EP2258939A2 - Method for monitoring the temperature of a glow plug - Google Patents
Method for monitoring the temperature of a glow plug Download PDFInfo
- Publication number
- EP2258939A2 EP2258939A2 EP10003958A EP10003958A EP2258939A2 EP 2258939 A2 EP2258939 A2 EP 2258939A2 EP 10003958 A EP10003958 A EP 10003958A EP 10003958 A EP10003958 A EP 10003958A EP 2258939 A2 EP2258939 A2 EP 2258939A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- error signal
- eff
- calculated
- effective voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/025—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1415—Controller structures or design using a state feedback or a state space representation
- F02D2041/1416—Observer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/021—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
- F02P19/022—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply
Definitions
- the invention relates to a method for controlling the temperature of a glow plug, wherein from a setpoint temperature a desired value of a temperature-dependent electrical variable is determined and an effective voltage generated by pulse width modulation is used as a manipulated variable.
- the electric resistance or, which is equivalent, the electrical conductivity is usually used as the setpoint.
- other temperature-dependent electrical variables for example the inductance, can also be used instead of the electrical resistance or the electrical conductivity.
- the object of the invention is to show a way how to quickly regulate the temperature of a glow plug with the engine running to a target value.
- a desired value of a temperature-dependent electrical variable is not compared with an actual value, as in conventional PID control methods, and the effective voltage is changed as a function of the instantaneous and possibly a preceding deviation.
- a mathematical model of the glow plug is used, with which an expected value of the electrical quantity is calculated. This model is fed back with the controlled system containing the glow plug, d. H. a change in the manipulated variable is made to reach the desired setpoint temperature or the desired setpoint value as a function of the result of a comparison on the basis of the output quantity of the model and the setpoint value.
- the feedback required for a control therefore takes place via the output of the mathematical model at which the output variable provided by the model is provided.
- an error signal is generated from which an input variable is calculated together with the value of the effective voltage for the mathematical model. From this input, the mathematical model calculates an output that specifies the expected value of the electrical quantity.
- the output variable of the model can be the expected value of the electrical variable or merely predetermine the latter, so that the expected value is determined by a further calculation step from the output variable, for example by a multiplication by a constant factor.
- the comparison to be made based on the output and the setpoint may be performed by comparing values calculated from the setpoint and the output, such as voltage values, or by comparing the setpoint immediately with the expected value.
- the error signal corrects any modeling errors. Without external influences, i. Therefore, after a period of time whose duration depends on the precision of the mathematical model, the calculated value finally coincides with the measured value. If faults in the candle temperature occur, this leads to a deviation of the calculated size from the measured size. Since the input of the mathematical model depends on both the calculated and measured values, such as the difference between the measured and calculated values, the mathematical model follows the glow plug, i.e., the glow plug. the calculated value approaches the measured value even when disturbances occur.
- a control method By a control method according to the invention, defects in the candle temperature can be corrected much faster than is possible with conventional control methods.
- the change in the manipulated variable depends not only on the instantaneous deviation between the actual value and the setpoint, but also on previous deviations (I or D component). Disturbances, however, generally have nothing to do with previous deviations, so that the consideration of previous deviations in the treatment of disorders often does not help.
- a pure proportional control can not achieve good results, since the characteristic properties of a system can be detected only poorly.
- a control method according to the invention allows an efficient and rapid temperature control in the event of a fault as well as in the occurrence of disturbances.
- the mathematical model that calculates an expected value of electrical quantity may be formulated as a linear differential equation.
- the mathematical model contains only two parameters that are characteristic of a given glow plug and its installation environment. The first constant is used to weight the current value of the variable to be calculated, and the second variable to weight the manipulated variable, ie the effective voltage.
- the electrical resistance or, which is synonymous, the temperature-dependent electrical variable is preferred electrical conductivity used.
- the electrical resistance or the electrical conductivity of the glow plug including leads can be used.
- the electrical resistance or the conductivity of the glow plug without contributions from supply lines are taken into account.
- the inductance can also be used as a temperature-dependent electrical variable.
- a second error signal is generated by evaluating the calculated value, which is used to correct the setpoint value of the electrical variable, for example, the desired resistance.
- a fault can be compensated for particularly effectively and the desired setpoint temperature can be reached particularly quickly. If, for example, the fault leads to additional heating of the glow plug, ie an increase in temperature, the desired setpoint temperature can be reached more quickly by assuming a slightly lower setpoint value when converting the setpoint value into a value of the effective voltage. In this way, the additional energy input of a disturbance can be compensated by a lower heating power.
- the correction of the setpoint value can be determined, for example, using a characteristic map, from which a selection is made taking into account the second error signal and the setpoint temperature or a setpoint determined from the setpoint temperature. With the second error signal so a second feedback is made.
- This second feedback leads to two control loops being present per se in the method, each of which contains a controlled system containing the glow plug.
- a first control loop is created by the feedback of the output of the mathematical model.
- a second loop through the feedback of the second error signal.
- the second error signal can be generated by comparing the calculated value with the measured value, for example by subtraction, so that the second error signal is proportional to the difference between the two calculated values.
- the second error signal by using a further mathematical model of the glow plug, the input value of the further mathematical model being the value of the rms voltage applied to the glow plug, and the second error signal being used by comparing the output variables of the two models is produced.
- the input of the first model depends on both the rms voltage and the measured value, while in the second model the input depends only on the rms voltage.
- the two mathematical models are preferably identical, that is, they perform the same arithmetic operations on an input variable.
- the present invention further relates to a glow plug control device, which performs in operation a method according to the invention.
- a glow plug control device can be realized, for example, with a memory and a control unit, for example a microprocessor, wherein a program is stored in the memory, which carries out the method according to the invention during operation.
- the hardware components of such a glow plug control device may be identical to the hardware of commercially available glow plug control devices.
- FIG. 1 the sequence of a method for controlling the temperature of a glow plug 1 is shown schematically.
- an effective voltage U eff generated by pulse width modulation from an on-board voltage of a vehicle is used as the manipulated variable.
