EP2258939A2 - Verfahren zur Regelung der Temperatur einer Glühkerze - Google Patents

Verfahren zur Regelung der Temperatur einer Glühkerze Download PDF

Info

Publication number
EP2258939A2
EP2258939A2 EP10003958A EP10003958A EP2258939A2 EP 2258939 A2 EP2258939 A2 EP 2258939A2 EP 10003958 A EP10003958 A EP 10003958A EP 10003958 A EP10003958 A EP 10003958A EP 2258939 A2 EP2258939 A2 EP 2258939A2
Authority
EP
European Patent Office
Prior art keywords
value
error signal
eff
calculated
effective voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10003958A
Other languages
English (en)
French (fr)
Other versions
EP2258939B1 (de
EP2258939A3 (de
Inventor
Ismet Demirdelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Ludwigsburg GmbH
Original Assignee
BorgWarner Beru Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BorgWarner Beru Systems GmbH filed Critical BorgWarner Beru Systems GmbH
Publication of EP2258939A2 publication Critical patent/EP2258939A2/de
Publication of EP2258939A3 publication Critical patent/EP2258939A3/de
Application granted granted Critical
Publication of EP2258939B1 publication Critical patent/EP2258939B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/022Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply

Definitions

  • the invention relates to a method for controlling the temperature of a glow plug, wherein from a setpoint temperature a desired value of a temperature-dependent electrical variable is determined and an effective voltage generated by pulse width modulation is used as a manipulated variable.
  • the electric resistance or, which is equivalent, the electrical conductivity is usually used as the setpoint.
  • other temperature-dependent electrical variables for example the inductance, can also be used instead of the electrical resistance or the electrical conductivity.
  • the object of the invention is to show a way how to quickly regulate the temperature of a glow plug with the engine running to a target value.
  • a desired value of a temperature-dependent electrical variable is not compared with an actual value, as in conventional PID control methods, and the effective voltage is changed as a function of the instantaneous and possibly a preceding deviation.
  • a mathematical model of the glow plug is used, with which an expected value of the electrical quantity is calculated. This model is fed back with the controlled system containing the glow plug, d. H. a change in the manipulated variable is made to reach the desired setpoint temperature or the desired setpoint value as a function of the result of a comparison on the basis of the output quantity of the model and the setpoint value.
  • the feedback required for a control therefore takes place via the output of the mathematical model at which the output variable provided by the model is provided.
  • an error signal is generated from which an input variable is calculated together with the value of the effective voltage for the mathematical model. From this input, the mathematical model calculates an output that specifies the expected value of the electrical quantity.
  • the output variable of the model can be the expected value of the electrical variable or merely predetermine the latter, so that the expected value is determined by a further calculation step from the output variable, for example by a multiplication by a constant factor.
  • the comparison to be made based on the output and the setpoint may be performed by comparing values calculated from the setpoint and the output, such as voltage values, or by comparing the setpoint immediately with the expected value.
  • the error signal corrects any modeling errors. Without external influences, i. Therefore, after a period of time whose duration depends on the precision of the mathematical model, the calculated value finally coincides with the measured value. If faults in the candle temperature occur, this leads to a deviation of the calculated size from the measured size. Since the input of the mathematical model depends on both the calculated and measured values, such as the difference between the measured and calculated values, the mathematical model follows the glow plug, i.e., the glow plug. the calculated value approaches the measured value even when disturbances occur.
  • a control method By a control method according to the invention, defects in the candle temperature can be corrected much faster than is possible with conventional control methods.
  • the change in the manipulated variable depends not only on the instantaneous deviation between the actual value and the setpoint, but also on previous deviations (I or D component). Disturbances, however, generally have nothing to do with previous deviations, so that the consideration of previous deviations in the treatment of disorders often does not help.
  • a pure proportional control can not achieve good results, since the characteristic properties of a system can be detected only poorly.
  • a control method according to the invention allows an efficient and rapid temperature control in the event of a fault as well as in the occurrence of disturbances.
  • the mathematical model that calculates an expected value of electrical quantity may be formulated as a linear differential equation.
  • the mathematical model contains only two parameters that are characteristic of a given glow plug and its installation environment. The first constant is used to weight the current value of the variable to be calculated, and the second variable to weight the manipulated variable, ie the effective voltage.
  • the electrical resistance or, which is synonymous, the temperature-dependent electrical variable is preferred electrical conductivity used.
  • the electrical resistance or the electrical conductivity of the glow plug including leads can be used.
  • the electrical resistance or the conductivity of the glow plug without contributions from supply lines are taken into account.
  • the inductance can also be used as a temperature-dependent electrical variable.
  • a second error signal is generated by evaluating the calculated value, which is used to correct the setpoint value of the electrical variable, for example, the desired resistance.
  • a fault can be compensated for particularly effectively and the desired setpoint temperature can be reached particularly quickly. If, for example, the fault leads to additional heating of the glow plug, ie an increase in temperature, the desired setpoint temperature can be reached more quickly by assuming a slightly lower setpoint value when converting the setpoint value into a value of the effective voltage. In this way, the additional energy input of a disturbance can be compensated by a lower heating power.
  • the correction of the setpoint value can be determined, for example, using a characteristic map, from which a selection is made taking into account the second error signal and the setpoint temperature or a setpoint determined from the setpoint temperature. With the second error signal so a second feedback is made.
