EP2269180B1 - Systeme d'aide a l'exploitation d'un reseau routier a qualite de service - Google Patents

Systeme d'aide a l'exploitation d'un reseau routier a qualite de service Download PDF

Info

Publication number
EP2269180B1
EP2269180B1 EP09735970.7A EP09735970A EP2269180B1 EP 2269180 B1 EP2269180 B1 EP 2269180B1 EP 09735970 A EP09735970 A EP 09735970A EP 2269180 B1 EP2269180 B1 EP 2269180B1
Authority
EP
European Patent Office
Prior art keywords
alarms
assisting
road network
network according
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09735970.7A
Other languages
German (de)
English (en)
Other versions
EP2269180A1 (fr
Inventor
Miguel Pintado
Jérôme DOURET
Christian Girardeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citilog SAS
Original Assignee
Citilog SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citilog SAS filed Critical Citilog SAS
Publication of EP2269180A1 publication Critical patent/EP2269180A1/fr
Application granted granted Critical
Publication of EP2269180B1 publication Critical patent/EP2269180B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present invention relates to the field of traffic supervision systems, particularly road and highway. These systems are used by network operators to monitor traffic flows, identify incidents, intervene to correct the consequences and more generally ensure both the security of the network and the fluidity of the traffic. They generally comprise sensors for measuring the state of the traffic, means of communication to ensure the feedback of the sensor information to one or more supervision centers, said monitoring centers comprising means for filtering and displaying the information transmitted from the sensors and means for deciding the information to be communicated to the users of the network and the interventions to be carried out, said interventions being able to take the form of information to be communicated to the users by means of panels with variable messages, interventions of means specific to the operator or triggering interventions by third parties (police forces, means of rescue ).
  • the sensors can be magnetic loops implanted in the road networks, cameras or radars.
  • the communication means may be wired networks or wireless communication networks.
  • the filtering means can be more or less automated, involving an exclusive or assisted intervention of agents assigned by the network manager to supervision.
  • a network operator who wishes to supervise said network to ensure a given quality of service, particularly in the face of incidents, uses emergency call stations or the processing of user calls to a number special, the processing by operators of data captured by magnetic loops distributed over the network and / or images collected by cameras evenly distributed and the detection of incidents by patrols.
  • This essentially manual and reactive treatment does not allow to easily prioritize the risk levels related to specific alarms, especially over wide networks. Consequently, it is not possible today for the operator to guarantee its users quality of service classes. reproducible as defined, in particular, by telecommunications operators.
  • the present invention solves this problem by providing an operating aid system for filtering and prioritizing levels.
  • the invention proposes a system for assisting the operation of a road network comprising at least two image sensors, communication means which transmit information from the image sensors to at least one data center.
  • management of the network from which intervention commands are issued in response to alarms generated by said information characterized in that the priorities for processing information and issuing commands are defined by the successive application of a classification function of said alarms into technical priorities of intervention commands and a function of transformation of said technical priorities by weighted quality of service criteria defined for the management of said network.
  • the system for assisting the operation of a road network further comprises at least one orientable camera.
  • each of the image sensors and each of the orientable cameras are mounted on a mast at the edge of the road network, said mast being connected to the communication means and to at least one power supply module.
  • the communication means are constituted by a wireless communication network.
  • DAI processing is performed locally at the output of the image sensors.
  • the DAI processing is able to control the pointing of at least one orientable camera towards an incident zone.
  • the DAI processing generates alarms that are transmitted to a network management center.
  • the invention also proposes a method of assisting the operation of a road network comprising at least two image capture steps, a step of communicating the information of the captured images to at least one network management center, d. where response commands are issued in response to alarms generated by said information, characterized in that the priorities for processing information and of issuing commands are defined by the successive application of a function for classifying said alarms into technical priorities of intervention commands and a function of transforming said technical priorities by weighted quality of service criteria defined for the management of said network.
  • the method of assisting the operation of a road network according to the invention further comprises a step of shooting by an orientable camera.
  • the method of assisting the operation of a road network comprises a step of transmitting alarms resulting from a local processing of DAI output image sensors to a network management center .
  • said alarms are characterized by information making it possible to identify at least one of the elements chosen within the group consisting of the sensor, the channel, the type of actor, the nature of the incident and its date.
  • the method of assisting the operation of a road network further comprises an alarm supervision step comprising a sub-step of merging the alarms with data from other sensors located on the network. and a substep of ranking the alarms according to a first priority order based on the characteristics of the incidents.
  • the characteristics of the incidents are chosen from a group comprising at least criticality indices, safety indicators, traffic status indicators, the number of alarms in a spatio-temporal zone and the duration of the alarm. In progress.
  • the supervision step further comprises a substep of modifying the first priority order according to quality of service criteria defined for the management of said network.
  • the quality of service criteria are chosen from a group comprising at least minimum viability conditions, viability reference conditions, maximum return periods at viability reference conditions, distribution and spatial control indicators.
  • -temporal traffic indicators of traffic disruption, indicators of the effect of the disturbances, indicators of provision of the users of the network of information on the traffic conditions.
  • the supervision step further comprises a substep of extracting alarms classified in order of priority those that require immediate action to display them on the screen of a network management center operator.
  • the supervision step further comprises a substep of extracting prioritized alarms those that can be solved by a single action and another substep of performing said simple action.
  • Another advantage of the present invention is that the system of the invention, whose architecture is based on two sensor levels, the most numerous of which are at low cost, has a very low acquisition cost.
  • a preferred embodiment uses wireless communications between sensors, which significantly reduces the cost of deployment, especially compared to a wired communication system.
  • the cost of maintenance is reduced because the various elements of the system are integrated.
  • the figure 1 illustrates the general architecture of a system for assisting the operation of a road network 10 in one embodiment of the invention.
  • Networks of several hundred kilometers are those for which the invention will bring the main advantages. However, we can certainly consider setting up such a system to help the operator of a smaller network.
  • An operator may also have an operating aid system that manages several geographically distinct networks and in this case, it can advantageously equip sub-networks equipment according to the invention at lower cost.
  • Image sensors 20 having automatic incident detection (ICD) and traffic measurement capability which will be described later are positioned along the network sections.
  • ICD automatic incident detection
  • steerable cameras 30 are also positioned along the sections of the network but with a mesh more loose, for example every 2000 meters (each camera may be oriented and / or zoomed within 1000 meters around its point of implentation; the distance may be less if elements of the scene obstruct the field of view of the camera: PMV, trees, curvature of the road). They allow you to zoom in on areas where incidents have been detected to confirm.
  • the different cameras are connected to a network management center 50 by a wired (RTC, ADSL, etc.) or wireless (GSM, ADSL, 3G, Wi-Fi, etc.) communication network.
  • the communication network advantageously, a wireless network, preferentially cellular.
  • the cellular communication network is of the closed network type of machines (M2M) preferentially using the GPRS transmission mode with a TCP / IP based exchange protocol.
  • M2M allows image sensors to transmit or receive information with one or more communication servers located in the traffic management center (s) via GPRS 900/1800 MHz protocol.
  • the communication server is interconnected with the internet by the mobile operator.
  • the communication server is connected via the internet. VPN communication is established between the different elements of the system.
  • a management center can send messages to be displayed on variable message boards (PMV or VMS) 60.
  • the messages contain traffic information intended for network users and possibly instructions for deviating traffic or speed to be respected.
  • a management center may also send instructions or requests for intervention to teams of the operator provided for this purpose or to services not related to the operator but responsible for public service missions (police, gendarmerie, health services. ..).
  • the figure 2 represents an image sensor with DAI features.
  • the sensor is preferably mounted on a steel mast from a height preferential of 12 meters.
  • the mast must have sufficient rigidity to limit the vibrations and displacement due to the wind in particular.
  • the sensor is advantageously placed in the upper part of the mast by means of its fixing device.
  • the sensor is a camera of the intelligent camera type, that is to say carrying calculating capacities allowing the execution of video DAI software and traffic measurements such as those provided by the applicant (MediaRoad TM / VisioPad TM). / MediaTD TM) some of whose functions are described later.
  • the camera can be of the CanCam type provided by Feith Sensor to Image GmbH.
  • the camera is placed in a protective waterproof camera housing of the IP66 type and is fixed to the mast using the usual fastening devices.
  • the camera is connected via its RS-232 output to a GPRS modem preferentially of the MC35i type: GPRS class 4 modem, dual 900/1800 from Siemens.
  • An M2M antenna is positioned, normally at the top of the mast (GPRS 900/1800 Antenna with FME connector). It can be envisaged to group the sensors 20 into a local network supporting a suitable protocol of the Wi-Fi, IEEE 802.15.4 (Zigbee) or meshed network type. The antenna will then be different.
  • a network node will be positioned on the mast of one of the steerable cameras 30 and the antenna of this mast will allow communications to the chosen network management center.
  • An architectural study must be done on a case-by-case basis to determine what is the optimal solution in cost efficiency given the surrounding topology.
  • the mast must be powered.
  • a set of batteries / solar panels is provided for each of the masts and ensures the energy autonomy of the sensor / antenna or mobile camera device.
  • An example of solar module (solar panels) proposed is manufactured by the French company Photowatt, for example the model MP1100 is PW6-100 type.
  • An example of a proposed battery model are manufactured by the German company BANNER.
  • a stationary battery model the proposed PzS Solar is the Type 6 PzS 690.
  • the device is advantageously equipped with a voltage regulator manufactured by the German company STECA,
  • the model RS3431 series regulator proposed is the Type PR3030.
  • the batteries and the regulator are placed at the foot of the mast in a battery box of the Big Box pallet box type high density polyethylene (HDPE),
  • HDPE high density polyethylene
  • Each image sensor or elementary DAI point continuously analyzes the scene and produces an alarm in the event of an incident.
  • An incident is defined as an event occurring unexpectedly and likely to disrupt the safety or progression of vehicles. It may require intervention by the operator and / or the driver of the vehicle.
  • the Citilog video DAI software MediaRoad or VisioPad
  • the presence of vehicles is detected by double comparison between the current image, the previous image and a reference image stored at the initialization of the sensor.
  • Vehicles are identified and marked by filters based on typical form factors (car, truck, motorcycle, pedestrian ).
  • a tracking algorithm allows the tracking of the marked object through the sequence of images, the analysis of its motion and the construction of the spatio-temporal trajectory of the object.
  • the algorithm makes it possible to ensure the continuity of the tracking even in the presence of temporary masking.
  • the algorithmic interpretation of the movement and displacements makes it possible to detect, classify and position the incidents: vehicles stopped in fluid traffic or in bottling, slowing down , slow vehicle, misinterpretation, etc.
  • Specific treatments are advantageously applied to reduce the false alarm rate (tracking lock on detected movements, elimination of background noise, filtering of weather conditions, self-learning of previous false alarms ...)
  • the alarm is sent to the supervisor located in the traffic management center (via M2M or any other means of communication).
  • the time TN T0 + ⁇ Tn is added to the characteristics of the alarm.
  • An image or clip is sent simultaneously and associated with the alarm.
  • the DAI point informs the supervisor (acknowledgment). On request, the image flow can be transmitted to the supervisor for real-time visualization.
  • PTZ orientable cameras 30, present in a preferred embodiment of the invention are mounted on masts of the same type as those on which the image sensors are mounted. These masts, or some of them, are also preferably equipped with an antenna, a modem, batteries and solar panels of the same type as those coupled to the image sensors. However, they have a higher height to cover a wider area and a geometry adapted to said upper height and the higher weight of the equipment.
  • the PTZ cameras have the following characteristics: it is a CCTV camera equipped with an objective with zoomed motorized x18 and remotely controllable. The camera must be connected in IP flow preferably MPEG4 (BOSCH AutoDome 500i series suspended outside). It must be placed in an IP66 waterproof box and secured with these standard mast attachments.
  • the cameras are oriented by automatic or manual control either from the DAI sensors of the zone or from the traffic management center. The images they send to the management center validate the information received from the DAI sensors by zooming in on part of the area where the incident that triggered the alarm occurred.