- the electrical resistance R e of the glow plug 1 is used in the illustrated embodiment, wherein for the control method in principle any other temperature-dependent electrical variable or a vector with multiple sizes can be used.
- a setpoint value R SolI of the electrical resistance of the glow plug is determined, for example by means of a characteristic map 2, from the setpoint temperature T SolI . From the setpoint value R SolI , a value is then determined for the effective voltage U eff which is applied to the glow plug 1 is created.
- the conversion of the setpoint value R SolI into a value for the effective voltage U eff can be carried out, for example, by means of a prefilter 3 or a characteristic curve.
- an expected value R e of the electrical resistance is calculated from the effective voltage U eff applied to the glow plug 1.
- the mathematical model 4 can provide as output directly the expected value.
- the model 4 provides an output X from which the expected value R e of the electrical quantity is calculated in a further step 4a, preferably by multiplication by a constant.
- a first error signal e 1 (t) is generated in a method step 5.
- the calculated value R e is compared with a measured value R m of the resistance.
- the calculated resistance value R e are subtracted, for example, from the measured Widertandswert R m, as shown in Fig. 1 indicated by the minus sign (-).
- the result of such difference formation may be weighted by an appropriate factor that may be empirically determined so that the first error signal e 1 (t) is proportional to the difference between the measured resistance R m and the calculated resistance R e .
- the input value of the mathematical model 4 is a value calculated from the value of the effective voltage U eff and the first error signal e 1 (t).
- Such a mathematical model 4 the input quantity of which depends on a comparison between a calculated and a measured value, is called Luenberger observer.
- the output quantity X of the mathematical model 4 and the setpoint value R SolI are used to calculate a corrected value for the effective voltage U eff and to change the effective voltage U eff to the corrected value. If the output X is also the expected value R e , the output can be directly compared with the setpoint R SolI and the effective voltage U eff changed according to the result of the comparison, for example proportional to the difference. Generally speaking, it is sufficient to couple the output of the model 4 with an input of a controller, that is, to carry out a feedback of the model output.
- a resistance value or a voltage value is first calculated from the output quantity X in a method step 6, which can be called a state regulator or feedback matrix Setpoint R SolI or a determined from the setpoint R SolI size, namely the current effective voltage U eff , is compared. According to the result of this comparison, the effective voltage U eff is changed. Preferably, a voltage value is added to the instantaneous value of the effective voltage (U eff ) which is proportional to the difference between the setpoint value R Sol and the calculated value R e .
- the comparison and the change in the effective voltage U eff in dependence on the difference determined thereby are in FIG. 1 shown as process step 7.
- a second error signal e 2 (t) is determined, which is used to correct the setpoint R SolI .
- the setpoint value R SolI determined from the setpoint temperature T SolI is used together with the second error signal e 2 (t) to determine an adjusted setpoint value, for example by means of a characteristic map 8.
- a correction of the setpoint value R SolI is determined Calculation added to the setpoint R SolI , as shown in FIG. 1 is indicated by the method step 9.
- the corrected setpoint value is subsequently converted into a value for the effective voltage U eff , for example by means of a prefilter 3 or a characteristic curve. If appropriate, the value of the effective voltage U eff determined in this way is adapted in method step 7 taking into account the output quantity X.
- a differential equation in particular a linear differential equation can be used.
- the calculation of a voltage value from the output variable X es model 4 can be determined, for example, by multiplying it by a constant whose value can be determined by trial and error.
- the second error signal e 2 (t) is in the illustrated embodiment similar to the first error signal e 1 (t) determined by comparing the measured value with the calculated value, for example by subtraction and multiplication of the difference with a weighting factor.
- the control method according to the invention comprises per se two control circuits.
- a first control circuit includes the glow plug 1 and the model 4, shown in the In the exemplary embodiment, this first control loop contains the glow plug 1, the method step 5, the model 4 and the method steps 6 and 7.
- a second control loop contains the glow plug 1 and the feedback of the second error signal.
- FIG. 2 shows another embodiment of a method for controlling the temperature of a glow plug 1.
- This method differs from the above with reference to FIG. 1 method explained in the first place by the fact that U eff an output X2 is calculated from the value of the voltage applied to the glow plug 1 effective voltage with a further mathematical model 10 of the glow plug. 1
- the calculation rules of the two models 4, 10 can be identical. However, in the case of the second model 10, the effective voltage U eff applied to the glow plug is used directly as the input variable, while in the first model the input variable is calculated from the first error signal e 1 (t) and the effective voltage U eff .
- the second error signal e 2 (t) is applied to the in FIG. 2 illustrated embodiment by comparing the output variables X, X2 of the two models 4, 10 determined, for example by subtraction, as shown in FIG. 2 is indicated.
- the difference can be multiplied by a constant factor to calculate the second error signal e 2 (t).
- the second error signal e 2 (t) is therefore in the second embodiment of the difference between the two output variables X, X2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feedback Control In General (AREA)
- Control Of Resistance Heating (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of Temperature (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Regelung der Temperatur einer Glühkerze, wobei aus einer Solltemperatur ein Sollwert einer temperaturabhängigen elektrischen Größe ermittelt und eine durch Pulsweitenmodulation erzeugte Effektivspannung als Stellgröße verwendet wird.The invention relates to a method for controlling the temperature of a glow plug, wherein from a setpoint temperature a desired value of a temperature-dependent electrical variable is determined and an effective voltage generated by pulse width modulation is used as a manipulated variable.
Bei Verfahren zur Regelung oder Steuerung der Temperatur einer Glühkerze wird als Sollwert in der Regel der elektrische Widerstand oder, was gleichbedeutend ist, die elektrische Leitfähigkeit verwendet. Prinzipiell können anstelle des elektrischen Widerstands oder der elektrischen Leitfähigkeit aber auch andere temperaturabhängige elektrische Größen, beispielsweise die Induktivität, verwendet werden.In methods for controlling or controlling the temperature of a glow plug, the electric resistance or, which is equivalent, the electrical conductivity is usually used as the setpoint. In principle, however, other temperature-dependent electrical variables, for example the inductance, can also be used instead of the electrical resistance or the electrical conductivity.