  • This second feedback leads to two control loops being present per se in the method, each of which contains a controlled system containing the glow plug.
  • a first control loop is created by the feedback of the output of the mathematical model.
  • a second loop through the feedback of the second error signal.
  • the second error signal can be generated by comparing the calculated value with the measured value, for example by subtraction, so that the second error signal is proportional to the difference between the two calculated values.
  • the second error signal by using a further mathematical model of the glow plug, the input value of the further mathematical model being the value of the rms voltage applied to the glow plug, and the second error signal being used by comparing the output variables of the two models is produced.
  • the input of the first model depends on both the rms voltage and the measured value, while in the second model the input depends only on the rms voltage.
  • the two mathematical models are preferably identical, that is, they perform the same arithmetic operations on an input variable.
  • the present invention further relates to a glow plug control device, which performs in operation a method according to the invention.
  • a glow plug control device can be realized, for example, with a memory and a control unit, for example a microprocessor, wherein a program is stored in the memory, which carries out the method according to the invention during operation.
  • the hardware components of such a glow plug control device may be identical to the hardware of commercially available glow plug control devices.
  • FIG. 1 the sequence of a method for controlling the temperature of a glow plug 1 is shown schematically.
  • an effective voltage U eff generated by pulse width modulation from an on-board voltage of a vehicle is used as the manipulated variable.
  • the electrical resistance R e of the glow plug 1 is used in the illustrated embodiment, wherein for the control method in principle any other temperature-dependent electrical variable or a vector with multiple sizes can be used.
  • a setpoint value R SolI of the electrical resistance of the glow plug is determined, for example by means of a characteristic map 2, from the setpoint temperature T SolI . From the setpoint value R SolI , a value is then determined for the effective voltage U eff which is applied to the glow plug 1 is created.
  • the conversion of the setpoint value R SolI into a value for the effective voltage U eff can be carried out, for example, by means of a prefilter 3 or a characteristic curve.
  • an expected value R e of the electrical resistance is calculated from the effective voltage U eff applied to the glow plug 1.
  • the mathematical model 4 can provide as output directly the expected value.
  • the model 4 provides an output X from which the expected value R e of the electrical quantity is calculated in a further step 4a, preferably by multiplication by a constant.
  • a first error signal e 1 (t) is generated in a method step 5.
  • the calculated value R e is compared with a measured value R m of the resistance.
  • the calculated resistance value R e are subtracted, for example, from the measured Widertandswert R m, as shown in Fig. 1 indicated by the minus sign (-).
  • the result of such difference formation may be weighted by an appropriate factor that may be empirically determined so that the first error signal e 1 (t) is proportional to the difference between the measured resistance R m and the calculated resistance R e .
  • the input value of the mathematical model 4 is a value calculated from the value of the effective voltage U eff and the first error signal e 1 (t).
  • Such a mathematical model 4 the input quantity of which depends on a comparison between a calculated and a measured value, is called Luenberger observer.
  • the output quantity X of the mathematical model 4 and the setpoint value R SolI are used to calculate a corrected value for the effective voltage U eff and to change the effective voltage U eff to the corrected value. If the output X is also the expected value R e , the output can be directly compared with the setpoint R SolI and the effective voltage U eff changed according to the result of the comparison, for example proportional to the difference. Generally speaking, it is sufficient to couple the output of the model 4 with an input of a controller, that is, to carry out a feedback of the model output.
  • a resistance value or a voltage value is first calculated from the output quantity X in a method step 6, which can be called a state regulator or feedback matrix Setpoint R SolI or a determined from the setpoint R SolI size, namely the current effective voltage U eff , is compared. According to the result of this comparison, the effective voltage U eff is changed. Preferably, a voltage value is added to the instantaneous value of the effective voltage (U eff ) which is proportional to the difference between the setpoint value R Sol and the calculated value R e .
  • the comparison and the change in the effective voltage U eff in dependence on the difference determined thereby are in FIG. 1 shown as process step 7.
  • a second error signal e 2 (t) is determined, which is used to correct the setpoint R SolI .
  • the setpoint value R SolI determined from the setpoint temperature T SolI is used together with the second error signal e 2 (t) to determine an adjusted setpoint value, for example by means of a characteristic map 8.
  • a correction of the setpoint value R SolI is determined Calculation added to the setpoint R SolI , as shown in FIG. 1 is indicated by the method step 9.
  • the corrected setpoint value is subsequently converted into a value for the effective voltage U eff , for example by means of a prefilter 3 or a characteristic curve. If appropriate, the value of the effective voltage U eff determined in this way is adapted in method step 7 taking into account the output quantity X.
  • a differential equation in particular a linear differential equation can be used.
  • the calculation of a voltage value from the output variable X es model 4 can be determined, for example, by multiplying it by a constant whose value can be determined by trial and error.
  • the second error signal e 2 (t) is in the illustrated embodiment similar to the first error signal e 1 (t) determined by comparing the measured value with the calculated value, for example by subtraction and multiplication of the difference with a weighting factor.
  • the control method according to the invention comprises per se two control circuits.
  • a first control circuit includes the glow plug 1 and the model 4, shown in the In the exemplary embodiment, this first control loop contains the glow plug 1, the method step 5, the model 4 and the method steps 6 and 7.
