EP2277172B1 - Verbergung von übertragungsfehlern in einem digitalsignal in einer hierarchischen decodierungsstruktur - Google Patents

Verbergung von übertragungsfehlern in einem digitalsignal in einer hierarchischen decodierungsstruktur Download PDF

Info

Publication number
EP2277172B1
EP2277172B1 EP09730641A EP09730641A EP2277172B1 EP 2277172 B1 EP2277172 B1 EP 2277172B1 EP 09730641 A EP09730641 A EP 09730641A EP 09730641 A EP09730641 A EP 09730641A EP 2277172 B1 EP2277172 B1 EP 2277172B1
Authority
EP
European Patent Office
Prior art keywords
frame
signal
erased
samples
missing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09730641A
Other languages
English (en)
French (fr)
Other versions
EP2277172A1 (de
Inventor
David Virette
Pierrick Philippe
Balazs Kovesi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP2277172A1 publication Critical patent/EP2277172A1/de
Application granted granted Critical
Publication of EP2277172B1 publication Critical patent/EP2277172B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the present invention relates to the processing of digital signals in the telecommunications field. These signals may be, for example, speech and music signals.
  • the present invention intervenes in a coding / decoding system adapted for the transmission / reception of such signals. More particularly, the present invention relates to a reception processing for improving the quality of the decoded signals in the presence of data block losses.
  • disturbances may affect the transmitted signal and produce errors on the bitstream received by the decoder. These errors may occur in isolation in the bit stream but occur very frequently in bursts. It is then a packet of bits corresponding to a complete portion of signal which is erroneous or not received. This guy problem occurs for example for transmissions on mobile networks. It is also found in transmission on packet networks and in particular on Internet-type networks.
  • the transmission system or the modules in charge of reception detect that the received data are highly erroneous (for example on mobile networks), or that a block of data has not been received or is corrupted by errors
  • error concealment procedures are implemented.
  • LPC Linear Predictive Coding
  • LTP Long Term Prediction
  • the parameters of the erased frame are conventionally obtained as follows.
  • the LPC parameters of a frame to be reconstructed are obtained from the LPC parameters of the last valid frame, by simple copy of the parameters or with introduction of a certain damping (technique used for example in the standardized encoder G723.1). Then, a voicing or non-voicing in the speech signal is detected to determine a degree of harmonicity of the signal at the erased frame.
  • an excitation signal can be randomly generated (by drawing a codeword of the past excitation, by a slight damping of the gain of the past excitation, by random selection in the past excitement, or still using transmitted codes that may be totally wrong).
  • the pitch period (also called “ LTP delay ”) is generally the one calculated for the previous frame, possibly with a slight “jitter” (increase of the value of the LTP delay for consecutive error frames, the gain LTP being taken very close to 1 or equal to 1).
  • the excitation signal is therefore limited to the long-term prediction made from a past excitation.
  • the figure 1a illustrates the hierarchical coding of the CELP frames C0 to C5 and the transforms M1 to M5 applied to these frames.
  • the line referenced 10 corresponds to the reception of the frames
  • the line referenced 11 corresponds to the CELP synthesis
  • the line referenced 12 corresponds to the total synthesis after the MDCT transform.
  • the decoder when receiving frame 1 (CELP coding C1 and transform coding M1), the decoder synthesizes the CELP frame C1 which will be used to calculate the total synthesis signal of the following frame, and calculates the signal of total synthesis of the current frame O1 (line 12) from the CELP C0 synthesis, the M0 transform and the M1 transform. This additional delay in the total synthesis is well known in the context of transform coding.
  • the decoder in the presence of errors on the bitstream, the decoder operates as follows.
  • the decoder During the first error on the bitstream, the decoder contains in memory the CELP synthesis of the previous frame. So on the figure 1b when the frame 3 (C3 + M3) is erroneous, the decoder uses the decoded CELP synthesis C2 at the previous frame.
  • FEC frame Erasure Concealment
  • a valid frame includes information on the previous frame to improve the concealment of erased frames and resynchronization between erased frames and valid frames.
  • the decoder receives in the bitstream of the frame 5 information on the nature of the previous frame (by example indication of classification, information on the spectral envelope).
  • Classification information means information on voicing, non-voicing, the presence of attacks, etc.
  • the decoder synthesizes the previous erroneous frame (frame 4) by using a technique for concealing erased frames that benefits from the information received with the frame 5, before synthesizing the CELP signal C5.
  • the present invention improves the situation.