Aufgabe der Erfindung ist es, einen Weg aufzuzeigen, wie sich die Temperatur einer Glühkerze bei laufendem Motor schnell auf einen Sollwert regeln lässt.The object of the invention is to show a way how to quickly regulate the temperature of a glow plug with the engine running to a target value.
Die vorstehend genannte Aufgabe wird durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand von Unteransprüchen.The above object is achieved by a method having the features specified in
Bei einem erfindungsgemäßen Regelungsverfahren wird nicht wie bei herkömmlichen PID-Regelungsverfahren ein Sollwert einer temperaturabhängigen elektrischen Größe mit einem Istwert verglichen und die Effektivspannung in Abhängigkeit von der momentanen und gegebenenfalls einer vorhergehenden Abweichung geändert. Stattdessen wird bei einem erfindungsgemäßen Verfahren ein mathematisches Modell der Glühkerze verwendet, mit dem ein erwarteter Wert der elektrischen Größe berechnet wird. Dieses Modell ist mit der die Glühkerze enthaltenden Regelstrecke rückgekoppelt, d. h. eine Änderung der Stellgröße wird zum Erreichen der gewünschten Solltemperatur bzw. des gewünschten Sollwertes in Abhängigkeit von dem Ergebnis eines Vergleichs auf der Grundlage der Ausgangsgröße des Modells und des Sollwerts vorgenommen. Die für eine Regelung erforderliche Rückführung erfolgt also über den Ausgang des mathematischen Modells, an dem die von dem Modell gelieferte Ausgangsgröße bereitgestellt wird.In a closed-loop control method according to the invention, a desired value of a temperature-dependent electrical variable is not compared with an actual value, as in conventional PID control methods, and the effective voltage is changed as a function of the instantaneous and possibly a preceding deviation. Instead, in a method according to the invention, a mathematical model of the glow plug is used, with which an expected value of the electrical quantity is calculated. This model is fed back with the controlled system containing the glow plug, d. H. a change in the manipulated variable is made to reach the desired setpoint temperature or the desired setpoint value as a function of the result of a comparison on the basis of the output quantity of the model and the setpoint value. The feedback required for a control therefore takes place via the output of the mathematical model at which the output variable provided by the model is provided.
Durch Auswertung des berechneten Wertes, bevorzugt durch Vergleich mit dem gemessenen Wert, wird ein Fehlersignal erzeugt, aus dem zusammen mit dem Wert der Effektivspannung für das mathematische Modell eine Eingangsgröße berechnet wird. Aus dieser Eingangsgröße berechnet das mathematische Modell eine Ausgangsgröße, die den erwarteten Wert der elektrischen Größe vorgibt.By evaluating the calculated value, preferably by comparison with the measured value, an error signal is generated from which an input variable is calculated together with the value of the effective voltage for the mathematical model. From this input, the mathematical model calculates an output that specifies the expected value of the electrical quantity.
Dabei kann die Ausgangsgröße des Modells unmittelbar der erwartete Wert der elektrischen Größe sein oder diesen lediglich vorgeben, so dass der erwartete Wert durch einen weiteren Rechenschritt aus der Ausgangsgröße ermittelt wird, beispielsweise durch eine Multiplikation mit einem konstanten Faktor. Dementsprechend kann der auf der Grundlage der Ausgangsgröße und des Sollwerts vorzunehmende Vergleich durchgeführt werden, indem aus dem Sollwert und der Ausgangsgröße berechnete Größen, beispielsweise Spannungswerte, verglichen werden oder indem der Sollwert unmittelbar mit dem erwarteten Wert verglichen wird.In this case, the output variable of the model can be the expected value of the electrical variable or merely predetermine the latter, so that the expected value is determined by a further calculation step from the output variable, for example by a multiplication by a constant factor. Accordingly, the comparison to be made based on the output and the setpoint may be performed by comparing values calculated from the setpoint and the output, such as voltage values, or by comparing the setpoint immediately with the expected value.
Mit dem Fehlersignal werden eventuelle Modellierungsfehler korrigiert. Ohne externe Einflüsse, d.h. Störungen, stimmt der berechnete Wert deshalb nach einer Zeitspanne, deren Dauer von der Präzision des mathematischen Modells abhängt, schließlich mit dem gemessenen Wert überein. Treten Störungen der Kerzentemperatur auf, führt dies zu einer Abweichung der berechneten Größe von der gemessenen Größe. Da die Eingangsgröße des mathematischen Modells sowohl von dem berechneten als auch von dem gemessenen Wert, beispielsweise der Differenz von gemessenem und berechnetem Wert, abhängt, folgt das mathematische Modell auch dann der Glühkerze, d.h. der berechnete Wert nähert sich auch bei Auftreten von Störungen dem gemessenen Wert an.The error signal corrects any modeling errors. Without external influences, i. Therefore, after a period of time whose duration depends on the precision of the mathematical model, the calculated value finally coincides with the measured value. If faults in the candle temperature occur, this leads to a deviation of the calculated size from the measured size. Since the input of the mathematical model depends on both the calculated and measured values, such as the difference between the measured and calculated values, the mathematical model follows the glow plug, i.e., the glow plug. the calculated value approaches the measured value even when disturbances occur.
