EP2268857B1 - Cellulosic mouldings - Google Patents

Cellulosic mouldings Download PDF

Info

Publication number
EP2268857B1
EP2268857B1 EP09725538A EP09725538A EP2268857B1 EP 2268857 B1 EP2268857 B1 EP 2268857B1 EP 09725538 A EP09725538 A EP 09725538A EP 09725538 A EP09725538 A EP 09725538A EP 2268857 B1 EP2268857 B1 EP 2268857B1
Authority
EP
European Patent Office
Prior art keywords
cellulosic
cellulose
shaped bodies
solvent
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09725538A
Other languages
German (de)
French (fr)
Other versions
EP2268857A1 (en
Inventor
Britta Nicola Zimmerer
Kurt Uihlein
Frank Meister
Birgit Kosan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cordenka GmbH and Co KG
Original Assignee
Cordenka GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordenka GmbH and Co KG filed Critical Cordenka GmbH and Co KG
Priority to PL09725538T priority Critical patent/PL2268857T3/en
Priority to EP09725538A priority patent/EP2268857B1/en
Publication of EP2268857A1 publication Critical patent/EP2268857A1/en
Application granted granted Critical
Publication of EP2268857B1 publication Critical patent/EP2268857B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/02Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts

Definitions

  • the present invention relates to cellulosic moldings having a maximum tensile force of at least 30 cN / tex, prepared by dry-wet-forming polymer solutions containing predominantly cellulose in a solvent.
  • the present invention relates to so-called technical cellulose multifilament game, which are high-strength molded body made of cellulose with a proportion of less than 50% of other polymers and / or additives.
  • the dry-wet deformation is preferably carried out by precipitation.
  • the DE-A-4 444 140 in the claims solvent-spun cellulosic filaments of a solution of cellulose in a tertiary amine N-oxide and optionally water having a strength of 50 to 80 cN / tex and an elongation at break of 6 to 25%. From the corresponding examples, it can be seen, however, that with a maximum tensile strength or tear strength of 65.3 cN / tex, an elongation of 6.3% is associated and results in a tensile strength of 53.2 cN / tex, an elongation of 13%. Due to lack of feasibility, the claimed areas in the granted patent EP-B-0797694 then limited to a range of 52.7 to 66 cN / tex for the strength and 6 to 13% for the elongation.
  • the WO 2006/000197 discloses a process for the preparation of shaped articles of cellulose with ionic liquids as solvent, in which the cellulose is dissolved, the solution is shaped into fibers or membranes, the cellulose is regenerated by precipitation in aqueous solutions, the solvent is removed by washing and the shaped articles dries. According to WO 2006/000197 In this way fibers with very high tensile strengths and moduli in the conditioned and wet state are obtained. According to the table on page 17 of this prior publication, tensile strengths of up to 67.7 cN / tex in the conditioned state are achieved with simultaneous breaking elongations of 9.0%.
  • tear strength tensile strength, breaking strength and maximum tensile force are used interchangeably in this application and refer to the fineness-related force that has to be used for tearing or breaking the cellulosic molding.
  • the elongation of the molded article measured during tearing or breakage of the molded article is based on its original length and referred to as elongation at break, maximum tensile elongation at break or else elongation at break in the form of the percentage increase in length.
  • the shaped bodies according to the invention thus also show at the same time a very high tear strength and a high elongation at break, a combination which is not disclosed in the prior art.
  • Example 3 in the WO 2007/128268 For example, fibers of a (60:40) mixture of a cotton linter pulp with polyacrylonitrile are disclosed which have a working capacity of about 87 J / g.
  • the in the WO 2007/128268 fibers described at the same time have a very low strength of only 25.4 cN / tex and are therefore not suitable for use as technical multifilament yarns.
  • the WO 97/33020 shows a working capacity of 41 J / g at a distance between nozzle and godet of 12 m, 38 J / g at 25 m and 45.5 J / g at 48 m. An extrapolation to a distance of 0 would consequently result in a working capacity of approx. 50 to 60 J / g, as shown in Table 1 of the WO 97/33030 is shown.
  • WO 02/18682 From the published a few years later WO 02/18682 The skilled person can see that between the working capacity of the fibers (product of tensile strength and elongation at break in J / g) and the strain rate, although a dependency, this is low.
  • the WO 02/18682 contains - despite a corresponding reference to it - no drawings. If one looks in the corresponding priority application, one recognizes that even at an (extrapolated) strain rate of less than 5 sec -1 at the specified constant strength of about 41 cN / tex a working capacity of over 80 J / g would not be achieved.
  • the WO 02/18682 recommends spinning at a strain rate in the range of 15-40 sec- 1 , thus teaching WO 02/18682 a working capacity of about 58 to 65 J / g.
  • the maximum tensile force of the claimed molded articles is in a range of 40 to 90 cN / tex, preferably 45 to 85 cN / tex, more preferably 50 to 80 cN / tex, most preferably 55 to 75 cN / tex.
  • Suitable solvents are the known direct solvents for cellulose, such as N-methylmorpholine-N-oxide (NMMO), into consideration. It is likewise preferred if the solvent from which the cellulosic molded bodies are produced is an ionic liquid or mixtures of ionic liquids.
  • NMMO N-methylmorpholine-N-oxide
  • Preferred ionic liquids are those which have imidazolium-based cations and halide or acetate anions, in particular 1,3-dialkylimidazolium halides and acetates and more preferably the 1-butyl-3-methylimidazolium chloride and the 1-ethyl-3-one methylimidazolium acetate and / or mixtures thereof.
  • the cellulosic shaped bodies preferably consist of a pulp which has an ⁇ -cellulose content of greater than 90%, preferably greater than 96%, and particularly preferably greater than 98%.
  • the cellulose is a pulp which has an average degree of polymerisation (DP), determined by means of the cuoxam method, of> 600, preferably> 650.
  • DP average degree of polymerisation
  • the preparation of the cellulosic molded bodies according to the invention is preferably carried out by enzymatic and / or hydrolytic pretreatment of the pulps used. These pretreatments are used to widen the molecular weight distribution targeted, the molecular weights are reduced.
  • the discontinuity of the spinning solutions can also be adjusted by the targeted mixing of pulps and by the addition of secondary polymers.
  • the cellulosic shaped bodies are filaments or fibers.
  • These fibers or filaments preferably have a cuoxamide DP greater than 550, more preferably greater than 600.
  • the production of the moldings according to the invention succeeds excellently when the angular velocity (or the shear rate proportional thereto) at the "cross-over" is in a range from 0.5 to about 2 rad / sec. If the solvent used is NMMO, this angular velocity is preferably between about 1 and 2 rad / sec, for ionic liquids preferably between about 0.5 and 1.
  • the angular velocity at the "cross-over” corresponds to the width molecular weight distribution and the average molecular weight of the polymers involved in the interlocking network.
  • the "cross over” itself is the crossing point between the memory and loss modulus of the master curve (see: Schrempf, C .; Shield, G .; Rüf, H., "Pulp-NMMO solutions and their flow properties", Das Textil 12 (1995) 748-757 ).
  • the cellulosic shaped bodies are filaments, they preferably have a DP determined by means of Cuoxam of> 550.
  • the invention is therefore also directed to the use of such cellulosic filaments for the production of technical yarns and for the production of tire cords and of cords and textile reinforcement fabrics.
  • the cellulosic filaments of the present invention are particularly useful for reinforcing elastomers, plastics (e.g., thermoplastics, biopolymers, and biodegradable polymers) and thermosetting molding materials (resins).
  • the determination of the textile properties (strength, elongation, fineness) of the fibers and filaments was carried out in the test climate according to DIN 50014-20 / 65 at 20 ° C and 65% relative humidity.
  • the clamping length was 20 mm and the pulling speed was 20 mm / min with a preload weight of 0.6 ⁇ 0.06 cN / tex.
  • the measurements were carried out on 50 fibers each.
  • the rheological characterization of the cellulosic spinning solutions was carried out using a HAAKE MARS rheometer with a cone / plate measuring device (sensor C35 / 4 ° or C20 / 4 °).
  • Zero shear viscosities were measured by creep using a constant shear stress of 90 Pa at a measurement temperature of 85 ° C.
  • the determination of the average degree of polymerization (DP) of the cellulose was carried out by the Cuoxam method.
  • the ⁇ -cellulose content is the part of the pulp which is resistant to 17.5% sodium hydroxide solution in certain types of treatment.
  • the determination of the ⁇ -cellulose content was carried out by treating the pulp with 17.5% aqueous NaOH solution at 20 ° C for 1 h and then washing, drying and reweighing of the pulp.
  • the solids content was determined by precipitation, washing and drying of the cellulose.
  • a lyocell pulp (eucalyptus sulfite pulp, cuoxam DP: 556, ⁇ -cellulose content: 93.8%) was added 1:20 in water to a liquor ratio and pressed to a moisture content of 60% by mass.
  • the solution contains 11.2% by mass of cellulose and 88.8% by mass of BMIMCI, was analytically characterized and formed by dry-wet spinning into 1.73 dtex fibers.
  • the data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.
  • a eucalyptus pulp (8% by mass of moisture, Cuoxam-DP: 556) are dispersed in a liquor ratio of 1:20 to the single fiber and then pressed to a water content of 60% by mass.
  • the cellulose which is moist by press, is introduced into 380 g of an N-methylmorpholine-N-oxide (NMMO) solution with a water content of 50%, which contains as stabilizers propyl gallate (0.03%, based on the polymer solution to be prepared) and sodium hydroxide solution according to the base consumption Contains substances, introduced and dispersed.
  • NMMO N-methylmorpholine-N-oxide
  • the prepared suspension is placed in a vertical kneader, under shear, increasing temperature of 70 to 95 ° C and decreasing pressure of 750 to 50 mbar the water removed to the level of monohydrate and a microscopically homogeneous cellulose solution having the composition 12.3 mass% Cellulose, 76.0% by mass of NMMO and 11.7% by mass of water.
  • the refractive index of the solution at 50 ° C was 1.4876.
  • the prepared solution was analytically characterized and formed by dry-wet spinning to 1.66 dtex fibers. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.
  • the pulp used in Comparative Example 3 (Cuoxam DP: 798, 98.4% ⁇ -cellulose) was dispersed in water at a ratio of 1:20 in water and adjusted by the addition of dilute formic acid to a pH of 5.0.
  • an enzymatic pretreatment of the pulp was carried out within 60 minutes with 0.5% of a cellulase with high exoactivity (filter paper activity 90 U / ml), based on cellulose.
  • Enzymatic pretreatment provides only a small reduction in the cuoxam DP of the pulp to a DP of 745, as well as a targeted change in non-uniformity, i. the molecular weight distribution of cellulose.
  • the pulp suspension from the enzyme treatment is pressed after increasing the pH to 11 to a water content of 60% and in each case 78.1 g of this press-moist cellulose used to prepare 12.5% strength cellulose solutions in BMIMCI.
  • the polymer solutions were deformable with very good spinning reliability by means of dry-wet spinning technology into fibers of a fineness of 1.78 or 1.70 dtex.
  • the data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.
  • blends of pulps having a narrow molecular weight distribution and high ⁇ -cellulose contents were prepared.
  • 23.9 g of a pulp (cuoxam-DP: 798, 98.4% ⁇ -cellulose, moisture content: 7%) and 10.1 g of a cotton linter pulp (cuoxam-DP: 443, 98% ⁇ -cellulose) were used.
  • the moist celluloses were suspended in BMIMCI solutions (water content: 30%, stabilizer addition 0.2% NaOH, 0.02% propyl gallate, based on the polymer solution to be prepared) and transferred by means of vertical kneader under dehydration by shear, temperature and vacuum into microscopically homogeneous spinning masses ,
  • the polymer solutions obtained were deformable with very good spinning reliability by means of dry-wet spinning technology into fibers of a fineness of 1.81 or 1.77 dtex.
  • the data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.
  • Example 8 72.4 g of this pretreated, moist cellulose (water content: 60%) was thoroughly mixed with 1.52 g of polyethylene glycol 20000 (OH number: 4-7) and mixed with BMIMCl in a 12.2% by mass, transferred homogeneous dope.
  • the secondary polymers contained polyethylene glycol or polysiloxane each cause a very homogeneous turbidity of the spinning mass and are present in such a finely divided form that microscopically no individual particles could be identified and no adverse effects on the spinning processes took place.
  • the prepared polymer spun masses were characterized analytically and formed by dry-wet spinning process into fibers with finenesses of 1.97 and 1.73 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.
  • the polymer solvent used was a mixture of 2 ionic liquids, BMIMCl and 1-hexyl-3-methylimidazolium chloride (HMIMCI) in a mass ratio of 90:10.
  • the polymer solvent used was a mixture of 2 ionic liquids, BMIMCI and 1-ethyl-3-methylimidazolium acetate (EMIMAc) in a mass ratio of 90:10.
  • a polymer solution was prepared analogously to Example 13 from a cellulose mixture of the pulps used in Example 13 in a mass ratio of 60:40, using as cellulose solvent a mixture of the ionic liquids BMIMCI and 1-butyl-3-methylimidazolium acetate (BMIMAc) in a mass ratio of 90:10.
  • BMIMCI 1-butyl-3-methylimidazolium acetate
  • a microscopically homogeneous polymer solution was obtained, which was 12.6 % By mass cellulose. This was characterized analytically and formed by dry-wet spinning process into fibers of a fineness of 1.72 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)