  • a second control loop contains the glow plug 1 and the feedback of the second error signal.
  • FIG. 2 shows another embodiment of a method for controlling the temperature of a glow plug 1.
  • This method differs from the above with reference to FIG. 1 method explained in the first place by the fact that U eff an output X2 is calculated from the value of the voltage applied to the glow plug 1 effective voltage with a further mathematical model 10 of the glow plug. 1
  • the calculation rules of the two models 4, 10 can be identical. However, in the case of the second model 10, the effective voltage U eff applied to the glow plug is used directly as the input variable, while in the first model the input variable is calculated from the first error signal e 1 (t) and the effective voltage U eff .
  • the second error signal e 2 (t) is applied to the in FIG. 2 illustrated embodiment by comparing the output variables X, X2 of the two models 4, 10 determined, for example by subtraction, as shown in FIG. 2 is indicated.
  • the difference can be multiplied by a constant factor to calculate the second error signal e 2 (t).
  • the second error signal e 2 (t) is therefore in the second embodiment of the difference between the two output variables X, X2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Temperature (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Regelung der Temperatur einer Glühkerze (1), wobei aus einer Solltemperatur (T Solll ) ein Sollwert (R soll ) einer temperaturabhängigen elektrischen Größe ermittelt wird, und eine durch Pulsweitenmodulation erzeugte Effektivspannung (U eff ) an die Glühkerze (1) angelegt und als Stellgröße verwendet wird. Erfindungsgemäß ist vorgesehen, dass mit einem mathematischen Modell (4) ein erwarteter Wert (R e ) der elektrischen Größe berechnet wird, die elektrische Größe gemessen wird, durch Auswertung des berechneten Wertes (R e ) ein erstes Fehlersignal e 1 (t) erzeugt wird, als Eingangsgröße des mathematischen Modells (4) ein aus dem Wert der Effektivspannung (U eff ) und dem Fehlersignal (e 1 (t)) berechneter Wert verwendet wird, wobei das mathematische Modell (4) aus der Eingangsgröße eine Ausgangsgröße (X) berechnet, die den erwarteten Wert (R e ) der elektrischen Größe vorgibt, mit der Ausgangsgröße (X) des mathematischen Modells (4) ein korrigierter Wert für die Effektivspannung (U eff ) berechnet und die Effektivspannung (U eff ) auf den korrigierten Wert geändert wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung der Temperatur einer Glühkerze, wobei aus einer Solltemperatur ein Sollwert einer temperaturabhängigen elektrischen Größe ermittelt und eine durch Pulsweitenmodulation erzeugte Effektivspannung als Stellgröße verwendet wird.
  • Bei Verfahren zur Regelung oder Steuerung der Temperatur einer Glühkerze wird als Sollwert in der Regel der elektrische Widerstand oder, was gleichbedeutend ist, die elektrische Leitfähigkeit verwendet. Prinzipiell können anstelle des elektrischen Widerstands oder der elektrischen Leitfähigkeit aber auch andere temperaturabhängige elektrische Größen, beispielsweise die Induktivität, verwendet werden.
  • Aufgabe der Erfindung ist es, einen Weg aufzuzeigen, wie sich die Temperatur einer Glühkerze bei laufendem Motor schnell auf einen Sollwert regeln lässt.
  • Die vorstehend genannte Aufgabe wird durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Bei einem erfindungsgemäßen Regelungsverfahren wird nicht wie bei herkömmlichen PID-Regelungsverfahren ein Sollwert einer temperaturabhängigen elektrischen Größe mit einem Istwert verglichen und die Effektivspannung in Abhängigkeit von der momentanen und gegebenenfalls einer vorhergehenden Abweichung geändert. Stattdessen wird bei einem erfindungsgemäßen Verfahren ein mathematisches Modell der Glühkerze verwendet, mit dem ein erwarteter Wert der elektrischen Größe berechnet wird. Dieses Modell ist mit der die Glühkerze enthaltenden Regelstrecke rückgekoppelt, d. h. eine Änderung der Stellgröße wird zum Erreichen der gewünschten Solltemperatur bzw. des gewünschten Sollwertes in Abhängigkeit von dem Ergebnis eines Vergleichs auf der Grundlage der Ausgangsgröße des Modells und des Sollwerts vorgenommen. Die für eine Regelung erforderliche Rückführung erfolgt also über den Ausgang des mathematischen Modells, an dem die von dem Modell gelieferte Ausgangsgröße bereitgestellt wird.
  • Durch Auswertung des berechneten Wertes, bevorzugt durch Vergleich mit dem gemessenen Wert, wird ein Fehlersignal erzeugt, aus dem zusammen mit dem Wert der Effektivspannung für das mathematische Modell eine Eingangsgröße berechnet wird. Aus dieser Eingangsgröße berechnet das mathematische Modell eine Ausgangsgröße, die den erwarteten Wert der elektrischen Größe vorgibt.
  • Dabei kann die Ausgangsgröße des Modells unmittelbar der erwartete Wert der elektrischen Größe sein oder diesen lediglich vorgeben, so dass der erwartete Wert durch einen weiteren Rechenschritt aus der Ausgangsgröße ermittelt wird, beispielsweise durch eine Multiplikation mit einem konstanten Faktor. Dementsprechend kann der auf der Grundlage der Ausgangsgröße und des Sollwerts vorzunehmende Vergleich durchgeführt werden, indem aus dem Sollwert und der Ausgangsgröße berechnete Größen, beispielsweise Spannungswerte, verglichen werden oder indem der Sollwert unmittelbar mit dem erwarteten Wert verglichen wird.
  • Mit dem Fehlersignal werden eventuelle Modellierungsfehler korrigiert. Ohne externe Einflüsse, d.h. Störungen, stimmt der berechnete Wert deshalb nach einer Zeitspanne, deren Dauer von der Präzision des mathematischen Modells abhängt, schließlich mit dem gemessenen Wert überein. Treten Störungen der Kerzentemperatur auf, führt dies zu einer Abweichung der berechneten Größe von der gemessenen Größe. Da die Eingangsgröße des mathematischen Modells sowohl von dem berechneten als auch von dem gemessenen Wert, beispielsweise der Differenz von gemessenem und berechnetem Wert, abhängt, folgt das mathematische Modell auch dann der Glühkerze, d.h. der berechnete Wert nähert sich auch bei Auftreten von Störungen dem gemessenen Wert an.
  • Durch ein erfindungsgemäßes Regelungsverfahren können Störungen der Kerzentemperatur wesentlich schneller korrigiert werden als dies mit herkömmlichen Regelungsverfahren möglich ist. Bei herkömmlichen PID-Verfahren hängt die Änderung der Stellgröße nämlich nicht nur von der momentanen Abweichung zwischen Istwert und Sollwert, sondern auch von vorhergehenden Abweichungen (I- bzw. D-Anteil) ab. Störungen haben jedoch mit vorhergehenden Abweichungen in der Regel nichts zutun, so dass die Berücksichtigung vorhergehender Abweichungen bei der Behandlung von Störungen oft nicht hilft. Andererseits lassen sich auch mit einer reinen Proportionalregelung keine guten Ergebnisse erzielen, da die charakteristischen Eigenschaften eines Systems dabei nur schlecht erfasst werden können. Ein erfindungsgemäßes Regelungsverfahren ermöglicht dagegen im störungsfreien Fall ebenso wie beim Auftreten von Störungen eine effiziente und schnelle Temperaturregelung.
