EP2269213A1 - Method for producing a hermetically sealed, electrical feedthrough using exothermic nanofilm - Google Patents

Method for producing a hermetically sealed, electrical feedthrough using exothermic nanofilm

Info

Publication number
EP2269213A1
EP2269213A1 EP09738149A EP09738149A EP2269213A1 EP 2269213 A1 EP2269213 A1 EP 2269213A1 EP 09738149 A EP09738149 A EP 09738149A EP 09738149 A EP09738149 A EP 09738149A EP 2269213 A1 EP2269213 A1 EP 2269213A1
Authority
EP
European Patent Office
Prior art keywords
nanofoil
encapsulation
substrate
electrical connection
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09738149A
Other languages
German (de)
French (fr)
Inventor
Jörg NAUNDORF
Hans Wulkesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2269213A1 publication Critical patent/EP2269213A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0006Exothermic brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/34Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material comprising compounds which yield metals when heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83232Applying energy for connecting using an autocatalytic reaction, e.g. exothermic brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Definitions

  • the present invention relates to a method according to the preamble of the main claim and devices according to the independent claim.
  • [1] discloses the tenfold reduction in thermal resistance of an interface in heat sink mounting.
  • the company "Reactive Nano Technologies (RNT)” has developed a new bonding technology platform that can form a metallic bond between a chip package and a heat sink while providing a thermal resistance of an interface that is ten times smaller than current thermal interface materials (TIM).
  • the bonding process relies on the use of reactive multilayer films as local heat sources.
  • the films are a new class of nanocomposite materials wherein self-propagating exothermic reactions can be initiated at room temperature with a hot wire or laser.
  • heat generated by a chemical reaction in the film heats the solder to melt and subsequently bond the components.
  • the bonding process can be completed in air, argon or vacuum in approximately one second.
  • the resulting metallic compounds exhibit thermal conductivities two orders of magnitude larger and thermal
  • Resistors an order of magnitude smaller than current commercial thermal interface materials (TIMs). It is shown using numerical models that the thermal stress on microelectronic packages during interconnection is very limited. Finally, it is numerically shown that reactive bonding can be used to solder silicon dies directly to heat sinks without thermally damaging the die.
  • [2] discloses direct die attach with indium using room temperature soldering. A new bonding process is described which enables solvent-free, lead-free soldering at room temperature by using reactive multilayer films as a local heat source. By activating a multilayer film between solder layers on components, heat is generated by a reaction within the film. This process provides enough local heat to melt the solder and add the components. The use of this film to facilitate the attachment of silicon dies directly to thermal management components is illustrated. Results of the model system for predicting temperatures at various interfaces during bonding are presented and verified. The last section provides thermal performance data that indicates that it can deliver six to eightfold improvement in raw chip sizes from 8 x 8 mm to 17.5 x 17.5 mm.
  • the object of the invention is to reliably and reliably provide a method for producing at least one hermetically sealed, electrical connection of at least one electronic component positioned on a substrate within a encapsulation outside the encapsulation. It is the ability to function at high ambient temperatures, especially in the range above 140 0 C, and at high power losses, especially in the range up to 600 watts, and in extreme environmental conditions, such as high humidity, safely and reliably preserved, with a size of electronic component, for example in the range of 0.05 mm 2 to 150 mm 2 , is given.
  • the object is achieved by a method according to the main claim and a device according to the independent claim.
  • a method according to the main claim for hermetically sealed, electrical feedthrough / contacting, an arrangement with reactive nanofoil and solder layers produced thereon on both sides is used.
  • Nanofoil is a film with a reactive filler that reacts exothermically upon initiation. According to the present invention, an exothermic reaction can be triggered by means of the nanofoil.
  • a nanofoil in particular, a so-called under the brand name NanoFoil® the company Reactive Nanotechnologies RNT sold foil.
  • high temperatures for example, in an aluminum-nickel multilayer, in the range of 1000 0 C to 2000 0 C.
  • the electrical connections or feedthroughs are hermetically sealed and easy to integrate, since these are planar and have good thermal conductivity. Easily integrable, planar electrical feedthroughs are provided in a simple manner.
  • the electrical feedthroughs have good heat conduction and heat spread.
  • activating an exothermic reaction of the nanofoil outside of the encapsulation for contacting the electrical connection takes place at least one electrical contact. That is, the nanofoil is used in addition to encapsulating as well as contacting the electrical connection.
  • activation of a single exothermic reaction of the nanofoil takes place for simultaneously closing the output and contacting the electrical connection to at least one electrical contact. That is, closing the output and contacting the electrical connection is provided by activating a single common exothermic reaction of the nanofoil.
  • an activation of an exothermic reaction of the nanofoil takes place by means of a laser beam. Due to the locally limited heating, a reduction of thermally induced stresses results. The activation of the exothermic reaction is therefore indicated by laser.
  • the laser is a carbon dioxide and / or diode laser.
  • a reactive nanofoil with a targeted, exothermic reaction by laser is used to produce hermetically sealed electrical feedthroughs.
  • the fixing of the nanofoil on the substrate by means of an adhesive.
  • contacting of the electronic component on the nanofoil takes place by means of a conductive adhesive.
  • the encapsulation is produced by means of glass and / or ceramic.
  • at least one electrical via is produced by the substrate from the nanofoil to at least one metallization on the side of the substrate facing away from the nanofoil.
  • the through-connection is produced by means of multilayer high-temperature co-fired ceramics (HTCC;
  • FIG. 1 shows an embodiment of a device according to the invention with hermetically sealed, electrical feedthroughs by means of exothermic nanofoil in a schematic representation.
  • FIG. 2 shows a representation of the temperature profile in the joining zone
  • FIG. 3 shows the steps of an embodiment of a method according to the invention.
  • Fig. 1 shows an embodiment of a device according to the invention.
  • Reference numeral 1 denotes an electrical connection, which can also be referred to as through-connection.
  • This is provided with a reactive nanofoil 2 comprising, for example, aluminum and nickel.
  • the nanofoil 2 is coated on both sides with a respective solder layer, which has, for example, AgSn.
  • Reference numeral 3 denotes a substrate.
  • Reference numeral 5 denotes an encapsulation or a housing cover, which comprises, for example, ceramic and / or glass.
  • an electronic component 7 is fixed.
  • the coated nanofoil 2 is structured on applied to the substrate 3.
  • the electronic component 7 is contacted on the structured nanofoil 2.
  • Reference numeral 11 designates a laser beam for initiating an exothermic reaction of the reactive nanofoil 2.
  • FIG. 1 also shows an electrical through-connection 13 through the substrate 3 from the nanofoil to at least one metallization 15 on the side of the nanofoil 2 facing away from the nanofoil 2 Substrate 3.
  • Fig. 2 shows a temperature profile in the joining zone. Such a temperature profile in the joining zone can be calculated by means of numerical models and is adapted via the dimensioning of the nanofoil 2 and the solder layer thickness. 2 shows the calculation of the transient temperature profile using the example of a copper / aluminum combination.
  • FIG. 2 is from [1]
  • step S1 shows the steps of an exemplary embodiment of a method according to the invention for producing at least one hermetically sealed, electrical connection 1 of at least one electronic component 7 positioned on a substrate 3 within an encapsulation 5 outside the encapsulation 5.
  • fixing takes place At least one structured reactive nanofoil 2 coated on both sides with one respective solder layer on the substrate 3.
  • the electronic component 7 is contacted on the side of the nanofoil 2 facing away from the substrate 3 by a step S2.
  • a step S3 ensues