Description

Die vorliegende Erfindung betrifft cellulosische Formkörper mit einer Höchstzugkraft von mindestens 30 cN/tex, hergestellt mittels Trocken-Nass-Verformung von Polymerlösungen, enthaltend überwiegend Cellulose in einem Lösungsmittel.The present invention relates to cellulosic moldings having a maximum tensile force of at least 30 cN / tex, prepared by dry-wet-forming polymer solutions containing predominantly cellulose in a solvent.

Insbesondere betrifft die vorliegende Erfindung sogenannte technische Cellulose-Multifilament-Game, bei denen es sich um hochfeste Formkörper aus Cellulose mit einem Anteil von weniger als 50 % an weiteren Polymeren und/oder Additiven handelt.In particular, the present invention relates to so-called technical cellulose multifilament game, which are high-strength molded body made of cellulose with a proportion of less than 50% of other polymers and / or additives.

Die Trocken-Nass-Verformung erfolgt bevorzugt durch Fällung.The dry-wet deformation is preferably carried out by precipitation.

Derartige Formkörper sind aus einer Reihe von Veröffentlichungen bekannt.Such moldings are known from a number of publications.

So offenbart beispielsweise die DE-A-4 444 140 in den Ansprüchen lösungsmittelgesponnene cellulosische Filamente aus einer Lösung von Cellulose in einem tertiären Amin-N-oxid und gegebenenfalls Wasser mit einer Festigkeit von 50 bis 80 cN/tex und einer Bruchdehnung von 6 bis 25%. Aus den dazugehörigen Beispielen ist allerdings zu entnehmen, dass mit einer Höchstzugkraft oder Reißfestigkeit von 65,3 cN/tex eine Dehnung von 6,3 % einhergeht und bei einer Reißfestigkeit von 53,2 cN/tex eine Dehnung von 13 % resultiert. Aufgrund mangelnder Ausführbarkeit wurden die beanspruchten Bereiche im erteilten Patent EP-B-0797694 dann auch auf einen Bereich von 52,7 bis 66 cN/tex für die Festigkeit und 6 bis 13% für die Dehnung eingeschränkt.For example, the DE-A-4 444 140 in the claims solvent-spun cellulosic filaments of a solution of cellulose in a tertiary amine N-oxide and optionally water having a strength of 50 to 80 cN / tex and an elongation at break of 6 to 25%. From the corresponding examples, it can be seen, however, that with a maximum tensile strength or tear strength of 65.3 cN / tex, an elongation of 6.3% is associated and results in a tensile strength of 53.2 cN / tex, an elongation of 13%. Due to lack of feasibility, the claimed areas in the granted patent EP-B-0797694 then limited to a range of 52.7 to 66 cN / tex for the strength and 6 to 13% for the elongation.

Die WO 2006/000197 offenbart ein Verfahren zur Herstellung von Formkörpern aus Cellulose mit ionischen Flüssigkeiten als Lösungsmittel, bei dem man die Cellulose löst, die Lösung zu Fasern bzw. Folien/Membranen verformt, die Cellulose durch Fällen in wässrigen Lösungen regeneriert, das Lösungsmittel durch Waschen abtrennt und die Formkörper trocknet. Gemäß WO 2006/000197 werden auf diese Weise Fasern mit sehr hohen Reißfestigkeiten und Moduli im konditionierten und nassen Zustand erhalten. Gemäß der Tabelle auf Seite 17 dieser Vorveröffentlichung werden Reißfestigkeiten von bis zu 67,7 cN/tex im konditionierten Zustand bei gleichzeitigen Reißdehnungen von 9,0 % erreicht.The WO 2006/000197 discloses a process for the preparation of shaped articles of cellulose with ionic liquids as solvent, in which the cellulose is dissolved, the solution is shaped into fibers or membranes, the cellulose is regenerated by precipitation in aqueous solutions, the solvent is removed by washing and the shaped articles dries. According to WO 2006/000197 In this way fibers with very high tensile strengths and moduli in the conditioned and wet state are obtained. According to the table on page 17 of this prior publication, tensile strengths of up to 67.7 cN / tex in the conditioned state are achieved with simultaneous breaking elongations of 9.0%.

Die Begriffe Reißfestigkeit, Reißkraft, Bruchfestigkeit und Höchstzugkraft werden in dieser Anmeldung synonym verwendet und bezeichnen die feinheitsbezogene Kraft, die zum Reißen bzw. zum Bruch des cellulosischen Formkörpers aufgewendet werden muss.The terms tear strength, tensile strength, breaking strength and maximum tensile force are used interchangeably in this application and refer to the fineness-related force that has to be used for tearing or breaking the cellulosic molding.

Die beim Reißen bzw. beim Bruch des Formkörpers gemessene Längung des Formkörpers wird auf seine Ursprungslänge bezogen und in Form der prozentualen Längenzunahme als Reißdehnung, Höchstzugkraftdehnung oder auch als Bruchdehnung bezeichnet.The elongation of the molded article measured during tearing or breakage of the molded article is based on its original length and referred to as elongation at break, maximum tensile elongation at break or else elongation at break in the form of the percentage increase in length.

Obwohl im Stand der Technik bereits sehr hohe Werte für die Reißfestigkeit und auch für die Bruchdehnung offenbart sind, so sind die theoretisch möglichen Grenzen dieser Eigenschaften noch lange nicht erreicht. Die beschriebenen Formkörper mit sehr hohen Werten für die Reißfestigkeit weisen im Allgemeinen niedrige Dehnungswerte auf. Insbesondere für technische Anwendungen ist es wünschenswert, Formkörper zur Verfügung zu haben, die bei sehr hohen Festigkeitswerten auch noch ausreichende Dehnungsreserven besitzen.Although very high values for tear strength and also for elongation at break are already disclosed in the prior art, the theoretically possible limits of these properties are far from being reached. The described moldings with very high values for tear resistance generally have low elongation values. In particular, for technical applications, it is desirable to have moldings available that also have sufficient expansion reserves at very high strength values.