  • the use of information present in a valid frame to generate a second set of the missing samples of a previous erased frame makes it possible to increase the quality of the decoded audio signal by optimally adapting the missing samples.
  • the transition step between the first set of missing samples and the second set ensures continuity in the missing samples produced.
  • This transition step may advantageously be a recovery addition step.
  • this transition step can be provided by a linear prediction synthesis filtering step using to generate the second set of missing samples the transition point filter memories stored in the first step of concealment.
  • the memories of the synthesis filter at the transition point are stored in the first concealment step.
  • the excitation is determined according to the information received.
  • the synthesis is performed from the transition point using on the one hand the excitation obtained, on the other hand the memories of the stored synthesis filter.
  • the first set of samples is all the missing samples of the erased frame and the second set of samples is a part of the missing samples of the erased frame.
  • the distribution of the generation of the samples between two different time intervals and the fact of generating only a part of the samples in the second time interval makes it possible to reduce the peak of complexity which can be in the time interval corresponding to the valid frame. Indeed, in this time interval, the decoder must both generate missing samples of the previous frame, perform the transition step and decode the valid frame. It is therefore in this time interval that the peak of complexity of the decoding is located.
  • the information present in a valid frame is for example information on the classification of the signal and / or on the spectral envelope of the signal.
  • the signal classification information makes it possible, for example, for the step of concealing the second set of missing samples to adapt respective gains of a harmonic part of the excitation signal and of a random part of the excitation signal. for the signal corresponding to the erased frame.
  • This information therefore ensures better matching of the missing samples generated by the concealment step.
  • the first time slot being associated with said last erased frame and the second time slot being associated with said valid frame
  • the step of preparing the step of concealing the second set of missing samples is performed in a time interval different from that corresponding to the decoding of the valid frame. This therefore makes it possible to distribute the calculation load of the concealment step of the second set of samples and thus to reduce the peak of complexity in the time interval corresponding to the reception of the first valid frame. As shown above, it is indeed in this time interval corresponding to the valid frame that is the peak complexity or worse case of complexity of the decoding.
  • the distribution of the complexity thus carried out makes it possible to review downward the sizing of the processor of a transmission error concealment device which is dimensioned according to the worst case of complexity.
  • the preparation step comprises a step of generating a harmonic portion of the excitation signal and a step of generating a random portion of the excitation signal for the signal corresponding to the erased frame.
  • This device implements the steps of the concealment method as described above.
  • the invention also relates to a digital signal decoder comprising a transmission error concealment device according to the invention.
  • the invention relates to a computer program intended to be stored in a memory of a transmission error concealment device.
  • This computer program is such that it includes code instructions for carrying out the steps of the error concealment method according to the invention, when executed by a processor of said transmission error concealment device.
  • It relates to a storage medium, readable by a computer or by a processor, integrated or not into the device, storing a computer program as described above.
  • the transmission error concealment method according to a first embodiment of the invention is now described.
  • the frame N received at the decoder is erased.
  • a valid N-1 frame received at the decoder is processed by DEMUX demultiplexing module, normally decoded at 21 by a DE-NO decoding module.
  • the decoded signal is then stored in a memory buffer MEM during a step 22. At least part of this memorized decoded signal is sent to the sound card 30 at the output of the decoder of the frame N-1, the decoded signal remaining in the buffer is retained for sending to the sound card after decoding the next frame.
  • a step is taken to conceal a first set of samples for this missing frame at 23 by means of a DE-DISS error concealment module and by using the decoded signal of a previous frame.
  • the signal thus extrapolated is stored in memory MEM during step 24.
  • this extrapolated signal memorized, together with the decoded signal of the N-1 frame remaining stored, is sent to the sound card 30 at the output of the decoder of the frame N.
  • the extrapolated signal remaining in the buffer memory is retained. to be sent to the sound card after decoding the next frame.