  • Das mathematische Modell, mit dem ein erwarteter Wert der elektrischen Größe berechnet wird, kann beispielsweise als eine lineare Differenziaigleichung formuliert werden. Im einfachsten Fall enthält das mathematische Modell nur zwei Parameter, die für eine gegebene Glühkerze und deren Einbauumgebung charakteristisch sind. Mit der ersten Konstante wird der derzeitige Wert der zu berechnenden Größe gewichtet, mit einer zweiten Konstante kann die Stellgröße, also die Effektivspannung gewichtet werden.
  • Bevorzugt wird bei einem erfindungsgemäßen Verfahren als temperaturabhängige elektrische Größe der elektrische Widerstand oder - was gleichbedeutend ist - die elektrische Leitfähigkeit verwendet. Dabei kann der elektrische Widerstand beziehungsweise die elektrische Leitfähigkeit der Glühkerze einschließlich Zuleitungen verwendet werden. Selbstverständlich kann aber auch der elektrische Widerstand beziehungsweise die Leitfähigkeit der Glühkerze ohne Beiträge von Zuleitungen berücksichtigt werden. Alternativ oder zusätzlich kann als temperaturabhängige elektrische Größe beispielsweise auch die Induktivität verwendet werden.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass durch Auswertung des berechneten Wertes ein zweites Fehlersignal erzeugt wird, das zur Korrektur des Sollwerts der elektrischen Größe, beispielsweise des Sollwiderstands, verwendet wird. Auf diese Weise lässt sich der Einfluss von Störungen, die bei laufendem Motor durch den Fahrbetrieb hervorgerufen werden, noch besser behandeln. Indem nämlich zu dem Sollwert eine Korrektur addiert wird, kann eine Störung besonders wirksam kompensiert und die gewünschte Solltemperatur besonders schnell erreicht werden. Führt die Störung beispielsweise zu einer zusätzlichen Erwärmung der Glühkerze, also einer Temperaturerhöhung, kann die gewünschte Solltemperatur schneller erreicht werden, indem bei der Umsetzung des Sollwertes in einen Wert der Effektivspannung von einem etwas kleineren Sollwert ausgegangen wird. Auf diese Wiese kann der zusätzliche Energieeintrag einer Störung durch eine geringere Heizleistung ausgeglichen werden. Die Korrektur des Sollwertes kann beispielsweise mit einem Kennfeld ermittelt werden, aus dem unter Berücksichtigung des zweiten Fehlersignals und der Solltemperatur bzw. eines aus der Solltemperatur bestimmten Sollwerts eine Auswahl vorgenommen wird. Mit dem zweiten Fehlersignal wird also eine zweite Rückführung vorgenommen.
  • Diese zweite Rückführung führt dazu, dass bei dem Verfahren an sich zwei Regelkreise vorhanden sind, die jeweils eine die Glühkerze enthaltende Regelstrecke enthalten. Ein erster Regelkreis entsteht durch die Rückführung des Ausgangs des mathematischen Modells. Ein zweiter Regelkreis durch die Rückführung des zweiten Fehlersignals.
  • Das zweite Fehlersignal kann durch einen Vergleich des berechneten Werts mit dem gemessenen Wert erzeugt werden, beispielsweise durch Differenzbildung, so dass das zweite Fehlersignal der Differenz zwischen den beiden berechneten Werten proportional ist.
  • Möglich ist es aber auch, das zweite Fehlersignal zu ermitteln, indem ein weiteres mathematischen Modell der Glühkerze verwendet wird, wobei als Eingangsgröße des weiteren mathematischen Modells der Wert der an der Glühkerze anliegenden Effektivspannung verwendet wird und das zweite Fehlersignal durch Vergleich der Ausgangsgrößen der beiden Modelle erzeugt wird. Bei dieser Vorgehensweise hängt also die Eingangsgröße des ersten Modells sowohl von der Effektivspannung als auch von dem gemessenen Wert ab, während bei dem zweiten Modell die Eingangsgröße nur von der Effektivspannung abhängt. Bevorzugt sind die beiden mathematischen Modelle identisch, führen also an einer Eingangsgröße dieselben Rechenoperationen durch.
  • Die beschriebene Verwendung von zwei mathematischen Modellen hat überraschenderweise den Vorteil, dass Modellierungsfehler einen kleineren Einfluss haben. Dies hat den Vorteil, dass die Qualität der Regelung weniger stark durch geänderte Bedingungen, beispielsweise Verwendung einer gegebenen Glühkerze in einem anderen Motor oder eine Änderung des Glühkerzentyps selbst, beeinflusst wird. Der mitunter erhebliche Aufwand, beispielsweise durch entsprechende Versuche, geeignete Parameter für das mathematische Modell des beschriebenen Verfahrens zu ermitteln, lässt sich deshalb reduzieren.
  • Neben dem vorstehend beschriebenen Verfahren betrifft die vorliegende Erfindung ferner ein Glühkerzensteuergerät, das im Betrieb ein erfindungsgemäßes Verfahren durchführt. Ein derartiges Glühkerzensteuergerät kann beispielsweise mit einem Speicher und einer Steuereinheit, beispielsweise einem Mikroprozessor, realisiert werden, wobei in dem Speicher ein Programm gespeichert ist, das im Betrieb das erfindungsgemäße Verfahren durchführt. Die Hardwarekomponenten eines solchen Glühkerzensteuergeräts können identisch mit der Hardware handelsüblich erhältlicher Glühkerzensteuergeräte sein.
  • Weitere Einzelheiten und Vorteile der Erfindung werden an Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Gleiche und einander
  • Entsprechende Elemente sind dabei mit übereinstimmenden Bezugszeichen versehen. Es zeigen:
  • Figur 1
    eine schematische Darstellung eines Ausführungsbeispiels eines erfindungs- gemäßen Regelungsverfahrens; und
    Figur 2
    ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Regelungsver- fahrens.
  • In Figur 1 ist schematisch der Ablauf eines Verfahrens zur Regelung der Temperatur einer Glühkerze 1 dargestellt. Bei dem dargestellten Regelungsverfahren wird eine durch Pulsweitenmodulation aus einer Bordnetzspannung eines Fahrzeugs erzeugte Effektivspannung Ueff als Stellgröße verwendet. Als Regelgröße wird bei dem dargestellten Ausführungsbeispiel der elektrische Widerstand Re der Glühkerze 1 verwendet, wobei für das Regelungsverfahren prinzipiell auch irgendeine andere temperaturabhängige elektrische Größe oder ein Vektor mit mehreren Größen verwendet werden kann.
  • Bei dem im Figur 1 dargestellten Regelungsverfahren wird in einem ersten Schritt aus einer vorgegebenen Solltemperatur TSolI ein Sollwert RSolI des elektrischen Widerstands der Glühkerze ermittelt, beispielsweise mittels eines Kennfelds 2. Aus dem Sollwert RSolI wird dann ein Wert für die Effektivspannung Ueff ermittelt, die an die Glühkerze 1 angelegt wird. Die Umsetzung des Sollwerts RSolI in einen Wert für die Effektivspannung Ueff kann beispielsweise mittels eines Vorfilters 3 oder einer Kennlinie vorgenommen werden.
  • Mit einem mathematischen Modell 4 wird aus der an die Glühkerze 1 angelegten Effektivspannung Ueff ein erwarteter Wert Re des elektrischen Widerstands berechnet. Das mathematische Modell 4 kann als Ausgangsgröße unmittelbar den erwarteten Wert liefern. Bei dem dargestellten Ausführungsbeispiel liefert das Modell 4 jedoch eine Ausgangsgröße X, aus der in einem weiteren Schritt 4a der erwartete Wert Re der elektrischen Größe berechnet wird, bevorzugt durch Multiplikation mit einer Konstanten.