Die vorliegende Erfindung löst diese Aufgabe, indem lösungsmittelgesponnene cellulosische Formkörper mit einer Höchstzugkraft von mindestens 30 cN/tex aus einer Lösung enthaltend überwiegend Cellulose in einem Lösungsmittel zur Verfügung gestellt werden, wobei diese cellulosischen Formkörper sich dadurch auszeichnen, dass sie ein Arbeitsvermögen, ermittelbar aus dem mathematischem Produkt aus Höchstzugkraft und Höchstzugkraftdehnung gemäß (1) AV J / g = 0 , 1 * σ * ε

Figure imgb0001

AV:
Arbeitsvermögen in J/g
σ:
Höchstzugkraft im konditionierten Zustand [cN/tex]
ε:
Höchstzugkraftdehnung im konditionierten Zustand [%]
von mindestens 80 J/g aufweisen, bevorzugt von mindestens 82 J/g, noch bevorzugter von mindestens 85 J/g und am meisten bevorzugt von mindestens 90 J/g. Die Obergrenze des Arbeitsvermögens ist nicht mehr als 120 J/g. The present invention solves this problem by providing solvent-spun cellulosic moldings having a maximum tensile force of at least 30 cN / tex from a solution containing predominantly cellulose in a solvent, these cellulosic moldings being characterized in that they have a working capacity, determined from the mathematical product of maximum tensile strength and maximum tensile elongation according to (1) AV J / G = 0 . 1 * σ * ε
Figure imgb0001
AV:
Working capacity in y / g
σ:
Maximum tensile force in the conditioned state [cN / tex]
ε:
Maximum tensile strain in the conditioned state [%]
of at least 80 J / g, preferably of at least 82 J / g, more preferably of at least 85 J / g, and most preferably of at least 90 J / g. The upper limit of working capacity is not more than 120 J / g.

Die erfindungsgemäßen Formkörper zeigen also gleichzeitig eine sehr hohe Reißfestigkeit und eine hohe Reißdehnung, eine Kombination, die so im Stand der Technik nicht offenbart ist.The shaped bodies according to the invention thus also show at the same time a very high tear strength and a high elongation at break, a combination which is not disclosed in the prior art.

Obwohl beispielsweise in der EP-B-0797694 - und ganz besonders in der DE-A-4 444 140 - Bereiche für Festigkeit und Dehnung in den Ansprüchen angegeben sind, die rein rechnerisch zu höheren Werten für das Arbeitsvermögen führen, als in der vorliegenden Erfindung, so ist - angesichts der Beispiele im Stand der Technik-doch deutlich sichtbar, dass es sich dabei um Grenzwerte handelt, die zwar einzeln, aber nicht gleichzeitig erreicht worden sind. Vernünftigerweise wird der Fachmann auch nicht erwarten, dass Produkte herstellbar sind, bei denen tendenziell gegenläufige Grenzwerte gleichzeitig erfüllt sind. Es ist daher klar, dass die einzelnen Parameter zwar jeweils bis zu ihren Grenzwerten erreichbar sind, wenn auch gerade nicht in Kombination mit allen anderen Grenzwerten. Der Fachmann weiß vielmehr, dass die Produkte für die einzelnen Eigenschaftsparameter innerhalb des angegebenen Gesamtbereiches herstellbar sind, sofern die anderen beanspruchten Eigenschaftsparameter gleichzeitig ebenfalls in einem vernünftigen Spielraum erfüllt sind.Although, for example, in the EP-B-0797694 - and especially in the DE-A-4 444 140 - Strength and elongation ranges are given in the claims, which purely mathematically lead to higher values for the working capacity, as in the present invention, it is - in the light of the examples in the prior art - but clearly visible that these are limits which have been achieved individually but not simultaneously. Reasonably enough, the skilled person will also not expect that products can be produced in which opposing limit values tend to be met at the same time. It is therefore clear that the individual parameters are in each case reachable up to their limit values, even if not in combination with all other limit values. On the contrary, the person skilled in the art knows that the products for the individual property parameters can be produced within the specified overall range, provided that the other claimed property parameters are simultaneously also satisfied in a reasonable margin.

Im Beispiel 3 in der WO 2007/128268 werden Fasern aus einer (60:40) Mischung aus einem Baumwoll-Linterszellstoff mit Polyacrylnitril offenbart, welche ein Arbeitsvermögen von ca. 87 J/g aufweisen. Die in der WO 2007/128268 beschriebenen Fasern weisen aber zugleich eine sehr niedrige Festigkeit von nur 25,4 cN/tex auf und sind somit nicht für den Einsatz als technische Multifilamentgarne geeignet.In Example 3 in the WO 2007/128268 For example, fibers of a (60:40) mixture of a cotton linter pulp with polyacrylonitrile are disclosed which have a working capacity of about 87 J / g. The in the WO 2007/128268 However, fibers described at the same time have a very low strength of only 25.4 cN / tex and are therefore not suitable for use as technical multifilament yarns.

Der WO 97/33020 schließlich kann man entnehmen, dass die Länge der Strecke, auf welcher die Filamente zur Abzugsvorrichtung geführt werden, einen Einfluss auf das Arbeitsvermögen der Faser insofern hat, als das Arbeitsvermögen stark abnimmt, wenn die Strecke größer als 12 m ist. Die WO 97/33020 zeigt bei einer Strecke zwischen Düse und Galette von 12 m ein Arbeitsvermögen von 41 J/g, bei 25 m von 38 J/g und bei 48 m von 45,5 J/g. Eine Extrapolation auf eine Strecke von 0 würde demzufolge ein Arbeitsvermögen von ca. 50 bis 60 J/g ergeben, wie es auch in der Tabelle 1 der WO 97/33030 aufgezeigt ist.Of the WO 97/33020 Finally, it can be seen that the length of the distance, on which the filaments are led to the haul-off device, has an influence on the working capacity of the fiber in that the working capacity decreases sharply when the distance is greater than 12 m. The WO 97/33020 shows a working capacity of 41 J / g at a distance between nozzle and godet of 12 m, 38 J / g at 25 m and 45.5 J / g at 48 m. An extrapolation to a distance of 0 would consequently result in a working capacity of approx. 50 to 60 J / g, as shown in Table 1 of the WO 97/33030 is shown.

Aus der einige Jahre später veröffentlichten WO 02/18682 kann der Fachmann entnehmen, dass zwischen dem Arbeitsvermögen der Fasern (Produkt aus Reißfestigkeit und Reißdehnung in J/g) und der Dehngeschwindigkeit wohl eine Abhängigkeit besteht, diese jedoch gering ausfällt. Die WO 02/18682 enthält - trotz eines entsprechenden Verweises darauf - keine Zeichnungen. Schaut man in die korrespondierende Prioritätsanmeldung, so erkennt man, dass selbst bei einer (extrapolierten) Dehngeschwindigkeit von weniger als 5 sek-1 bei der angegeben konstanten Festigkeit von etwa 41 cN/tex nicht ein Arbeitsvermögen von über 80 J/g erreicht werden würde. Die WO 02/18682 empfiehlt, bei einer Dehngeschwindigkeit in einem Bereich zwischen 15 und 40 sek-1 zu spinnen und damit lehrt die WO 02/18682 ein Arbeitsvermögen von etwa 58 bis 65 J/g.From the published a few years later WO 02/18682 The skilled person can see that between the working capacity of the fibers (product of tensile strength and elongation at break in J / g) and the strain rate, although a dependency, this is low. The WO 02/18682 contains - despite a corresponding reference to it - no drawings. If one looks in the corresponding priority application, one recognizes that even at an (extrapolated) strain rate of less than 5 sec -1 at the specified constant strength of about 41 cN / tex a working capacity of over 80 J / g would not be achieved. The WO 02/18682 recommends spinning at a strain rate in the range of 15-40 sec- 1 , thus teaching WO 02/18682 a working capacity of about 58 to 65 J / g.

Demnach würde auch eine Kombination der beiden Dokumente des Standes der Technik den Fachmann nicht zu der in dieser Anmeldung beschriebenen Erfindung führen.Accordingly, a combination of the two prior art documents would not lead one skilled in the art to the invention described in this application.

Es bleibt daher festzuhalten, dass die in der vorliegenden Erfindung beanspruchte Eigenschaftskombination nicht im Stand der Technik beschrieben ist und auch nicht nahegelegt ist. Im Gegenteil: Cellulosische Fasern zählen zu den ältesten technischen Fasern und trotz jahrzehntelanger intensiver Forschung, Entwicklung und Produktion konnten keine Fasern mit einem Arbeitsvermögen von > 80 J/g erreicht werden. Insbesondere sind Formkörper mit den beanspruchten Parametern auch nicht naheliegend, da es zum einen an sich überraschend ist, dass offensichtlich gegenläufige Eigenschaften, wie Festigkeit und Dehnung, gleichzeitig in so ausgeprägtem Maße erreicht werden. Zum anderen sind für die Herstellung der erfindungsgemäßen cellulosischen Formkörper vorzugsweise bestimmte Bedingungen einzuhalten, wie weiter unten noch näher geschildert werden wird. Dies gilt natürlich umso mehr für Bereiche des Arbeitsvermögens über 85 J/g.It is therefore to be noted that the combination of properties claimed in the present invention is not described in the prior art and is also not suggested. On the contrary: Cellulosic fibers are among the oldest technical fibers and despite decades of intensive research, development and production, fibers with a working capacity of> 80 J / g could not be achieved. In particular, molded articles with the claimed Parameters also not obvious, since it is firstly surprising that obviously opposite properties, such as strength and elongation, are achieved at the same time to such a degree. On the other hand, for the preparation of the cellulosic molded bodies according to the invention, it is preferable to comply with certain conditions, as will be described in more detail below. Of course, this applies even more to areas of working capital over 85 J / g.

Insbesondere liegt die Höchstzugkraft der beanspruchten Formkörper in einem Bereich von 40 bis 90 cN/tex, bevorzugt zwischen 45 und 85 cN/tex und noch bevorzugter zwischen 50 und 80 cN/tex, am meisten bevorzugt zwischen 55 und 75 cN/tex.In particular, the maximum tensile force of the claimed molded articles is in a range of 40 to 90 cN / tex, preferably 45 to 85 cN / tex, more preferably 50 to 80 cN / tex, most preferably 55 to 75 cN / tex.