  • the figure 3 represents the architecture of a management center in one embodiment of the invention.
  • the signals received from the DAI sensors and the PTZ cameras are stored on a communication and alarm supervision server.
  • the communication and alarm supervision server is a standard industrial PC integrated into a chassis. It is connected to image sensors, mobile cameras and traffic management processing software from the control center or SCANDA. It is equipped with specialized software, such as those marketed by the plaintiff which performs the following tasks: communication with image sensors and mobile cameras, centralization of alarms, video clips and traffic measurements, supervision of alarms (such as as defined below), technical supervision, configuration and maintenance of the system, communication with the SCADA of the traffic management center, communication with the CCTV system of the traffic management center, ie control of a video switch.
  • a traffic management center will advantageously include an image wall for viewing the ascent of the DAI sensors and PTZ cameras. It also includes workstations assigned to operators who process the alarms.
  • the various processing modules above implanted in a management center according to an embodiment of the invention are advantageously interconnected by a local network using a standard communication protocol such as the IP protocol.
  • the figure 4 is a block diagram of the operations of a network management center in one embodiment of the invention.
  • the first two input processes of the management procedure will be detailed in the rest of the description: alarm processing with grouping by event and calculation of technical priorities; the alignment of priorities with the service level objectives of the operation. If the alarm has no effect, given the service level objectives, the alarm can be displayed on a secondary screen for a configurable duration and the alarm will remain without any other effect. If the alarm is to be processed, then one determines its level of criticality according to which the action of the operator must be immediate or not. If an immediate action is required, the alarm is immediately presented to the operator, possibly with the image of one of the DAI sensors concerned.
  • the closest orientable camera is directed to the alarm and the real time image of said camera is presented to the operator. If an immediate action by the operator is not required, it is stored in a queue to be displayed when possible on the one hand on a main screen (for the highest priority level) and on the other hand on a secondary screen (for the alarms of the second priority group). The operator can then select one of the alarms and direct the nearest mobile camera to the area of the incident that triggered the alarm to display a real time image. If the alarm requires a simple action, such as displaying a message on a PMV, that action can be triggered automatically. It is then displayed on the main screen of the operator at the same time as the triggered and acknowledged action.
  • the software proposes a recommendation that is displayed on the operator's main screen.
  • the operator can intervene at any moment in the chain of decision, in particular to modify the order of priority of the alarms. It may be advantageous to have two categories of operators, one to deal with low alarm levels and another to deal with the highest alarm levels. This reduces the risk of seeing unprocessed priority alarms.
  • the figure 5 illustrates the methods of managing the alarm priorities in the alarm supervisor in one embodiment of the invention.
  • the priority management of alarms constitutes the software core of the system for assisting the operation of a road network according to the invention.
  • the decision support software realizes a grouping of the alarms by event and then carries out a classification in order of priority taking into account data coming from several kinds of sensors (DAI, orientable cameras, loops in the ground, other mode of counting of flow of vehicles, weather ).
  • DAI orientable cameras
  • loops in the ground other mode of counting of flow of vehicles, weather .
  • the alarm supervisor receives the traffic measurements from either the DAI sensors or other traffic measurement sensors (magnetic loops, radar, etc.).
  • the supervisor receives this alarm.
  • the alarm is then processed by the system for processing and prioritizing alarms.
  • the alarms or events if the alarm is part of a coherent set of alarms coming from the same spatio-temporal space
  • the T-Factor is calculated for each of the sensors with temporal and spatial correlation. It can also be calculated in aggregate on a set of sensors covering a segment of the highway.
  • the T-Factor can be defined for example on a scale of 1 to 5.
  • the classification of incidents on this scale depends on the past practice of the operator, his forecasts, especially on the future performance of his means of intervention and best practices from other operators.
  • the order of priority is based on criticality indices, instantaneous safety and traffic status indicators, the number of alarms involved in an event and the duration of the alarm.
  • Criticality is assigned according to the security problem and the mobility problem.
  • Criticality according to the security problem corresponds for example to the risk of aggravation of an incident in terms of mortality or severity of injuries, or risk of over-accident.
  • a tunnel alarm is much more critical than an outdoor alarm because an incident in a confined space can have much faster and more serious consequences.
  • an alarm in the middle of the track is much more critical than on a BAU because the risk of over-accident by rear collision is much greater.
  • Criticality in terms of mobility refers to the potential impact of the incident on the flow of traffic and the time necessary to re-establish the conditions of use of the track as close as possible to the normal situation.
  • the a priori indices of criticality of security and mobility are defined by the network operator but there are commonly accepted values which are given by the following tables: - For each camera (tunnel, bridge, interchange, linear, number of lanes etc.) Example (1 lowest value, 5 highest) security Mobility Tunnel 5 3 Bridge 4 3 exchanger 3 2 Linear (2 ways with BAU) 1 1 Linear (2 channels without BAU) 3 3 - For each type of pathway (BAU, insertion path, slow lane, expressway, refuge, etc.) Example (1 lowest value, 5 highest) security Mobility BAU 1 1 Insertion path 3 3 Refuge 1 1 Slow way 4 3 - For each actor (pedestrian, vehicle, VL, PL, public transport, transport of hazardous material, etc.) Example (1 lowest value, 5 highest) security Mobility Pedestrian 2 1 VL 3 2 PL 4 3 Public transport 5 3 Hazardous material 5 5 ... - For each type of incident (presence, stop, misinterpretation, abnormal movement in a flow); Example (1 lowest value, 5 highest) security Mobility Pres
  • the order of priority also depends on the number of alarms involved in an event, said event being defined by a set of alarms of the same nature (or corresponding to a predetermined scenario) occurring in a predetermined time and space interval ( step by step, ie by grouping the n-order spatial connectivity alarms, n being the number of upstream or downstream cameras and preferably equal to 1 and / or temporal grouping of the temporal connectivity alarms ⁇ t , Where ⁇ t is the time difference between 2 alarms
  • ⁇ t is the time difference between 2 alarms
  • Example 1 a vehicle in the opposite direction will pass from cameras to cameras in a given time interval, all these alarms are grouped together to form the event against direction. : In case of chain collisions 1 alarm will be raised for the 1st stopped vehicle, then for the second, then for the third one as long as the time interval between 2 successive alarms does not exceed the threshold predetermined temporal connectivity ⁇ t);
  • the duration of the current alarm (or event) is also in the order of priority.
  • the prioritization alarm algorithm (translated in the T-Factors scale) uses known classification techniques, especially for power plant management such as fuzzy logic, neural networks, multi-agent systems , expert system or other techniques. These techniques have in common to rely on a calibration. Operationally, this calibration will be performed by inputting alarm records to the classification software, testing the result in terms of the distribution of alarms in the classes, and adjusting the input weights used by most of these techniques to arrive at the classification software. on a classification scale that corresponds to the priorities of experience.
  • An exemplary embodiment may use one of the algorithms proposed by Kyrykides (A Next Generation Alarm Processing Algorithm Incorporating Recommendations and Decisions on Wide Area Control, I3E, 2007). The priority of each alarm is recalculated at regular time intervals.
  • the figure 6 represents the different risk levels defined by the network manager in one embodiment of the invention and illustrates how T-Factors are defined which define an order of priority Alarm processing technique to a "commercial" priority order according to the quality of service levels specified by the network operator.
  • the notion of quality of service can be defined contractually between an operator and its customers, the non-respect of the contractual commitments (Service Level Agreement or SLA) measured by key performance indicators (KPI) can trigger the payment of penalties by the operator to customers who are victims of these unfulfilled commitments.
  • SLA Service Level Agreement
  • KPI key performance indicators
  • the concept of quality of service is widespread in the world of telecommunications. It has not yet been generalized to other types of networks, including road networks or only partially. But the same concepts are transposable.
  • the notion of a service level results from the fact that a user of the road can be sensitive to several factors such as, in particular, the safety, the layout and the surface condition of the road, the legibility of the route indications, the fluidity of traffic, the availability in all seasons, the approval of the course ...
  • the level of quality of service is the minimum percentage of achievement fixed by the client on the parameters above.
  • the set of service levels defines for the manager the minimum SLA goal.
  • the Dictionary of Road Maintenance (Volume 4, May 1999) provides a definition of winter service quality for a road: a service level of C1 to C4 (from highest to highest). bottom) is assigned to a route based on its socio-economic importance.
  • the minimum condition is that below which it is not acceptable to descend under any circumstance (C2, C3 or C4 depending on the importance of the link).
  • the reference condition is that of normal non-incident service. The acceptable level depends on the usual meteorological conditions (mild or harsh climate).
  • the return period is the period required to return to the reference condition; it is the theoretical maximum duration of the winter-induced parturbation on road traffic beyond its own manifestation.
  • An ICD system is one of the major building blocks necessary to ensure that SLA objectives are met.
  • DAI (especially video) is an operating aid system. In aims to detect and locate any event that is likely to disrupt the safety or progression of vehicles (incident). In the absence of an ICD system, these incidents are reported back to the operator through various tools: patrol officers, emergency call network, police force, call of users via the mobile telephone network.
  • the advantage of an ICD system lies in the speed and completeness of the incidents that such a system can detect.
  • Conventional systems use a series of electromagnetic loops embedded in the roadway. An algorithm that operates on certain parameters (occupancy rate, flow rate, speed) detects discontinuities in the flow of flows from an incident.
  • a video ICD system can also detect abnormal vehicle stops or pedestrian movements.
  • a video DAI system impacts the quality of service of a given network because it allows a greater responsiveness of the operator. It notably makes it possible to improve the quality of the service offered according to the two groups of KPIs useful for defining the quality of service of a motorway network, namely the group of safety indicators and the group of mobility indicators.
  • Traffic safety is usually measured by the number of accidents, the number of accidents, the number of fatalities, the number of injuries, the severity of injuries.
  • the performance of the operation will be appreciated according to the time of detection of the incidents, and the time of intervention. The latter clearly has a direct impact on the severity of the injuries and the number of possible deaths.
  • An analysis of statistics in France shows a direct link between the response time and the mortality due to an accident: a reduction of 25% in the response time reduces the number of deaths by 8%. And a reduction of 20 minutes to 10 minutes of said delay can allow to divide by 4 the number of deaths.
  • Mobility is based on a definition of pre-incident traffic status.
  • T1 a fluid state
  • T2 a dense state
  • T3 a saturated state
  • T4 a blocked state
  • the objective of the operation is to increase the reliability of the route, that is to say to minimize the impact on traffic flow of non-recurring events such as incidents. It is therefore a question of reducing the time necessary to return to a normal flow situation, in particular by improving the time of detection of the incidents.
  • Alarm management plays an important role in achieving this goal.
  • the probability of having to deal simultaneously with a large number of alarms is all the greater as, on the one hand, the number of operators is reduced, and on the other hand the length of the linear highway to be monitored is large. This potentially large number of alarms can overwhelm the operator in charge of processing them.
  • the time required for the operators to understand the whole of the situation (s) may lead to additional processing time and consequently to the quality of the service offered.
  • the need is therefore to have an alarm management system allowing on the one hand to reduce the number of alarms seen by the operator, and to affect other share an alarm processing priority to ensure that decisions are made in line with service quality objectives.
  • a transformation function is therefore applied to the T-Factor in coherence with the operator's policy and in particular to be in agreement with its quality of service objectives defined by a positioning on scales for each of the KPIs.
  • the transformation function makes it possible to go from a T-Factor level to the risk level, which is a function of the percentages of implementation of the KPIs corresponding to the perceptions of the risks of each motorway operation and the service level objectives of the service.
  • Risk level T - Factor normalized x ⁇ 1 . % REIT 1 + ⁇ 2 . % REIT 2 + ... + ⁇ not . % REIT not
  • level of risk it is possible, as illustrated on figure 6 define six classes of KPIs according to the alarm level: no alarm; low level alarm; attention required ; level A alarm; level B alarm; maximum alarm.
  • the operator can choose to view an alarm or event by calling either the real time image of the DAI sensor or that of the PTZ camera closest to the alarm or event. In the case of this second chjoix, it is automatically activated so as to point to the area concerned.
  • the image of the PTZ camera is presented to the operator. All alarms with thumbnails or associated clips are stored in a database for later analysis and possibly performance measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Alarm Systems (AREA)