  • a step of concealing a second set of missing samples for the erased N frame is performed at 25 by the DE-MISS error concealment module. This step uses information present in the valid frame N + 1 which is obtained during a step 26 of demultiplexing the N + 1 frame by the DEMUX demultiplexing module.
  • the information present in a valid frame includes information on the previous frame of the bit stream. These include signal classification information (voiced, unvoiced, transient signal) or information on the spectral envelope of the signal.
  • harmonic excitation is meant the excitation calculated from the pitch value (number of samples in a period corresponding to the inverse of the fundamental frequency) of the signal of the preceding frame, the harmonic part of the excitation signal. is thus obtained by copying the excitation passed to the moments corresponding to the delay of the pitch.
  • random excitation is meant the excitation signal obtained from a random signal generator or by random draw of a code word of the past excitation or in a dictionary.
  • a larger gain is calculated for the harmonic part of the excitation and in the case where the classification of the signal indicates an unvoiced frame, a larger gain is calculated for the random part of the excitation.
  • the part of the harmonic excitation is completely erroneous. In this case, several frames may be necessary before the decoder regains normal excitation and therefore an acceptable quality. Thus, a new artificial version of the harmonic excitation can be used to allow the decoder to find normal operation more quickly.
  • the information on the spectral envelope can be a stability information of the LPC linear prediction filter.
  • this information indicates that the filter is stable between the previous frame and the current (valid) frame
  • the step of concealing a second set of missing samples uses the linear prediction filter of the valid frame. Otherwise, the filter from the past is used.
  • a transition step 29 by a TRANS transition module is performed.
  • This module takes into account the first set of samples generated at step 23 not yet played on the sound card and the second set of samples generated in step 25 to obtain a smooth transition between the first set and the second set.
  • this transition step is a step of crossfading or addition-overlap which consists in gradually decreasing the weight of the extrapolated signal in the first set and gradually increasing the weight of the signal extrapolated in the second set to get the missing samples from the erased frame.
  • this fade-in step corresponds to the multiplication of all the samples of the extrapolated signal stored at the frame N with a weighting function decreasing progressively from 1 to 0, and the addition of this weighted signal with the samples of the signal extrapolated to the N + 1 frame multiplied with the complementary weighting function of the weighting function of the memorized signal.
  • complementary weighting function is meant the function obtained by subtracting one by the preceding weighting function.
  • this fade-in step is performed on only a part (at least one sample) of the stored signal.
  • this transition step is provided by the linear prediction synthesis filtering.
  • the memories of the synthesis filter at the transition point are stored in the first concealment step.
  • the excitation is determined according to the information received.
  • the synthesis is performed from the transition point using on the one hand the excitation obtained, on the other hand the memories of the stored synthesis filter.
  • the valid frame is de-multiplexed at 26, decoded normally at 27 and the decoded signal is stored at 28 in the memory buffer MEM.
  • the signal from the transition module TRANS is sent together with the decoded signal of the N + 1 frame to the sound card 30 at the output of the decoder of the N + 1 frame.
  • the signal received by the sound card 30 is intended to be restored by speaker type reproduction means 31.
  • the first set of samples and the second set of samples are the set of samples of the missing frame.
  • a signal corresponding to the erased frame is generated, the crossfade is then performed on the part of the two signals corresponding to the second half of the erased frame (one half-frame) to obtain the samples of the frame missing.
  • the concealment step in the time interval corresponding to the erased frame, the concealment step generates all the samples of the missing frame (these samples will be necessary if the next frame is also erased), while in the time interval corresponding to the decoding of the valid frame, the concealment step generates only a second portion of the samples, for example, the second half of the samples of the missing frame.
  • the overlap addition step is performed to ensure a transition on this second half of the samples of the missing frame.
  • the number of samples generated for the missing frame in the time interval corresponding to the valid frame is smaller than in the case of the first embodiment described above.
  • the decoding complexity in this time interval is therefore reduced.
  • a complexity distribution is performed to further reduce the worst case complexity without increasing the average complexity.
  • the step of concealing the second set of samples is split into two steps.
  • a first preparation step E1 does not produce missing samples and does not use the information from the valid frame, is performed in the previous time interval.