Als Lösungsmittel kommen die bekannten Direktlösungsmittel für Zellstoff, wie beispielsweise das N-Methylmorpholin-N-oxid (NMMO), in Betracht. Ebenfalls bevorzugt wird es, wenn es sich bei dem Lösungsmittel, aus dem die cellulosischen Formkörper hergestellt werden, um eine ionische Flüssigkeit oder Gemische ionischer Flüssigkeiten handelt.Suitable solvents are the known direct solvents for cellulose, such as N-methylmorpholine-N-oxide (NMMO), into consideration. It is likewise preferred if the solvent from which the cellulosic molded bodies are produced is an ionic liquid or mixtures of ionic liquids.

Als ionische Flüssigkeiten kommen bevorzugt solche in Betracht, welche Imidazolium basierte Kationen und Halogenid- oder Acetat-Anionen besitzen, insbesondere 1,3-Dialkylimidazoliumhalogenide und -acetate und besonders bevorzugt das 1-Butyl-3-Methylimidazoliumchlorid und das 1-Ethyl-3-methylimidazoliumacetat und/oder Gemischen daraus.Preferred ionic liquids are those which have imidazolium-based cations and halide or acetate anions, in particular 1,3-dialkylimidazolium halides and acetates and more preferably the 1-butyl-3-methylimidazolium chloride and the 1-ethyl-3-one methylimidazolium acetate and / or mixtures thereof.

Die cellulosischen Formkörper bestehen vorzugsweise aus einem Zellstoff, der einen α- Cellulosegehalt von größer als 90 %, bevorzugt größer als 96 %, und besonders bevorzugt größer als 98 % aufweist.The cellulosic shaped bodies preferably consist of a pulp which has an α-cellulose content of greater than 90%, preferably greater than 96%, and particularly preferably greater than 98%.

Weiterhin ist es vorteilhaft, wenn es sich bei der Cellulose um einen Zellstoff handelt, der einen Durchschnittspolymerisationsgrad (DP), bestimmt mittels Cuoxam-Methode, von > 600, bevorzugt > 650 aufweist.Furthermore, it is advantageous if the cellulose is a pulp which has an average degree of polymerisation (DP), determined by means of the cuoxam method, of> 600, preferably> 650.

Die Herstellung der erfindungsgemäßen cellulosischen Formkörper gelingt bevorzugt durch enzymatische und/oder hydrolytische Vorbehandlung der eingesetzten Zellstoffe. Diese Vorbehandlungen dienen dazu, die Molmassenverteilung gezielt zu verbreitern, wobei die Molmassen verringert werden.The preparation of the cellulosic molded bodies according to the invention is preferably carried out by enzymatic and / or hydrolytic pretreatment of the pulps used. These pretreatments are used to widen the molecular weight distribution targeted, the molecular weights are reduced.

Da normalerweise die Verringerung der Molmasse zu niedrigeren Festigkeiten führt, ist es umso überraschender, dass sich durch diese Vorbehandlungen sehr stabile Spinnbedingungen bei gleichzeitig guten hohen Festigkeiten und sehr hohen Dehnungen realisieren lassen.Since normally the reduction of the molar mass leads to lower strengths, it is all the more surprising that very stable spinning conditions can be realized with simultaneously good high strengths and very high strains by these pretreatments.

Neben der enzymatischen und hydrolytischen Vorbehandlung kann die Einstellung der Uneinheitlichkeit der Spinnlösungen auch durch das gezielte Abmischen von Zellstoffen und durch den Zusatz von Zweitpolymeren erfolgen.In addition to the enzymatic and hydrolytic pretreatment, the discontinuity of the spinning solutions can also be adjusted by the targeted mixing of pulps and by the addition of secondary polymers.

Günstig für das Erreichen der gewünschten Fasereigenschaften ist das Zusammenspiel zwischen dem Einsatz eines Zellstoffes mit hoher Molmasse und hohem Alpha-Zellulosegehalt sowie eine relativ hohe Konzentration der Lösung, welche oberhalb von 10 % Feststoffgehalt liegen sollte. Außerdem sollte nach dem Spinnen darauf geachtet werden, dass die Filamente nicht durch den Waschprozess und Trockenprozess geschädigt werden.Favorable for achieving the desired fiber properties is the interaction between the use of a high molecular weight cellulose with a high alpha-cellulose content and a relatively high concentration of the solution, which should be above 10% solids content. In addition, care should be taken after spinning to ensure that the filaments are not damaged by the washing process and drying process.

Besonders bevorzugt wird es, wenn es sich bei den cellulosischen Formkörpern um Filamente oder Fasern handelt.It is particularly preferred if the cellulosic shaped bodies are filaments or fibers.

Diese Fasern oder Filamente weisen bevorzugt einen Cuoxam-DP von über 550, noch bevorzugter von über 600 auf.These fibers or filaments preferably have a cuoxamide DP greater than 550, more preferably greater than 600.

Die Herstellung der erfindungsgemäßen Formkörper gelingt vorzüglich, wenn die Winkelgeschwindigkeit (bzw. die dazu proportionale Scherrate) am "cross-over" in einem Bereich von 0,5 bis etwa 2 rad/sec liegt. Handelt es sich bei dem eingesetzten Lösungsmittel um NMMO, so liegt diese Winkelgeschwindigkeit bevorzugt etwa zwischen 1 und 2 rad/sec, bei ionischen Flüssigkeiten bevorzugt etwa zwischen 0,5 und 1.The production of the moldings according to the invention succeeds excellently when the angular velocity (or the shear rate proportional thereto) at the "cross-over" is in a range from 0.5 to about 2 rad / sec. If the solvent used is NMMO, this angular velocity is preferably between about 1 and 2 rad / sec, for ionic liquids preferably between about 0.5 and 1.

Die Winkelgeschwindigkeit am "cross-over" korrespondiert mit der Breite Molmassenverteilung und der mittlerer Molmasse der am Verhakungsnetzwerk beteiligten Polymere. Der "cross over" selbst ist der Kreuzungspunkt zwischen Speicher- und Verlustmodul der Masterkurve (siehe dazu: Schrempf, C.; Schild, G.; Rüf, H., "Zellstoff-NMMO-Lösungen und deren Fließeigenschaften", Das Papier 12 (1995) 748 - 757 ).The angular velocity at the "cross-over" corresponds to the width molecular weight distribution and the average molecular weight of the polymers involved in the interlocking network. The "cross over" itself is the crossing point between the memory and loss modulus of the master curve (see: Schrempf, C .; Shield, G .; Rüf, H., "Pulp-NMMO solutions and their flow properties", Das Papier 12 (1995) 748-757 ).

Es ist ein Verdienst der Erfindung, dass ein "Fenster" (Optimum) in der Molmasse und Molmassenverteilung - ausgedrückt durch die Winkelgeschwindigkeit bzw. der ihr proportionalen Scherrate - gefunden wurde, die die erfindungsgemäßen cellulosischen Formkörper mit dem hohen Arbeitsvermögen erstmalig zugänglich macht. Dieses ist schon von daher nicht naheliegend, da besagte Scherrate eine Funktion mehrerer Parameter ist, wie u.a. der Konzentration des Zellstoffes im Lösungsmittel, dem Lösungsmittel selbst und dem Lösungszustand des Zellstoffs im Lösungsmittel.It is a merit of the invention that a "window" (optimum) in the molecular weight and molecular weight distribution - expressed by the angular velocity or their proportional shear rate - was found, which makes the cellulosic moldings according to the invention with the high capacity for the first time accessible. This is not obvious, therefore, because said shear rate is a function of several parameters, such as i.a. the concentration of the pulp in the solvent, the solvent itself and the solution state of the pulp in the solvent.

Handelt es sich bei den cellulosischen Formkörpern um Filamente, so weisen diese bevorzugt einen DP bestimmt mittels Cuoxam von > 550 auf.If the cellulosic shaped bodies are filaments, they preferably have a DP determined by means of Cuoxam of> 550.

Die Erfindung ist daher auch auf die Verwendung von derartigen cellulosischen Filamenten zur Herstellung von technischen Garnen und zur Herstellung von Reifenkorden sowie von Korden und textilen Verstärkungsgeweben gerichtet. Darüber hinaus sind die erfindungsgemäßen cellulosischen Filamenten vorzüglich zur Verstärkung von Elastomeren, Kunststoffen (z.B. Thermoplaste, Biopolymere und bioabbaubare Polymere) und duroplastischen Formmassen (Harze) geeignet.The invention is therefore also directed to the use of such cellulosic filaments for the production of technical yarns and for the production of tire cords and of cords and textile reinforcement fabrics. Moreover, the cellulosic filaments of the present invention are particularly useful for reinforcing elastomers, plastics (e.g., thermoplastics, biopolymers, and biodegradable polymers) and thermosetting molding materials (resins).

Es ist weiterhin ein Verdienst der Erfindung herausgefunden zu haben, dass die mechanischen Möglichkeiten, das Arbeitsvermögen zu verbessern nachdem der Faden bzw. die Filamente den Luftspalt verlassen haben, sehr beschränkt sind und insbesondere keine cellulosischen Formkörper mit den erfindungsgemäßen Eigenschaften liefern können.It is further a merit of the invention to have found that the mechanical possibilities to improve the working capacity after the thread or filaments have left the air gap are very limited and in particular can not provide cellulosic shaped bodies having the properties according to the invention.

Die Erfindung soll anhand einiger nachfolgender Beispiele näher beschrieben werden. Selbstverständlich dienen diese Beispiele ausschließlich der Erläuterung und sind in keiner Weise als beschränkend anzusehen.The invention will be described in more detail with reference to some examples below. Of course, these examples are illustrative only and are in no way to be considered as limiting.

Zur Ermittlung der experimentellen Ergebnisse dienten die folgenden Mess- bzw. Bestimmungsverfahren:The following measurement or determination methods were used to determine the experimental results:

Die Ermittlung der textilen Eigenschaften (Festigkeit, Dehnung, Feinheit) der Fasern und Filamente erfolgte im Prüfklima nach DIN 50014-20/65 bei 20 °C und 65 % relativer Luftfeuchtigkeit.The determination of the textile properties (strength, elongation, fineness) of the fibers and filaments was carried out in the test climate according to DIN 50014-20 / 65 at 20 ° C and 65% relative humidity.