  • Durch Auswertung des berechneten Wertes Re wird in einem Verfahrensschritts 5 ein erstes Fehlersignal e1(t) erzeugt. Dazu wird der berechnete Wert Re mit einem gemessenen Wert Rm des Widerstands verglichen. Zur Berechnung des ersten Fehlersignals e1(t) kann beispielsweise von dem gemessenen Widertandswert Rm der berechnete Widerstandswert Re subtrahiert werden, wie dies in Fig. 1 durch das Minuszeichen (-) angedeutet ist. Das Ergebnis einer solchen Differenzbildung kann mit einem geeigneten Faktor, der empirisch bestimmt werden kann, gewichtet werden, so dass das erste Fehlersignal e1(t) der Differenz zwischen dem gemessenen Widerstandswert Rm und dem berechneten Widerstandswert Re proportional ist.
  • Als Eingangsgröße des mathematischen Modells 4 wird ein aus dem Wert der Effektivspannung Ueff und dem ersten Fehlersignal e1(t) berechneter Wert verwendet. Ein derartiges mathematisches Modell 4, dessen Eingangsgröße von einem Vergleich zwischen einem berechneten und einem gemessenen Wert abhängt, wird als Luenberger Beobachter bezeichnet.
  • Mit der Ausgangsgröße X des mathematischen Modells 4 und dem Sollwert RSolI wird ein korrigierter Wert für die Effektivspannung Ueff berechnet und die Effektivspannung Ueff auf den korrigierten Wert geändert. Wenn die Ausgangsgröße X zugleich der erwartete Wert Re ist, kann die Ausgangsgröße direkt mit dem Sollwert RSolI verglichen werden und die Effektivspannung Ueff gemäß dem Ergebnis des Vergleichs geändert werden, beispielsweise proportional zu dem Differenzbetrag. Allgemein gesprochen genügt es, den Ausgang des Modells 4 mit einem Eingang eines Reglers zukoppeln, also eine Rückführung des Modellausgangs vorzunehmen.
  • Wenn die Ausgangsgröße X, wie bei dem dargestellten Ausführungsbeispiel, nicht mit dem erwarteten Wert Re übereinstimmt, wird zunächst aus der Ausgangsgröße X in einem Verfahrensschritt 6, der als Zustandsregler oder Rückführmatrix bezeichnet werden kann, ein Widerstandswert oder ein Spannungswert berechnet, mit dem der Sollwert RSolI oder eine aus dem Sollwert RSolI ermittelter Größe, nämlich die derzeitige Effektivspannung Ueff, verglichen wird. Gemäß dem Resultat dieses Vergleichs wird die Effektivspannung Ueff geändert. Bevorzugt wird dabei zu dem momentanen Wert der Effektivspannung (Ueff) ein Spannungswert addiert, welcher der Differenz zwischen dem Sollwert RSolI und dem berechneten Wert Re proportional ist. Der Vergleich und die Änderung der Effektivspannung Ueff in in Abhängigkeit von der dabei festgestellten Differenz sind in Figur 1 als Verfahrensschritt 7 dargestellt.
  • Durch Auswertung des berechneten Werts Re wird ein zweites Fehlersignal e2(t) ermittelt, das zur Korrektur des Sollwerts RSolI verwendet wird. Dazu wird der aus der Solltemperatur TSolI ermittelte Sollwert RSolI zusammen mit dem zweiten Fehlersignal e2(t) verwendet, um einen angepassten Sollwert zu ermitteln, beispielsweise mittels eines Kennfeldes 8. Bevorzugt wird dabei eine Korrektur des Sollwerts RSolI ermittelt und diese zur Berechnung zu dem Sollwerts RSolI dazuaddiert, wie dies in Figur 1 durch den Verfahrensschritt 9 angedeutet ist. Der korrigierte Sollwert wird anschließend in einen Wert für die Effektivspannung Ueff umgesetzt, beispielsweise mittels eines Vorfilters 3 oder einer Kennlinie. Der so ermittelte Wert der Effektivspannung Ueff wird gegebenenfalls in dem Verfahrensschritt 7 unter Berücksichtigung der Ausgangsgröße X angepasst.
  • Als mathematisches Modell 4 kann eine Differentialgleichung, insbesondere eine lineare Differentialgleichung verwendet werden. Beispielsweise kann als Modell 4 die folgende Rechenvorschrift verwendet werden: dR/dt = A•R + B•Ueff(t). Allgemein kann anstelle des Widerstands R auch eine andere elektrische Größe oder ein Vektor aus mehreren elektrischen Größen als Regelgröße x verwendet werden, so dass sich das mathematische Modell allgemeiner in der Form dx/dt = A•x + B•u(t) schreiben lässt, wobei u die Stellgröße ist.
  • Die Berechnung eines Spannungswertes aus der Ausgangsgröße X es Modells 4 kann beispielsweise durch Multiplikation mit einer Kostante ermittelt werden, deren Wert durch Ausprobieren bestimmt werden kann.
  • Das zweite Fehlersignal e2(t) wird bei dem dargestellten Ausführungsbeispiel ähnlich wie das erste Fehlersignal e1(t) durch Vergleich des gemessenen Werts mit dem berechneten Wert ermittelt, beispielsweise durch Differenzbildung und Multiplikation der Differenz mit einem Gewichtungsfaktor.
  • Das erfindungsgemäße Regelungsverfahren beinhaltet an sich zwei Regelkreise. Ein erster Regelkreis enthält die Glühkerze 1 und das Modell 4, bei dem dargestellten Ausführungsbeispiel enthält dieser erste Regelkreis die Glühkerze 1, den Verfahrenschritt 5, das Modell 4 sowie die Verfahrenschritts 6 und 7. Ein zweiter Regelkreis enthält die Glühkerze 1 und die Rückführung des zweiten Fehlersignals.
  • Figur 2 zeigt ein weiteres Ausführungsbeispiel eines Verfahrens zur Regelung der Temperatur einer Glühkerze 1. Dieses Verfahren unterscheidet sich von dem vorstehenden anhand von Figur 1 erläuterten Verfahren in erster Linie dadurch, dass aus dem Wert der an der Glühkerze 1 anliegenden Effektivspannung Ueff mit einem weiteren mathematischen Modell 10 der Glühkerze 1 eine Ausgangsgröße X2 berechnet wird. Die Rechenvorschriften der beiden Modelle 4, 10 können dabei identisch sein. Allerdings wird bei dem zweiten Modell 10 als Eingangsgröße unmittelbar die an der Glühkerze anliegende Effektivspannung Ueff verwendet, während bei dem ersten Modell die Eingangsgröße aus dem ersten Fehlersignal e1(t) und der Effektivspannung Ueff berechnet wird.
  • Das zweite Fehlersignal e2(t) wird bei dem in Figur 2 dargestellten Ausführungsbeispiel durch Vergleich der Ausgangsgrößen X, X2 der beiden Modelle 4, 10 ermittelt, beispielsweise durch Differenzbildung, wie dies in Figur 2 angedeutet ist. Der Differenzbetrag kann zur Berechnung des zweiten Fehlersignals e2(t) mit einem konstanten Faktor multipliziert werden. Das zweite Fehlersignal e2(t) ist deshalb bei dem zweiten Ausführungsbeispiel der Differenz zwischen den beiden Ausgangsgrößen X, X2.
  • Bezugszeichen
  • 1
    Glühkerze
    2
    Kennfeld
    3
    Vorfilter
    4
    erstes Modell
    4a
    Verfahrensschritt
    5
    Verfahrensschritt
    6
    Verfahrensschritt
    7
    Verfahrensschritt
    8
    Kennfeld
    9
    Verfahrensschritt
    10
    zweites Modell
    Ueff
    Effektivspannung
    TSolll
    Solltemperatur
    RSoll
    Sollwert
    Re
    erwarteter Widerstand
    Rm
    gemessener Widerstand
    e1(t)
    erstes Fehlersignal
    e2(t)
    zweites Fehlersignal
    X
    Ausgangsgröße des ersten Modells
    X2
    Ausgangsgröße des zweiten Modells

