mischelement
    14A, 14B
    Stege
    16
    Kreuzungsstelle 14A-14B
    18
    Einkerbung an 14A, 14B
    20
    Vorsprung an 14A, 14B
    22
    stirnseitige Endbereiche
    24
    Ausnehmungen
    26
    Stegplatten
    28
    Enden von 14A, 14B
    A
    Ebenenschar von 14A
    B
    Ebenenschar von 14B
    D
    Durchmesser von 10
    L
    Länge von 12
    x
    Längsachse von 10
    a
    grösster Zwischenabstand 14A-14B
    b / b'
    kleinste / grösste Stegbreite von 14A, 14B
    c
    grösster Wandabstand von 14A, 14B

Claims (11)

  1. Statische Mischvorrichtung, mit einem rohrförmigen, eine Längsachse (x) und einen Innendurchmesser (D) aufweisenden Strömungskanal (10) mit mindestens einem im Strömungskanal (10) angeordneten Mischelement (12) einer Länge (L) und einem im Wesentlichen dem Innendurchmesser (D) des Strömungskanals (10) entsprechenden Durchmesser, wobei jedes Mischelement (12) eine Vielzahl von kreuzweise angeordneten, mit der Längsachse (x) des Strömungskanals (10) einen Winkel (α) grösser 0° einschliessenden Stegen (14A, 14B) aufweist, wobei die Stege (14A, 14B) in zwei sich kreuzenden, eine Vielzahl von parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen aufweisenden Ebenenscharen (A, B) angeordnet sind und bei Projektion der beiden Ebenenscharen (A, B) auf eine senkrecht zur Längsachse (x) des Strömungskanals (10) liegende Projektionsebene einander benachbarte Stege (14A, 14B) einen Zwischenabstand aufweisen,
    dadurch gekennzeichnet, dass
    die Stege (14A, 14B) zwischen benachbarten Kreuzungsstellen (16) tailliert ausgebildet sind und in der Mitte zwischen benachbarten Kreuzungsstellen (16) die Stege (14A, 14B) ihre kleinste Breite (b) und einander benachbarte Stege (14A, 14B) ihren grössten Zwischenabstand (a) aufweisen, und die der Innenwand des Strömungskanals (10) benachbarten Stege (14A, 14B) zwischen stirnseitigen Stosskanten (22) eine der Taillierung der Stege (14A, 14B) entsprechende Ausnehmung mit der kleinsten Breite (b) unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten (22) grössten Wandabstandes (c) aufweisen, wobei die über den Durchmessers des Mischelementes (12) gemessene Summe der kleinsten Breiten (b) der Stege (14A, 14B) mindestens 35 % des Durchmessers des Mischelementes (12) beträgt.
  2. Statische Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, alle Stege (14A, 14B) mit der Längsachse (x) des Strömungskanals (10) einen Winkel (α) von 45° einschliessen.
  3. Statische Mischvorrichtung nach Anspruch oder 2, dadurch gekennzeichnet, dass alle Stege (14A, 14B) die gleiche kleinste Breite (b) aufweisen.
  4. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass alle einander benachbarten Stege (14A, 14B) den gleichen grössten Zwischenabstand (a) aufweisen.
  5. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die kleinste Breite (b) der Stege (14A, 14B) 50 % ihrer Breite (b') an den Kreuzungsstellen (16) der Stege (14A, 14B) beträgt.
  6. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die kleinste Breite (b) der Stege (14A, 14B) gleich gross ist wie der grösste Zwischenabstand (a) benachbarter Stege (14A, 14B).
  7. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der grösste Wandabstand (c) 50% der kleinsten Breite (b) der Stege (14A, 14B) und 50% des grössten Zwischenabstandes (a) benachbarter Stege (14A, 14B) beträgt.
  8. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Mischelement (12) vier Steglagen aufweist.
  9. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass aufeinanderfolgende Mischelemente (12) bezüglich der Längsachse (x) des Strömungskanals (10) um einen Winkel von 90° gegeneinander verdreht angeordnet sind.
  10. Statische Mischvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass aufeinanderfolgende Mischelemente (12) von einander beabstandet sind.
  11. Verwendung einer statischen Mischvorrichtung nach einem der vorangehenden Ansprüche zum Mischen von Medien, wobei mindestens eines davon ein laminar strömendes Medium, insbesondere eine Polymerschmelze oder ein anderes hochviskoses Fluid, ist.
EP09405136A 2009-08-12 2009-08-12 Statische Mischvorrichtung für fliessfähige Stoffe Active EP2286904B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09405136A EP2286904B1 (de) 2009-08-12 2009-08-12 Statische Mischvorrichtung für fliessfähige Stoffe
AT09405136T ATE553839T1 (de) 2009-08-12 2009-08-12 Statische mischvorrichtung für fliessfähige stoffe
US12/855,295 US8807826B2 (en) 2009-08-12 2010-08-12 Static mixing device for flowable substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09405136A EP2286904B1 (de) 2009-08-12 2009-08-12 Statische Mischvorrichtung für fliessfähige Stoffe