Die Probenahme wurde gemäß DIN 53 803-T2 durchgeführt. Die Zugversuche an der Faser erfolgten gemäß DIN EN ISO 5079 unter den folgenden Bedingungen:The sampling was carried out in accordance with DIN 53 803-T2. The tensile tests on the fiber were carried out according to DIN EN ISO 5079 under the following conditions:

Die Einspannlänge war 20 mm und die Zuggeschwindigkeit betrug 20 mm/min bei einem Vorspanngewicht von 0,6 ± 0,06 cN/tex. Die Messungen wurden jeweils an 50 Fasern durchgeführt.The clamping length was 20 mm and the pulling speed was 20 mm / min with a preload weight of 0.6 ± 0.06 cN / tex. The measurements were carried out on 50 fibers each.

Die rheologische Charakterisierung der cellulosischen Spinnlösungen erfolgte unter Verwendung eines Rheometers HAAKE MARS mit Kegel / Platte - Messeinrichtung (Sensor C35/4° bzw. C20/4°).The rheological characterization of the cellulosic spinning solutions was carried out using a HAAKE MARS rheometer with a cone / plate measuring device (sensor C35 / 4 ° or C20 / 4 °).

Die Messung der Nullscherviskositäten erfolgte mittels Rotationsversuch (creep) unter Anwendung einer konstanten Schubspannung von 90 Pa bei einer Messtemperatur von 85°C.Zero shear viscosities were measured by creep using a constant shear stress of 90 Pa at a measurement temperature of 85 ° C.

Zur Bestimmung des Kreuzungspunktes zwischen Speicher- und Verlustmodul der Masterkurve ("cross over" - Werte) und der Plateaumoduli wurden Oszillationsmessungen bei jeweils 3 Temperaturen durchgeführt und mittels WLF-Transformation die Masterkurven auf eine Referenztemperatur berechnet. Die Messungen erfolgten in Abhängigkeit vom verwendeten Lösungsmittel bei unterschiedlichen Temperaturen. Die Charakterisierung von Celluloselösungen in NMMO erfolgte bei 60 / 85 und 110°C, und die Berechnung der Masterkurve erfolgte bei einer Referenztemperatur von 85°C. Polymerlösungen in ionischen Flüssigkeiten wurden bei 95 / 115 und 135°C untersucht, wobei die Referenztemperatur zur Berechnung der Masterkurve 95°C betrug.To determine the crossing point between the memory and loss modulus of the master curve ("cross over" values) and the plateau moduli, oscillation measurements were carried out at 3 temperatures and the master curves were calculated by WLF transformation to a reference temperature. The measurements were carried out at different temperatures depending on the solvent used. The characterization of cellulose solutions in NMMO was carried out at 60/85 and 110 ° C, and the calculation of the master curve was carried out at a reference temperature of 85 ° C. Polymer solutions in ionic Liquids were analyzed at 95/115 and 135 ° C, with the reference temperature for calculating the master curve being 95 ° C.

Die Bestimmung des mittleren Polymerisationsgrades (DP) der Cellulose erfolgte mittels der Cuoxam-Methode. Dabei wurden die Grenzviskositäten [η] (Einheit ml/g) mit Hilfe eines Kapillarviskosimeters bestimmt und gemäß nachfolgender Gleichung der Cuoxam-DP ermittelt: Cuoxam - DP = 2 η Cuoxam

Figure imgb0002
The determination of the average degree of polymerization (DP) of the cellulose was carried out by the Cuoxam method. The intrinsic viscosities [η] (unit ml / g) were determined with the aid of a capillary viscometer and determined according to the following equation of the Cuoxam-DP: cuprammonium - DP = 2 η cuprammonium
Figure imgb0002

Der α-Cellulosegehalt ist der bei bestimmter Behandlungsweise gegen 17,5 %ige Natronlauge resistente Teil des Zellstoffes.The α-cellulose content is the part of the pulp which is resistant to 17.5% sodium hydroxide solution in certain types of treatment.

Die Bestimmung des α-Cellulosegehaltes erfolgte durch Behandlung des Zellstoffes mit 17,5%iger, wässriger NaOH-Lösung bei 20°C während 1 h und anschließendes Waschen, Trocknen und Rückwägen des Zellstoffes.The determination of the α-cellulose content was carried out by treating the pulp with 17.5% aqueous NaOH solution at 20 ° C for 1 h and then washing, drying and reweighing of the pulp.

Die Bestimmung des Feststoffgehaltes erfolgte durch Ausfällen, Waschen und Trocknen der Cellulose.The solids content was determined by precipitation, washing and drying of the cellulose.

Die Erfindung soll anhand folgender Beispiele erläutert werden:The invention will be explained by the following examples:

Vergleichsbeispiel 1 (Stand der Technik)Comparative Example 1 (prior art)

Ein Lyocell-Zellstoff (Eukalyptus-Sulfitzellstoff, Cuoxam-DP: 556, α-Cellulosegehalt: 93,8%) wurde im Flottenverhältnis 1:20 in Wasser aufgeschlagen und auf einen Feuchtegehalt von 60 Masse-% abgepresst. 70 g dieser pressfeuchten Cellulose wurden in 317 g 1-Butyl-3- Methylimidazoliumchlorid (BMIMCI), welches 30 Masse-% Wasser und Stabilisatorzusätze (0,2% NaOH, 0,02% Gallussäurepropylester, bezogen auf die herzustellende Polymerlösung) enthielt, dispergiert. Man erhält 390 g einer homogenen Suspension, welche in einen Vertikalkneter eingebracht wird und unter Scherung, steigender Temperatur von 80 bis 125°C und abnehmendem Druck von 800 bis 20 mbar unter Wasserentfemung in eine mikroskopisch homogene Lösung überführt wird. Die Lösung enthält 11,2 Masse-% Cellulose und 88,8 Masse-% BMIMCI, wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 1,73 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.A lyocell pulp (eucalyptus sulfite pulp, cuoxam DP: 556, α-cellulose content: 93.8%) was added 1:20 in water to a liquor ratio and pressed to a moisture content of 60% by mass. 70 g of this moist cellulose were dispersed in 317 g of 1-butyl-3-methylimidazolium chloride (BMIMCI) containing 30% by weight of water and stabilizer additives (0.2% NaOH, 0.02% propyl gallate based on the polymer solution to be prepared) , This gives 390 g of a homogeneous suspension, which is introduced into a vertical kneader and under shear, rising temperature of 80 to 125 ° C and decreasing pressure of 800 to 20 mbar Wasserentfemung is transferred into a microscopically homogeneous solution. The solution contains 11.2% by mass of cellulose and 88.8% by mass of BMIMCI, was analytically characterized and formed by dry-wet spinning into 1.73 dtex fibers. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Vergleichsbeispiel 2 (Stand der Technik)Comparative Example 2 (prior art)

33,4 g eines Eukalyptus-Zellstoffes (8 Masse-% Feuchte, Cuoxam-DP: 556) werden im Flottenverhältnis 1:20 zur Einzelfaser dispergiert und anschließend auf einen Wassergehalt von 60 Masse-% abgepresst. Die pressfeuchte Cellulose wird in 380 g einer N-Methylmorpholin-N-oxid (NMMO) - Lösung mit einem Wassergehalt von 50%, welche als Stabilisatoren Propylgallat (0,03%, bezogen auf die herzustellende Polymerlösung) sowie Natronlauge entsprechend des Basenverbrauches der eingebrachten Stoffe enthält, eingebracht und dispergiert. Die hergestellte Suspension wird in einen Vertikalkneter eingebracht, unter Scherung, steigender Temperatur von 70 bis 95°C und abnehmendem Druck von 750 bis 50 mbar das Wasser bis zur Stufe des Monohydrates entfernt und eine mikroskopisch homogene Celluloselösung mit der Zusammensetzung 12,3 Masse-% Cellulose, 76,0 Masse-% NMMO und 11,7 Masse-% Wasser hergestellt. Der Brechungsindex der Lösung bei 50°C betrug 1,4876. Die hergestellte Lösung wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 1,66 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.33.4 g of a eucalyptus pulp (8% by mass of moisture, Cuoxam-DP: 556) are dispersed in a liquor ratio of 1:20 to the single fiber and then pressed to a water content of 60% by mass. The cellulose, which is moist by press, is introduced into 380 g of an N-methylmorpholine-N-oxide (NMMO) solution with a water content of 50%, which contains as stabilizers propyl gallate (0.03%, based on the polymer solution to be prepared) and sodium hydroxide solution according to the base consumption Contains substances, introduced and dispersed. The prepared suspension is placed in a vertical kneader, under shear, increasing temperature of 70 to 95 ° C and decreasing pressure of 750 to 50 mbar the water removed to the level of monohydrate and a microscopically homogeneous cellulose solution having the composition 12.3 mass% Cellulose, 76.0% by mass of NMMO and 11.7% by mass of water. The refractive index of the solution at 50 ° C was 1.4876. The prepared solution was analytically characterized and formed by dry-wet spinning to 1.66 dtex fibers. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Vergleichsbeispiel 3Comparative Example 3

Analog Vergleichsbeispiel 1 wurde eine 12,0 Masse-%ige Lösung eines Zellstoffes (Cuoxam-DP: 798) mit enger Molmassenverteilung und hohem α-Cellulosegehalt (98,4% α-Cellulose) im Lösungsmittel BMIMCI hergestellt. Die hergestellte Celluloselösung konnte nur sehr unsicher mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 1,74 dtex verformt werden, da die Lösung aufgrund ihrer rheologischen Eigenschaften nicht ausreichend Verzugsfähigkeit besaß. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.Analogously to Comparative Example 1, a 12.0% by mass solution of a pulp (Cuoxam-DP: 798) having a narrow molecular weight distribution and a high α-cellulose content (98.4% of α-cellulose) was prepared in the solvent BMIMCI. The manufactured Cellulose solution could only be deformed very uncertainly by dry-wet spinning process to fibers of a fineness of 1.74 dtex, since the solution did not have sufficient delay due to their rheological properties. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiele 4 und 5Examples 4 and 5

Der in Vergleichsbeispiel 3 verwendete Zellstoff (Cuoxam-DP: 798, 98,4% α-Cellulose) wurde im Flottenverhältnis 1:20 in Wasser dispergiert und durch Zugabe von verdünnter Ameisensäure ein pH-Wert von 5,0 eingestellt. Bei 45°C erfolgte innerhalb von 60 min eine enzymatische Vorbehandlung des Zellstoffes mit 0,5% einer Cellulase mit hoher Exoaktivität (Filterpapieraktivität 90 U/ml), bezogen auf Cellulose. Durch die enzymatische Vorbehandlung erfolgt nur eine geringe Verringerung des Cuoxam-DP des Zellstoffes auf einen DP von 745 sowie eine gezielte Veränderung der Uneinheitlichkeit, d.h. der Molmassenverteilung der Cellulose.The pulp used in Comparative Example 3 (Cuoxam DP: 798, 98.4% α-cellulose) was dispersed in water at a ratio of 1:20 in water and adjusted by the addition of dilute formic acid to a pH of 5.0. At 45 ° C., an enzymatic pretreatment of the pulp was carried out within 60 minutes with 0.5% of a cellulase with high exoactivity (filter paper activity 90 U / ml), based on cellulose. Enzymatic pretreatment provides only a small reduction in the cuoxam DP of the pulp to a DP of 745, as well as a targeted change in non-uniformity, i. the molecular weight distribution of cellulose.