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention relates to a method for generating at least one electrical connection (1) from at least one electronic component (7), which is positioned on a substrate (3) inside an encapsulation (5), to outside the encapsulation (5). The functional capability of the electrical connection (1) is to be provided at ambient temperatures greater than 140°C and in the event of large power losses and extreme environmental influences. The invention is characterized in that a reactive nanofilm (2), having targeted reaction, which can be triggered exothermically by laser, is used to produce hermetically sealed electrical connections (1). Using the nanofilm (2), an output of an electrical connection (1) and a contact of the electrical connection (1) to at least one further electrical contact can be provided.

Description

Beschreibungdescription
Verfahren zur Erzeugung einer hermetisch dichten, elektrischen Durchführung mittels exothermer NanofolieMethod for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil
Die vorliegende Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Hauptanspruchs und Vorrichtungen gemäß dem Nebenanspruch .The present invention relates to a method according to the preamble of the main claim and devices according to the independent claim.
Mit der mechatronischen Integration kommt es zunehmend zurWith the mechatronic integration, it is increasingly becoming
Verwendung von Elektronik und Sensorik bei wesentlich höheren Umgebungstemperaturen/Verlustleistungen unter gleichzeitig sehr rauen Einsatzbedingungen beziehungsweise Umwelteinflüssen. Insbesondere im Bereich der Hochtemperaturelektronik werden dabei hermetisch dichte, robuste und integrierbare Verbindungen zur Außenwelt auf kleinstem Bauraum erforderlich. Bei Temperaturen oberhalb 150° C sind elektrische Durchführungen in Plastikgehäusen oft lediglich bedingt geeignet. Studien zeigen, dass es bei 180° C bereits innerhalb von 250 Stunden zu ersten Ausfällen der im Plastikgehäuse integrierten Schaltkreise kommt. Herkömmliche elektrische Metall-Glas-Durchführungen sind oft hinsichtlich der Herstellbarkeit, insbesondere hinsichtlich planarer Herstellungsverfahren und einer thermischen Anpassung, und bei der Integra- tion ins Package problematisch.Use of electronics and sensors at much higher ambient temperatures / power losses under very harsh operating conditions or environmental influences. In particular, in the field of high-temperature electronics hermetically sealed, robust and integrable connections to the outside world in the smallest space are required. At temperatures above 150 ° C electrical feedthroughs in plastic housings are often only partially suitable. Studies show that the first failures of the circuits integrated in the plastic housing occur within 180 hours at 180 ° C. Conventional electrical metal-glass feedthroughs are often problematic in terms of manufacturability, in particular with regard to planar manufacturing methods and thermal adaptation, and in the integration into the package.
Bei herkömmlichen elektrischen Durchführungen in Metallgehäusen, wie diese beispielsweise mit Kovar bereit gestellt sind (Kovar bezeichnet Legierungen die einen geringen Wärmeausdeh- nungskoeffizienten haben, typischer Weise circa 5 ppm/K, der damit geringer als der Koeffizient für Metalle ist; Zusammensetzung beispielsweise 54 % Eisen, 29 % Nickel und 17 % Kobalt, wobei andere Zusammensetzungen ebenso möglich sind) , werden Glasdurchführungen verwendet. Anschließend erfolgt der Verschluss mittels eines Deckels, der meist per Rollnaht geschweißt wird. Bei Keramikgehäusen werden in Mehrlagentechnik gesinterte Keramiken mit metallisierten Stromdurchführungen verwendet. Für die Chipmontage und die Verdrahtung durch Bon- den ist dabei ein Hohlraum vorgesehen. Der Deckel muss üblicherweise gelötet werden, insbesondere mittels Schutzgas, flussmittelfrei, wobei Gold-Oberflächen verwendet werden. Bei elektrischen Durchführungen in Plastikgehäusen kommen oft um- spritzte metallische Rahmen/Leadframes zur Verwendung. Umhüllungen aus Kunststoff sind hinsichtlich der erforderlichen Hermizität und aufgrund auftretender mechanischer Spannungen nur begrenzt für höhere Temperaturen verwendbar.In conventional electrical feedthroughs in metal housings, such as those provided with Kovar (Kovar refers to alloys that have low coefficients of thermal expansion, typically about 5 ppm / K, which is less than the coefficient for metals; composition, for example, 54% iron , 29% nickel and 17% cobalt, other compositions are also possible) glass feedthroughs are used. Subsequently, the closure takes place by means of a lid, which is usually welded by means of a roll seam. In ceramic packages, sintered ceramics with metallized current feedthroughs are used in multi-layer technology. For chip mounting and wiring through this is a cavity provided. The lid must usually be soldered, in particular by means of inert gas, flux-free, using gold surfaces. Electrical feedthroughs in plastic housings often use overmolded metallic frames / leadframes. Plastic enclosures are only limitedly usable for higher temperatures with regard to the required hermeticity and due to occurring mechanical stresses.
[1] offenbart die zehnfache Verringerung des thermischen Widerstands einer Schnittstelle beim Wärmesenkenbefestigen . Die Firma "Reaktiv Nano Technologies (RNT) " hat eine neue Verbindungstechnikplattform entwickelt, die ein metallisches Bonden zwischen einem Chipgehäuse und einer Wärmesenke ausbilden kann und dabei einen thermischen Widerstand einer Schnittstelle aufweist der zehnmal kleiner ist als der von derzeitigen thermischen Schnittstellenmaterialien (TIM) . Der Verbin- dungsprozess beruht auf der Verwendung von Reaktiven Mehrfachschichtfolien als örtliche Wärmequellen. Die Folien sind eine neue Klasse von Nanoerzeugnismaterialien wobei sich selbst ausbreitende exotherme Reaktionen bei Zimmertemperatur mit einem heißen Draht oder Laser ausgelöst werden können. Bei Einfügen einer Mehrfachschichtfolie zwischen zwei Lotschichten und einem Chipgehäuse und einer Wärmesenke, wärmt durch eine chemische Reaktion in der Folie erzeugte Wärme das Lot derart auf, dass es schmilzt und nachfolgend die Bestandteile bondet. Der Verbindungsprozess kann in Luft, Argon oder Vakuum in annähernd einer Sekunde vervollständigt werden. Die sich ergebenden metallischen Verbindungen zeigen thermische Leitfähigkeiten zwei Größenordnungen größer und thermische[1] discloses the