Durch ein erfindungsgemäßes Regelungsverfahren können Störungen der Kerzentemperatur wesentlich schneller korrigiert werden als dies mit herkömmlichen Regelungsverfahren möglich ist. Bei herkömmlichen PID-Verfahren hängt die Änderung der Stellgröße nämlich nicht nur von der momentanen Abweichung zwischen Istwert und Sollwert, sondern auch von vorhergehenden Abweichungen (I- bzw. D-Anteil) ab. Störungen haben jedoch mit vorhergehenden Abweichungen in der Regel nichts zutun, so dass die Berücksichtigung vorhergehender Abweichungen bei der Behandlung von Störungen oft nicht hilft. Andererseits lassen sich auch mit einer reinen Proportionalregelung keine guten Ergebnisse erzielen, da die charakteristischen Eigenschaften eines Systems dabei nur schlecht erfasst werden können. Ein erfindungsgemäßes Regelungsverfahren ermöglicht dagegen im störungsfreien Fall ebenso wie beim Auftreten von Störungen eine effiziente und schnelle Temperaturregelung.By a control method according to the invention, defects in the candle temperature can be corrected much faster than is possible with conventional control methods. In conventional PID methods, the change in the manipulated variable depends not only on the instantaneous deviation between the actual value and the setpoint, but also on previous deviations (I or D component). Disturbances, however, generally have nothing to do with previous deviations, so that the consideration of previous deviations in the treatment of disorders often does not help. On the other hand, even with a pure proportional control can not achieve good results, since the characteristic properties of a system can be detected only poorly. On the other hand, a control method according to the invention allows an efficient and rapid temperature control in the event of a fault as well as in the occurrence of disturbances.
Das mathematische Modell, mit dem ein erwarteter Wert der elektrischen Größe berechnet wird, kann beispielsweise als eine lineare Differenziaigleichung formuliert werden. Im einfachsten Fall enthält das mathematische Modell nur zwei Parameter, die für eine gegebene Glühkerze und deren Einbauumgebung charakteristisch sind. Mit der ersten Konstante wird der derzeitige Wert der zu berechnenden Größe gewichtet, mit einer zweiten Konstante kann die Stellgröße, also die Effektivspannung gewichtet werden.For example, the mathematical model that calculates an expected value of electrical quantity may be formulated as a linear differential equation. In the simplest case, the mathematical model contains only two parameters that are characteristic of a given glow plug and its installation environment. The first constant is used to weight the current value of the variable to be calculated, and the second variable to weight the manipulated variable, ie the effective voltage.
Bevorzugt wird bei einem erfindungsgemäßen Verfahren als temperaturabhängige elektrische Größe der elektrische Widerstand oder - was gleichbedeutend ist - die elektrische Leitfähigkeit verwendet. Dabei kann der elektrische Widerstand beziehungsweise die elektrische Leitfähigkeit der Glühkerze einschließlich Zuleitungen verwendet werden. Selbstverständlich kann aber auch der elektrische Widerstand beziehungsweise die Leitfähigkeit der Glühkerze ohne Beiträge von Zuleitungen berücksichtigt werden. Alternativ oder zusätzlich kann als temperaturabhängige elektrische Größe beispielsweise auch die Induktivität verwendet werden.In a method according to the invention, the electrical resistance or, which is synonymous, the temperature-dependent electrical variable is preferred electrical conductivity used. In this case, the electrical resistance or the electrical conductivity of the glow plug including leads can be used. Of course, however, the electrical resistance or the conductivity of the glow plug without contributions from supply lines are taken into account. Alternatively or additionally, for example, the inductance can also be used as a temperature-dependent electrical variable.
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass durch Auswertung des berechneten Wertes ein zweites Fehlersignal erzeugt wird, das zur Korrektur des Sollwerts der elektrischen Größe, beispielsweise des Sollwiderstands, verwendet wird. Auf diese Weise lässt sich der Einfluss von Störungen, die bei laufendem Motor durch den Fahrbetrieb hervorgerufen werden, noch besser behandeln. Indem nämlich zu dem Sollwert eine Korrektur addiert wird, kann eine Störung besonders wirksam kompensiert und die gewünschte Solltemperatur besonders schnell erreicht werden. Führt die Störung beispielsweise zu einer zusätzlichen Erwärmung der Glühkerze, also einer Temperaturerhöhung, kann die gewünschte Solltemperatur schneller erreicht werden, indem bei der Umsetzung des Sollwertes in einen Wert der Effektivspannung von einem etwas kleineren Sollwert ausgegangen wird. Auf diese Wiese kann der zusätzliche Energieeintrag einer Störung durch eine geringere Heizleistung ausgeglichen werden. Die Korrektur des Sollwertes kann beispielsweise mit einem Kennfeld ermittelt werden, aus dem unter Berücksichtigung des zweiten Fehlersignals und der Solltemperatur bzw. eines aus der Solltemperatur bestimmten Sollwerts eine Auswahl vorgenommen wird. Mit dem zweiten Fehlersignal wird also eine zweite Rückführung vorgenommen.An advantageous development of the invention provides that a second error signal is generated by evaluating the calculated value, which is used to correct the setpoint value of the electrical variable, for example, the desired resistance. In this way, the influence of disturbances, which are caused by the driving operation with the engine running, treated even better. Namely, by adding a correction to the setpoint, a fault can be compensated for particularly effectively and the desired setpoint temperature can be reached particularly quickly. If, for example, the fault leads to additional heating of the glow plug, ie an increase in temperature, the desired setpoint temperature can be reached more quickly by assuming a slightly lower setpoint value when converting the setpoint value into a value of the effective voltage. In this way, the additional energy input of a disturbance can be compensated by a lower heating power. The correction of the setpoint value can be determined, for example, using a characteristic map, from which a selection is made taking into account the second error signal and the setpoint temperature or a setpoint determined from the setpoint temperature. With the second error signal so a second feedback is made.
Diese zweite Rückführung führt dazu, dass bei dem Verfahren an sich zwei Regelkreise vorhanden sind, die jeweils eine die Glühkerze enthaltende Regelstrecke enthalten. Ein erster Regelkreis entsteht durch die Rückführung des Ausgangs des mathematischen Modells. Ein zweiter Regelkreis durch die Rückführung des zweiten Fehlersignals.This second feedback leads to two control loops being present per se in the method, each of which contains a controlled system containing the glow plug. A first control loop is created by the feedback of the output of the mathematical model. A second loop through the feedback of the second error signal.