Die Zellstoffsuspension aus der Enzymbehandlung wird nach pH-Wert-Erhöhung auf 11 auf einen Wassergehalt von 60% abgepresst und jeweils 78,1 g dieser pressfeuchten Cellulose zur Herstellung von 12,5%igen Celluloselösungen in BMIMCI eingesetzt. Die Polymerlösungen waren mit sehr guter Spinnsicherheit mittels Trocken-Nass-Spinntechnologie zu Fasern einer Feinheit von 1,78 bzw. 1,70 dtex verformbar. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.The pulp suspension from the enzyme treatment is pressed after increasing the pH to 11 to a water content of 60% and in each case 78.1 g of this press-moist cellulose used to prepare 12.5% strength cellulose solutions in BMIMCI. The polymer solutions were deformable with very good spinning reliability by means of dry-wet spinning technology into fibers of a fineness of 1.78 or 1.70 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiele 6 und 7Examples 6 and 7

Zur gezielten Einstellung der Uneinheitlichkeit von Spinnlösungen wurden Abmischungen von Zellstoffen mit enger Molmassenverteilung und hohen α-Cellulosegehalten hergestellt. Für Beispiel 6 wurden 23,9 g eines Zellstoffes (Cuoxam-DP: 798, 98,4% α-Cellulose, Feuchtegehalt: 7%) und 10,1 g eines Baumwoll-Linterszellstoffes (Cuoxam-DP: 443, 98% α-Cellulose, Feuchtegehalt: 6%) im Flottenverhältnis 1:20 in Wasser aufgeschlagen und nach intensiver Durchmischung auf einen Wassergehalt von 60% abgepresst.In order to adjust the non-uniformity of spinning solutions, blends of pulps having a narrow molecular weight distribution and high α-cellulose contents were prepared. For example 6, 23.9 g of a pulp (cuoxam-DP: 798, 98.4% α-cellulose, moisture content: 7%) and 10.1 g of a cotton linter pulp (cuoxam-DP: 443, 98% α-cellulose) were used. Cellulose, moisture content: 6%) in the liquor ratio 1:20 in water and pressed after intensive mixing to a water content of 60%.

Für Beispiel 7 wurden 23,4 g eines Baumwoll-Linterszellstoffes (Cuoxam-DP: 741, 98,3% α-Cellulose, Feuchtegehalt: 5%) und 10,1 g eines Baumwoll-Linterszellstoffes (Cuoxam-DP: 443, 98% α-Cellulose, Feuchtegehalt: 6%) im Flottenverhältnis 1:20 in Wasser aufgeschlagen und nach intensiver Durchmischung auf einen Wassergehalt von 60% abgepresst.For example 7, 23.4 g of a cotton linter pulp (cuoxam DP: 741, 98.3% α-cellulose, moisture content: 5%) and 10.1 g of a cotton linter pulp (cuoxam DP: 443, 98%) were used. α-cellulose, moisture content: 6%) in a liquor ratio of 1:20 in water and pressed after thorough mixing to a water content of 60%.

Die pressfeuchten Cellulosen wurden in BMIMCI-Lösungen (Wassergehalt: 30%, Stabilisatorzusatz 0,2% NaOH, 0,02% Gallussäurepropylester, bezogen auf die herzustellende Polymerlösung) suspendiert und mittels Vertikalkneter unter Wasserentzug durch Scherung, Temperatur und Vakuum in mikroskopisch homogene Spinnmassen überführt. Die erhaltenen Polymerlösungen waren mit sehr guter Spinnsicherheit mittels Trocken-Nass-Spinntechnologie zu Fasern einer Feinheit von 1,81 bzw. 1,77 dtex verformbar. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.The moist celluloses were suspended in BMIMCI solutions (water content: 30%, stabilizer addition 0.2% NaOH, 0.02% propyl gallate, based on the polymer solution to be prepared) and transferred by means of vertical kneader under dehydration by shear, temperature and vacuum into microscopically homogeneous spinning masses , The polymer solutions obtained were deformable with very good spinning reliability by means of dry-wet spinning technology into fibers of a fineness of 1.81 or 1.77 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiele 8 und 9:Examples 8 and 9:

An einem Zellstoff (Cuoxam-DP: 798, 98,4% α-Cellulose) wurde analog der Beispiele 4 und 5 eine enzymatische Vorbehandlung durchgeführt. Nach dieser Vorbehandlung wurde ein Cuoxam-DP der Cellulose mit 745 ermittelt.On a pulp (Cuoxam DP: 798, 98.4% α-cellulose) was carried out analogously to Examples 4 and 5, an enzymatic pretreatment. After this pretreatment, a cuoxam-DP of 745 cellulose was determined.

Für Beispiel 8 wurden 72,4 g dieser vorbehandelten, pressfeuchten Cellulose (Wassergehalt: 60%) mit 1,52 g Polyethylenglykol 20000 (OH-Zahl: 4-7) intensiv vermischt und mit BMIMCI in eine 12,2 Masse-%ige, homogene Spinnmasse überführt.For Example 8, 72.4 g of this pretreated, moist cellulose (water content: 60%) was thoroughly mixed with 1.52 g of polyethylene glycol 20000 (OH number: 4-7) and mixed with BMIMCl in a 12.2% by mass, transferred homogeneous dope.

Für Beispiel 9 wurden 74,2 g der vorbehandelten, pressfeuchten Cellulose (Wassergehalt: 60%) mit 2,84 g Tego Phobe 1401 (wässrige Emulsion eines aminofunktionellen Polysiloxans, Polymergehalt: 55%) intensiv vermischt und mit BMIMCI mittels Laborkneter in eine 12,5 Masse-%ige, homogene Spinnmasse überführt.For example 9, 74.2 g of the pretreated, moist cellulose (water content: 60%) were intensively mixed with 2.84 g of Tego Phobe 1401 (aqueous emulsion of an amino-functional polysiloxane, polymer content: 55%) and mixed with BMIMCI by means of a laboratory kneader into a 12, 5 mass%, transferred homogeneous dope.

Die enthaltenen Zweitpolymere Polyethylenglycol bzw. Polysiloxan verursachen jeweils eine sehr homogene Eintrübung der Spinnmasse und liegen in so fein verteilter Form vor, dass mikroskopisch keine Einzelpartikel identifiziert werden konnten und keinerlei Beeinträchtigungen der Spinnprozesse erfolgten. Die hergestellte Polymerspinnmassen wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern mit Feinheiten von 1,97 bzw. 1,73 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.The secondary polymers contained polyethylene glycol or polysiloxane each cause a very homogeneous turbidity of the spinning mass and are present in such a finely divided form that microscopically no individual particles could be identified and no adverse effects on the spinning processes took place. The prepared polymer spun masses were characterized analytically and formed by dry-wet spinning process into fibers with finenesses of 1.97 and 1.73 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiele 10 und 11:Examples 10 and 11:

30,9 g eines Zellstoffes mit enger Molmassenverteilung (Cuoxam-DP: 798, 98,4% α-Cellulose, Feuchtegehalt: 7%) bzw. 34,5 g eines Baumwoll-Linterszellstoffes (Cuoxam-DP: 650, 98,2% α-Cellulose, Feuchtegehalt: 5%) werden nach hydrolytischer Vorbehandlung in 50%iger NMMO-Lösung unter Zusatz von Stabilisatoren dispergiert und in 11,5 bzw. 13,1%ige, mikroskopisch homogene Polymerlösungen in NMMO-Monohydrat überführt. Die erhaltenen Polymerlösungen waren mit sehr guter Spinnsicherheit mittels Trocken-Nass-Spinntechnologie zu Fasern einer Feinheit von 1,7 bzw. 1,79 dtex verformbar. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.30.9 g of a pulp having a narrow molar mass distribution (cuoxam DP: 798, 98.4% α-cellulose, moisture content: 7%) or 34.5 g of a cotton linter pulp (Cuoxam-DP: 650, 98.2%). α-cellulose, moisture content: 5%) are dispersed after hydrolytic pretreatment in 50% NMMO solution with the addition of stabilizers and converted into 11.5 or 13.1%, microscopically homogeneous polymer solutions in NMMO monohydrate. The polymer solutions obtained were deformable with very good spinning reliability by means of dry-wet spinning technology into fibers of a fineness of 1.7 or 1.79 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiel 12:Example 12:

Als Polymerlösungsmittel wurde eine Mischung aus 2 ionischen Flüssigkeiten, BMIMCI und 1-Hexyl-3-Methylimidazoliumchlorid (HMIMCI) im Masseverhältnis 90:10 eingesetzt.The polymer solvent used was a mixture of 2 ionic liquids, BMIMCl and 1-hexyl-3-methylimidazolium chloride (HMIMCI) in a mass ratio of 90:10.