tenfold reduction in thermal resistance of an interface in heat sink mounting. The company "Reactive Nano Technologies (RNT)" has developed a new bonding technology platform that can form a metallic bond between a chip package and a heat sink while providing a thermal resistance of an interface that is ten times smaller than current thermal interface materials (TIM). The bonding process relies on the use of reactive multilayer films as local heat sources. The films are a new class of nanocomposite materials wherein self-propagating exothermic reactions can be initiated at room temperature with a hot wire or laser. Upon insertion of a multilayer film between two solder layers and a chip package and heat sink, heat generated by a chemical reaction in the film heats the solder to melt and subsequently bond the components. The bonding process can be completed in air, argon or vacuum in approximately one second. The resulting metallic compounds exhibit thermal conductivities two orders of magnitude larger and thermal
Widerstände eine Größenordnung kleiner als derzeitige kommerzielle thermische Schnittstellenmaterialien (TIMs) . Es wird unter Verwendung von numerischen Modellen gezeigt, dass die thermische Belastung von mikroelektronischen Gehäusen während des Verbindens sehr eingeschränkt ist. Abschließend wird numerisch gezeigt das reaktives Verbinden zum Löten von Silizium Rohchips direkt an Wärmesenken verwendet werden kann ohne den Chip thermisch zu beschädigen. [2] offenbart das direkte Rohchip-Befestigen mit Indium unter Verwendung von Raumtemperaturlöten. Es wird ein neuer Verbin- dungsprozess beschrieben der fliesmittelfreies, bleifreies Löten bei Raumtemperatur mittels der Verwendung von reaktiven Mehrschichtfolien als eine örtliche Wärmequelle ermöglicht. Mittels Aktivierung einer Mehrschichtfolie zwischen Lotschichten auf Komponenten wird Wärme durch eine Reaktion innerhalb der Folie erzeugt. Dieser Prozess stellt genug örtli- che Wärme zum Schmelzen des Lots und Fügen der Komponenten bereit. Es wird die Verwendung dieser Folie zum Ermöglichen des Befestigens von Silizium Rohchips direkt an thermische Verwaltungskomponenten dargestellt. Ergebnisse des Modellsystems zur Vorhersage von Temperaturen bei verschiedenen Schnittstellen während des Verbindens sind dargestellt und verifiziert. Im letzten Abschnitt werden Daten über die thermische Leistungsfähigkeit bereitgestellt, die anzeigen dass eine sechs bis achtfache Verbesserung der Rohchipgrößen von 8 x 8 mm auf 17,5 x 17,5 mm ermöglicht wird.Resistors an order of magnitude smaller than current commercial thermal interface materials (TIMs). It is shown using numerical models that the thermal stress on microelectronic packages during interconnection is very limited. Finally, it is numerically shown that reactive bonding can be used to solder silicon dies directly to heat sinks without thermally damaging the die. [2] discloses direct die attach with indium using room temperature soldering. A new bonding process is described which enables solvent-free, lead-free soldering at room temperature by using reactive multilayer films as a local heat source. By activating a multilayer film between solder layers on components, heat is generated by a reaction within the film. This process provides enough local heat to melt the solder and add the components. The use of this film to facilitate the attachment of silicon dies directly to thermal management components is illustrated. Results of the model system for predicting temperatures at various interfaces during bonding are presented and verified. The last section provides thermal performance data that indicates that it can deliver six to eightfold improvement in raw chip sizes from 8 x 8 mm to 17.5 x 17.5 mm.
Es ist Aufgabe der Erfindung ein Verfahren zur Erzeugung mindestens einer hermetisch dichten, elektrischen Verbindung von mindestens einem auf einem Substrat, innerhalb einer Verkap- selung positionierten, elektronischen Bauelement nach außer- halb der Verkapselung sicher und zuverlässig bereitzustellen. Es soll die Funktionsfähigkeit bei hohen Umgebungstemperaturen, insbesondere im Bereich größer 1400C, sowie bei großen Verlustleistungen, insbesondere im Bereich bis 600 Watt, und bei extremen Umwelteinflüssen, wie es beispielsweise hohe Luftfeuchtigkeit ist, sicher und zuverlässig erhalten bleiben, wobei eine Größe eines elektronischen Bauelements, beispielsweise im Bereich von 0,05 mm2 bis 150 mm2, gegeben ist.The object of the invention is to reliably and reliably provide a method for producing at least one hermetically sealed, electrical connection of at least one electronic component positioned on a substrate within a encapsulation outside the encapsulation. It is the ability to function at high ambient temperatures, especially in the range above 140 0 C, and at high power losses, especially in the range up to 600 watts, and in extreme environmental conditions, such as high humidity, safely and reliably preserved, with a size of electronic component, for example in the range of 0.05 mm 2 to 150 mm 2 , is given.
Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch und eine Vorrichtung gemäß dem Nebenanspruch gelöst. Zur hermetisch dichten, elektrischen Durchführung/Kontak- tierung wird eine Anordnung mit reaktiver Nanofolie und darauf beidseitig erzeugter Lotschichten verwendet.The object is achieved by a method according to the main claim and a device according to the independent claim. For hermetically sealed, electrical feedthrough / contacting, an arrangement with reactive nanofoil and solder layers produced thereon on both sides is used.
Nanofolie ist eine Folie mit einem reaktiven Füllstoff, der bei einer Initiierung exotherm reagiert. Gemäß der vorliegenden Erfindung kann mittels der Nanofolie eine exotherme Reaktion ausgelöst werden. Als Nanofolie eignet sich insbesondere eine sogenannte unter dem Markennamen NanoFoil® der Firma Reactive Nanotechnologies RNT vertriebene Folie. Bei der exothermen Reaktion entstehen hohe Temperaturen, beispielsweise bei einer Aluminium-Nickel-Multilayer, im Bereich von 10000C bis 20000C.Nanofoil is a film with a reactive filler that reacts exothermically upon initiation. According to the present invention, an exothermic reaction can be triggered by means of the nanofoil. As a nanofoil, in particular, a so-called under the brand name NanoFoil® the company Reactive Nanotechnologies RNT sold foil. In the exothermic reaction, high temperatures, for example, in an aluminum-nickel multilayer, in the range of 1000 0 C to 2000 0 C.