Das zweite Fehlersignal kann durch einen Vergleich des berechneten Werts mit dem gemessenen Wert erzeugt werden, beispielsweise durch Differenzbildung, so dass das zweite Fehlersignal der Differenz zwischen den beiden berechneten Werten proportional ist.The second error signal can be generated by comparing the calculated value with the measured value, for example by subtraction, so that the second error signal is proportional to the difference between the two calculated values.
Möglich ist es aber auch, das zweite Fehlersignal zu ermitteln, indem ein weiteres mathematischen Modell der Glühkerze verwendet wird, wobei als Eingangsgröße des weiteren mathematischen Modells der Wert der an der Glühkerze anliegenden Effektivspannung verwendet wird und das zweite Fehlersignal durch Vergleich der Ausgangsgrößen der beiden Modelle erzeugt wird. Bei dieser Vorgehensweise hängt also die Eingangsgröße des ersten Modells sowohl von der Effektivspannung als auch von dem gemessenen Wert ab, während bei dem zweiten Modell die Eingangsgröße nur von der Effektivspannung abhängt. Bevorzugt sind die beiden mathematischen Modelle identisch, führen also an einer Eingangsgröße dieselben Rechenoperationen durch.However, it is also possible to determine the second error signal by using a further mathematical model of the glow plug, the input value of the further mathematical model being the value of the rms voltage applied to the glow plug, and the second error signal being used by comparing the output variables of the two models is produced. Thus, in this approach, the input of the first model depends on both the rms voltage and the measured value, while in the second model the input depends only on the rms voltage. The two mathematical models are preferably identical, that is, they perform the same arithmetic operations on an input variable.
Die beschriebene Verwendung von zwei mathematischen Modellen hat überraschenderweise den Vorteil, dass Modellierungsfehler einen kleineren Einfluss haben. Dies hat den Vorteil, dass die Qualität der Regelung weniger stark durch geänderte Bedingungen, beispielsweise Verwendung einer gegebenen Glühkerze in einem anderen Motor oder eine Änderung des Glühkerzentyps selbst, beeinflusst wird. Der mitunter erhebliche Aufwand, beispielsweise durch entsprechende Versuche, geeignete Parameter für das mathematische Modell des beschriebenen Verfahrens zu ermitteln, lässt sich deshalb reduzieren.The described use of two mathematical models surprisingly has the advantage that modeling errors have a smaller impact. This has the advantage that the quality of the control is influenced less by changing conditions, for example, use of a given glow plug in another engine or a change in the type of glow plug itself. The sometimes considerable effort, for example by appropriate attempts to determine suitable parameters for the mathematical model of the described method, can therefore be reduced.
Neben dem vorstehend beschriebenen Verfahren betrifft die vorliegende Erfindung ferner ein Glühkerzensteuergerät, das im Betrieb ein erfindungsgemäßes Verfahren durchführt. Ein derartiges Glühkerzensteuergerät kann beispielsweise mit einem Speicher und einer Steuereinheit, beispielsweise einem Mikroprozessor, realisiert werden, wobei in dem Speicher ein Programm gespeichert ist, das im Betrieb das erfindungsgemäße Verfahren durchführt. Die Hardwarekomponenten eines solchen Glühkerzensteuergeräts können identisch mit der Hardware handelsüblich erhältlicher Glühkerzensteuergeräte sein.In addition to the method described above, the present invention further relates to a glow plug control device, which performs in operation a method according to the invention. Such a glow plug control device can be realized, for example, with a memory and a control unit, for example a microprocessor, wherein a program is stored in the memory, which carries out the method according to the invention during operation. The hardware components of such a glow plug control device may be identical to the hardware of commercially available glow plug control devices.
Weitere Einzelheiten und Vorteile der Erfindung werden an Ausführungsbeispielen unter Bezugnahme auf die beigefügten Zeichnungen erläutert. Gleiche und einanderFurther details and advantages of the invention will be explained with reference to embodiments with reference to the accompanying drawings. Same and each other
Entsprechende Elemente sind dabei mit übereinstimmenden Bezugszeichen versehen. Es zeigen:
Figur 1- eine schematische Darstellung eines Ausführungsbeispiels eines erfindungs- gemäßen Regelungsverfahrens; und
Figur 2- ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Regelungsver- fahrens.
- FIG. 1
- a schematic representation of an embodiment of a control method according to the invention; and
- FIG. 2
- a further embodiment of a control method according to the invention.