Publications (2)

Publication Number Publication Date
EP2286904A1 true EP2286904A1 (de) 2011-02-23
EP2286904B1 EP2286904B1 (de) 2012-04-18

Family

ID=41432794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09405136A Active EP2286904B1 (de) 2009-08-12 2009-08-12 Statische Mischvorrichtung für fliessfähige Stoffe

Country Status (3)

Country Link
US (1) US8807826B2 (de)
EP (1) EP2286904B1 (de)
AT (1) ATE553839T1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915581A1 (de) 2014-03-06 2015-09-09 Fluitec Invest AG Statischer Mischer
EP3081285A1 (de) 2015-04-16 2016-10-19 Fluitec Invest AG Statische mischvorrichtung für fliessfähige stoffe
EP3181221A1 (de) 2015-12-16 2017-06-21 Fluitec Invest AG Verfahren zur überwachung einer chemischen reaktion und reaktor
DE102016008759A1 (de) 2016-07-18 2018-01-18 Giang Do Additiv gefertigte zelluare Bauteile als justierbare statische Mischer
US10933398B2 (en) 2015-11-11 2021-03-02 Fluitec Invest Ag Device for carrying out a chemical reaction by a continuous method
WO2023117854A1 (en) 2021-12-20 2023-06-29 Basf Se Process for the continuous production of aqueous polyurethane dispersions
EP4292699A1 (de) 2022-06-17 2023-12-20 Fluitec Invest AG Vorrichtung und verfahren zur durchführung einer nicht-selektiven chemischen reaktion
EP4309772A1 (de) 2022-07-19 2024-01-24 Glue Tec Industrieklebstoffe GmbH & Co. Kg Statischer mischer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724904B2 (ja) * 2012-02-20 2015-05-27 株式会社デンソー 膨張弁
EP3034159B1 (de) * 2014-12-18 2020-11-04 The Procter and Gamble Company Statischer Mischer und Verfahren zum Mischen von Fluiden
US10729600B2 (en) 2015-06-30 2020-08-04 The Procter & Gamble Company Absorbent structure
JP6768797B2 (ja) 2015-11-04 2020-10-14 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 吸収性構造体
US11173078B2 (en) 2015-11-04 2021-11-16 The Procter & Gamble Company Absorbent structure
EP3887420A1 (de) 2018-11-28 2021-10-06 Basf Se Verfahren zur herstellung einer polyurethanzusammensetzung
EP3932531A1 (de) 2020-07-02 2022-01-05 Fluitec Invest AG Kontinuierliches reaktionskalorimeter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822096A1 (de) * 1978-05-20 1979-11-22 Bayer Ag Gebohrte mischelemente fuer statische und dynamische mischer
DE4428813A1 (de) * 1994-08-13 1996-02-15 Ewald Schwing Verfahrenstechni Vorrichtung zum statischen Mischen von Fluiden, insbesondere von thermoplastifiziertem Kunststoff, und Verfahren zur Herstellung einer solchen Vorrichtung
DE19813600A1 (de) * 1998-03-27 1999-09-30 Bayer Ag Statischer Scheibenmischer
FR2807336A1 (fr) * 2000-04-07 2001-10-12 Pour Le Dev De L Antipollution Melangeur statique
US20040218469A1 (en) * 2003-05-03 2004-11-04 Husky Injection Molding Systems Ltd Static mixer and a method of manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH642564A5 (de) 1979-10-26 1984-04-30 Sulzer Ag Statische mischvorrichtung.
DE10063485A1 (de) * 2000-12-20 2002-07-04 Bayer Ag Statischer Mischer
CH693560A5 (de) 2001-11-05 2003-10-15 Fluitec Georg Ag Statische Mischvorrichtung für fliessfähige Stoffe.
CA2491755C (en) * 2002-07-15 2010-06-22 Sulzer Chemtech Usa, Inc. Assembly of crossing elements and method of constructing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822096A1 (de) * 1978-05-20 1979-11-22 Bayer Ag Gebohrte mischelemente fuer statische und dynamische mischer
DE4428813A1 (de) * 1994-08-13 1996-02-15 Ewald Schwing Verfahrenstechni Vorrichtung zum statischen Mischen von Fluiden, insbesondere von thermoplastifiziertem Kunststoff, und Verfahren zur Herstellung einer solchen Vorrichtung
DE19813600A1 (de) * 1998-03-27 1999-09-30 Bayer Ag Statischer Scheibenmischer
FR2807336A1 (fr) * 2000-04-07 2001-10-12 Pour Le Dev De L Antipollution Melangeur statique
US20040218469A1 (en) * 2003-05-03 2004-11-04 Husky Injection Molding Systems Ltd Static mixer and a method of manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915581A1 (de) 2014-03-06 2015-09-09 Fluitec Invest AG Statischer Mischer
EP3081285A1 (de) 2015-04-16 2016-10-19 Fluitec Invest AG Statische mischvorrichtung für fliessfähige stoffe
US10933398B2 (en) 2015-11-11 2021-03-02 Fluitec Invest Ag Device for carrying out a chemical reaction by a continuous method
EP3181221A1 (de) 2015-12-16 2017-06-21 Fluitec Invest AG Verfahren zur überwachung einer chemischen reaktion und reaktor
DE102016008759A1 (de) 2016-07-18 2018-01-18 Giang Do Additiv gefertigte zelluare Bauteile als justierbare statische Mischer
WO2023117854A1 (en) 2021-12-20 2023-06-29 Basf Se Process for the continuous production of aqueous polyurethane dispersions
EP4292699A1 (de) 2022-06-17 2023-12-20 Fluitec Invest AG Vorrichtung und verfahren zur durchführung einer nicht-selektiven chemischen reaktion
EP4309772A1 (de) 2022-07-19 2024-01-24 Glue Tec Industrieklebstoffe GmbH & Co. Kg Statischer mischer
WO2024017933A1 (de) 2022-07-19 2024-01-25 GlueTec Industrieklebstoffe GmbH & Co. KG Statischer mischer