Die elektrischen Verbindungen beziehungsweise Durchführungen sind hermetisch dicht und leicht integrierbar, da diese pla- nar und gut wärmeleitend sind. Es werden auf einfache Weise leicht integrierbare, planare elektrische Durchkontaktierun- gen bereit gestellt. Die elektrischen Durchführungen weisen eine gute Wärmeleitung sowie Wärmespreizung auf.The electrical connections or feedthroughs are hermetically sealed and easy to integrate, since these are planar and have good thermal conductivity. Easily integrable, planar electrical feedthroughs are provided in a simple manner. The electrical feedthroughs have good heat conduction and heat spread.
Durch die lokal begrenzte Erwärmung beim Löten mit reaktiver Nanofolie kommt es zu einer Reduzierung thermisch induzierter mechanischer Spannungen bei gleichzeitig deutlich geringerer Temperaturbelastung der Bauelemente.Due to the locally limited heating during soldering with reactive nanofoil, a reduction of thermally induced mechanical stresses occurs at the same time as significantly lower thermal stress on the components.
Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht.Further advantageous embodiments are claimed in conjunction with the subclaims.
Gemäß einer vorteilhaften Ausgestaltung erfolgt ein Aktivieren einer exothermen Reaktion der Nanofolie außerhalb der Verkapselung zum Kontaktieren der elektrischen Verbindung an mindestens einem elektrischen Kontakt. Das heißt die Nanofolie wird zusätzlich zum Verkapseln ebenso zum Kontaktieren der elektrischen Verbindung verwendet.According to an advantageous embodiment, activating an exothermic reaction of the nanofoil outside of the encapsulation for contacting the electrical connection takes place at least one electrical contact. That is, the nanofoil is used in addition to encapsulating as well as contacting the electrical connection.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Aktivieren einer einzigen exothermen Reaktion der Nanofolie zum gleichzeitigen Verschließen des Ausgangs und Kontaktieren der elektrischen Verbindung an mindestens einen elektrischen Kontakt. Das heißt das Verschließen des Ausganges und das Kontaktieren der elektrischen Verbindung wird durch das Akti- vieren einer einzigen gemeinsamen exothermen Reaktion der Na- nofolie bereitgestellt. Es ergibt sich der Vorteil, dass die elektrische Durchführung mit hermetischem Verschluss und gleichzeitig eine elektrische Kontaktierung der elektronischen Bauelemente beziehungsweise Chips bereitgestellt werden kann. Durch diese Auslegung kann der Verschluss beziehungsweise die Verkapselung der elektrischen Durchführung und/oder die Kontaktierung der Bauelemente beziehungsweise der Chips in einem Vorgang erfolgen, das heißt, dass beispielsweise ein Drahtbonden entfallen kann.According to a further advantageous embodiment, activation of a single exothermic reaction of the nanofoil takes place for simultaneously closing the output and contacting the electrical connection to at least one electrical contact. That is, closing the output and contacting the electrical connection is provided by activating a single common exothermic reaction of the nanofoil. This results in the advantage that the electrical feedthrough can be provided with a hermetic closure and, at the same time, an electrical contacting of the electronic components or chips. By this design, the closure or the encapsulation of the electrical feedthrough and / or the contacting of the components or the chips can take place in one process, that is, for example, a wire bonding can be omitted.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Aktivieren einer exothermen Reaktion der Nanofolie mittels eines Laserstrahls. Aufgrund der lokal begrenzten Erwärmung ergibt sich eine Reduzierung thermisch induzierter Spannun- gen. Die Aktivierung der exothermen Reaktion wird also per Laser indiziert.According to a further advantageous embodiment, an activation of an exothermic reaction of the nanofoil takes place by means of a laser beam. Due to the locally limited heating, a reduction of thermally induced stresses results. The activation of the exothermic reaction is therefore indicated by laser.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Laser ein Kohlendioxid- und/oder Diodenlaser. Es wird eine re- aktive Nanofolie mit gezielter, exotherm auslösbarer Reaktion per Laser zur Herstellung hermetisch dichter, elektrischer Durchführungen verwendet.According to a further advantageous embodiment, the laser is a carbon dioxide and / or diode laser. A reactive nanofoil with a targeted, exothermic reaction by laser is used to produce hermetically sealed electrical feedthroughs.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt das Fixieren der Nanofolie auf dem Substrat mittels eines Klebers .According to a further advantageous embodiment, the fixing of the nanofoil on the substrate by means of an adhesive.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Ankontaktieren des elektronischen Bauelements auf der Nanofo- lie mittels eines Leitklebers.According to a further advantageous embodiment, contacting of the electronic component on the nanofoil takes place by means of a conductive adhesive.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Erzeugen der Verkapselung mittels Glas und/oder Keramik. Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Erzeugen mindestens einer elektrischen Durchkontaktierung durch das Substrat von der Nanofolie zu mindestens einer Me- tallisierung auf der der Nanofolie abgewandten Seite des Substrats .According to a further advantageous embodiment, the encapsulation is produced by means of glass and / or ceramic. According to a further advantageous refinement, at least one electrical via is produced by the substrate from the nanofoil to at least one metallization on the side of the substrate facing away from the nanofoil.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt das Erzeugen der Durchkontaktierung mittels mehrlagiger High Tem- perature Cofired Ceramics (HTCC; Hochtemperaturmehrlagenkera- miken) .According to a further advantageous embodiment, the through-connection is produced by means of multilayer high-temperature co-fired ceramics (HTCC;
Die Erfindung wird anhand eines Ausführungsbeispiels in Verbindung mit den Figuren näher beschrieben ist. Es zeigen:The invention will be described in more detail with reference to an embodiment in conjunction with the figures. Show it:
Fig. 1 ein Ausführungsbeispiel einer erfindungsgemäß erzeugten Vorrichtung mit hermetisch dichter, elektrischer Durchführungen mittels exothermer Nanofolie in schematischer Darstellung;1 shows an embodiment of a device according to the invention with hermetically sealed, electrical feedthroughs by means of exothermic nanofoil in a schematic representation.
Fig. 2 eine Darstellung des Temperaturprofils in der Fügezone;FIG. 2 shows a representation of the temperature profile in the joining zone; FIG.
Fig. 3 die Schritte eines Ausführungsbeispiels eines er- findungsgemäßen Verfahrens.3 shows the steps of an embodiment of a method according to the invention.
Fig. 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäß erzeugten Vorrichtung. Bezugszeichen 1 bezeichnet eine elektrische Verbindung, die ebenso als Durchkontaktierung bezeich- net werden kann. Diese ist mit einer reaktiven Nanofolie 2 bereitgestellt, die beispielsweise Aluminium und Nickel aufweist. Die Nanofolie 2 ist auf beiden Seiten mit jeweils einer Lotschicht beschichtet, die beispielsweise AgSn aufweist. Bezugszeichen 3 bezeichnet ein Substrat. Bezugszeichen 5 be- zeichnet eine Verkapselung beziehungsweise einen Gehäusedeckel, der beispielsweise Keramik und/oder Glas aufweist. Innerhalb der Verkapselung 5 ist ein elektronisches Bauelement 7 fixiert. Die beschichtete Nanofolie 2 ist strukturiert auf dem Substrat 3 aufgebracht. Das elektronische Bauelement 7 ist auf der strukturierten Nanofolie 2 ankontaktiert . Derartige Ankontaktierungen bezeichnet Bezugszeichen 9. Bezugszeichen 11 bezeichnet einen Laserstrahl zur Initiierung einer exothermen Reaktion der reaktiven Nanofolie 2. Fig. 1 zeigt ebenso eine elektrische Durchkontaktierung 13 durch das Substrat 3 von der Nanofolie zu mindestens einer Metallisierung 15 auf der der Nanofolie 2 abgewandten Seite des Substrats 3.Fig. 1 shows an embodiment of a device according to the invention. Reference numeral 1 denotes an electrical connection, which can also be referred to as through-connection. This is provided with a reactive nanofoil 2 comprising, for example, aluminum and nickel. The nanofoil 2 is coated on both sides with a respective solder layer, which has, for example, AgSn. Reference numeral 3 denotes a substrate. Reference numeral 5 denotes an encapsulation or a housing cover, which comprises, for example, ceramic and / or glass. Within the encapsulation 5, an electronic component 7 is fixed. The coated nanofoil 2 is structured on applied to the substrate 3. The electronic component 7 is contacted on the structured nanofoil 2. Reference numeral 11 designates a laser beam for initiating an exothermic reaction of the reactive nanofoil 2. FIG. 1 also shows an electrical through-connection 13 through the substrate 3 from the nanofoil to at least one metallization 15 on the side of the nanofoil 2 facing away from the nanofoil 2 Substrate 3.
Fig. 2 zeigt ein Temperaturprofil in der Fügezone. Ein derartiges Temperaturprofil in der Fügezone lässt sich mittels numerischer Modelle berechnen und wird über die Dimensionierung der Nanofolie 2 und Lotschichtdicke angepasst. Fig. 2 zeigt die Berechnung des transienten Temperaturverlaufs am Beispiel einer Kupfer/Aluminiumkombination. Die Fig. 2 ist aus [1]Fig. 2 shows a temperature profile in the joining zone. Such a temperature profile in the joining zone can be calculated by means of numerical models and is adapted via the dimensioning of the nanofoil 2 and the solder layer thickness. 2 shows the calculation of the transient temperature profile using the example of a copper / aluminum combination. FIG. 2 is from [1]
Seite 5a entnommen. Es kommt zu einem sehr schnellen Tempera- turanstieg/-abfall von kleiner 1 Millisekunde bei entsprechend lokal begrenzte Erhitzung der Fügezone.Taken from page 5a. There is a very rapid temperature increase / decrease of less than 1 millisecond with correspondingly locally limited heating of the joining zone.
Fig. 3 zeigt die Schritte eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zur Erzeugung mindestens einer hermetisch dichten, elektrischen Verbindung 1 von mindestens einem auf einem Substrat 3, innerhalb einer Verkapselung 5 positionierten elektronischen Bauelement 7 nach außerhalb der Verkapselung 5. Gemäß einem Schritt Sl erfolgt ein Fixieren mindestens einer strukturierten, beidseitig mit jeweils einer Lotschicht beschichteten reaktiven Nanofolie 2 auf dem Substrat 3. Mit einem Schritt S2 erfolgt ein Ankontaktieren des elektronischen Bauelements 7 auf der dem Substrat 3 abgewand- ten Seite der Nanofolie 2. Mit einem Schritt S3 erfolgt ein3 shows the steps of an exemplary embodiment of a method according to the invention for producing at least one hermetically sealed, electrical connection 1 of at least one electronic component 7 positioned on a substrate 3 within an encapsulation 5 outside the encapsulation 5. According to a step S1, fixing takes place At least one structured reactive nanofoil 2 coated on both sides with one respective solder layer on the substrate 3. The electronic component 7 is contacted on the side of the nanofoil 2 facing away from the substrate 3 by a step S2. A step S3 ensues
Erzeugen der Verkapselung 5 des elektronischen Bauelements 7, auf dem Substrat 3 und/oder auf der Nanofolie 2. Mit einem Schritt S4 erfolgt ein Aktivieren einer exothermen Reaktion der Nanofolie 2 außerhalb der Verkapselung 5 zum Verschließen des Ausgangs der elektrischen Verbindung 1. Literaturverzeichnis :Generating the encapsulation 5 of the electronic component 7, on the substrate 3 and / or on the nanofoil 2. With a step S4 activating an exothermic reaction of the nanofoil 2 outside of the encapsulation 5 to close the output of the electrical connection. 1 Bibliography :
[1] „A Tenfold Reduction in Interface Thermal Resistance for Heat Sink Mounting" D. Van Heerden, O. M. Knio, and T. P. Weihs; Reaktive Nano Technologies, 111 Lake Front Drive, Hunt Valley, MD 21030.[1] "A Tenfold Reduction in Interface Thermal Resistance for Heat Sink Mounting" D. Van Heerden, O.M. Knio, and T.P. Weihs; Reactive Nano Technologies, 111 Lake Front Drive, Hunt Valley, MD 21030.
[2] "Direct Die Attach With Indium Using a Room Temperature Soldering Process" J. S. Subramanian, T. Rüde, J. Newson, Z. He, E. Besnoin, T. Weihs; Reaktive Nano Technologies, 111 Lake Front Drive, Hunt Valley, MD 21030. [2] "Direct Attach with Indium Using a Room Temperature Soldering Process" J.S. Subramanian, T. Rüde, J. Newson, Z. He, E. Besnoin, T. Weihs; Reactive Nano Technologies, 111 Lake Front Drive, Hunt Valley, MD 21030.