  • a second step E2 generating missing samples and using the information from the valid frame is performed in the time interval corresponding to the valid frame.
  • a preparation step E1 referenced 32 is performed.
  • This preparation step is for example a step of obtaining the harmonic part of the excitation using the value of the LTP delay of the previous frame, and of obtaining the random part of the excitation in a CELP decoding structure.
  • This preparation step uses parameters of the previous frame stored in memory MEM. It is not useful for this step to use the classification information or the spectral envelope information of the erased frame.
  • the concealment step 23 of the first set of samples as described with reference to FIG. figure 2 is also performed.
  • the extrapolated signal derived therefrom is stored at 24 in the memory MEM. At least a part of this extrapolated signal memorized, together with the decoded signal remaining stored in the N-1 frame, is sent to the sound card 30 at the output of the decoder of the frame N. The extrapolated signal remaining in the buffer is retained to be sent to the sound card after decoding the next frame.
  • the concealed step E2 referenced 33 comprising the extrapolation of the second set of missing samples corresponding to the erased N frame, is performed in the time interval corresponding to the N + 1 frame received at the decoder.
  • This step comprises the taking into account of the information contained in the valid frame N + 1 and which concern the frame N.
  • the concealment step corresponds to the calculation of the gains associated with the two parts of the excitation, and possibly to the correction of the phase of the harmonic excitation. Based on the classification information received in the first valid frame, the respective gains of the two portions of the excitation are matched. Thus, for example based on the classification information of the last valid frame received before the erased frames and the classification information received, the concealment step adapts the choice of the excitations and the associated gains to best represent the class of the frame. In this, the quality of the signal generated during the concealment step is improved by benefiting from the information received.
  • the step E2 favors the harmonic excitation obtained at the preparation step E1 rather than the random excitation and vice versa for a signal frame unvoiced.
  • step E2 will generate missing samples according to the precise classification of the transient (voiced to unvoiced or voiceless to voiced).
  • a step 29 addition-overlap or cross-fade as described with reference to the figure 2 is then performed between the first set of samples generated in step 23 and the second set of samples generated in step 33.
  • the N + 1 frame is processed by the DEMUX demultiplexing module, is decoded at 27 and stored at 28 as described previously with reference to FIG. figure 2 .
  • the signal extrapolated obtained by the cross-fading step 29 and the decoded signal of the N + 1 frame are jointly sent to the sound card 30 at the output of the decoder of the N + 1 frame.
  • FIGS. 4a and 4b illustrate the implementation of this method and the synchronization between CELP decoding and transform decoding using low delay windows represented here in the form of windows as described in the patent application. FR 0760258 .
  • the figure 4a illustrates the hierarchical coding of CELP frames C0 to C5 and the low delay transforms M1 to M5 applied to these frames.
  • the figure 4b illustrates the decoding of frames C0 to C5.
  • Line 40 illustrates the signal received at the decoder
  • line 41 illustrates the CELP synthesis in the first decoding stage
  • line 42 illustrates the total synthesis using the low delay transform (MDCT).
  • MDCT low delay transform
  • the time offset between the two decoding stages is less than one frame, it is represented here for the sake of simplicity at a shift of half a frame.
  • part of the CELP synthesis of the previous frame C0 and the transform M0 is used as well as a part of the CELP synthesis of the current frame C1 and the transform M1.
  • the decoder Upon detection of the first erased frame (C3 + M3), the decoder uses the CELP synthesis of the previous frame 2 (C2) to construct the total synthesis signal (03). It is also necessary to generate from an error concealment algorithm, the signal corresponding to the CELP synthesis of the frame 3 (C3).
  • This regenerated signal is named FEC-C3 on the figure 4b .
  • the output signal of the decoder 03 is therefore composed of the last half of the signal C2 and the first half of the extrapolated signal FEC-C3.
  • a concealment step for the frame C4 is performed to generate samples corresponding to the missing frame C4. This gives a first set of samples noted FEC1-C4 for the missing frame C4.
  • the output frame 4 of the decoder is constructed using a portion of extrapolated samples for C3 (FEC-C3) and a portion of the first set of extrapolated samples for C4 (FEC1-C4).
  • a step of concealing a second set of samples for the frame C4 is performed. This step uses the I5 information on the C4 frame that is present in the valid frame C5. This second set of samples is reference FEC2-C4.