Claims (15)

  1. Verfahren zur Regelung der Temperatur einer Glühkerze (1), wobei aus einer Solltemperatur (TSolII) ein Sollwert (RSolI) einer temperaturabhängigen elektrischen Größe ermittelt wird, und
    eine durch Pulsweitenmodulation erzeugte Effektivspannung (Ueff) an die Glühkerze (1) angelegt wird,
    dadurch gekennzeichnet, dass
    mit einem mathematischen Modell (4), das aus einer Eingangsgröße eine an seinem Ausgang bereitgestellte Ausgangsgröße (X) berechnet, ein erwarteter Wert (Re) der elektrischen Größe berechnet wird,
    die elektrische Größe gemessen wird,
    durch Auswertung des berechneten Wertes (Re) ein erstes Fehlersignal e1(t) erzeugt wird,
    als Eingangsgröße des mathematischen Modells (4) ein aus dem Wert der Effektivspannung (Ueff) und dem Fehlersignal (e1(t)) berechneter Wert verwendet wird, wobei das mathematische Modell (4) aus der Eingangsgröße eine Ausgangsgröße (X) berechnet, die den erwarteten Wert (Re) der elektrischen Größe vorgibt, und
    mit der Ausgangsgröße (X) des mathematischen Modells (4) ein korrigierter Wert für die Effektivspannung (Ueff) berechnet und die Effektivspannung (Ueff) auf den korrigierten Wert geändert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die temperaturabhängige elektrische Größe der elektrische Widerstand ist.
  3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das erste Fehlersignal (e1(t)) durch einen Vergleich des berechneten Werts (Re) mit dem gemessenen Wert (Rm) erzeugt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Ausgangsgröße (X) dem erwarteten Wert (Re) der elektrischen Größe proportional ist.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Berechnung des korrigierten Werts für die Effektivspannung (Ueff) ein aus der Ausgangsgröße (X) berechneter Wert mit dem Sollwert (RSolI) oder einer aus dem Sollwert ermittelten Größe verglichen und die Effektivspannung (Ueff) um so stärker geändert wird desto größer eine bei dem Vergleich festgestellte Differenz ist..
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der korrigierte Wert für die Effektivspannung (Ueff) berechnet wird, indem zu dem momentanen Wert der Effektivspannung (Ueff) ein Spannungswert addiert wird, welcher der Differenz zwischen dem Sollwert (RSolI) und dem berechneten Wert (Re) proportional ist.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass durch Auswertung des berechneten Werts (Re) ein zweites Fehlersignal (e2(t)) erzeugt wird, das zur Korrektur des Sollwerts (RSolI) verwendet wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das zweite Fehlersignal (e2(t)) durch einen Vergleich des berechneten Werts (Re) mit dem gemessenen Wert (Rm) erzeugt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das zweite Fehlersignal (e2(t)) der Differenz zwischen dem berechneten Wert (Re) und dem gemessenen Wert (Rm) proportional ist.
  10. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein weiteres mathematischen Modell (10) der Glühkerze (1) verwendet wird, wobei als Eingangsgröße des weiteren mathematischen Modells (10) der Wert der an der Glühkerze (1) anliegenden Effektivspannung (Ueff) verwendet wird und das zweite Fehlersignal durch Vergleich der Ausgangsgrößen (X, X2) der beiden Modelle (4, 10) erzeugt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das zweite Fehlersignal (e2(t)) der Differenz zwischen den beiden Ausgangsgrößen (X, X2) proportional ist.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die beiden mathematischen Modelle (4, 10) identisch sind.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass aus dem zweiten Fehlersignal (e2(t)) und dem Sollwert (RSolI) mittels eines Kennfeldes eine Korrektur des Sollwerts (RSolI) ermittelt wird.
  14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das erste Fehlersignal (e1(t)) zur Berechnung der Eingangsgröße additiv mit dem Wert der Effektivspannung (Ueff) verknüpft wird.
  15. Glühkerzensteuergerät, dadurch gekennzeichnet, dass das Glühkerzensteuergerät im Betrieb ein Verfahren nach einem der vorstehenden Ansprüche durchführt.
EP10003958.5A 2009-06-04 2010-04-15 Verfahren zur Regelung der Temperatur einer Glühkerze Not-in-force EP2258939B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910024138 DE102009024138B4 (de) 2009-06-04 2009-06-04 Verfahren zur Regelung der Temperatur einer Glühkerze