Claims

Patentansprüche claims
1. Verfahren zur Erzeugung mindestens einer elektrischen Verbindung (1) von mindestens einem auf einem Substrat (3), in- nerhalb einer Verkapselung (5) positionierten elektronischen Bauelement (7) nach außerhalb der Verkapselung (5), gekennzeichnet durch die Schritte1. A method for generating at least one electrical connection (1) of at least one on a substrate (3), within an encapsulation (5) positioned electronic component (7) to the outside of the encapsulation (5), characterized by the steps
Fixieren mindestens einer strukturierten, beidseitig mit jeweils einer Lotschicht beschichteten, die elektrische Verbin- düng (1) erzeugenden, reaktiven Nanofolie (2) auf dem Substrat (3) ;Fixing at least one structured reactive nanofoil (2) which is coated on both sides with a respective solder layer and produces the electrical connection (1) on the substrate (3);
Ankontaktieren des elektronischen Bauelements (7) an die Nanofolie (2), auf der dem Substrat (3) abgewandten Seite der Nanofolie (2) ; Erzeugen der Verkapselung (5) um das elektronische Bauelement (7) herum, auf dem Substrat (3) und/oder auf der Nanofolie (2);Contacting the electronic component (7) to the nanofoil (2), on the side of the nanofoil (2) facing away from the substrate (3); Generating the encapsulation (5) around the electronic component (7), on the substrate (3) and / or on the nanofoam (2);
Aktivieren einer exothermen Reaktion der Nanofolie (2) außerhalb der Verkapselung (5) , an einem Ausgang der elektrischen Verbindung (1) aus der Verkapselung (5) zum Verschließen des Ausgangs .Activating an exothermic reaction of the nanofoil (2) outside the encapsulation (5) at an output of the electrical connection (1) from the encapsulation (5) to close the exit.
2. Verfahren nach Anspruch 1, gekennzeichnet durch Aktivieren einer exothermen Reaktion der Nanofolie (2) außerhalb der Verkapselung (5) zum Kontaktieren der elektrischen Verbindung (1) an mindestens einen elektrischen Kontakt.2. The method according to claim 1, characterized by activating an exothermic reaction of the nanofoil (2) outside the encapsulation (5) for contacting the electrical connection (1) to at least one electrical contact.
3. Verfahren nach Anspruch 1, gekennzeichnet durch3. The method according to claim 1, characterized by
Aktivieren einer einzigen exothermen Reaktion der Nanofolie (2) zum gleichzeitigen Verschließen des Ausgangs und Kontaktieren der elektrischen Verbindung (1) an mindestens einen elektrischen Kontakt. Activating a single exothermic reaction of the nanofoil (2) to simultaneously close the exit and contacting the electrical connection (1) to at least one electrical contact.
4. Verfahren nach Anspruch 1, 2 oder 3, gekennzeichnet durch4. The method according to claim 1, 2 or 3, characterized by
Aktivieren einer exothermen Reaktion der Nanofolie (2) mittels eines Laserstrahls.Activating an exothermic reaction of the nanofoil (2) by means of a laser beam.
5. Verfahren nach Anspruch 4, gekennzeichnet durch den Laserstrahl eines Kohlendioxid- und/oder Diodenlasers.5. The method according to claim 4, characterized by the laser beam of a carbon dioxide and / or diode laser.
6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch6. The method according to any one of claims 1 to 5, characterized by
Fixieren der Nanofolie (2) auf dem Substrat (3) mittels eines Klebers .Fixing the nanofoil (2) on the substrate (3) by means of an adhesive.
7. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch7. The method according to any one of claims 1 to 6, characterized by
Ankontaktieren des elektronischen Bauelements (7) auf der Nanofolie (2) mittels eines Leitklebers.Contacting the electronic component (7) on the nanofoil (2) by means of a conductive adhesive.
8. Verfahren nach einem der Ansprüche 1 bis 7, gekennzeichnet durch Erzeugen der Verkapselung (5) mittels Glas und/oder Keramik.8. The method according to any one of claims 1 to 7, characterized by generating the encapsulation (5) by means of glass and / or ceramic.
9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch9. The method according to any one of claims 1 to 8, characterized by
Erzeugen mindestens einer elektrischen Durchkontaktierung (13) durch das Substrat (3) von der Nanofolie (2) zu mindestens einer Metallisierung (15) auf der der Nanofolie (2) abgewandten Seite des Substrats (3) .Generating at least one electrical through-connection (13) through the substrate (3) from the nanofoil (2) to at least one metallization (15) on the side of the substrate (3) facing away from the nanofoil (2).
10. Verfahren nach Anspruch 9, gekennzeichnet durch10. The method according to claim 9, characterized by
Erzeugen der Durchkontaktierung mittels mehrlagiger High Tem- perature Cofired Ceramics (HTCC; Hochtemperatur- Mehrlagenkeramiken) . Production of the via via multilayer high temperature cofired ceramics (HTCC; high temperature multilayer ceramics).
11. Vorrichtung aufweisend mindestens eine elektrische Verbindung (1) von mindestens einem auf einem Substrat (3), innerhalb einer Verkapselung (5) , fixierten elektronischen Bauelement (7) nach außerhalb der Verkapselung (5), dadurch gekennzeichnet, dass die Vorrichtung nach einem Verfahren der vorangehenden Ansprüche erzeugt worden ist. 11. Device comprising at least one electrical connection (1) of at least one on a substrate (3), within an encapsulation (5), fixed electronic component (7) to the outside of the encapsulation (5), characterized in that the device according to a Method of the preceding claims has been generated.
EP09738149A 2008-04-28 2009-04-28 Method for producing a hermetically sealed, electrical feedthrough using exothermic nanofilm Withdrawn EP2269213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008021167A DE102008021167B3 (en) 2008-04-28 2008-04-28 Method for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil and device produced therewith
PCT/EP2009/055131 WO2009133105A1 (en) 2008-04-28 2009-04-28 Method for producing a hermetically sealed, electrical feedthrough using exothermic nanofilm