79,4 g des in Beispiel 8 verwendeten, enzymatisch vorbehandelten Zellstoffes (Cuoxam-DP: 745, Wassergehalt: 60%) wurden in 311,8 g eines wässrigen Gemisches der ionischen Flüssigkeiten BMIMCI und HMIMCI (Masseverhältnis BMIMCI : HMIMCI = 90:10, Wassergehalt: 30%) unter Zusatz von 0,2% NaOH und 0,02% Gallussäurepropylester, bezogen auf die herzustellende Polymerlösung, suspendiert. Nach Überführung dieser Suspension in einen Vertikalkneter wurde mittels Scherung, steigender Temperatur von 103 bis 137°C und abnehmendem Druck von 800 bis 15 mbar unter Wasserentfernung in eine mikroskopisch homogene Lösung hergestellt. Die Lösung enthielt 12,7 Masse-% Cellulose, wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 2,06 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.79.4 g of the enzyme-pretreated pulp used in Example 8 (Cuoxam-DP: 745, water content: 60%) were dissolved in 311.8 g of an aqueous mixture of the ionic liquids BMIMCI and HMIMCI (mass ratio BMIMCI: HMIMCI = 90:10, Water content: 30%) with the addition of 0.2% NaOH and 0.02% propyl gallate, based on the polymer solution to be prepared. After transfer of this suspension in a vertical kneader was produced by shearing, rising temperature of 103 to 137 ° C and decreasing pressure of 800 to 15 mbar with water removal in a microscopically homogeneous solution. The solution contained 12.7% by mass of cellulose, was characterized analytically and formed by dry-wet spinning process to fibers of a fineness of 2.06 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiel 13:Example 13:

Als Polymerlösungsmittel wurde eine Mischung aus 2 ionischen Flüssigkeiten, BMIMCI und 1-Ethyl-3-Methylimidazoliumacetat (EMIMAc) im Masseverhältnis 90:10 eingesetzt.The polymer solvent used was a mixture of 2 ionic liquids, BMIMCI and 1-ethyl-3-methylimidazolium acetate (EMIMAc) in a mass ratio of 90:10.

24,6 g eines Zellstoffes mit enger Molmassenverteilung (Cuoxam-DP: 798, 98,4% α-Cellulose, Feuchtegehalt: 7%) und 10,4 g eines Baumwoll-Linterszellstoffes (Cuoxam-DP: 432, 98,1% α-Cellulose, Feuchtegehalt: 6%) wurden im Flottenverhältnis 1:20 in Wasser aufgeschlagen und nach intensiver Durchmischung auf einen Wassergehalt von 60% abgepresst. Die pressfeuchten Cellulosen wurden in 309 g einer Mischung der ionischen Flüssigkeiten BMIMCI und EMIMAc (Masseverhältnis BMIMCI : EMIMAc = 90:10, Wassergehalt: 30%) suspendiert und analog Beispiel 6 in eine homogene Spinnmasse überführt. Die Polymerlösung enthielt 13,1 Masse-% Cellulose, wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 1,75 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen.24.6 g of a pulp with narrow molar mass distribution (cuoxam DP: 798, 98.4% α-cellulose, moisture content: 7%) and 10.4 g of a cotton linter pulp (Cuoxam DP: 432, 98.1% α Cellulose, moisture content: 6%) were added 1:20 in the liquor ratio in water and pressed after thorough mixing to a water content of 60%. The press-moist celluloses were suspended in 309 g of a mixture of the ionic liquids BMIMCI and EMIMAc (mass ratio BMIMCI: EMIMAc = 90:10, water content: 30%) and converted into a homogeneous spinning mass analogously to Example 6. The polymer solution contained 13.1% by mass of cellulose, was characterized analytically and formed by dry-wet spinning process to fibers of a fineness of 1.75 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table.

Beispiel 14:Example 14:

Analog Beispiel 13 wurde eine Polymerlösung aus einer Cellulosemischung der im Beispiel 13 verwendeten Zellstoffe im Masseverhältnis 60:40 hergestellt, wobei als Celluloselösungsmittel eine Mischung der ionischen Flüssigkeiten BMIMCI und 1-Butyl-3-Methylimidazoliumacetat (BMIMAc) im Masseverhältnis 90:10 diente. Es wurde eine mikroskopisch homogene Polymerlösung erhalten, welche 12,6 Masse-% Cellulose enthielt. Diese wurde analytisch charakterisiert und mittels Trocken-Nass-Spinnprozess zu Fasern einer Feinheit von 1,72 dtex verformt. Die Daten der analytischen Lösungscharakterisierung, Spinnbedingungen und Faserwerte sind der Tabelle zu entnehmen. Tabelle Vgl. 1 Vgl. 2 Vgl. 3 4 5 6 7 8 9 10 11 12 13 14 Cuoxam-DP 556 556 798 745 745 798/443 741/443 745 745 798 650 745 798/432 798/432 Analytische Lösungscharakterisierung: Lösungsmittel BMIMCI NMMO BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI NMMO NMMO BMIMCI+ HMIMCI BMIMCI + EMIMAc BMIMCI+ BMIMAc Feststoffgehalt % 11,2 12,3 12,0 12,5 12,5 12,7 12,7 12,2 12,5 11,5 13,1 12,7 13,1 12,6 Nullscherviskosität (85°C) Pas 14530 8520 106000 65190 59630 92130 38790 71610 89750 21150 17010 82470 91470 63100 Winkelgeschwindigkeit (cross over) rad/s 2,77 2,68 0,34 0,83 0,90 0,70 1,74 0,67 0,54 0,94 1,96 0,70 0,63 0,98 Speichermodul (cross over) Pa 2696 3079 3177 3961 3976 4166 5625 3852 3313 3686 7500 3888 4090 4359 Plateaumodul Pa 13165 27430 24200 24780 24200 28050 27530 25253 23840 29580 47780 25190 28530 26637 Spinnbedingungen: Spinndüsenlochdurchmesser µm 90 90 100 100 100 100 100 100 100 100 100 100 100 100 Kapillaranzahl pro Düse 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Spinnmassetemperatur °C 93 84 106 100 98 103 93 101 109 90 88 101 105 101 Luftspalt mm 80 40 35 50 40 40 40 40 30 50 25 40 30 40 Abzugsgeschwindigkeit m/min 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Fasereiqenschaften: Faserfeinheit dtex 1,73 1,66 1,74 1,78 1,70 1,81 1,77 1,97 1,73 1,70 1,79 2,06 1,75 1,72 Reißfestigkeit, konditioniert cN/tex 50,3 42,3 61,9 67,4 67,3 66,7 67,4 65,1 61,9 49,2 50,8 63,2 68,4 65,0 Reißdehnung, konditioniert % 11,7 16,1 10,4 12,3 12,8 13,6 12,0 13,4 13,7 20,9 18,4 13,2 13,5 12,5 Arbeitsvermögen J/g 58,9 68,1 64,4 82,9 86,1 90,7 80,9 87,2 84,8 102,8 93,5 83,4 92,3 81,3 Cuoxam-DP Faser 509 513 663 597 604 604 557 724 605 601 627 595 A polymer solution was prepared analogously to Example 13 from a cellulose mixture of the pulps used in Example 13 in a mass ratio of 60:40, using as cellulose solvent a mixture of the ionic liquids BMIMCI and 1-butyl-3-methylimidazolium acetate (BMIMAc) in a mass ratio of 90:10. A microscopically homogeneous polymer solution was obtained, which was 12.6 % By mass cellulose. This was characterized analytically and formed by dry-wet spinning process into fibers of a fineness of 1.72 dtex. The data of the analytical solution characterization, spinning conditions and fiber values are shown in the table. table See 1 See 2 See 3 4 5 6 7 8th 9 10 11 12 13 14 Cuprammonium DP 556 556 798 745 745 798/443 741/443 745 745 798 650 745 798/432 798/432 Analytical solution characterization: solvent BMIMCI NMMO BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI BMIMCI NMMO NMMO BMIMCI + HMIMCI BMIMCI + EMIMAC BMIMCI + BMIMAC Solids content % 11.2 12.3 12.0 12.5 12.5 12.7 12.7 12.2 12.5 11.5 13.1 12.7 13.1 12.6 Zero shear viscosity (85 ° C) Pas 14530 8520 106000 65190 59630 92130 38790 71610 89750 21150 17010 82470 91470 63100 Angular velocity (cross over) rad / s 2.77 2.68 0.34 0.83 0.90 0.70 1.74 0.67 0.54 0.94 1.96 0.70 0.63 0.98 Memory module (crossover) Pa 2696 3079 3177 3961 3976 4166 5625 3852 3313 3686 7500 3888 4090 4359 plateau modulus Pa 13165 27430 24200 24780 24200 28050 27530 25253 23840 29580 47780 25190 28530 26637 Spin conditions: Spinneret hole diameter microns 90 90 100 100 100 100 100 100 100 100 100 100 100 100 Capillary number per nozzle 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Dope temperature ° C 93 84 106 100 98 103 93 101 109 90 88 101 105 101 air gap mm 80 40 35 50 40 40 40 40 30 50 25 40 30 40 off speed m / min 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Fasereiqenschaften: fiber fineness dtex 1.73 1.66 1.74 1.78 1.70 1.81 1.77 1.97 1.73 1.70 1.79 2.06 1.75 1.72 Tear resistance, conditioned CN / tex 50.3 42.3 61.9 67.4 67.3 66.7 67.4 65.1 61.9 49.2 50.8 63.2 68.4 65.0 Elongation at break, conditioned % 11.7 16.1 10.4 12.3 12.8 13.6 12.0 13.4 13.7 20.9 18.4 13.2 13.5 12.5 work capacity J / g 58.9 68.1 64.4 82.9 86.1 90.7 80.9 87.2 84.8 102.8 93.5 83.4 92.3 81.3 Cuoxam-DP fiber 509 513 663 597 604 604 557 724 605 601 627 595