Publications (3)

Publication Number Publication Date
EP2258939A2 true EP2258939A2 (de) 2010-12-08
EP2258939A3 EP2258939A3 (de) 2015-09-16
EP2258939B1 EP2258939B1 (de) 2016-07-20

Family

ID=42306745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10003958.5A Not-in-force EP2258939B1 (de) 2009-06-04 2010-04-15 Verfahren zur Regelung der Temperatur einer Glühkerze

Country Status (5)

Country Link
US (1) US8972075B2 (de)
EP (1) EP2258939B1 (de)
JP (1) JP5779320B2 (de)
KR (1) KR101694688B1 (de)
DE (1) DE102009024138B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711540A4 (de) * 2011-05-19 2015-12-30 Bosch Corp Antriebssteuerverfahren für glühkerzen und antriebssteuervorrichtung für glühkerzen

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW470818B (en) 2000-05-18 2002-01-01 Thk Co Ltd Spherical bearing and method for manufacturing the same
EP2123901B1 (de) 2008-05-21 2013-08-28 GM Global Technology Operations LLC Verfahren zur Steuerung des Betriebs einer Zündkerze in einem Dieselmotor
JP5660612B2 (ja) * 2011-01-12 2015-01-28 ボッシュ株式会社 グロープラグ先端温度推定方法及びグロープラグ駆動制御装置
DE102011004514A1 (de) * 2011-02-22 2012-08-23 Robert Bosch Gmbh Verfahren und Steuergerät zur Einstellung einer Temperatur einer Glühstiftkerze
DE102011086445A1 (de) * 2011-11-16 2013-05-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Temperatur einer Glühstiftkerze in einer Brennkraftmaschine
DE102011087989A1 (de) * 2011-12-08 2013-06-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung einer Glühstiftkerze in einer Brennkraftmaschine
FR2987405B1 (fr) * 2012-02-23 2014-04-18 Peugeot Citroen Automobiles Sa Architecture modulaire de controle-commande de bougies de pre/post chauffage
DE102012102005B3 (de) * 2012-03-09 2013-05-23 Borgwarner Beru Systems Gmbh Verfahren zum Regeln der Temperatur einer Glühkerze
DE102012105376B4 (de) * 2012-03-09 2015-03-05 Borgwarner Ludwigsburg Gmbh Verfahren zum Regeln der Temperatur einer Glühkerze
GB2505915A (en) * 2012-09-14 2014-03-19 Gm Global Tech Operations Inc Control method comprising correction of a feed forward engine control
DE102015000845A1 (de) * 2015-01-27 2016-07-28 W.O.M. World Of Medicine Gmbh Verfahren und Vorrichtung zur Regelung der Temperatur des Gasstroms bei medizintechnischen Vorrichtungen
DE102017109071B4 (de) * 2017-04-27 2022-10-20 Borgwarner Ludwigsburg Gmbh Verfahren zum Regeln der Temperatur von Glühkerzen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607153A (en) * 1985-02-15 1986-08-19 Allied Corporation Adaptive glow plug controller
WO1993009346A1 (en) * 1991-10-31 1993-05-13 Nartron Corporation Glow plug controller
US6009369A (en) * 1991-10-31 1999-12-28 Nartron Corporation Voltage monitoring glow plug controller
US6148258A (en) * 1991-10-31 2000-11-14 Nartron Corporation Electrical starting system for diesel engines
DE4446113C5 (de) * 1994-12-22 2008-08-21 J. Eberspächer GmbH & Co. KG Zündvorrichtung für Heizgeräte
US6878903B2 (en) * 2003-04-16 2005-04-12 Fleming Circle Associates, Llc Glow plug
DE10348391B3 (de) * 2003-10-17 2004-12-23 Beru Ag Verfahren zum Glühen einer Glühkerze für einen Dieselmotor
JP4089620B2 (ja) * 2004-01-15 2008-05-28 株式会社デンソー 車両制御システム
DE102006010194B4 (de) * 2005-09-09 2011-06-09 Beru Ag Verfahren und Vorrichtung zum Betreiben der Glühkerzen einer selbstzündenden Brennkraftmaschine
DE102006048225A1 (de) * 2006-10-11 2008-04-17 Siemens Ag Verfahren zur Bestimmung einer Glühkerzentemperatur
US7631625B2 (en) * 2006-12-11 2009-12-15 Gm Global Technology Operations, Inc. Glow plug learn and control system
DE102006060632A1 (de) * 2006-12-21 2008-06-26 Robert Bosch Gmbh Verfahren zur Regelung der Temperatur einer Glühkerze einer Brennkraftmaschine
FR2910564B1 (fr) * 2006-12-22 2013-05-10 Renault Sas Procede de pilotage de l'alimentation electrique d'une bougie de pre-chauffage de moteur a combustion interne
US8183501B2 (en) * 2007-12-13 2012-05-22 Delphi Technologies, Inc. Method for controlling glow plug ignition in a preheater of a hydrocarbon reformer
GB2456784A (en) * 2008-01-23 2009-07-29 Gm Global Tech Operations Inc Glow plug control unit and method for controlling the temperature in a glow plug
DE102008007271A1 (de) * 2008-02-04 2009-08-06 Robert Bosch Gmbh Verfahren zur Steuerung von zumindest einer Glühstiftkerze in einem Brennkraftmotor und Motorsteuergerät
EP2123901B1 (de) * 2008-05-21 2013-08-28 GM Global Technology Operations LLC Verfahren zur Steuerung des Betriebs einer Zündkerze in einem Dieselmotor
EP2123902B1 (de) * 2008-05-21 2011-10-12 GM Global Technology Operations LLC Verfahren und Vorrichtung zum Steuern von Glühstiften in einem Dieselmotor, insbesondere für Motorfahrzeuge
JP4956486B2 (ja) * 2008-05-30 2012-06-20 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711540A4 (de) * 2011-05-19 2015-12-30 Bosch Corp Antriebssteuerverfahren für glühkerzen und antriebssteuervorrichtung für glühkerzen