Publications (1)

Publication Number Publication Date
EP2269213A1 true EP2269213A1 (en) 2011-01-05

Family

ID=40943692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09738149A Withdrawn EP2269213A1 (en) 2008-04-28 2009-04-28 Method for producing a hermetically sealed, electrical feedthrough using exothermic nanofilm

Country Status (5)

Country Link
US (1) US8227297B2 (en)
EP (1) EP2269213A1 (en)
CN (1) CN102017110B (en)
DE (1) DE102008021167B3 (en)
WO (1) WO2009133105A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021167B3 (en) 2008-04-28 2010-01-21 Siemens Aktiengesellschaft Method for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil and device produced therewith
DE102009001850A1 (en) * 2009-03-25 2010-09-30 Robert Bosch Gmbh Electrical connection of paired conductor ends and method of making the connection
DE102011113523A1 (en) * 2011-09-15 2013-03-21 Giesecke & Devrient Gmbh Electronic component group, useful in cash control unit, comprises memory card with electrical pad, and printed circuit board with electrical contact surface, where electrical conductive connection is formed between pad and contact surface
US9034199B2 (en) 2012-02-21 2015-05-19 Applied Materials, Inc. Ceramic article with reduced surface defect density and process for producing a ceramic article
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US8893361B2 (en) * 2012-03-13 2014-11-25 The Boeing Company Method of bonding components to each other using exothermic reactions
US9090046B2 (en) 2012-04-16 2015-07-28 Applied Materials, Inc. Ceramic coated article and process for applying ceramic coating
EP2662474A1 (en) 2012-05-07 2013-11-13 Siemens Aktiengesellschaft Method of applying a protective coating to a turbine component
US9604249B2 (en) 2012-07-26 2017-03-28 Applied Materials, Inc. Innovative top-coat approach for advanced device on-wafer particle performance
US9343289B2 (en) 2012-07-27 2016-05-17 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US9916998B2 (en) 2012-12-04 2018-03-13 Applied Materials, Inc. Substrate support assembly having a plasma resistant protective layer
US9685356B2 (en) 2012-12-11 2017-06-20 Applied Materials, Inc. Substrate support assembly having metal bonded protective layer
US8941969B2 (en) 2012-12-21 2015-01-27 Applied Materials, Inc. Single-body electrostatic chuck
US9358702B2 (en) 2013-01-18 2016-06-07 Applied Materials, Inc. Temperature management of aluminium nitride electrostatic chuck
US9669653B2 (en) 2013-03-14 2017-06-06 Applied Materials, Inc. Electrostatic chuck refurbishment
US9887121B2 (en) 2013-04-26 2018-02-06 Applied Materials, Inc. Protective cover for electrostatic chuck
US9666466B2 (en) 2013-05-07 2017-05-30 Applied Materials, Inc. Electrostatic chuck having thermally isolated zones with minimal crosstalk
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US9850568B2 (en) 2013-06-20 2017-12-26 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US9437756B2 (en) 2013-09-27 2016-09-06 Sunpower Corporation Metallization of solar cells using metal foils
DE102014102717B4 (en) * 2014-02-28 2022-10-06 Endress+Hauser SE+Co. KG Component arrangement with at least two components and method for producing a component arrangement
US9725373B1 (en) 2015-06-15 2017-08-08 National Technology & Engineering Solutions Of Sandia, Llc Ignitable solids having an arrayed structure and methods thereof
US10020218B2 (en) 2015-11-17 2018-07-10 Applied Materials, Inc. Substrate support assembly with deposited surface features
DE102018102918A1 (en) * 2018-02-09 2019-08-14 Endress+Hauser SE+Co. KG Differential Pressure Sensor
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
CN108832341B (en) * 2018-06-13 2019-11-22 郑州轻工业学院 A kind of miniature quick connector based on Nanofoil
DE102019203617A1 (en) * 2019-03-18 2020-09-24 Federal-Mogul Nürnberg GmbH Pistons for an internal combustion engine
RU2753171C1 (en) * 2020-11-25 2021-08-12 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Method for non-damaging surface mounting of silicon crystals and a3b5 type crystals by using shs foil deposited in form of metallizing multilayer nanostructured coating on surface of these crystals
DE102022208403A1 (en) 2022-08-12 2024-02-15 Zf Friedrichshafen Ag Method for equipping a carrier with a semiconductor element and semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2300375B (en) * 1994-08-01 1998-02-25 Nippon Denso Co Bonding method for electric element
EP1278240A2 (en) 2001-07-10 2003-01-22 Koninklijke Philips Electronics N.V. Transfering method of a component onto a connection support by welding without supplying material
US7169363B2 (en) * 2002-08-30 2007-01-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Apparatus and method for sequestering a contaminant by use of an exothermically reactive structure
US6989134B2 (en) * 2002-11-27 2006-01-24 Velocys Inc. Microchannel apparatus, methods of making microchannel apparatus, and processes of conducting unit operations
US7176106B2 (en) * 2003-06-13 2007-02-13 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Wafer bonding using reactive foils for massively parallel micro-electromechanical systems packaging
DE10334391B4 (en) * 2003-07-28 2005-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for generating connections in microelectronics
US7285321B2 (en) * 2003-11-12 2007-10-23 E.I. Du Pont De Nemours And Company Multilayer substrates having at least two dissimilar polyimide layers, useful for electronics-type applications, and compositions relating thereto
US7354659B2 (en) * 2005-03-30 2008-04-08 Reactive Nanotechnologies, Inc. Method for fabricating large dimension bonds using reactive multilayer joining
JP4947967B2 (en) * 2005-12-12 2012-06-06 富士通株式会社 Circuit module
US20070235500A1 (en) * 2006-03-31 2007-10-11 Daewoong Suh Room temperature joining process with piezoelectric ceramic-activated reactive multilayer foil
WO2007127931A2 (en) * 2006-04-27 2007-11-08 Reactive Nanotechnologies, Inc. Methods of reactive composite joining with minimal escape of joining material
DE102008021167B3 (en) 2008-04-28 2010-01-21 Siemens Aktiengesellschaft Method for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil and device produced therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009133105A1 *