Claims (12)

  1. Solvent-spun cellulosic shaped bodies with a breaking tenacity of at least 30 cN/tex, produced by means of a dry-wet process from a polymer solution containing predominantly cellulose in a solvent, characterized in that the cellulosic shaped bodies have a working capacity, determined from the mathematical product of breaking tenacity and elongation at break, of at least 80 J/g to a maximum of 120 J/g.
  2. Cellulosic shaped bodies produced according to Claim 1, characterized in that the breaking tenacity lies in a range from 30 to 90 cN/tex.
  3. Cellulosic shaped bodies produced according to one or more of the previous claims, characterized in that the solvent is a direct solvent like NMMO.
  4. Cellulosic shaped bodies produced according to one or more of the previous claims, characterized in that the solvent is an ionic liquid or a mixture of two or more ionic liquids.
  5. Cellulosic shaped bodies produced according to Claim 4, characterized in that the ionic liquid is 1-butyl-3-methylimidazolium chloride or 1-ethyl-3-methylimidazolium acetate and/or mixtures thereof.
  6. Cellulosic shaped bodies according to one or more of the previous claims, characterized in that the cellulose is a pulp that has an α-cellulose content greater than 90%, preferably greater than 96%, and particularly preferably greater than 98%.
  7. Cellulosic shaped bodies according to one or more of the previous claims, characterized in that the cellulose is a pulp that has an average degree of polymerization of > 600, preferably > 650.
  8. Cellulosic shaped bodies according to one or more of the previous claims, characterized in that the cellulosic shaped bodies are filaments or fibers.
  9. Method for producing cellulosic filaments or fibers according to Claim 8, characterized in that the cellulosic filaments or fibers are spun from a pulp solution, wherein the angular velocity at the "cross-over" is in the range from 0.5 to approximately 2 rad/sec.
  10. Use of cellulosic filaments according to Claim 9 for the production of industrial yarns, cords, and textile reinforcement woven fabrics.
  11. Use of cellulosic filaments according to Claim 9 for the production of tire cords.
  12. Use of cellulosic filaments according to Claim 9 for the reinforcement of elastomers, plastics, in particular thermoplastics, biopolymers, and biodegradable polymers as well as duroplastic molding compounds, in particular resins.
EP09725538A 2008-03-27 2009-03-18 Cellulosic mouldings Active EP2268857B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09725538T PL2268857T3 (en) 2008-03-27 2009-03-18 Cellulosic mouldings
EP09725538A EP2268857B1 (en) 2008-03-27 2009-03-18 Cellulosic mouldings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08102964 2008-03-27
EP09725538A EP2268857B1 (en) 2008-03-27 2009-03-18 Cellulosic mouldings
PCT/EP2009/053198 WO2009118262A1 (en) 2008-03-27 2009-03-18 Cellulosic mouldings

Publications (2)

Publication Number Publication Date
EP2268857A1 EP2268857A1 (en) 2011-01-05
EP2268857B1 true EP2268857B1 (en) 2012-09-26

Family

ID=39675022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09725538A Active EP2268857B1 (en) 2008-03-27 2009-03-18 Cellulosic mouldings

Country Status (5)

Country Link
EP (1) EP2268857B1 (en)
KR (1) KR101580115B1 (en)
ES (1) ES2402442T3 (en)
PL (1) PL2268857T3 (en)
WO (1) WO2009118262A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002729A2 (en) * 2010-06-30 2012-01-05 코오롱인더스트리 주식회사 Dope for spinning lyocell, method for preparing a lyocell filament fiber using same, and method for preparing a lyocell staple fiber using same
JP5851418B2 (en) * 2010-11-30 2016-02-03 株式会社ブリヂストン Method for producing purified cellulose fiber, method for producing fiber-rubber composite, and method for producing tire
JP5948141B2 (en) * 2012-05-21 2016-07-06 株式会社ブリヂストン Process for producing purified polysaccharide fiber, cord, rubber-cord composite, tire and run-flat tire
JP5948145B2 (en) * 2012-05-21 2016-07-06 株式会社ブリヂストン Method for producing purified polysaccharide fiber, method for producing rubber-fiber composite, method for producing rubber-cord composite, and method for producing tire
JP5948144B2 (en) * 2012-05-21 2016-07-06 株式会社ブリヂストン Method for producing purified polysaccharide fiber, method for producing rubber-fiber composite, method for producing reinforcing cord, method for producing rubber-cord composite, and method for producing tire
JP5948143B2 (en) * 2012-05-21 2016-07-06 株式会社ブリヂストン Hybrid cord manufacturing method, rubber-cord composite manufacturing method, and tire manufacturing method
JP5948142B2 (en) * 2012-05-21 2016-07-06 株式会社ブリヂストン Cord manufacturing method, rubber-cord composite manufacturing method, and tire manufacturing method
CN104508194A (en) * 2012-05-21 2015-04-08 株式会社普利司通 Cord, rubber-cord composite structure, and tire
PL2981641T3 (en) 2013-04-04 2024-07-22 Aalto University Foundation Sr Process for the production of shaped cellulose articles
EP3414371A1 (en) 2016-02-11 2018-12-19 Deutsche Institute für Textil- und Faserforschung Denkendorf Process for the preparation of polymer fibers from polymers dissolved in ionic liquids by means of an air gap spinning process
KR20190013817A (en) * 2016-05-25 2019-02-11 데이진 아라미드 게엠베하 Intrinsically viscous material
CA3051143A1 (en) 2017-01-30 2018-08-02 Aalto University Foundation Sr A process for making a cellulose fibre or film
JP7252128B2 (en) 2017-09-29 2023-04-04 古河電気工業株式会社 Molding
JP7203743B2 (en) 2017-09-29 2023-01-13 古河電気工業株式会社 Molding
CN111148798A (en) 2017-09-29 2020-05-12 古河电气工业株式会社 Molded article
CN111295419B (en) 2017-10-31 2023-03-10 古河电气工业株式会社 Molded article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444140A1 (en) 1994-12-12 1996-06-13 Akzo Nobel Nv Solvent-spun cellulosic filaments
AT404032B (en) * 1996-03-04 1998-07-27 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC FIBERS
DE10043297B4 (en) * 2000-09-02 2005-12-08 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Process for the production of cellulose fibers and cellulose filament yarns
DE102006022009B3 (en) * 2006-05-10 2007-12-06 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Process for producing cellulosic multicomponent fibers

Also Published As

Publication number Publication date
EP2268857A1 (en) 2011-01-05
KR101580115B1 (en) 2016-01-04
PL2268857T3 (en) 2013-01-31
WO2009118262A1 (en) 2009-10-01
KR20100129293A (en) 2010-12-08
ES2402442T3 (en) 2013-05-03

Similar Documents

Publication Publication Date Title
EP2268857B1 (en) Cellulosic mouldings
EP2981639B1 (en) Polysaccharide fibres with an increased fibrillation tendency and method for the production thereof
EP1763596B1 (en) Method for the production of molded cellulose bodies
EP2981640B1 (en) Polysaccharide fibres and method for the production thereof
EP3011091B1 (en) Polysaccharide fibres and method for producing same
AT510254B1 (en) METHOD FOR PRODUCING CELLULOSIC MULTICOMPONENT FIBERS
EP0797694B1 (en) Solvent-spun cellulosic filaments
AT401271B (en) METHOD FOR PRODUCING CELLULOSE FIBERS
DE69419382T2 (en) COMPOSITION OF CELLULOSE FORMAT THAT CAN MAKE FIBERS OR FILMS
EP0574870A1 (en) Process for producing cellulose moulded articles
AT518061B1 (en) Modified viscose fiber
DE69602259T2 (en) CELLULOSE YARN AND CORD FOR TECHNICAL APPLICATION
AT405531B (en) METHOD FOR PRODUCING CELLULOSIC FIBERS
DE69516975T2 (en) COMPOSITION CONTAINING CELLULOSE FORMAT THAT IS ABLE TO FORM AN ELASTIC AND THERMAL VERSATILE GEL
EP0860522A1 (en) Process for producing moulded articles from polysaccharide mixtures
AT402739B (en) METHOD FOR PRODUCING A CELLULOSIC MOLDED BODY
EP1716273A1 (en) Method for producing fibres and other moulded bodies from cellulose carbamate and/or regenerated cellulose
EP3771755A1 (en) Method for the preparation of lyocell staple fibres
DE69806466T2 (en) LIQUID CRYSTALLINE ORIGINAL CELLULOSE FIBERS WITH IMPORTANT BREAK EXTENSION AND METHOD FOR THE PRODUCTION THEREOF
AT505492A1 (en) Production of cellulosic molded body by an amine oxide-process using a bamboo paper pulp
WO1997004148A1 (en) Cellulose fibre
WO2019170754A1 (en) Cellulose pulp and lyocell fiber having an adjustable degree of whiteness
EP0918893B1 (en) Cellulose microfibre
EP1299583B1 (en) Method for producing cellulose fibres
EP3536833A1 (en) Lyocell fibres without mannan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17Q First examination report despatched

Effective date: 20110530

DAX Request for extension of the european patent (deleted)
GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CORDENKA GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 577119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004885

Country of ref document: DE

Effective date: 20121122

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121227

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2402442

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130627

BERE Be: lapsed

Owner name: CORDENKA G.M.B.H. & CO. KG

Effective date: 20130331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004885

Country of ref document: DE

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120926

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240320

Year of fee payment: 16

Ref country code: NL

Payment date: 20240320

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240301

Year of fee payment: 16

Ref country code: FI

Payment date: 20240326

Year of fee payment: 16

Ref country code: CZ

Payment date: 20240222

Year of fee payment: 16

Ref country code: GB

Payment date: 20240320

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240305

Year of fee payment: 16

Ref country code: PL

Payment date: 20240304

Year of fee payment: 16

Ref country code: IT

Payment date: 20240327

Year of fee payment: 16

Ref country code: FR

Payment date: 20240321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240403

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 16