Description

  • La présente invention se rattache au domaine des systèmes de supervision de trafic, notamment routier et autoroutier. Ces systèmes sont utilisés par les exploitants de réseaux pour suivre les flux de trafic, repérer les incidents, intervenir pour en corriger les conséquences et plus globalement assurer à la fois la sécurité du réseau et la fluidité du trafic. Ils comprennent en général des capteurs pour mesurer l'état du trafic, des moyens de communication pour assurer la remontée des informations des capteurs sur un ou plusieurs centres de supervision, lesdits centres de supervision comprenant des moyens de filtrage et de visualisation des informations remontées des capteurs et des moyens pour décider des informations à communiquer aux usagers du réseau et des interventions à effectuer, lesdites interventions pouvant prendre la forme d'informations à communiquer aux usagers par l'intermédiaire de panneaux à messages variables, d'interventions de moyens propres à l'exploitant ou de déclenchement d'interventions de tiers (forces de police, moyens de secours...). Les capteurs peuvent être des boucles magnétiques implantées dans la chaussée des réseaux, des caméras ou des radars. Les moyens de communication peuvent être des réseaux filaires ou des réseaux de communication sans fil. Les moyens de filtrage peuvent être plus ou moins automatisés, impliquant une intervention exclusive ou assistée des agents affectés par le gestionnaire du réseau à la supervision.
  • Dans l'état actuel de la technique, un exploitant de réseau qui souhaite superviser ledit réseau pour assurer une qualité de service déterminée, notamment face à des incidents, utilise des bornes d'appel d'urgence ou le traitement des appels usagers à un numéro spécial, le traitement par des opérateurs des données capturées par des boucles magnétiques réparties sur le réseau et/ou des images collectées par des caméras également réparties et la détection d'incidents par des patrouilles. Ce traitement essentiellement manuel et réactif ne permet pas de hiérarchiser facilement les niveaux de risque liés à des alarmes déterminées, notamment sur des réseaux étendus. En conséquence, il n'est pas aujourd'hui possible à l'opérateur de garantir à ses usagers des classes de qualité de service reproductibles telles que définies, en particulier, par les opérateurs de télécommunications.
  • La présente invention résout ce problème en fournissant un système d'aide à l'exploitation permettant de filtrer et hiérarchiser les niveaux.
  • A cet effet, l'invention propose un système d'aide à l'exploitation d'un réseau routier comprenant au moins deux capteurs d'images, des moyens de communication qui transmettent des informations des capteurs d'images à au moins un centre de gestion du réseau d'où sont émises des commandes d'intervention en réaction à des alarmes générées par les dites informations, caractérisé en ce que les priorités de traitement des informations et d'émission des commandes sont définies par l'application successive d'une fonction de classification des dites alarmes en priorités techniques de commandes d'intervention et d'une fonction de transformation des dites priorités techniques par des critères pondérés de qualité de service définis pour la gestion dudit réseau..
  • Avantageusement, le système d'aide à l'exploitation d'un réseau routier selon l'invention comprend en outre au moins une caméra orientable.
  • Avantageusement, chacun des capteurs d'images et chacune des caméras orientables sont montés sur un mât en bordure du réseau routier, ledit mât étant relié aux moyens de communication et à au moins un module d'alimentation.
  • Avantageusement, les moyens de communication sont constitués par un réseau de communication sans fil.
  • Avantageusement, un traitement de DAI est effectué localement en sortie des capteurs d'images.
  • Avantageusement, le traitement de DAI est apte à commander le pointage d'au moins une caméra orientable vers une zone d'incident. Avantageusement, le traitement DAI génère des alarmes qui sont transmises à un centre de gestion du réseau.
  • L'invention propose également un procédé d'aide à l'exploitation d'un réseau routier comprenant au moins deux étapes de capture d'images, une étape de communication des informations des images capturées à au moins un centre de gestion du réseau, d'où sont émises des commandes d'intervention en réaction à des alarmes générées par les dites informations, caractérisé en ce que les priorités de traitement des informations et d'émission des commandes sont définies par l'application successive d'une fonction de classification des dites alarmes en priorités techniques de commandes d'intervention et d'une fonction de transformation des dites priorités techniques par des critères pondérés de qualité de service définis pour la gestion dudit réseau.
  • Avantageusement, le procédé d'aide à l'exploitation d'un réseau routier selon l'invention comprend en outre une étape de prise de vue par une caméra orientable.
  • Avantageusement, le procédé d'aide à l'exploitation d'un réseau routier selon l'invention comprend une étape de transmission d'alarmes issues d'un traitement local de DAI en sortie des capteurs d'images à un centre de gestion du réseau.
  • Avantageusement, lesdites alarmes sont caractérisées par des informations permettant d'identifier au moins un des éléments choisis au sein du groupe constitué par le capteur, la voie, le type d'acteur, la nature de l'incident et sa date.
  • Avantageusement, le procédé d'aide à l'exploitation d'un réseau routier selon l'invention comprend en outre une étape de supervision des alarmes comprenant une sous-étape de fusion des alarmes avec des données issues d'autres capteurs situés sur le réseau et une sous-étape de classement des alarmes selon un premier ordre de priorité établi en fonction des caractéristiques des incidents.
  • Avantageusement, les caractéristiques des incidents sont choisies dans un groupe comprenant au moins des indices de criticité, des indicateurs de sécurité, des indicateurs d'état du trafic, le nombre d'alarmes dans une zone spatio-temporelle et la durée de l'alarme en cours.
  • Avantageusement, l'étape de supervision comprend en outre une sous-étape consistant à modifier le premier ordre de priorité en fonction de critères de qualité de service définis pour la gestion dudit réseau.
  • Avantageusement, les critères de qualité de service sont choisis dans un groupe comprenant au moins des conditions minimales de viabilité, des conditions de référence de viabilité, des durées maximales de retour à des conditions de référence de viabilité, des indicateurs de répartition et de contrôle spatio-temporels du trafic, des indicateurs de perturabation du trafic, des indicateurs d'effet des perturbations, des indicateurs de mise à disposition des usagers du réseau d'informations sur les conditions de trafic. Avantageusement, l'étape de supervision comprend en outre une sous-étape consistant à extraire des alarmes classées par ordre de priorité celles qui nécessitent une action immédiate pour les afficher sur l'écran d'un opérateur du centre de gestion de réseau.
  • Avantageusement, l'étape de supervision comprend en outre une sous-étape consistant à extraire des alarmes classées par ordre de priorité celles qui peuvent être résolues par une action simple et une autre sous-étape consistant à exécuter ladite action simple.
  • Un autre avantage de la présente invention est que le système de l'invention, dont l'architecture repose sur deux niveaux de capteurs dont les plus nombreux sont à bas coût, présente un coût d'acquisition très bas. En outre, un mode privilégié de réalisation utilise des communications sans fil entre capteurs, ce qui réduit de manière significative le coût de déploiement, notamment par rapport à un système à communication filaire. De plus, le coût de maintenance est réduit car les différents éléments du système sont intégrés.
  • L'invention sera mieux comprise, ses différentes caractéristiques et avantages ressortiront de la description qui suit de plusieurs exemples de réalisation et de ses figures annexées dont :
    • La figure 1 est un schéma de l'architecture générale du système d'aide à l'exploitation d'un réseau de trafic routier selon l'invention;
    • La figure 2 représente un capteur d'images dans un mode de réalisation de l'invention;
    • La figure 3 est un schéma de l'architecture d'un centre de gestion du trafic dans un mode de réalisation de l'invention ;
    • La figure 4 est un schéma fonctionnel des opérations d'un centre de gestion de réseau dans un mode de réalisation de l'invention ;
    • La figure 5 illustre les modalités de gestion des priorités d'alarmes dans le superviseur d'alarmes dans un mode de réalisation de l'invention;
    • La figure 6 représente les différents niveaux de risques définis par le gestionnaire du réseau dans un mode de réalisation de l'invention.
  • Dans la suite de la description, les abréviations et acronymes ont les significations indiquées dans le tableau ci-dessous, à moins qu'une signification différente ne leur soit explicitement donnée dans un contexte particulier :
    Abréviation/Acronyme Signification
    3G Réseau de communication sans fil cellulaire de 3ème génération
    ADSL Asymmetric Digital Suscriber Line ou Liaison numérique à débit asymétrique
    BAU Bande d'Arrêt d'Urgence
    DAI Détection Automatique d'Incidents
    CCTV Closed Circuit TeleVision ou Caméra en circuit fermé
    CAN Convertisseur Analogique Numérique
    FME For Mobile Equipment ou Connecteur pour équipement mobile
    GPRS General Packet Radio Service ou Service radio par paquets
    GSM Global System for Mobile communications ou Groupe Spécial Mobile
    IEEE ou I3E Institute of Electrical and Electronics Engineers ou Institut des ingénieurs électriciens et électroniciens.