In
Bei dem im
Mit einem mathematischen Modell 4 wird aus der an die Glühkerze 1 angelegten Effektivspannung Ueff ein erwarteter Wert Re des elektrischen Widerstands berechnet. Das mathematische Modell 4 kann als Ausgangsgröße unmittelbar den erwarteten Wert liefern. Bei dem dargestellten Ausführungsbeispiel liefert das Modell 4 jedoch eine Ausgangsgröße X, aus der in einem weiteren Schritt 4a der erwartete Wert Re der elektrischen Größe berechnet wird, bevorzugt durch Multiplikation mit einer Konstanten.With a
Durch Auswertung des berechneten Wertes Re wird in einem Verfahrensschritts 5 ein erstes Fehlersignal e1(t) erzeugt. Dazu wird der berechnete Wert Re mit einem gemessenen Wert Rm des Widerstands verglichen. Zur Berechnung des ersten Fehlersignals e1(t) kann beispielsweise von dem gemessenen Widertandswert Rm der berechnete Widerstandswert Re subtrahiert werden, wie dies in
Als Eingangsgröße des mathematischen Modells 4 wird ein aus dem Wert der Effektivspannung Ueff und dem ersten Fehlersignal e1(t) berechneter Wert verwendet. Ein derartiges mathematisches Modell 4, dessen Eingangsgröße von einem Vergleich zwischen einem berechneten und einem gemessenen Wert abhängt, wird als Luenberger Beobachter bezeichnet.The input value of the
Mit der Ausgangsgröße X des mathematischen Modells 4 und dem Sollwert RSolI wird ein korrigierter Wert für die Effektivspannung Ueff berechnet und die Effektivspannung Ueff auf den korrigierten Wert geändert. Wenn die Ausgangsgröße X zugleich der erwartete Wert Re ist, kann die Ausgangsgröße direkt mit dem Sollwert RSolI verglichen werden und die Effektivspannung Ueff gemäß dem Ergebnis des Vergleichs geändert werden, beispielsweise proportional zu dem Differenzbetrag. Allgemein gesprochen genügt es, den Ausgang des Modells 4 mit einem Eingang eines Reglers zukoppeln, also eine Rückführung des Modellausgangs vorzunehmen.The output quantity X of the
Wenn die Ausgangsgröße X, wie bei dem dargestellten Ausführungsbeispiel, nicht mit dem erwarteten Wert Re übereinstimmt, wird zunächst aus der Ausgangsgröße X in einem Verfahrensschritt 6, der als Zustandsregler oder Rückführmatrix bezeichnet werden kann, ein Widerstandswert oder ein Spannungswert berechnet, mit dem der Sollwert RSolI oder eine aus dem Sollwert RSolI ermittelter Größe, nämlich die derzeitige Effektivspannung Ueff, verglichen wird. Gemäß dem Resultat dieses Vergleichs wird die Effektivspannung Ueff geändert. Bevorzugt wird dabei zu dem momentanen Wert der Effektivspannung (Ueff) ein Spannungswert addiert, welcher der Differenz zwischen dem Sollwert RSolI und dem berechneten Wert Re proportional ist. Der Vergleich und die Änderung der Effektivspannung Ueff in in Abhängigkeit von der dabei festgestellten Differenz sind in
Durch Auswertung des berechneten Werts Re wird ein zweites Fehlersignal e2(t) ermittelt, das zur Korrektur des Sollwerts RSolI verwendet wird. Dazu wird der aus der Solltemperatur TSolI ermittelte Sollwert RSolI zusammen mit dem zweiten Fehlersignal e2(t) verwendet, um einen angepassten Sollwert zu ermitteln, beispielsweise mittels eines Kennfeldes 8. Bevorzugt wird dabei eine Korrektur des Sollwerts RSolI ermittelt und diese zur Berechnung zu dem Sollwerts RSolI dazuaddiert, wie dies in
Als mathematisches Modell 4 kann eine Differentialgleichung, insbesondere eine lineare Differentialgleichung verwendet werden. Beispielsweise kann als Modell 4 die folgende Rechenvorschrift verwendet werden: dR/dt = A•R + B•Ueff(t). Allgemein kann anstelle des Widerstands R auch eine andere elektrische Größe oder ein Vektor aus mehreren elektrischen Größen als Regelgröße x verwendet werden, so dass sich das mathematische Modell allgemeiner in der Form dx/dt = A•x + B•u(t) schreiben lässt, wobei u die Stellgröße ist.As
Die Berechnung eines Spannungswertes aus der Ausgangsgröße X es Modells 4 kann beispielsweise durch Multiplikation mit einer Kostante ermittelt werden, deren Wert durch Ausprobieren bestimmt werden kann.The calculation of a voltage value from the output variable X es
Das zweite Fehlersignal e2(t) wird bei dem dargestellten Ausführungsbeispiel ähnlich wie das erste Fehlersignal e1(t) durch Vergleich des gemessenen Werts mit dem berechneten Wert ermittelt, beispielsweise durch Differenzbildung und Multiplikation der Differenz mit einem Gewichtungsfaktor.The second error signal e 2 (t) is in the illustrated embodiment similar to the first error signal e 1 (t) determined by comparing the measured value with the calculated value, for example by subtraction and multiplication of the difference with a weighting factor.
Das erfindungsgemäße Regelungsverfahren beinhaltet an sich zwei Regelkreise. Ein erster Regelkreis enthält die Glühkerze 1 und das Modell 4, bei dem dargestellten Ausführungsbeispiel enthält dieser erste Regelkreis die Glühkerze 1, den Verfahrenschritt 5, das Modell 4 sowie die Verfahrenschritts 6 und 7. Ein zweiter Regelkreis enthält die Glühkerze 1 und die Rückführung des zweiten Fehlersignals.The control method according to the invention comprises per se two control circuits. A first control circuit includes the
Das zweite Fehlersignal e2(t) wird bei dem in
- 11
- Glühkerzeglow plug
- 22
- Kennfeldmap
- 33
- Vorfilterprefilter
- 44
- erstes Modellfirst model
- 4a4a
- Verfahrensschrittstep
- 55
- Verfahrensschrittstep
- 66
- Verfahrensschrittstep
- 77
- Verfahrensschrittstep
- 88th
- Kennfeldmap
- 99
- Verfahrensschrittstep
- 1010
- zweites Modellsecond model
- Ueff U eff
- EffektivspannungRMS voltage
- TSolll T Solll
- Solltemperaturset temperature
- RSoll R Soll
- Sollwertsetpoint
- Re R e
- erwarteter Widerstandexpected resistance
- Rm R m
- gemessener Widerstandmeasured resistance
- e1(t)e 1 (t)
- erstes Fehlersignalfirst error signal
- e2(t)e 2 (t)
- zweites Fehlersignalsecond error signal
- XX
- Ausgangsgröße des ersten ModellsInitial size of the first model
- X2X2
- Ausgangsgröße des zweiten ModellsOutput of the second model
Claims (15)
eine durch Pulsweitenmodulation erzeugte Effektivspannung (Ueff) an die Glühkerze (1) angelegt wird,
dadurch gekennzeichnet, dass