Also Published As

Publication number Publication date
US8807826B2 (en) 2014-08-19
US20110080801A1 (en) 2011-04-07
ATE553839T1 (de) 2012-05-15
EP2286904B1 (de) 2012-04-18

Similar Documents

Publication Publication Date Title
EP2286904B1 (de) Statische Mischvorrichtung für fliessfähige Stoffe
EP2158027B1 (de) Statisches mischelement
EP2150765B1 (de) Strömungskanal für einen mischer-wärmetauscher
EP1216747B1 (de) Statischer Mischer
EP2851118B1 (de) Vorrichtung zum Mischen und zum Wärmetausch und Verfahren zu seiner Herstellung
EP2548634B1 (de) Mischelement für einen statischen Mischer
CH642564A5 (de) Statische mischvorrichtung.
EP2614883B1 (de) Mischelement und statischer Mischer
EP0749776A1 (de) In einem Rohr angeordneter Mischer
DE19813600A1 (de) Statischer Scheibenmischer
DE60110602T2 (de) Statisches mischelement und verfahren zum mischen zweier fluide
EP3081285B1 (de) Statische mischvorrichtung für fliessfähige stoffe
DE102013213467A1 (de) Statische Mischvorrichtung für fliessfähige Medien
EP1540662A2 (de) Abstandhalter
EP3669133B1 (de) Wärmeübertrager
EP3338882A1 (de) Mischelement mit hoher festigkeit und mischwirkung
CH693560A5 (de) Statische Mischvorrichtung für fliessfähige Stoffe.
DE19733973C2 (de) Vorrichtung zur Dosierung und zur Vermischung fließfähiger Medien
DD239129A1 (de) Vorrichtung zum kontinuierlichen statischen mischen fliessfaehiger medien
EP4089357A1 (de) Wärmetauscher
DE2328795C3 (de) Vorrichtung zum Mischen von strömenden Stoffen
DE10350735A1 (de) Brennkammer mit Kühleinrichtung und Verfahren zur Herstellung der Brennkammer
DE10158651A1 (de) Statisches Mischelement
DE2328795B2 (de) Vorrichtung zum mischen von stroemenden stoffen
DE29923895U1 (de) Statischer Mischer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110503

17Q First examination report despatched

Effective date: 20110530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 553839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003308

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120418

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: FLUITEC INVEST A.G.

Effective date: 20120831

26N No opposition filed

Effective date: 20130121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003308

Country of ref document: DE

Effective date: 20130121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130812

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 553839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009003308

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003100000

Ipc: B01F0023470000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: CH

Payment date: 20230902

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240828

Year of fee payment: 16