    IP Internet Protocol ou Protocole Internet
    KPI Key Performance Indicator ou Indicateur clé de performance
    M2M Machine to Machine ou Communication inter-équipements
    PL Poids Lourd
    PTZ Pan Tilt Zoom ou Caméra panoramique
    RTC Réseau Téléphonique Commuté
    SCADA Supervisory Control And Data Acquisition ou Commande et acquisition de données de surveillance
    SLA Service Level Agreement ou Contrat de niveau de service
    T-Factor Ordre de priorité technique
    TCP/IP Transmission Control Protocol/Internet Protocol ou Couches transport et réseau de l'Internet
    TMC Traffic Management Center ou Centre de gestion de trafic
    VL Véhicule Léger
    VMS Ou PMV Variable Message Sign ou Panneau à Messages Variables
    VPN Virtual Private Network ou Réseau privé virtuel
    Wi-Fi™ Marque déposée par la Wireless Ethernet Compatibility Alliance pour désigner les réseaux locaux sans fil à la norme 802.11
  • La figure 1 illustre l'architecture générale d'un système d'aide à l'exploitation d'un réseau routier 10 dans un mode de réalisation de l'invention. Les réseaux de plusieurs centaines de kilomètres sont ceux pour lesquels l'invention apportera les principaux avantages. On peut tout à fait envisager cependant la mise en place d'un tel système pour aider l'exploitant d'un réseau de taille plus réduite. Un exploitant peut également avoir un système d'aide à l'exploitation qui gère plusieurs réseaux géographiquement distincts et dans ce cas, il pourra avantageusement équiper des sous-réseaux des équipements selon l'invention à moindre coût. Des capteurs d'images 20 ayant une capacité de détection automatique d'incidents (DAI) et de mesure de trafic qui seront décrits plus loin sont positionnés le long des tronçons du réseau. Ces capteurs d'images sont avantageusement disposés tous les 300 à 400 mètres (la distance peut être moindre en cas de route courbe et/ou de pentes et/ou présence d'éléments obstruant la portée du champ de vue (ex : PMV, arbres, courbure de la route), et ce afin d'assurer, de préférence, une couverture totale du linéaire routier à surveiller. Dans un mode de réalisation privilégié, des caméras orientables 30 sont positionnées également le long des tronçons du réseau mais avec un maillage plus lâche, par exemple tous les 2000 mètres (chaque caméra peut-être orientée et/ou zoomée dans un rayon de 1000 mètres autour de son point d'implentation ; la distance peut-être moindre si des éléments de la scène obstruent le champ de vue de la caméra : PMV, arbres, courbure de la route). Elles permettent d'effectuer des zooms sur des zones où des incidents ont été détectés pour effectuer une confirmation. Les différentes caméras sont reliées à un centre de gestion du réseau 50 par un réseau de communication filaire (RTC, ADSL, etc.) ou sans fil (GSM, ADSL, 3G, Wi-Fi, etc.) 40. Le réseau de communication sera avantageusement un réseau sans fil, préférentiellement cellulaire. Le réseau de communication cellulaire est du type réseau fermé de machines (M2M) s'appyant préférentiellement sur le mode de transmission GPRS avec un protocole d'échange basé sur TCP/IP. Le M2M permet aux capteurs d'images de transmettre ou de reçevoir des informations avec un ou plusieurs serveurs de communication situés dans le ou les centres de gestion du trafic via protocole GPRS 900/1800 Mhz. : Le serveur de communication est interconnecté avec internet par l'opérateur de téléphonie mobile. Le serveur de communication est connecté via l'internet. Une communication VPN est établie entre les différents éléments du système.
  • Plusieurs niveaux de centres de gestion peuvent être prévus, notamment dans le cas où le gestionnaire exploite plusieurs réseaux. Un premier niveau peut traiter une partie des alarmes et un deuxième niveau, au moins, peut traiter les autres alarmes et coordonner plusieurs centres de gestion de premier niveau. Un type de centre de gestion est décrit plus loin. Un centre de gestion peut envoyer des messages à afficher sur des Panneaux à Messages Variables (PMV ou VMS) 60. Les messages contiennent des informations sur le trafic destinées aux usagers du réseau et éventuellement des consignes de déviation du trafic ou de vitesse à respecter. Un centre de gestion peut également envoyer des instructions ou demandes d'intervention à des équipes de l'exploitant prévues à cet effet ou à des services non rattachés à l'exploitant mais chargés de missions de service public (police, gendarmerie, services sanitaires...).
  • La figure 2 représente un capteur d'images doté de fonctionnalités de DAI. Le capteur est préférentiellement monté sur un mât en acier d'une hauteur préférentielle de 12 mètres. Le mât doit avoir une rigidité suffisante pour limiter les vibrations et déplacement dûs au vent notamment. La capteur est placé avantageusement dans la partie haute du mât à l'aide de son dispositif de fixation. Le capteur est une caméra du type caméra intelligente, c'est-à-dire embarquant des capacités calcul permettant l'execution d'un logiciel de DAI video et de mesures de trafic tels que ceux fournis par la demanderesse (MediaRoad™ / VisioPad™ / MediaTD™) dont certaines fonctions sont décrites plus loin. La caméra peut être du type CanCam fourni par la sociéte Feith Sensor to Image GmbH. La caméra est placée dans un caisson caméra étanche de protection du type IP66 et est fixée sur le mât à l'aide des dispositifs de fixation usuelles. La caméra est connectée via sa sortie RS-232 à un modem GPRS préférentiellement du type MC35i : Modem GPRS classe 4, bibande 900/1800 de chez Siemens. Une antenne du réseau M2M est positionnée, normalement au sommet du mât (Antenne GPRS 900/1800 avec connecteur FME). On peut envisager de regrouper les capteurs 20 en un réseau local supportant un protocole adapté de type Wi-Fi, IEEE 802.15.4 (Zigbee) ou réseau maillé. L'antenne sera alors différente. Dans ce cas, on positionnera un noeud de réseau sur le mât d'une des caméras orientable 30 et l'antenne de ce mât permettra les communications vers le centre de gestion de réseau choisi. Une étude d'architecture doit être faite au cas par cas pour déterminer quelle est la solution optimale en coût efficacité compte tenu de la topologie environnante. Le mât doit être alimenté en courant. Avantageusement un ensemble batteries/panneaux solaires est prévu pour chacun des mâts et permet d'assurer l'autonomie en énergie du dispositif capteur / antenne ou caméra mobile. Un exemple de module solaire (panneaux solaires) proposé est fabriqué par la société française Photowatt, par exemple le modèle MP1100 est de type PW6-100. Un exemple de modèle de batterie proposé sont fabriquées par la société Allemande BANNER. Un modèle de batterie stationnaire la PzS Solar proposé est le Type 6 PzS 690. Outre les modules solaires et les batteries le dispositif est avantageusement équipé avec un régulateur de tension fabriqué par la société Allemande STECA, Le modèle de régulateur de Série RS3431 proposé est le Type PR3030. Les batteries et le régulateur sont placés au pied du mât dans un coffre à batterie du type caisse palette Big Box en polyéthylène haute densité (PEHD),
  • En permanence chaque capteur d'images ou point DAI élémentaire analyse automatiquement la scène et produit une alarme en cas d'incident. Un incident est défini comme un événement survenant inopinément et de nature à pertuber la sécurité ou la progression des véhicules. Il peut nécessiter une intervention de la part de l'exploitant et/ou du conducteur du véhicule. Le logiciel de DAI vidéo Citilog (MediaRoad ou VisioPad) analyse à une fréquence de 5 images par seconde la scène capturée par la caméra vidéo. La présence de véhicules est détectée par double-comparaison entre l'image courante, l'image précédente et une image de référence stockée à l'initialisation du capteur. Les véhicules sont identifiés et marqués par des filtres basés sur des facteurs de forme typiques (voiture, poids lourd, motocyclette, piéton...). Un algorithme de poursuite permet le suivi de l'objet marqué à travers la séquence d'images, l'analyse de son mouvement et la construction de la trajectoire spatio-temporelle de l'objet. L'algorithme permet d'assurer la continuité de la poursuite même en présence de masquage temporaires, L'interprétation algorithmique du mouvement et des déplacements permet de détecter, de classifier et de positionner les incidents : véhicules arrétés en trafic fluide ou en embouteillage, ralentissement, véhicule lent, contresens, etc. Des traitements spécifiques sont avantageusement appliqués pour réduire le taux de fausse alarme (verrouillage de la poursuite sur des mouvements détectés, élimination du bruit de fond de scène, filtrage des conditions météorologiques, auto-apprentissage des fausses alarmes précédentes...)
  • En complément de l'analyse DAI, le point élémentaire peut être amené à effectuer des mesures de trafic du type : comptage, vitesse, taux d'occupation, temps inter véhiculaires, etc. Les mesures sont agrégées puis envoyées au superviseur à intervalles réguliers. La fréquence privilégiée d'envoi est paramétrable et peut être fixée avantageusement à 6 minutes. A partir de ces mesures sont calculés pour chaque portion de route un indicateur global de sécurité et l'état de trafic actuel. Lorsqu'un incident survient, une alarme est automatiquement produite. Chaque alarme est caractérisée par:
    • L'identifiant de la caméra (qui indique la position sur le linéaire)
    • La voie concernée (BAU, voie rapide, voie lente, etc.) et la position dans la voie.
    • Le type de l'acteur : piétons, véhicules (éventuellement qualifié : VL / PL / Transport collectif / transport matière dangereuse), débris sur la voie ;
    • La nature de l'incident : arrêt, mouvement lent dans un flux, mouvement rapide dans un flux, arrêt prolongé dans une congestion, etc.
    • La date (h:m:s) de début d'incident (T0).
  • A T0 + ΔTn, (ΔTn étant paramétrable selon le type et la nature de l'alarme) l'alarme est envoyée au superviseur situé dans centre de gestion du trafic (via M2M ou tout autre moyen de communication). On ajoute le temps TN = T0 + ΔTn aux caractéristiques de l'alarme. Une image ou clip est envoyée simultanément et associé à l'alarme. En fin d'incident (retour à la normale) le point de DAI en informe le superviseur (acquittement). Sur demande, le flux d'images peut-être transmis au superviseur pour visualisation en temps réel.
  • Les caméras orientables PTZ 30, présentes dans une variante privilégiée de réalisation de l'invention, sont montés sur des mâts de même type que ceux sur lesquels sont montées les capteurs d'images. Ces mâts, ou certains d'entre eux, sont également préférentiellement dotés d'une antenne, d'un modem, de batteries et de panneaux solaires de même type que ceux couplés aux capteurs d'image. Ils ont cependant une hauteur supérieure pour pouvoir couvrir une zone plus étendue et une géométrie adaptée à ladite hauteur supérieure et au poids plus élevé de l'équipement. Les caméras PTZ ont les caractéristiques suivantes : c'est une caméra CCTV équipée d'un objectif avec zoom motorisé x18 et pilotable à distance. La caméra doit être connecté en flux IP préférentiellement MPEG4 (BOSCH AutoDome série 500i suspendu exterieur). Elle doit être placée dans un caisson étanche IP66 et fixé à l'aide de ces accessoires usuels de fixation sur mât. Les caméras sont orientées par commande automatique ou manuelle soit à partir des capteurs DAI de la zone soit à partir du centre de gestion de trafic. Les images qu'elles envoient au centre de gestion permettent de valider les informations reçues des capteurs DAI en zoomant sur une partie de la zone où s'est produit l'incident ayant déclenché l'alarme.
  • La figure 3 représente l'architecture d'un centre de gestion dans un mode de réalisation de l'invention. Les signaux reçus des capteurs DAI et des caméras PTZ sont stockés sur un serveur de communication et de supervision d'alarmes.. Le serveur de communication et de supervision d'alarmes est un PC industriel standard intégré dans un châssis. Il est connecté aux capteurs d'images, aux caméras mobiles ainsi qu'au logiciel de traitement de gestion du trafic du centre de contrôle ou SCANDA. Il est équipé d'un logiciel spécialisé, comme ceux commercialisés par la demanderesse qui réalise notamment les tâches suivantes : communication avec les capteurs d'images et caméras mobiles, centralisation des alarmes, clips vidéos et des mesures de trafic, supervison des alarmes (telle que défini plus loin), supervision technique, configuration et maintenance du système, communication avec le SCADA du centre de gestion du trafic, communication avec le système CCTV du centre de gestion du trafic, i.e. pilotage d'un switch video. D'autres types de capteurs peuvent également être reliés au centre de gestion et lui fournir des mesures : boucles à induction implantées dans la chaussée du réseau, notamment à des points particuliers tels que les bretelles d'accès ou de sortie et les péages ; capteurs météo (anémomètres, indicateurs de brouillard ou de pluie...). Un centre de gestion de trafic selon l'invention comprendra avantageusement un mur d'images permettant de visualiser les remontées des capteurs DAI et des caméras PTZ. Il comprend également des stations de travail affectées à des opérateurs qui traitent les alarmes. Les différents modules de traitement ci-dessus implantés dans un centre de gestion selon un mode de réalisation de l'invention sont avantageusement reliés entre eux par un réseau local utilisant un protocole de communication standard tel que le protocole IP.
  • La figure 4 est un schéma fonctionnel des opérations d'un centre de gestion de réseau dans un mode de réalisation de l'invention. Deux premiers traitements en entrée de la procédure de gestion seront détaillés dans la suite de la description : le traitement des alarmes avec regroupement par évènement et calcul des priorités techniques; le recalage des priorités en fonction des objectifs de niveaux de service de l'exploitation. Si l'alarme doit rester sans effet, compte tenu des objectifs de niveau de service, l'alarme pourra être affichée sur un écran secondaire pendant une durée paramétrable et l'alarme restera sans autre effet. Si l'alarme doit être traitée, on détermine ensuite son niveau de criticité en fonction duquel l'action de l'opérateur doit être immédiate ou pas. Si une action immédiate est requise, l'alarme est immédiatement présentée à l'opérateur, éventuellement avec l'image de l'un des capteurs DAI concernés. En outre, la caméra orientable la plus proche est orientée vers l'alarme et l'image temps réél de ladite caméra est présentée à l'opérateur. Si une action immédiate de l'opérateur n'est pas requise, elle est stockée dans une file d'attente pour être affichée quand c'est possible d'une part sur un écran principal (pour le niveau de priorité le plus élevé) et d'autre part sur un écran secondaire (pour les alarmes du deuxième groupe de priorités). L'opérateur peut alors sélectionner une des alarmes et orienter la caméra mobile la plus proche vers la zone de l'incident ayant déclenché l'alarme pour en afficher une image temps réél. Si l'alarme nécessite une action simple, telle que l'affichage d'un message sur un PMV, ladite action peut être déclenchée automatiquement. Elle est alors affichée sur l'écran principal de l'opérateur en même temps que l'action déclenchée et acquittée. Si l'action requise par les procédures établies par l'exploitant n'est pas suffisamment simple pour être déclenchée automatiquement, le logiciel propose une recommandation qui est affichée sur l'écran principal de l'opérateur. En tout état de cause, l'opérateur peut intervenir à tout moment dans la chaîne de décision, notamment pour modifier l'ordre de priorité des alarmes. Il peut être avantageux de prévoir deux catégories d'opérateurs, l'une pour s'occuper des niveaux d'alarme bas et une autre pour s'occuper des niveaux d'alarme les plus élevé. On réduit ainsi les risques de voir des alarmes prioritaires non traitées.
  • La figure 5 illustre les modalités de gestion des priorités d'alarmes dans le superviseur d'alarmes dans un mode de réalisation de l'invention. La gestion des priorités d'alarmes constitue le coeur logiciel du système d'aide à l'exploitation d'un réseau routier selon l'invention. Le logiciel d'aide à la décision réalise un regroupement des alarmes par évènement et réalise ensuite un classement par ordre de priorité en prenant en compte des données issues de plusieurs sortes de capteurs (DAI, caméras orientables, boucles dans le sol, autre modalité de comptage de débit de vehicules, météo...).
  • A intervalles réguliers le superviseur d'alarmes reçoit les mesures de trafic en provenance soit des capteurs DAI, soit d'autres capteurs de mesures de trafic (boucles magnétiques, radar, etc.). Lorsqu'un incident est détecté par l'un des capteurs DAI, le superviseur reçoit cette alarme. L'alarme est alors traitée par le système de traitement et de hiérarchisation des alarmes. Suivant le résultat dudit traitement les alarmes ou événements (si l'alarme fait partie d'un ensemble cohérent d'alarmes venant d'un même espace spatio-temporel) sont classés selon ordre de priorité technique défini à partir du niveau de risque que présente un incident, auquel on donne le nom de T-Factor. Le T-Factor est calculé pour chacun des capteurs avec une corrélation temporelle et spatiale. Il peut également être calculé de manière agrégée sur un ensemble de capteurs couvrant un segment de l'autoroute. Le T-Factor peut être défini par exemple sur une échelle de 1 à 5. Le classement des incidents sur cette échelle dépend de la pratique passée de l'opérateur, de ses prévisions, notamment sur la performance future de ses moyens d'intervention et des pratiques les meilleures des autres opérateurs. L'ordre de priorité est fonction d'indices de criticité, d'indicateurs instantanés sur la sécurité et l'état du trafic, du nombre d'alarmes impliquées dans un événement et de la durée de l'alarme. Ces éléments sont détaillés dans la suite de la description.
  • On définit des indices de criticité a priori qui sont fonction de fonction de l'environnement: pour chaque élément constitutif d'une alarme on affecte un indice de criticité selon la problématique de sécurité et selon la problématique de mobilité. La criticité selon la problématique de sécurité correspond par exemple au risque d'aggravation d'un incident en termes de mortalité ou de gravité des blessures, ou en risque de sur-accident. Ainsi une alarme en tunnel est beaucoup plus critique qu'une alarme en extérieur car un incident dans un espace clos peut avoir des conséquences beaucoup plus rapides et graves. Autre exemple, une alarme en pleine voie est beaucoup plus critique que sur une BAU car le risque de sur-accident par collision arrière est beaucoup plus important. La criticité en termes de mobilité désigne l'impact potentiel de l'incident sur l'écoulement du trafic et de la durée nécessaire au rétablissement des conditions d'utilisation de la voie au plus proche de la situation normale.
  • Les indices a priori de criticité de sécurité et de mobilité sont définis par l'opérateur de réseau mais il existe des valeurs communément admises qui sont données par les tableaux suivants:
    - Pour chaque caméra (tunnel, pont, échangeur, linéaire, nombre de voies etc.)
    Exemple (1 valeur la plus faible, 5 la plus forte) Sécurité Mobilité
    Tunnel 5 3
    Pont 4 3
    Echangeur 3 2
    Linéaire (2 voies avec BAU) 1 1
    Linéaire (2 voies sans BAU) 3 3

    - Pour chaque type de voies (BAU, voie d'insertion, voie lente, voie rapide, refuge, etc.)
    Exemple (1 valeur la plus faible, 5 la plus forte) Sécurité Mobilité
    BAU 1 1
    Voie insertion 3 3
    Refuge 1 1
    Voie lente 4 3

    - Pour chaque acteur (piéton, véhicule, VL, PL, transport en commun, transport de matière dangereuse, etc.)
    Exemple (1 valeur la plus faible, 5 la plus forte) Sécurité Mobilité
    Piéton 2 1
    VL 3 2
    PL 4 3
    Transport en commun 5 3
    Matière dangereuse 5 5
    ...

    - Pour chaque nature d'incident (présence, arrêt, contresens, mouvement anormal dans un flux) ;
    Exemple (1 valeur la plus faible, 5 la plus forte) Sécurité Mobilité
    Présence 2 2
    Contresens 4 3
    Arrêt 3 4
    Mouvement anormal 1 1
    ...
  • Les indicateurs instantanés sur la sécurité et l'état du trafic sont calculés en fonction des mesures de trafic :
    • un indicateur de sécurité global basé sur les mesures de circulation voie entière qui peut par exemple être basé sur un modèle prédictif de situations à risque d'accident fondé notamment sur des dépassements de seuils de vitesse pour une densité de trafic donnée (Voir par exemple Jean-Marc Morin - Cédric Perot, « Un indicateur temps réel de sécurité des écoulements Congrès International ATEC-ITS France, 2008 )
    • Un indicateur de mobilité globale ou état de Trafic ; l'état du trafic à un instant donné définit l'impact potentiel d'un incident d'un type donné sur le trafic et donc la mobilité ; quatres états de trafic sont définits par les centre d'information routière T1 fluide, T2 dense, T3 saturé, T4 bloqué.
  • L'ordre de priorité dépend également du nombre d'alarmes impliquées dans un événement, ledit événement étant défini par un ensemble d'alarmes de même nature (ou correspondant un à scenario préétabli) intervenant dans un intervalle de temps et d'espace prédéterminé (de proche en proche, c'est-à-dire par regroupement des alarmes de connexité spatiale d'ordre n, n étant le nombre de caméras amont ou aval et de préférence égal à 1 et/ou regroupement temporel des alarmes de connexité temporelle Δt, Δt étant l'écart temporel entre 2 alarmes. Exemple 1 : un véhicule à contre sens va passer de caméras en caméras dans un intervalle de temps donné, l'ensemble de ces alarmes sont regroupées pour former l'événement contre sens. Exemple 2 : En cas de collisions en chaine 1 alarme va être levée pour le 1er véhicule arrêté, puis pour le second, puis pour le troisième et ce tant que l'intervalle de temps entre 2 alarmes successives ne dépasse pas le seuil prédéterminé de connexité temporelle Δt);
  • La durée de l'alarme (ou événement) en cours intervient également dans l'ordre de priorité.
  • L'algorithme de classement des alarmes par priorités (traduites dans l'échelle de T-Factors) utilise des techniques de classification connues, notamment pour la gestion de centrale électrique telle que la logique floue, les réseaux de neurones, les systèmes multi-agents, système experts ou d'autres techniques. Ces techniques ont en commun de reposer sur une calibration. Opérationnellement, on réalisera cette calibration en fournissant en entrée au logiciel de classification des enregistrements d'alarmes, en testant le résultat en termes de répartition des alarmes dans les classes et en ajustant les pondérations des entrées qu'utilisent la plupart de ces techniques pour arriver à une échelle de classification qui corresponde aux priorités d'expérience. Un exemple de réalisation pourra faire appel à l'un des algorithmes proposés par Kyrykides (« A Next Generation Alarm Processing Algorithm Incorporating Recommandations and Decisions on Wide Area Control », I3E, 2007). La priorité de chaque alarme est recalculée à intervalles de temps réguliers.
  • La figure 6 représente les différents niveaux de risques définis par le gestionnaire du réseau dans un mode de réalisation de l'invention et illustre comment on passe des T-Factor qui définissent un ordre de priorité technique de traitement des alarmes à un ordre de priorité « commercial » fonction des niveaux de qualité de service spécifiés par l'opérateur du réseau.
  • La notion de qualité de service peut être définie contractuellement entre un opérateur et ses clients, le non respect des engagements contractuels (Service Level Agreement ou SLA) mesurés par des indices clés de performance (KPI) peut déclencher le paiement de pénalités par l'opérateur aux clients victimes de ces engagements non tenus. La notion de qualité de service est d'usage répandu dans le monde des télécommunications. Elle n'a pas encore été généralisée à d'autres types de réseaux, notamment des réseaux routiers ou seulement partiellement. Mais les mêmes concepts sont transposables.
  • La qualité de service peut être définie comme la capacité d'un produit ou d'un service, à satisfaire les besoins potentiels ou exprimés des clients, ou plus largement des bénéficiaires du produit ou du service. Derrière cette définition, il convient d'apporter quelques précisions complémentaires :
    • le client est le principal bénéficiaire de la qualité de service, mais il n'est pas le seul,
    • celui-ci, pour des raisons diverses, peut modifier sa perception de la qualité,
    • la définition de la qualité s'oppose à la conception ancienne de produit de haute performance : c'est la conformité aux besoins réels de l'utilisateur, qu'il est préférable de lui faire exprimer, qui est recherchée et non une approche théorique d'une qualité définie de manière abstraite et absolue.
    • un service de coût trop élevé ne peut satisfaire l'utilisateur : on ne peut donc dissocier le coût de la qualité.
  • Dans le cas d'un réseau autoroutier, des considérations supplémentaires sont à prendre en compte. La route n'est pas un produit ordinaire. La création d'un objet routier résulte généralement d'un processus complexe où les dimensions politiques liées à l'aménagement du territoire, à la socio-économie et à la protection de l'environnement prennent souvent le pas, dans les phases amont de la conception, sur les considérations purement techniques de définition des caractéristiques intrinsèques de l'objet. D'ailleurs, si le terme "client" n'est pas très bien adapté à l'objet routier, la réduction des bénéficiaires de la qualité de la route aux seuls usagers n'est pas non plus satisfaisante. Les bénéficiaires pris en compte dans l'évaluation de la qualité de service sont plus généralement :
    • les usagers, utilisateurs directs de la route,
    • les bénéficiaires extérieurs, parmi lesquels on trouve en particulier les riverains, mais aussi, si l'on se place du point de vue de l'aménagement et de l'équilibre des territoires, l'ensemble des contribuables, et les élus,
    • les maîtres d'ouvrages, pour lesquels la route est construite, qui ont en charge la définition du parti d'aménagement et des spécifications techniques de la route, et qui doivent assurer le financement de cette dernière, avec éventuellement la participation de co-financeurs,
    • les gestionnaires, chargés de l'exploitation et de l'entretien de la route, y compris la police.
  • Quels que soient leurs motifs de déplacement (professionnels, domicile - travail, loisirs) les usagers attendent de la part des gestionnaires de voirie un niveau de service constant. Ils aspirent à un renforcement de la sécurité routière et acceptent mal que le bon déroulement de leurs déplacements soit perturbé par des aléas de circulation. Il incombe donc aux gestionnaires de voirie d'agir pour minimiser les effets des perturbations. Ils doivent pour cela surveiller de manière régulière ce qui se passe sur le réseau afin de repérer les événements, les situations ou les dégradations qui pourraient nuire à la sécurité des usagers et à l'écoulement normal du trafic. L'exploitation de la route s'attache donc à la gestion des événements (perturbations nécessitant une intervention urgente, phénomènes aléatoires, surveillance des équipements dynamiques,...). Elle veille à ce que la route assure sa fonction d'écoulement du trafic, par référence à un niveau de service donné, susceptible de définir un engagement contractuel ou quasi-contractuel, comme dans le monde des télécomminications ou d'autres domaines du service. L'exploitation de la route comprend donc l'ensemble des actions destinées à assurer le bon fonctionnement d'une route et comporte 3 grands domaines d'activités :
    • le maintien de la viabilité qui recouvre l'ensemble des interventions sur le terrain destinées, en cas de perturbations, à maintenir ou rétablir des conditions d'utilisation de la voie au plus proche de la situation normale ;
    • la gestion du trafic qui recouvre l'ensemble des dispositions visant, dans le cadre d'objectifs prédéfinis, à répartir et à contrôler les flux de trafic dans le temps et dans l'espace, afin d'éviter l'apparition des perturbations ou d'en atténuer les effets ;
    • l'aide au déplacement qui recouvre l'ensemble des dispositions visant à diffuser, par un moyen ou par un autre, toute information prévisionnelle ou actuelle sur les conditions de circulation ; son objectif général est la sécurité et le confort de l'usager.
  • La notion de niveau de service découle de ce qu'un utilisateur de la route peut être sensible à plusieurs facteurs tels que notamment la sécurité, le tracé et l'état de surface de la route, la lisibilité des indications d'itinéraires, la fluidité de la circulation, la disponibilité en toutes saisons, l'agrément du parcours ...Le niveau de qualité de service est le pourcentage minimum d'atteinte fixé par le maître d'ouvrage sur les paramètres ci-dessus. L'ensemble des niveaux de service définit pour le gestionnaire l'objectif minimal de SLA. A titre d'exemple, on trouve dans le Dictionnaire de l'entretien routier (volume 4, mai 1999), une définition de la qualité de service hivernale pour une route : un niveau de service de C1 à C4 (du plus élevé au plus bas) est affecté à un itinéraire en fonction de son importance socio-économique. Il est défini par un triplet (condition minimale, condition de référence, durée de retour) décliné selon les horaires (jour, nuit) et dans les conditions les plus difficiles, qui sont normalement celles du service hivernal. La condition minimale est celle en dessous de laquelle il n'est acceptable de descendre en aucune circonstance (C2, C3 ou C4 selon l'importance de la liaison). La condition de référence est celle du service normal hors incident. Le niveau acceptable dépend des conditions métérorologiques usuelles (climat clément ou rude). La durée de retour est la période nécessaire pour revenir à la condition de référence ; c'est la durée maximale théorique de la parturbation induite par le phénomène hivernal sur le trafic routier au-delà de sa manifestation propre.
  • Un système de DAI est une des briques majeures nécessaires pour garantir le respect d'objectifs de SLA.
  • La DAI (notamment vidéo) est un système d'aide à l'exploitation. In vise à détecter et à localiser tout événement qui est de nature à perturber la sécurité ou la progression des véhicules (incident). En l'absence de système de DAI, ces incidents sont remontés à l'exploitant par le biais de divers outils : patrouilleurs, réseau d'appel d'urgence, force de police, appel des usagers via le réseau de téléphonie mobile. L'avantage d'un système de DAI, réside dans la rapidité et dans l'exhaustivité des incidents qu'un tel système peut détecter. Les systèmes classiques utlisent une série de boucles électromagnétiques noyées dans la chaussée. Un algorithme opérant sur certains paramètres (taux d'occupation, débit, vitesse) détecte les discontinuités dans l'écoulement des flux provenant d'un incident. Un système de DAI video peut en outre détecter des arrêts anormaux de véhicules ou des mouvements de piétons. A ce titre un système de DAI vidéo impacte la qualité de service d'un réseau donné car il permet une réactivité plus grande de l'exploitant. Il permet notamment d'améliorer la qualité du service offert selon les deux groupes de KPI utiles pour définir la qualité de service d'un réseau autoroutier que sont le groupe des indicateurs de sécurité et le groupe des indicateurs de mobilité.
  • Un temps de détection plus court des incidents, accompagné d'une image vidéo de l'incident va permettre :
    • o de réagir plus vite sur l'ensemble du linéaire (ce qui peut avoir pour conséquence la diminution de la sévérité des blessures en cas d'accident corporel ou la diminution du risque d'aggravation de l'incident) ;
    • o d'avoir une réponse adaptée sur chaque incident grâce à l'image vidéo ;
    • o de diminuer le risque de sur-accident en informant au plus vite les automobilistes par des moyens tels que : les panneaux à messages variables, la radio, la mise en place de balisage spécifique, etc.
  • La sécurité sur un axe de circulation se mesure généralement selon le nombre d'accidents, le nombre de sur-accidents, le nombre de morts, le nombre de blessés, la sévérité des blessures. La performance de l'exploitation sera appréciée selon le temps de détection des incidents, et le temps d'intervention. Ce dernier ayant clairement un impact direct sur la sévérité des blessures et le nombre de morts éventuels. Une analyse des statistiques en France montre une liaison directe entre le délai d'intervention et la mortalité due à un accident : une réduction de 25% du délai d'intervention réduit de 8% le nombre de morts. Et une réduction de 20 mn à 10 mn dudit délai peut permettre de diviser par 4 le nombre de morts. S'agissant de la mobilité, on part d'une définition de l'état du trafic avant incident. On considère généralement quatre états : un état fluide (T1), un état dense (T2), un état saturé (T3) et un état bloqué (T4). On analyse ensuite la mesure selon laquelle un incident peut perturber la progression des autres véhicules. Un temps de détection plus court va permettre de le « résorber » plus rapidement et par conséquent de minimiser l'impact de celui-ci sur l'écoulement du trafic : à titre d'exemple, il est généralement admis que le délai sur le temps de parcours induit par un incident est proportionnel au carré de la durée du l'incident. En outre, un incident provoque un effet de traînée : pour chaque minute de blocage d'une voie de circulation d'un autoroute à une heure de pointe, quatre minutes de retard de temps de parcours sont induites après la fin de l'incident. A contrario, en cas d'existence d'un système d'aide à l'exploitation, les automobilistes arrivant sur la zone peuvent être prévenus en amont ce qui permet à certains d'entre eux d'opter pour un autre itinéraire.
  • L'objectif de l'exploitation est d'augmenter la fiabilité du parcours, c'est-à-dire de réduire au maximum l'impact sur l'écoulement du trafic des événements non-récurrents tels que les incidents. Il s'agit donc de réduire le temps nécessaire au retour à une situation d'écoulement normale, notamment en améliorant le temps de détection des incidents.
  • La gestion des alarmes joue un rôle important dans l'atteinte de cet objectif. La probabilité d'avoir à traiter simultanément un nombre élevé d'alarmes est d'autant plus élevée que, d'une part le nombre d'opérateurs est réduit, et que d'autre part la longueur du linéaire autoroutier à surveiller est grande. Ce nombre d'alarmes, potentiellement grand, peut submerger l'opérateur en charge de les traiter. Le temps nécessaire aux opérateurs pour appréhender la globalité de la ou des situations peut induire un délai supplémentaire dans le traitement et par conséquent nuire à la qualité du service offert. Le besoin est donc de disposer d'un système de gestion d'alarmes permettant d'une part de réduire le nombre d'alarmes vues par l'opérateur, et d'affecter d'autre part une priorité de traitement aux alarmes pour garantir que les décisions seront prises en adéquation avec les objectifs de qualité de service.
  • Ainsi, on peut ainsi passer d'un ensemble de valeurs de priorité technique, les T-Factors, à des valeurs de priorité « commerciale » ou contractuelle, représentées par les KPI.
  • Les niveaux de priorité techniques font l'objet d'une transformation en fonction de la perception propre des risques de chaque exploitation d'autoroute et des objectifs de niveaux de service de l'exploitation. La perception du risque dépend notamment :
    • De la réglementation en vigueur
    • De la topographie du linéaire autoroutier
    • Des moyens de l'exploitation (dépenses opérationnelles; investissements)
    • Du personnel disponible.
  • Une fonction de transformation est donc appliquée au T-Factor en cohérence avec la politique de l'opérateur et notamment pour être en accord avec ses objectifs de qualité de service définis par un positionnement sur des échelles pour chacun des KPI. La fonction de transformation permet de passer d'un niveau de T-Factor au niveau de risque qui est fonction des pourcentages de réalisation des KPI correspondant à la perception propre des risques de chaque exploitation d'autoroute et des objectifs de niveaux de service de l'exploitation : Niveau de Risque = T - Factor Normalisé x α 1 . % FPI 1 + α 2 . % FPI 2 + + α n . % FPI n
    Figure imgb0001
  • Avec :
    • T-FactorNormalisé : le T-Factor normalisé entre 0 et 1 tel que 0 corresponde à la valeur la plus élevé de risque technique
    • %KPIn: le pourcentage de réalisation du KPIn
    • α1... αn les coefficients de pondération affectée à chaque perception de risque propre ou objectif de niveau de service. Les coefficients sont choisis de telle sorte que la somme pondérée des pourcentages de KPI soit comprise en 0 et 100. 100 correspondant à des objectifs complètements atteints.
  • S'agissant du niveau de risque, on peut, comme illustré sur la figure 6 définir six classes de KPI en fonction du niveau d'alarme : pas d'alarme ; alarme de bas niveau ; attention requise ; alarme de niveau A ; alarme de niveau B; alarme maximale.
  • L'opérateur peut faire le choix de visualiser une alarme ou événement en faisant appel soit à l'image temps réél du capteur DAI, soit à celle de la caméra PTZ la plus proche de l'alarme ou événement. Dans le cas de ce deuxième chjoix, celle-ci est actionnée automatiquement de manière à pointer sur la zone concernée. L'image de la caméra PTZ est présentée à l'opérateur. L'ensemble des alarmes avec vignettes ou clips associés sont stockées dans une base de données pour analyse ultérieure et éventuellement mesure de performances.
  • Les exemples décrits ci-dessus sont donnés à titre d'illustration de modes de réalisation de l'invention. Ils ne limitent en aucune manière le champ de l'invention qui est défini par les revendications qui suivent.