Also Published As

Publication number Publication date
JP5779320B2 (ja) 2015-09-16
EP2258939B1 (de) 2016-07-20
KR101694688B1 (ko) 2017-01-10
DE102009024138A1 (de) 2010-12-16
US8972075B2 (en) 2015-03-03
JP2010281315A (ja) 2010-12-16
EP2258939A3 (de) 2015-09-16
KR20100130948A (ko) 2010-12-14
US20100312416A1 (en) 2010-12-09
DE102009024138B4 (de) 2012-02-02

Similar Documents

Publication Publication Date Title
EP2258939B1 (de) Verfahren zur Regelung der Temperatur einer Glühkerze
EP2856191B1 (de) Verfahren und eine vorrichtung zur prüfung von elektrischen energiespeichersystemen für den antrieb von fahrzeugen
DE102016218464B3 (de) Verfahren und Vorrichtung zur Fahrdynamikregelung für ein Kraftfahrzeug
DE102016007404A1 (de) Servosteuervorrichtung mit Funktion zur Online-Optimierung der Regelungsverstärkung unter Verwendung einer Bewertungsfunktion
EP3308442B1 (de) Verfahren zur rechnergestützten parametrierung eines umrichters in einem stromnetz
EP3376626A1 (de) Verfahren zur regelung der wirkleistungsabgabe eines windparks sowie ein solcher windpark
EP2588925B1 (de) Verfahren und vorrichtung zur ermittlung von modellparametern zur regelung eines dampfkraftwerksblocks, regeleinrichtung für einen dampferzeuger und computerprogrammprodukt
EP3376026B1 (de) Verfahren zur regelung der wirkleistungsabgabe eines windparks sowie ein entsprechender windpark
EP3542229B1 (de) Einrichtung und verfahren zur bestimmung der parameter einer regeleinrichtung
DE102011079490B4 (de) Ansteuerung von Gradientenspulen unter Berücksichtigung der induktiven Kopplung
EP3165801B1 (de) Verfahren und vorrichtung zum ansteuern eines magnetventils
EP2199879A1 (de) Vorrichtung und Verfahren zur Minimierung eines dynamischen Schleppfehlers
WO2022122262A1 (de) ELEKTRISCHES SYSTEM UND VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINES WERTEVERLAUFS EINER STEUERGRÖßE
EP4058666A1 (de) Verfahren und system zum kalibrieren einer steuerung einer maschine
EP3244270A1 (de) Regeleinrichtung mit lernfähiger fehlerkompensation
DE102008038484B4 (de) Zustandsregelsystem zur Regelung einer Regelgröße einer Vorrichtung, insbesondere einer pneumatischen Schweißzange
EP3043467A1 (de) Regelung einer Antriebsvorrichtung
DE10011607A1 (de) Verfahren und Vorrichtung sowie Computerprogrammprodukt zum Betrieb einer technischen Anlage
DE102015220005B4 (de) Verfahren und Schaltungsanordnung zum Ansteuern eines Halbleiterschalters, Wechselrichter
AT522520B1 (de) Verfahren für eine Kontrolle eines Schutzverfahrens für den Schutz einer Elektrode einer Batterievorrichtung
AT521666B1 (de) Verfahren und Vorrichtung zur Kompensation von Störgrößen
DE102006044089A1 (de) Verfahren zum Betrieb einer elektrischen Servolenkung
DE102014225675A1 (de) Totzonenregelungsverfahren und Totzonenregler
DE102016214282B3 (de) Bestimmung des elektrischen Widerstands eines Kraftstoffinjektors mit Magnetspulenantrieb
EP2104220B1 (de) Verfahren zum Betrieb einer Umrichterschaltung sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BORGWARNER LUDWIGSBURG GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALN20150812BHEP

Ipc: F02P 19/02 20060101AFI20150812BHEP

17P Request for examination filed

Effective date: 20151022

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 19/02 20060101AFI20160215BHEP

Ipc: F02D 41/14 20060101ALN20160215BHEP

INTG Intention to grant announced

Effective date: 20160323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012032

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012032

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

26N No opposition filed

Effective date: 20170421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 814316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010012032

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720