  • a transition step between the first set of samples FEC1-C4 and the second set of samples FEC2-C4 is performed by overlapping or cross faded addition to obtain the missing samples FEC-C4 of the second half of the erased frame C4.
  • the output frame 05 of the decoder is constructed using a portion of samples from the cross-fading step (FEC-C4) and a portion of the decoded samples for the valid frame C5.
  • the core decoding is a CELP type decoding.
  • This decoding heart can be of any other type.
  • it can be replaced by a decoder of type ADPCM (as for example the standard encoder / decoder G.722).
  • the continuity between two frames is not necessarily provided by linear prediction synthesis filtering (LPC).
  • LPC linear prediction synthesis filtering
  • the input signal S of the encoder is filtered by an HP high pass filter 50.
  • this filtered signal is downsampled by the module 51 at the frequency of the coder ACELP (for "Algebraic Code Excited Linear Prediction"). "in English) to then be encoded by an ACELP encoding method.
  • the signal from this coding stage is then multiplexed in the multiplexing module 56.
  • Information concerning the previous frame (sub) is also sent to the multiplexing module to form the bit stream T.
  • the signal resulting from the ACELP coding is also oversampled at a sampling frequency corresponding to the original signal, by the module 53.
  • This oversampled signal is subtracted from the filtered signal at 54 to enter a second coding stage where an MDCT transform is performed in the module 55.
  • the signal is then quantized in the module 57 and is multiplexed by the multiplexing module MUX to form the bit stream T.
  • a first ACELP decoding stage 61 is performed.
  • the signal thus decoded is oversampled by the module 62 at the frequency of the signal. It is then processed by an MDCT transform module 63.
  • the transform used here is a weak delay transform as described in the document "Low-Overlap” presented in " Real-Time Implementation of the MPEG-4 Low-Delay Advanced Audio Coding Algorithm (AAC-LD) on Motorola's DSP56300 "by J. Hilpert et al published at the 108th AES Convention in February 2000 or as described in the patent application FR 07 60258 .
  • the time offset between the first decoding stage ACELP and that of the transform is therefore half a frame.
  • the signal is, in a second decoding stage, dequantized in the module 68 and added at 67 to the signal from the transform.
  • An inverse transform is then applied at 64.
  • the signal derived therefrom is then post-processed (PF) 65 using the signal from the module 62 and then filtered at 66 by a high-pass filter which provides the output signal S s of the decoder.
  • the decoder includes a transmission error concealment device 70 which receives from the demultiplexing module erased frame information bfi.
  • This device comprises a concealment module 71 which according to the invention receives when decoding a valid frame, information inf. relating to the concealment of frame loss.
  • This module performs, in a first time interval, the concealment of a first set of samples of an erased frame, then in a time interval corresponding to the decoding of a valid frame, it performs the concealment of a second set of samples of the erased frame.
  • the device 70 also includes a transition module 72 TRANS adapted to make a transition between the first set of samples and the second set of samples to provide at least a portion of the samples of the erased frame.
  • a transition module 72 TRANS adapted to make a transition between the first set of samples and the second set of samples to provide at least a portion of the samples of the erased frame.
  • the output signal of the heart of the hierarchical decoder is either the signal from the ACELP decoder 61 or the signal from the concealment module 70.
  • the continuity between the two signals is ensured by the fact that they share the synthesis memories of the filter LPC linear prediction.
  • the device 70 for concealing a transmission error is for example as illustrated in FIG. figure 7 .
  • this device in the sense of the invention typically comprises a ⁇ P processor cooperating with a memory block BM including a storage and / or working memory, as well as a memory buffer MEM mentioned above as a means for storing the decoded frames. and sent with a time offset.
  • This device receives as input successive frames of the digital signal Se and delivers the synthesized signal Ss comprising the samples of an erased frame.
  • the memory block BM may comprise a computer program comprising the code instructions for implementing the steps of the method according to the invention when these instructions are executed by a ⁇ P processor of the device and in particular a step of concealing a first set of missing samples for the erased frame, implemented in a first time interval, a step of concealing a second set of missing samples for the erased frame taking into account information of said valid frame and implemented in a second time interval; and an overlap adding step between the first set of missing samples and the second set of missing samples to obtain (at least a portion of?) the missing frame.
  • the figures 2 and 3 can illustrate the algorithm of such a computer program.
  • This concealment device according to the invention can be independent or integrated in a digital signal decoder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Claims (11)