Claims (17)

  1. Système d'aide à l'exploitation d'un réseau routier (10) comprenant au moins deux capteurs d'images (20), (30) des moyens de communication (40) qui transmettent des informations des capteurs d'images (20), (30) à au moins un centre de gestion du réseau (50) d'où sont émises des commandes d'intervention en réaction à des alarmes générées par les dites informations, caractérisé en ce que les priorités de traitement des informations et d'émission des commandes sont définies par l'application successive d'une fonction de classement des dites alarmes en priorités techniques de commandes d'intervention et d'une fonction de transformation des dites priorités techniques par des critères pondérés de qualité de service définis pour la gestion dudit réseau.
  2. Système d'aide à l'exploitation d'un réseau routier selon la revendication 1 caractérisé en ce qu'il comprend en outre au moins une caméra orientable (30).
  3. Système d'aide à l'exploitation d'un réseau routier selon la revendication 2 caractérisé en ce que chacun des capteurs d'images (20) et chacune des caméras orientables (30) sont montés sur un mât en bordure du réseau routier (10), ledit mât étant relié aux moyens de communication (40) et à au moins un module d'alimentation.
  4. Système d'aide à l'exploitation d'un réseau routier selon la revendication 1 caractérisé en ce que les moyens de communication (40) sont constitués par un réseau de communication sans fil.
  5. Système d'aide à l'exploitation d'un réseau routier selon la revendication 1 caractérisé en ce qu'un traitement de détection automatique d'incidents (DAI) est effectué localement en sortie des capteurs d'images (20).
  6. Système d'aide à l'exploitation d'un réseau routier selon la revendication 2 et la revendication 5 caractérisé en ce que le traitement de DAI est apte à commander le pointage d'au moins une caméra orientable (30) vers une zone d'incident.
  7. Système d'aide à l'exploitation d'un réseau routier selon la revendication 5 caractérisé en ce que le traitement DAI génère des alarmes qui sont transmises à un centre de gestion du réseau (50).
  8. Procédé d'aide à l'exploitation d'un réseau routier comprenant au moins deux étapes de capture d'images, une étape de communication des informations des images capturées à au moins un centre de gestion du réseau, d'où sont émises des commandes d'intervention en réaction à des alarmes générées par les dites informations, caractérisé en ce que les priorités de traitement des informations et d'émission des commandes sont définies par l'application successive d'une fonction de classement des dites alarmes en priorités techniques de commandes d'intervention et d'une fonction de transformation des dites priorités techniques par des critères pondérés de qualité de service définis pour la gestion dudit réseau.
  9. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 8 caractérisé en ce qu'il comprend en outre une étape de prise de vue par une caméra orientable.
  10. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 8 caractérisé en ce qu'il comprend une étape de transmission d'alarmes issues d'un traitement local de détection automatique d'incidents (DAI) en sortie des capteurs d'images à un centre de gestion du réseau.
  11. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 10 caractérisé en ce que lesdites alarmes sont caractérisées par des informations permettant d'identifier au moins un des éléments choisis au sein du groupe constitué par le capteur, la voie, le type d'acteur, la nature de l'incident et sa date.
  12. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 10 caractérisé en ce qu'il comprend en outre une étape de supervision des alarmes comprenant une sous-étape de fusion des alarmes avec des données issues d'autres capteurs situés sur le réseau et une sous-étape de classement des alarmes selon un premier ordre de priorité établi en fonction des caractéristiques des incidents.
  13. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 12 caractérisé en ce que les caractéristiques des incidents sont choisies dans un groupe comprenant au moins des indices de criticité, des indicateurs de sécurité, des indicateurs d'état du trafic, le nombre d'alarmes dans une zone spatio-temporelle et la durée de l'alarme en cours.
  14. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 12 caractérisé en ce que l'étape de supervision comprend en outre une sous-étape consistant à modifier le premier ordre de priorité en fonction de critères de qualité de service définis pour la gestion dudit réseau.
  15. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 14 caractérisé en ce que les critères de qualité de service sont choisis dans un groupe comprenant au moins des conditions minimales de viabilité, des conditions de référence de viabilité, des durées maximales de retour à des conditions de référence de viabilité, des indicateurs de répartition et de contrôle spatio-temporels du trafic, des indicateurs de perturabation du trafic, des indicateurs d'effet des perturbations, des indicateurs de mise à disposition des usagers du réseau d'informations sur les conditions de trafic.
  16. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 14 caractérisé en ce que l'étape de supervision comprend en outre une sous-étape consistant à extraire des alarmes classées par ordre de priorité celles qui nécessitent une action immédiate pour les afficher sur l'écran d'un opérateur du centre de gestion de réseau.
  17. Procédé d'aide à l'exploitation d'un réseau routier selon la revendication 14 caractérisé en ce que l'étape de supervision comprend en outre une sous-étape consistant à extraire des alarmes classées par ordre de priorité celles qui peuvent être résolues par une action simple et une autre sous-étape consistant à exécuter ladite action simple.
EP09735970.7A 2008-04-25 2009-04-16 Systeme d'aide a l'exploitation d'un reseau routier a qualite de service Not-in-force EP2269180B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802337A FR2930668B1 (fr) 2008-04-25 2008-04-25 Systeme d'aide a l'exploitation d'un reseau routier a qualite de service
PCT/EP2009/054551 WO2009130162A1 (fr) 2008-04-25 2009-04-16 Systeme d'aide a l'exploitation d'un reseau routier a qualite de service

Publications (2)

Publication Number Publication Date
EP2269180A1 EP2269180A1 (fr) 2011-01-05
EP2269180B1 true EP2269180B1 (fr) 2013-09-11

Family

ID=40076820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09735970.7A Not-in-force EP2269180B1 (fr) 2008-04-25 2009-04-16 Systeme d'aide a l'exploitation d'un reseau routier a qualite de service

Country Status (7)

Country Link
US (1) US20110096167A1 (fr)
EP (1) EP2269180B1 (fr)
KR (1) KR20100135947A (fr)
BR (1) BRPI0911605B1 (fr)
CA (1) CA2722525C (fr)
FR (1) FR2930668B1 (fr)
WO (1) WO2009130162A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922658B2 (en) * 2010-11-05 2014-12-30 Tom Galvin Network video recorder system
US10477158B2 (en) 2010-11-05 2019-11-12 Razberi Technologies, Inc. System and method for a security system
US10157526B2 (en) 2010-11-05 2018-12-18 Razberi Technologies, Inc. System and method for a security system
US9860490B2 (en) 2010-11-05 2018-01-02 Tom Galvin Network video recorder system
US11082665B2 (en) 2010-11-05 2021-08-03 Razberi Secure Technologies, Llc System and method for a security system
US9229132B2 (en) 2011-07-05 2016-01-05 International Business Machines Corporation Meteorological parameter forecasting
AU2012285486B2 (en) 2011-07-19 2016-02-25 King Abdullah University Of Science And Technology Apparatus, system and method for monitoring traffic and roadway water conditions
GB2513567A (en) * 2013-04-29 2014-11-05 Erh Holdings Ltd Road traffic monitoring equipment
GB2513566A (en) * 2013-04-29 2014-11-05 Erh Holdings Ltd Road traffic queue detection
DE102019001367A1 (de) * 2019-02-26 2020-08-27 VETRO VerkehrseIektronik GmbH Energieversorgungseinheit für Verkehrsüberwachungsanlagen
CN110895881A (zh) * 2019-12-17 2020-03-20 成都通甲优博科技有限责任公司 交通数据处理方法、设备及存储介质
CN113743837A (zh) * 2021-11-08 2021-12-03 深圳大学 绿道服务评估方法、装置、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519669A (en) * 1993-08-19 1996-05-21 At&T Corp. Acoustically monitored site surveillance and security system for ATM machines and other facilities
US6999824B2 (en) * 1997-08-21 2006-02-14 Fieldbus Foundation System and method for implementing safety instrumented systems in a fieldbus architecture
US6359647B1 (en) * 1998-08-07 2002-03-19 Philips Electronics North America Corporation Automated camera handoff system for figure tracking in a multiple camera system
US20030067542A1 (en) * 2000-10-13 2003-04-10 Monroe David A. Apparatus for and method of collecting and distributing event data to strategic security personnel and response vehicles
WO2001056265A2 (fr) * 2000-01-25 2001-08-02 4D-Vision Gmbh Procede et dispositif de representation en trois dimensions
FR2842637B1 (fr) * 2002-07-22 2004-10-01 Citilog Procede pour detecter un incident ou analogue sur une portion de voie
US7146846B2 (en) * 2003-07-16 2006-12-12 Air2, Llc Non-destructive testing of in-service wooden beams
JP4262014B2 (ja) * 2003-07-31 2009-05-13 キヤノン株式会社 画像撮影装置および画像処理方法
CN1943247A (zh) * 2004-04-08 2007-04-04 皇家飞利浦电子股份有限公司 应用于多媒体数据的编码方法

Also Published As

Publication number Publication date
CA2722525A1 (fr) 2009-10-29
FR2930668A1 (fr) 2009-10-30
FR2930668B1 (fr) 2010-06-18
BRPI0911605A2 (pt) 2015-10-13
US20110096167A1 (en) 2011-04-28
EP2269180A1 (fr) 2011-01-05
BRPI0911605B1 (pt) 2019-12-10
WO2009130162A1 (fr) 2009-10-29
CA2722525C (fr) 2018-05-01
KR20100135947A (ko) 2010-12-27

Similar Documents

Publication Publication Date Title
EP2269180B1 (fr) Systeme d'aide a l'exploitation d'un reseau routier a qualite de service
CN102122437A (zh) 道路交通管理决策支持装置
US20160347540A1 (en) Security technologies for electrically-powered trash compactors and receptacles
CN101607668A (zh) 嵌入式计算机视觉自动扶梯人流监察警报装置
CN102231231A (zh) 区域公路网交通安全态势预警系统及其方法
Mahmassain et al. Evaluation of incident detection methodologies
Hossain et al. A UAV-based traffic monitoring system for smart cities
CN114489122A (zh) 一种基于uav及配套机场的高速公路自动巡检方法及系统
CN112509322A (zh) 一种基于无人机的高速交通事故监管方法、系统及可读存储介质
CN211630273U (zh) 用于铁路环境的图像智能识别装置
Desai et al. Accident detection using ml and ai techniques
CN114299739A (zh) 目标路段的通过方法、系统、存储介质及电子装置
EP2162871B1 (fr) Procédé et dispositif de détection de bouchons routiers
KR100916315B1 (ko) 보호 시스템, 보호 장치 및 이의 운용 방법
Picard Trajectory coordination based on distributed constraint optimization techniques in unmanned air traffic management
RU2605651C1 (ru) Комплекс контроля безопасности на транспортном средстве, способ контроля безопасности на транспортном средстве и система управления сетью комплексов контроля безопасности
RU2635832C1 (ru) Комплекс контроля безопасности на стационарном объекте, способ работы комплекса контроля безопасности на стационарном объекте, система управления комплексами контроля безопасности на стационарных объектах и способ контроля безопасности в системе, состоящей из множества комплексов контроля безопасности
GB2570775A (en) Method and system for monitoring transport related activity
CN201974938U (zh) 道路交通管理决策支持装置
CN114724356A (zh) 基于气象数据整合的gis高速公路事故预警的方法及系统
Raskar et al. A prototype of the dynamic traffic management: smart barricade system
CN106327901A (zh) 基于移动终端的防止道路拥堵的安全出行系统及方法
FR3104616A1 (fr) Système de sécurisation de voies ferroviaires de maintenance
AU2021105712A4 (en) A smart traffic monitoring IP camera system for realistic modeling of IoT networks
KR102644659B1 (ko) 도로 관리 시스템 및 그 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009018720

Country of ref document: DE

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 632006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009018720

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009018720

Country of ref document: DE

Effective date: 20140612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140416

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 13

Ref country code: BE

Payment date: 20210326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210323

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009018720

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430