mit einem mathematischen Modell (4), das aus einer Eingangsgröße eine an seinem Ausgang bereitgestellte Ausgangsgröße (X) berechnet, ein erwarteter Wert (Re) der elektrischen Größe berechnet wird,
die elektrische Größe gemessen wird,
durch Auswertung des berechneten Wertes (Re) ein erstes Fehlersignal e1(t) erzeugt wird,
als Eingangsgröße des mathematischen Modells (4) ein aus dem Wert der Effektivspannung (Ueff) und dem Fehlersignal (e1(t)) berechneter Wert verwendet wird, wobei das mathematische Modell (4) aus der Eingangsgröße eine Ausgangsgröße (X) berechnet, die den erwarteten Wert (Re) der elektrischen Größe vorgibt, und
mit der Ausgangsgröße (X) des mathematischen Modells (4) ein korrigierter Wert für die Effektivspannung (Ueff) berechnet und die Effektivspannung (Ueff) auf den korrigierten Wert geändert wird.Method for controlling the temperature of a glow plug (1), wherein from a setpoint temperature (T SolII ) a desired value (R SolI ) of a temperature-dependent electrical variable is determined, and
an effective voltage (U eff ) generated by pulse width modulation is applied to the glow plug (1),
characterized in that
using a mathematical model (4), which calculates from an input quantity an output quantity (X) provided at its output, an expected value (R e ) of the electrical quantity is calculated,
the electrical size is measured,
by evaluating the calculated value (R e ) a first error signal e 1 (t) is generated,
a value calculated from the value of the effective voltage (U eff ) and the error signal (e 1 (t)) is used as the input variable of the mathematical model (4), wherein the mathematical model (4) calculates an output variable (X) from the input variable, which specifies the expected value (R e ) of the electrical quantity, and
with the output quantity (X) of the mathematical model (4) a corrected value for the effective voltage (U eff ) is calculated and the effective voltage (U eff ) is changed to the corrected value.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910024138 DE102009024138B4 (en) | 2009-06-04 | 2009-06-04 | Method for controlling the temperature of a glow plug |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2258939A2 true EP2258939A2 (en) | 2010-12-08 |
EP2258939A3 EP2258939A3 (en) | 2015-09-16 |
EP2258939B1 EP2258939B1 (en) | 2016-07-20 |
Family
ID=42306745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10003958.5A Not-in-force EP2258939B1 (en) | 2009-06-04 | 2010-04-15 | Method for monitoring the temperature of a glow plug |
Country Status (5)
Country | Link |
---|---|
US (1) | US8972075B2 (en) |
EP (1) | EP2258939B1 (en) |
JP (1) | JP5779320B2 (en) |
KR (1) | KR101694688B1 (en) |
DE (1) | DE102009024138B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2711540A4 (en) * | 2011-05-19 | 2015-12-30 | Bosch Corp | Glow plug drive control method and glow plug drive control device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW470818B (en) | 2000-05-18 | 2002-01-01 | Thk Co Ltd | Spherical bearing and method for manufacturing the same |
EP2123901B1 (en) | 2008-05-21 | 2013-08-28 | GM Global Technology Operations LLC | A method for controlling the operation of a glow-plug in a diesel engine |
JP5660612B2 (en) * | 2011-01-12 | 2015-01-28 | ボッシュ株式会社 | Glow plug tip temperature estimation method and glow plug drive control device |
DE102011004514A1 (en) * | 2011-02-22 | 2012-08-23 | Robert Bosch Gmbh | Method and control unit for setting a temperature of a glow plug |
DE102011086445A1 (en) * | 2011-11-16 | 2013-05-16 | Robert Bosch Gmbh | Method and device for regulating the temperature of a glow plug in an internal combustion engine |
DE102011087989A1 (en) * | 2011-12-08 | 2013-06-13 | Robert Bosch Gmbh | Method for controlling glow plug in diesel engine of motor car, involves adapting glow state of plug to current incineration running-off in engine, and changing glow state with respect to annealing time and/or annealing temperature of plug |
FR2987405B1 (en) * | 2012-02-23 | 2014-04-18 | Peugeot Citroen Automobiles Sa | MODULAR ARCHITECTURE OF CONTROL-CONTROL OF CANDLES OF PRE / POST HEATING |
DE102012105376B4 (en) * | 2012-03-09 | 2015-03-05 | Borgwarner Ludwigsburg Gmbh | Method for controlling the temperature of a glow plug |
DE102012102005B3 (en) | 2012-03-09 | 2013-05-23 | Borgwarner Beru Systems Gmbh | Method for regulating temperature of glow plug, involves applying defined voltage to glow plug, measuring heating current, calculating value from voltage and current and obtaining temperature associated with defined voltage |
GB2505915A (en) * | 2012-09-14 | 2014-03-19 | Gm Global Tech Operations Inc | Control method comprising correction of a feed forward engine control |
DE102015000845A1 (en) * | 2015-01-27 | 2016-07-28 | W.O.M. World Of Medicine Gmbh | Method and device for controlling the temperature of the gas flow in medical devices |
DE102017109071B4 (en) * | 2017-04-27 | 2022-10-20 | Borgwarner Ludwigsburg Gmbh | Method of controlling the temperature of glow plugs |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4607153A (en) * | 1985-02-15 | 1986-08-19 | Allied Corporation | Adaptive glow plug controller |
US6009369A (en) * | 1991-10-31 | 1999-12-28 | Nartron Corporation | Voltage monitoring glow plug controller |
US6148258A (en) * | 1991-10-31 | 2000-11-14 | Nartron Corporation | Electrical starting system for diesel engines |
WO1993009346A1 (en) * | 1991-10-31 | 1993-05-13 | Nartron Corporation | Glow plug controller |
DE4446113C5 (en) * | 1994-12-22 | 2008-08-21 | J. Eberspächer GmbH & Co. KG | Ignition device for heaters |
US6878903B2 (en) * | 2003-04-16 | 2005-04-12 | Fleming Circle Associates, Llc | Glow plug |
DE10348391B3 (en) * | 2003-10-17 | 2004-12-23 | Beru Ag | Glow method for diesel engine glow plug, uses mathematical model for optimized heating of glow plug to its operating temperature |
JP4089620B2 (en) * | 2004-01-15 | 2008-05-28 | 株式会社デンソー | Vehicle control system |
DE102006010194B4 (en) * | 2005-09-09 | 2011-06-09 | Beru Ag | Method and device for operating the glow plugs of a self-igniting internal combustion engine |
DE102006048225A1 (en) * | 2006-10-11 | 2008-04-17 | Siemens Ag | Method for determining a glow plug temperature |