  1. Verfahren zur Verschleierung eines Übertragungsfehlers in einem digitalen Signal, das in eine Vielzahl von aufeinanderfolgenden Rahmen aufgeteilt ist, die unterschiedlichen Zeitschlitzen zugeordnet sind, bei dem das Signal beim Empfang gelöschte Rahmen und gültige Rahmen aufweisen kann, wobei die gültigen Rahmen Informationen (inf.) bezüglich der Rahmenverlust-Verschleierung aufweisen, wobei das Verfahren dadurch gekennzeichnet ist, dass es bei einer hierarchischen Decodierung angewendet wird, die eine Kerndecodierung und einer Transformations-Decodierung verwendet, die Fenster mit geringer Verzögerung verwendet, die eine Zeitverzögerung von weniger als einem Rahmen bezüglich der Kerndecodierung einführen, und dass es, um mindestens den letzten gelöschten Rahmen vor einem gültigen Rahmen zu ersetzen, aufweist:
    - einen Schritt (23) der Verschleierung einer ersten Einheit von fehlenden Tastproben für den gelöschten Rahmen, der in einem ersten Zeitschlitz durchgeführt wird;
    - einen Schritt (25) der Verschleierung einer zweiten Einheit von fehlenden Tastproben für den gelöschten Rahmen, der die Informationen des gültigen Rahmens und berücksichtigt und in einem zweiten Zeitschlitz durchgeführt wird; und
    - einen Schritt (29) des Übergangs zwischen der ersten Einheit von fehlenden Tastproben und der zweiten Einheit von fehlenden Tastproben, um mindestens einen Teil des fehlenden Rahmens zu erhalten.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt des Übergangs zwischen der ersten Einheit von fehlenden Tastproben und der zweiten Einheit von fehlenden Tastproben durch einen Schritt der Hinzufügung-Überlappung gewährleistet wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt des Übergangs zwischen der ersten Einheit von fehlenden Tastproben und der zweiten Einheit von fehlenden Tastproben durch einen Schritt der Synthesefilterung einer linearen Prädiktion gewährleistet wird, der zur Erzeugung der zweiten Einheit von fehlenden Tastproben die Filterspeicher am Übergangspunkt verwendet, die im ersten Verschleierungsschritt gespeichert wurden.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Einheit von Tastproben die Gesamtheit der fehlenden Tastproben des gelöschten Rahmens und die zweite Einheit von Tastproben ein Teil der fehlenden Tastproben des gelöschten Rahmens ist.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Informationen eines gültigen Rahmens bezüglich der Verschleierung eines Rahmenverlusts Informationen über die Klassifizierung des Signals und/oder die spektrale Hüllkurve des Signals sind.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt der Verschleierung der zweiten Einheit von fehlenden Tastproben eine Information über die Klassifizierung des Signals verwendet, um Verstärkungen eines harmonischen Teils des Anregungssignals bzw. eines zufallsbedingten Teils des Anregungssignals für das dem gelöschten Rahmen entsprechende Signal anzupassen.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass, da der erste Zeitschlitz dem letzten gelöschten Rahmen zugeordnet ist, und der zweite Zeitschlitz dem gültigen Rahmen zugeordnet ist, ein Schritt der Vorbereitung des Schritts der Verschleierung der zweiten Einheit von fehlenden Tastproben, der keine fehlende Tastprobe erzeugt, in dem ersten Zeitschlitz durchgeführt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Vorbereitungsschritt einen Schritt der Erzeugung eines harmonischen Teils des Anregungssignals und einen Schritt der Erzeugung eines zufallsbedingten Teils des Anregungssignals für das dem gelöschten Rahmen entsprechende Signal enthält.
  9. Vorrichtung zur Verschleierung eines Übertragungsfehlers in einem digitalen Signal, das in eine Vielzahl von aufeinanderfolgenden Rahmen aufgeteilt ist, die unterschiedlichen Zeitschlitzen zugeordnet sind, bei dem das Signal beim Empfang gelöschte Rahmen und gültige Rahmen aufweisen kann, wobei die gültigen Rahmen Informationen (inf.) bezüglich der Verschleierung eines Rahmenverlusts aufweisen, wobei die Vorrichtung dadurch gekennzeichnet ist, dass sie bei einer hierarchischen Decodierung eingreift, die eine Kerndecodierung und eine Transformations-Decodierung verwendet, die Fenster mit geringer Verzögerung verwendet, die eine Zeitverzögerung geringer als ein Rahmen bezüglich der Kerndecodierung einführen, und dass sie enthält:
    - ein Verschleierungsmodul (DE-DISS), das in einem ersten Zeitschlitz eine erste Einheit von fehlenden Tastproben für mindestens den letzten gelöschten Rahmen vor einem gültigen Rahmen erzeugen kann, und das in einem zweiten Zeitschlitz eine zweite Einheit von fehlenden Tastproben für den gelöschten Rahmen unter Berücksichtigung der Informationen des gültigen Rahmens erzeugen kann; und
    - ein Übergangsmodul (TRANS), das einen Übergang zwischen der ersten Einheit von fehlenden Tastproben und der zweiten Einheit von fehlenden Tastproben durchführen kann, um mindestens einen Teil des fehlenden Rahmens zu erhalten.
  10. Decodierer eines digitalen Signals, dadurch gekennzeichnet, dass er eine Vorrichtung zur Verschleierung eines Übertragungsfehlers nach Anspruch 9 aufweist.
  11. EDV-Programm, das dazu bestimmt ist, in einem Speicher einer Vorrichtung zur Verschleierung eines Übertragungsfehlers gespeichert zu werden, dadurch gekennzeichnet, dass es Codeanweisungen zur Durchführung der Schritte des Verfahrens nach einem der Ansprüche 1 bis 8 aufweist, wenn es von einem Prozessor der Vorrichtung zur Verschleierung eines Übertragungsfehlers ausgeführt wird.
EP09730641A 2008-03-28 2009-03-20 Verbergung von übertragungsfehlern in einem digitalsignal in einer hierarchischen decodierungsstruktur Active EP2277172B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852043A FR2929466A1 (fr) 2008-03-28 2008-03-28 Dissimulation d'erreur de transmission dans un signal numerique dans une structure de decodage hierarchique
PCT/FR2009/050489 WO2009125114A1 (fr) 2008-03-28 2009-03-20 Dissimulation d'erreur de transmission dans un signal audionumerique dans une structure de decodage hierarchique

Publications (2)

Publication Number Publication Date
EP2277172A1 EP2277172A1 (de) 2011-01-26
EP2277172B1 true EP2277172B1 (de) 2012-05-16

Family

ID=39639207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09730641A Active EP2277172B1 (de) 2008-03-28 2009-03-20 Verbergung von übertragungsfehlern in einem digitalsignal in einer hierarchischen decodierungsstruktur

Country Status (10)

Country Link
US (1) US8391373B2 (de)
EP (1) EP2277172B1 (de)
JP (1) JP5247878B2 (de)
KR (1) KR101513184B1 (de)
CN (1) CN101981615B (de)
BR (1) BRPI0910327B1 (de)
ES (1) ES2387943T3 (de)
FR (1) FR2929466A1 (de)
RU (1) RU2496156C2 (de)
WO (1) WO2009125114A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489040A1 (de) * 2009-10-16 2012-08-22 France Telecom Optimierte parametrische stereodecodierung
GB0920729D0 (en) * 2009-11-26 2010-01-13 Icera Inc Signal fading
JP6073215B2 (ja) * 2010-04-14 2017-02-01 ヴォイスエイジ・コーポレーション Celp符号器および復号器で使用するための柔軟で拡張性のある複合革新コードブック
BR112013020324B8 (pt) * 2011-02-14 2022-02-08 Fraunhofer Ges Forschung Aparelho e método para supressão de erro em fala unificada de baixo atraso e codificação de áudio
AU2012217158B2 (en) 2011-02-14 2014-02-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Information signal representation using lapped transform
PL2676268T3 (pl) 2011-02-14 2015-05-29 Fraunhofer Ges Forschung Urządzenie i sposób przetwarzania zdekodowanego sygnału audio w domenie widmowej
PL2676266T3 (pl) 2011-02-14 2015-08-31 Fraunhofer Ges Forschung Układ kodowania na bazie predykcji liniowej wykorzystujący kształtowanie szumu w dziedzinie widmowej
CN103493129B (zh) 2011-02-14 2016-08-10 弗劳恩霍夫应用研究促进协会 用于使用瞬态检测及质量结果将音频信号的部分编码的装置与方法
PT2676267T (pt) 2011-02-14 2017-09-26 Fraunhofer Ges Forschung Codificação e descodificação de posições de pulso de faixas de um sinal de áudio
US9053699B2 (en) * 2012-07-10 2015-06-09 Google Technology Holdings LLC Apparatus and method for audio frame loss recovery
CA2916150C (en) 2013-06-21 2019-06-18 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Apparatus and method realizing improved concepts for tcx ltp
CN108364657B (zh) 2013-07-16 2020-10-30 超清编解码有限公司 处理丢失帧的方法和解码器
US9418671B2 (en) * 2013-08-15 2016-08-16 Huawei Technologies Co., Ltd. Adaptive high-pass post-filter
KR20150032390A (ko) * 2013-09-16 2015-03-26 삼성전자주식회사 음성 명료도 향상을 위한 음성 신호 처리 장치 및 방법
EP2922054A1 (de) * 2014-03-19 2015-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und zugehöriges Computerprogramm zur Erzeugung eines Fehlerverschleierungssignals unter Verwendung einer adaptiven Rauschschätzung
EP2922055A1 (de) 2014-03-19 2015-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und zugehöriges Computerprogramm zur Erzeugung eines Fehlerverschleierungssignals mit einzelnen Ersatz-LPC-Repräsentationen für individuelle Codebuchinformationen
EP2922056A1 (de) 2014-03-19 2015-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und zugehöriges Computerprogramm zur Erzeugung eines Fehlerverschleierungssignals unter Verwendung von Leistungskompensation
JP6439296B2 (ja) * 2014-03-24 2018-12-19 ソニー株式会社 復号装置および方法、並びにプログラム
NO2780522T3 (de) 2014-05-15 2018-06-09
CN104050968B (zh) * 2014-06-23 2017-02-15 东南大学 一种嵌入式音频采集端aac音频编码方法
CN106683681B (zh) 2014-06-25 2020-09-25 华为技术有限公司 处理丢失帧的方法和装置
US20160014600A1 (en) * 2014-07-10 2016-01-14 Bank Of America Corporation Identification of Potential Improper Transaction
SG11201509526SA (en) * 2014-07-28 2017-04-27 Fraunhofer Ges Forschung Apparatus and method for selecting one of a first encoding algorithm and a second encoding algorithm using harmonics reduction
CN109155134B (zh) 2016-03-07 2023-05-23 弗劳恩霍夫应用研究促进协会 隐藏音频帧丢失的错误隐藏单元、音频解码器和相关方法
CN109313905B (zh) * 2016-03-07 2023-05-23 弗劳恩霍夫应用研究促进协会 隐藏音频帧丢失的错误隐藏单元、音频解码器及相关方法
US10763885B2 (en) 2018-11-06 2020-09-01 Stmicroelectronics S.R.L. Method of error concealment, and associated device
CN111404638B (zh) * 2019-12-16 2022-10-04 王振江 一种数字信号传输方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120788A (en) * 1997-05-06 2000-07-16 Audiocodes Ltd Systems and methods for encoding and decoding speech for lossy transmission networks
JP2001339368A (ja) * 2000-03-22 2001-12-07 Toshiba Corp 誤り補償回路及び誤り補償機能を備えた復号装置
JP4458635B2 (ja) * 2000-07-19 2010-04-28 クラリオン株式会社 フレーム補正装置
FR2813722B1 (fr) * 2000-09-05 2003-01-24 France Telecom Procede et dispositif de dissimulation d'erreurs et systeme de transmission comportant un tel dispositif
MXPA04001656A (es) * 2001-08-23 2004-11-22 Polycom Inc Sistema y metodo para ocultar errores de video.
JP2003223194A (ja) * 2002-01-31 2003-08-08 Toshiba Corp 移動無線端末装置および誤り補償回路
CA2388439A1 (en) * 2002-05-31 2003-11-30 Voiceage Corporation A method and device for efficient frame erasure concealment in linear predictive based speech codecs
FR2852172A1 (fr) * 2003-03-04 2004-09-10 France Telecom Procede et dispositif de reconstruction spectrale d'un signal audio
WO2004084182A1 (en) * 2003-03-15 2004-09-30 Mindspeed Technologies, Inc. Decomposition of voiced speech for celp speech coding
SE527669C2 (sv) * 2003-12-19 2006-05-09 Ericsson Telefon Ab L M Förbättrad felmaskering i frekvensdomänen
KR101237546B1 (ko) * 2005-01-31 2013-02-26 스카이프 통신 시스템에서 프레임들을 연결하는 방법
US7359409B2 (en) * 2005-02-02 2008-04-15 Texas Instruments Incorporated Packet loss concealment for voice over packet networks

Also Published As

Publication number Publication date
ES2387943T3 (es) 2012-10-04
JP2011515712A (ja) 2011-05-19
BRPI0910327A2 (pt) 2015-10-06
JP5247878B2 (ja) 2013-07-24
BRPI0910327B1 (pt) 2020-10-20
US8391373B2 (en) 2013-03-05
US20110007827A1 (en) 2011-01-13
RU2496156C2 (ru) 2013-10-20
FR2929466A1 (fr) 2009-10-02
RU2010144057A (ru) 2012-05-10
CN101981615A (zh) 2011-02-23
WO2009125114A1 (fr) 2009-10-15
EP2277172A1 (de) 2011-01-26
KR20100134709A (ko) 2010-12-23
KR101513184B1 (ko) 2015-04-17
CN101981615B (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
EP2277172B1 (de) Verbergung von übertragungsfehlern in einem digitalsignal in einer hierarchischen decodierungsstruktur
EP1316087B1 (de) Übertragungsfehler-verdeckung in einem audiosignal
EP2080195B1 (de) Synthese verlorener blöcke eines digitalen audiosignals
EP1905010B1 (de) Hierarchischen Audio-kodierung/-dekodierung
AU2003233724B2 (en) Method and device for efficient frame erasure concealment in linear predictive based speech codecs
EP2080194B1 (de) Dämpfung von stimmüberlagerung, im besonderen zur erregungserzeugung bei einem decoder in abwesenheit von informationen
WO1999040573A1 (fr) Procede de decodage d'un signal audio avec correction des erreurs de transmission
EP1356455B1 (de) Verfahren und vorrichtung zur verarbeitung von mehreren audiobitströmen
EP3175443B1 (de) Bestimmung eines budgets für lpd-/fd-übergangsrahmenkodierung
EP2347411B1 (de) Vor-echo-dämpfung in einem digitalaudiosignal
WO2007107670A2 (fr) Procede de post-traitement d'un signal dans un decodeur audio
EP2203915B1 (de) Übertragungsfehlerverdeckung bei einem digitalem signal mit komplexitätsverteilung
EP1665234B1 (de) Informationsfluss-übertragungsverfahren, wobei der fluss in einen sprach-datenfluss eingefügt wird, und zu seiner implementierung verwendeter parametrischer codec
WO2007006958A2 (fr) Procédé et dispositif d'atténuation des échos d'un signal audionumérioue issu d'un codeur multicouches
EP2232833A2 (de) Verarbeitung von binärfehlern in einem digitalaudio-binärrahmen
FR2830970A1 (fr) Procede et dispositif de synthese de trames de substitution, dans une succession de trames representant un signal de parole
MX2008008477A (es) Metodo y dispositivo para ocultamiento eficiente de borrado de cuadros en codec de voz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 558409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009007073

Country of ref document: DE

Effective date: 20120712

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2387943

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 558409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120817

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009007073

Country of ref document: DE

Effective date: 20130219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

BERE Be: lapsed

Owner name: FRANCE TELECOM

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130320

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090320

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 16

Ref country code: GB

Payment date: 20240220

Year of fee payment: 16