Also Published As

Publication number Publication date
US20110049729A1 (en) 2011-03-03
WO2009133105A1 (en) 2009-11-05
US8227297B2 (en) 2012-07-24
DE102008021167B3 (en) 2010-01-21
CN102017110B (en) 2012-06-27
CN102017110A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
DE102008021167B3 (en) Method for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil and device produced therewith
EP0202279B1 (en) Process for encapsulating micro-electronic semi-conductor and layer-type circuits
EP0302165B1 (en) Process for the encapsulation of both microelectronic semiconductor and thick or thin film circuits
EP2042260B1 (en) Method and paste for contacting metal surfaces
DE102010044709B4 (en) Power semiconductor module with metal sintered connections and manufacturing process
US10008394B2 (en) Method for mounting an electrical component, wherein a hood is used, and hood suitable for use in said method
US9837328B2 (en) Semiconductor device packages
DE102007017831B4 (en) Semiconductor module and a method for producing a semiconductor module
US11424170B2 (en) Method for mounting an electrical component in which a hood is used, and a hood that is suitable for use in this method
DE102007046901A1 (en) Production of electrically conductive or heat-conductive component for producing metallic contact between two elements e.g. cooling bodies or solar cells, comprises forming elemental silver from silver compound between contact areas
EP2743973A2 (en) Method for contacting a semiconductor element by welding a contact element to a sintered layer on the semiconductor element and semiconductor component with increased stability against thermomechanical influence
DE102009001461A1 (en) Method for producing an electronic assembly
DE102008028757B4 (en) Method for producing a semiconductor chip arrangement
EP2382659A1 (en) Electrical or electronic composite component and method for producing an electrical or electronic composite component
WO2018060265A1 (en) Power module and method for producing a power module
DE102007036045A1 (en) Electronic component with at least one component, in particular a semiconductor component, and method for its production
DE102011083899A1 (en) Layer composite for joining electronic components comprising a leveling layer, bonding layers and bonding layers
DE102008055137A1 (en) Electrical or electronic composite component and method for producing an electrical or electronic composite component
DE102017220258B4 (en) Semiconductor sensor device and method for producing the same
DE102008040727A1 (en) Method and device for determining the rotor temperature of a permanent-magnet synchronous machine
DE102008031231B4 (en) Manufacturing process for planar electronic power electronics modules for high-temperature applications and corresponding power electronics module
CN114823586A (en) Bonding material for bonding overlapping components of power electronics
KR102591963B1 (en) Laminated structure for metal bonding and method for metal bonding
DE102009002100A1 (en) Electrical component e.g. press-fit diode, for motor vehicle generator system, has stress-reducing material reducing effect of expansion-or upsetting force on semiconductor substrate by compound layer
DE102004011808A1 (en) Power module for automotive application, has molded housing surrounding semiconductor component and wire bond, and connection area left out from housing and suspended on layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WULKESCH, HANS

Inventor name: NAUNDORF, JOERG

17Q First examination report despatched

Effective date: 20110414

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 21/56 20060101ALI20140318BHEP

Ipc: B23K 35/34 20060101ALI20140318BHEP

Ipc: B23K 35/02 20060101ALI20140318BHEP

Ipc: H01L 23/055 20060101ALI20140318BHEP

Ipc: H01L 21/60 20060101AFI20140318BHEP

Ipc: H01L 23/31 20060101ALI20140318BHEP

Ipc: B23K 35/30 20060101ALI20140318BHEP

Ipc: H01L 23/00 20060101ALI20140318BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140702

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141028

INTG Intention to grant announced

Effective date: 20141126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150408