US7631625B2 (en) * | 2006-12-11 | 2009-12-15 | Gm Global Technology Operations, Inc. | Glow plug learn and control system |
DE102006060632A1 (en) * | 2006-12-21 | 2008-06-26 | Robert Bosch Gmbh | Method for regulating the temperature of a glow plug of an internal combustion engine |
FR2910564B1 (en) * | 2006-12-22 | 2013-05-10 | Renault Sas | METHOD FOR CONTROLLING THE ELECTRIC POWER SUPPLY OF A PRE-HEATING CUP FOR AN INTERNAL COMBUSTION ENGINE |
US8183501B2 (en) * | 2007-12-13 | 2012-05-22 | Delphi Technologies, Inc. | Method for controlling glow plug ignition in a preheater of a hydrocarbon reformer |
GB2456784A (en) * | 2008-01-23 | 2009-07-29 | Gm Global Tech Operations Inc | Glow plug control unit and method for controlling the temperature in a glow plug |
DE102008007271A1 (en) * | 2008-02-04 | 2009-08-06 | Robert Bosch Gmbh | Method for controlling at least one glow plug in an internal combustion engine and engine control unit |
EP2123902B1 (en) * | 2008-05-21 | 2011-10-12 | GM Global Technology Operations LLC | A method and an apparatus for controlling glow plugs in a diesel engine, particularly for motor-vehicles |
EP2123901B1 (en) * | 2008-05-21 | 2013-08-28 | GM Global Technology Operations LLC | A method for controlling the operation of a glow-plug in a diesel engine |
JP4956486B2 (en) * | 2008-05-30 | 2012-06-20 | 日本特殊陶業株式会社 | Glow plug energization control device and glow plug energization control system |
-
2009
- 2009-06-04 DE DE200910024138 patent/DE102009024138B4/en not_active Expired - Fee Related
-
2010
- 2010-04-15 EP EP10003958.5A patent/EP2258939B1/en not_active Not-in-force
- 2010-04-30 JP JP2010105843A patent/JP5779320B2/en not_active Expired - Fee Related
- 2010-05-13 KR KR1020100044948A patent/KR101694688B1/en active IP Right Grant
- 2010-05-20 US US12/784,070 patent/US8972075B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2711540A4 (en) * | 2011-05-19 | 2015-12-30 | Bosch Corp | Glow plug drive control method and glow plug drive control device |
Also Published As
Publication number | Publication date |
---|---|
DE102009024138A1 (en) | 2010-12-16 |
EP2258939B1 (en) | 2016-07-20 |
JP5779320B2 (en) | 2015-09-16 |
US8972075B2 (en) | 2015-03-03 |
KR20100130948A (en) | 2010-12-14 |
US20100312416A1 (en) | 2010-12-09 |
DE102009024138B4 (en) | 2012-02-02 |
EP2258939A3 (en) | 2015-09-16 |
KR101694688B1 (en) | 2017-01-10 |
JP2010281315A (en) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2258939B1 (en) | Method for monitoring the temperature of a glow plug | |
DE102016007404A1 (en) | A servo control device with online control gain enhancement function using a weighting function | |
EP3308442B1 (en) | Method for computer-assisted parameterisation of a converter in an electrical grid | |
EP3376626A1 (en) | Method for controlling the power output of a wind farm and corresponding wind farm | |
EP2588925B1 (en) | Method and device for determining model parameters for controlling a steam power plant block, control unit for a steam generator and computer program product | |
EP3376026B1 (en) | Method for controlling the power output of a wind farm and corresponding wind farm | |
EP3542229B1 (en) | Device and method for determining the parameters of a control device | |
DE102011079490B4 (en) | Control of gradient coils taking into account the inductive coupling | |
EP3165801B1 (en) | Method and device for controlling a solenoid valve | |
EP2199879A1 (en) | Device and method for minimising dynamic pulling mistakes | |
DE102020215464A1 (en) | Electrical system and method and device for determining a value profile of a control variable | |
AT521666B1 (en) | Method and device for compensating for disturbance variables | |
WO2021092640A1 (en) | Method and system for calibrating a controller of a machine | |
EP3244270A1 (en) | Control device with trainable error compensation | |
DE102008038484B4 (en) | State control system for controlling a control variable of a device, in particular a pneumatic welding tongs | |
EP3043467A1 (en) | Control of a drive device | |
DE10011607A1 (en) | Operating method for technical system enabling intelligent operating parameter setting for technical system with several system parts for optimal system operation | |
DE102015220005B4 (en) | Method and circuit arrangement for driving a semiconductor switch, inverter | |
AT522520B1 (en) | Method for a control of a protection method for protecting an electrode of a battery device | |
DE102006044089A1 (en) | Electrical/electro-hydraulic servo steering mechanism operating method for e.g. car, involves generating numbers based on density function, and varying rise time and/or fall time of phase cycle of pulsewidth-modulated voltage by numbers | |
DE102014225675A1 (en) | Deadband control method and dead zone controller | |
DE102016214282B3 (en) | Determining the electrical resistance of a fuel injector with solenoid drive | |
EP2104220B1 (en) | Method for operating an inverter controller and device for carrying out the method | |
DE10302585B4 (en) | Procedure for setting a controller | |
DE1673586C3 (en) | Procedure for setting a control loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BORGWARNER LUDWIGSBURG GMBH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 41/14 20060101ALN20150812BHEP Ipc: F02P 19/02 20060101AFI20150812BHEP |
|
17P | Request for examination filed |
Effective date: 20151022 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02P 19/02 20060101AFI20160215BHEP Ipc: F02D 41/14 20060101ALN20160215BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 814316 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010012032 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161120 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161021 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010012032 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161020 |
|
26N | No opposition filed |
Effective date: 20170421 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170322 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 814316 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010012032 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |