EP2257696B1 - Method for starting a continuous steam generator - Google Patents

Method for starting a continuous steam generator Download PDF

Info

Publication number
EP2257696B1
EP2257696B1 EP09709775.2A EP09709775A EP2257696B1 EP 2257696 B1 EP2257696 B1 EP 2257696B1 EP 09709775 A EP09709775 A EP 09709775A EP 2257696 B1 EP2257696 B1 EP 2257696B1
Authority
EP
European Patent Office
Prior art keywords
water
steam generator
firing power
fill level
separation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09709775.2A
Other languages
German (de)
French (fr)
Other versions
EP2257696A2 (en
Inventor
Rudolf Kral
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09709775.2A priority Critical patent/EP2257696B1/en
Priority to PL09709775T priority patent/PL2257696T3/en
Publication of EP2257696A2 publication Critical patent/EP2257696A2/en
Application granted granted Critical
Publication of EP2257696B1 publication Critical patent/EP2257696B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers

Definitions

  • the invention relates to a method for starting a continuous steam generator with a number of burners having combustion chamber whose evaporator tubes downstream of a water-vapor separator downstream of the flow medium side.
  • the energy content of a fuel used for evaporation of a flow medium in the steam generator In a power plant with a steam generator, the energy content of a fuel used for evaporation of a flow medium in the steam generator.
  • the steam generator has evaporator tubes for the evaporation of the flow medium, the heating of which leads to an evaporation of the flow medium guided therein.
  • the steam provided by the steam generator can in turn be provided, for example, for a connected external process or else for the drive of a steam turbine. If the steam drives a steam turbine, usually a generator or a working machine is operated via the turbine shaft of the steam turbine.
  • the power generated by the generator may be provided for feeding into a composite and / or island grid.
  • the steam generator can be designed as a continuous steam generator.
  • a continuous steam generator is from the essay " Evaporator Concepts for BENSON Steam Generators "by J. Franke, W. Köhler and E. Wittchow, published in VGB-Kraftwerkstechnik 73 (1993), No. 4, pp. 352-360 known.
  • the heating of steam generator tubes provided as evaporator tubes leads to an evaporation of the flow medium in the steam generator tubes in a single pass.
  • the evaporator tubes are downstream of the flow medium side superheater tubes, which are the enthalpy further increase the exiting steam.
  • the superheater pipes are designed to pass steam and can be damaged when water enters. Therefore, they are usually upstream of the flow medium side, a water-vapor separator, which may include, for example, water vapor separator and a water bottle, the so-called water collection vessel, or combinations of separators and water bottle.
  • the water-vapor separator does not completely separate evaporated water from the steam, collects it first and releases it via an outlet valve. The separated water can either be discarded or re-circulated for re-evaporation.
  • a method for starting a continuous steam generator with a number of burners having combustion chamber whose evaporator tubes flow medium side has a water-vapor separator with a downstream level measuring device are for example in the US-A-3,690,303 .
  • a method for starting a continuous steam generator, with which the water discharge can be avoided or kept low, is from the DE 19528438 known.
  • the ratio of firing capacity and feedwater flow is adjusted such that the water pumped into the evaporator tubes completely evaporated even in the partial load range and thus no or almost no water enters the water-vapor separator or the superheater tubes. The water output is thus minimized by a correspondingly low supply of feed water.
  • the invention is therefore based on the object of specifying an alternative method for starting up a continuous steam generator, in which the amount of water flowing in during the starting process into the water-steam separator and the water discharge device is kept low so that a smaller dimensioning of the water-steam generator is achieved. Separator and / or water discharge device is possible, at the same time a sufficient cooling of the evaporator tubes should be guaranteed. This should be achieved with simple means for a suitable for carrying out the process continuous steam generator.
  • this object is achieved according to the invention by adjusting the firing capacity of at least one of the burners as a function of a fill level characteristic value for the water-vapor separator.
  • the invention is based on the consideration that sufficient cooling of the evaporator tubes then ensured remains when the supplied feed water quantity is sufficiently large. Avoiding the discharge of water by simply reducing the amount of feed water is therefore not expedient. Nevertheless, a comparatively smaller dimensioning of the water-vapor separator and the water discharge device should be achieved, since this would mean the saving of significant material and manufacturing costs in the design of the water-vapor separator and the water discharge device. Therefore, the water discharge occurring during the startup process should be reduced by other means than by influencing the feedwater quantity. This can be achieved by distributing the water output over a longer period of time.
  • the incipient evaporation of the water should be slowed down during the start-up process, since the water discharge is caused by the sudden onset of evaporation in the evaporator tubes and the resulting volume increase. This can be achieved by a corresponding influence on the heat input into the evaporator tubes. This is in turn determined by the firing capacity and should thus be controlled taking into account the onset of evaporation.
  • the water discharge caused by the evaporation can be used as an indicator. Since the water discharge is indicated in particular by an increase in the influence of water in the water-vapor separator, this can be done by measuring a level characteristic of the water-vapor separator.
  • the evaluation of different characteristics characteristic of the level in the water-vapor separation device is conceivable.
  • a flow measurement at the inlet of the water-vapor separator could be made, can be concluded indirectly from the level.
  • a particularly reliable implementation can be achieved by providing in a particularly advantageous embodiment, a direct measurement of the level of the water-vapor separator is.
  • An increase in the level in the water-vapor separator shows a beginning of water discharge particularly reliable and can be measured by simple means.
  • the rate of change of the measured fill level characteristic value can additionally be taken into account, since a particularly rapid rise provides a further indicator for incipient water discharge and the level of water discharge.
  • the heat supply to the evaporator tubes should be influenced and in particular throttled.
  • this can be achieved by suspending the increase in firing capacity at the time of onset of evaporation.
  • the evaporation process is slowed down and prevents over-feeding of the water-vapor separator with water. Since the incipient discharge of water is indicated in particular by a relatively high increase of the filling level in the water-vapor separator, this reduction can advantageously take place when a limit value of the measured filling level characteristic value of the water-vapor separating device is reached. This allows a technically particularly easy to implement circuit.
  • the firing output of the burners can not only be kept constant, but even reduced. This causes an even greater reduction of the heat input into the evaporator tubes and thus an even stronger slowing down of the evaporation process. This allows even more effective reduction of water discharge and limitation of water entry into the water-vapor separator.
  • a minimum stationary start-up firing power which, depending on the design of the continuous steam generator with regard to the stability of the combustion, can for example be between 2% and 5% of the maximum firing capacity (corresponds to a firing capacity at 100% load), should not be fallen below.
  • the reduction of the firing rate when reaching the limit value is advantageously 1% to 5% of the maximum firing rate.
  • a particularly effective plant operation can be achieved by the continuous steam generator as soon as possible and immediately after the expelled after the onset of evaporation water is brought into its desired operating condition.
  • the firing rate is expediently increased again after a waiting period.
  • the initial state of a continuous steam generator is very different for hot and cold start:
  • the temperature of the various components has a direct influence on the parameters of the startup process.
  • different limits are given for hot and cold start of the continuous steam generator.
  • the water-vapor separation device comprises different exhaust valves for hot and cold start
  • the upper limit for example, be the uppermost value of the control range for the warm start valve.
  • the upper limit may be, for example, the uppermost value of the cold-start drain valve level control range.
  • the object is achieved by providing a control unit for setting the firing capacity on the data input side with a sensor for measuring a fill-level characteristic of the water-steam trap. Separating device is connected.
  • the senor directly measures the level of the water-vapor separator.
  • the level of the water-vapor separator offers a particularly easy-to-process size for the control of the firing capacity.
  • the advantages achieved by the invention are in particular that by the measurement or observation of the amount of water in the water-vapor separator an early detection of incipient water discharge during the start-up phase, ie in the first 20 minutes after the ignition of the burner and below 15% the maximum firing capacity is possible and can be mitigated by a needs-based control of the firing capacity, in particular a reduction of the firing capacity.
  • the amount of water introduced into the water-vapor separator and the water-vapor separator and water discharge device can be made smaller overall, so that significant material and manufacturing costs can be saved.
  • the continuous steam generator 1 according to FIG. 1 is designed in a vertical design.
  • the amount of fuel B introduced through the fuel inlet 2 is influenced by a control valve 4 which is adjusted by a control device 6.
  • the control device 6 thus directly controls the firing output of the burners 7.
  • the hot gas produced by the combustion process flows through the combustion chamber 8 and enters a gas flue 9.
  • the throttle cable 9 can not be shown other components such. B. be followed by an economizer.
  • Flow medium side enters water W through a water inlet 10 first in the evaporator tubes 12, the discharge side open into the water-vapor separator 14.
  • Unevaporated water is collected in the water-vapor separator 14 and, because it is under pressure, either completely removed by a drain valve 15 from the system, or it is in an evaporator system with circulation appropriately proportionately a division of the total flow mass flow from the Water-vapor separator on a circulation pump 20 (with downstream circulation control valve 21) and a drain valve 15 instead.
  • the discharged water can either be discarded or re-fed via the water inlet 10 into the system.
  • the individual drain valve 15 shown here it is also possible to provide different drain valves for hot and cold start, which in their design correspond to the different initial states the continuous steam generator 1 are adapted for hot and cold start.
  • the generated steam D exits the water-steam separator 14 into the superheater tubes 16 where it is further overheated, and is then fed through the steam outlet 18 for further use.
  • the steam is supplied for power generation of a steam turbine, not shown here.
  • the control device 6 for the firing power is designed such that an excessive water discharge is prevented by the sudden onset of evaporation during startup by timely influence, in particular temporary reduction of the firing capacity.
  • the water-vapor separation device 14 is equipped with various sensors for measuring level characteristics: These include one or more level sensors 30, which are connected via a data line 36 to the control device 6.
  • the level characteristic values of the water-vapor separator are thus read out by the control device 6 and thus make it possible to detect a sudden increase in the fill level in the water-steam separator 14. This level change is a consequence of the water output from the evaporator tubes 12, which in turn is triggered by the incipient evaporation.
  • the control device 6 thus receives reliable data on the incipient evaporation in the evaporator tubes 12 and is designed for a timely intervention in the burner control in order to limit further evaporation and thus the entry of water into the water-vapor separator.
  • the timing of a start-up process of the continuous steam generator is based on the relevant parameters or data in the diagram after FIG. 2 shown.
  • the process data of a typical starting process determined in a simulation program are in FIG. 2 applied against time.
  • Line L1 shows the firing rate of the burners 7 as a percentage of the maximum firing rate, controlled by the controller 6.
  • the line L2 shows the inlet mass flow into the water vapor separator 14, the line L3 shows the outlet mass flow rate of the water through the drain valve 15.
  • the line L4 shows the data of the level sensor 30 and thus the level of the water-vapor separator 14th
  • the burners 7 are first raised to a firing rate of 5% of the maximum firing rate. After about 75 seconds, evaporation begins in the evaporator tubes 12, which initiates water ejection, evidenced by the sudden increase in the inlet mass flow into the water-vapor separator. After about 90 seconds, the exit mass flow reaches the maximum throughput capacity of the drain valve 15 and the water level of the water-steam separator 14 increases.
  • a reduction of the firing capacity is triggered by 2.5% of the maximum firing capacity in area II. It could also be a different measure used as an indicator, such as the first derivative, d. H. the rate of change of the level could serve as an indicator.
  • the firing capacity in area III is increased by the previously reduced 2.5% of the maximum firing capacity. Furthermore, the firing capacity is further increased, thus producing the continuous operating state of the continuous steam generator.
  • the method thus effectively limits the maximum level of the water-steam separator 14 by timely intervention in the firing capacity of the burner 7 and thus reliably prevents water from entering the superheater 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Anfahren eines Durchlaufdampferzeugers mit einer eine Anzahl von Brennern aufweisenden Brennkammer, dessen Verdampferrohren strömungsmediumsseitig eine Wasser-Dampf-Abscheideeinrichtung nachgeschaltet ist.The invention relates to a method for starting a continuous steam generator with a number of burners having combustion chamber whose evaporator tubes downstream of a water-vapor separator downstream of the flow medium side.

Bei einer Kraftwerksanlage mit einem Dampferzeuger wird der Energiegehalt eines Brennstoffs zur Verdampfung von einem Strömungsmedium im Dampferzeuger genutzt. Der Dampferzeuger weist zur Verdampfung des Strömungsmediums Verdampferrohre auf, deren Beheizung zu einer Verdampfung des darin geführten Strömungsmediums führt. Der durch den Dampferzeuger bereitgestellte Dampf wiederum kann beispielsweise für einen angeschlossenen externen Prozess oder aber für den Antrieb einer Dampfturbine vorgesehen sein. Treibt der Dampf eine Dampfturbine an, so wird über die Turbinenwelle der Dampfturbine üblicherweise ein Generator oder eine Arbeitsmaschine betrieben. Im Falle eines Generators kann der durch den Generator erzeugte Strom zur Einspeisung in ein Verbund- und/oder Inselnetz vorgesehen sein.In a power plant with a steam generator, the energy content of a fuel used for evaporation of a flow medium in the steam generator. The steam generator has evaporator tubes for the evaporation of the flow medium, the heating of which leads to an evaporation of the flow medium guided therein. The steam provided by the steam generator can in turn be provided, for example, for a connected external process or else for the drive of a steam turbine. If the steam drives a steam turbine, usually a generator or a working machine is operated via the turbine shaft of the steam turbine. In the case of a generator, the power generated by the generator may be provided for feeding into a composite and / or island grid.

Der Dampferzeuger kann dabei als Durchlaufdampferzeuger ausgebildet sein. Ein Durchlaufdampferzeuger ist aus dem Aufsatz " Verdampferkonzepte für BENSON-Dampferzeuger" von J. Franke, W. Köhler und E. Wittchow, veröffentlicht in VGB-Kraftwerkstechnik 73 (1993), Heft 4, S. 352 bis 360 bekannt. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf.The steam generator can be designed as a continuous steam generator. A continuous steam generator is from the essay " Evaporator Concepts for BENSON Steam Generators "by J. Franke, W. Köhler and E. Wittchow, published in VGB-Kraftwerkstechnik 73 (1993), No. 4, pp. 352-360 known. In a continuous steam generator, the heating of steam generator tubes provided as evaporator tubes leads to an evaporation of the flow medium in the steam generator tubes in a single pass.

Um einen besonders hohen Wirkungsgrad des Durchlaufdampferzeugers zu erreichen, sind den Verdampferrohren strömungsmediumsseitig Überhitzerrohre nachgeschaltet, die die Enthalpie des austretenden Dampfes weiter erhöhen. Die Überhitzerrohre sind für den Durchlauf von Dampf ausgelegt und können beim Eintritt von Wasser beschädigt werden. Daher ist ihnen üblicherweise strömungsmediumsseitig eine Wasser-Dampf-Abscheideeinrichtung vorgeschaltet, die beispielsweise Wasser-Dampf-Abscheider und eine Wasserflasche, das so genannte Wassersammelgefäß, oder Kombinationen aus Abscheidern und Wasserflasche umfassen kann. Die Wasser-Dampf-Abscheideeinrichtung trennt nicht vollständig verdampftes Wasser weit gehend vom Dampf, sammelt es zunächst und gibt es über ein Auslassventil ab. Das abgeschiedene Wasser kann entweder verworfen oder zur erneuten Verdampfung wieder in den Kreislauf eingespeist werden.In order to achieve a particularly high efficiency of the continuous steam generator, the evaporator tubes are downstream of the flow medium side superheater tubes, which are the enthalpy further increase the exiting steam. The superheater pipes are designed to pass steam and can be damaged when water enters. Therefore, they are usually upstream of the flow medium side, a water-vapor separator, which may include, for example, water vapor separator and a water bottle, the so-called water collection vessel, or combinations of separators and water bottle. The water-vapor separator does not completely separate evaporated water from the steam, collects it first and releases it via an outlet valve. The separated water can either be discarded or re-circulated for re-evaporation.

In die Wasser-Dampf-Abscheideeinrichtung fließt im Dauerbetriebszustand des Durchlaufdampferzeugers vergleichsweise wenig oder überhaupt kein Wasser ein, da das eingepumpte Wasser in den Verdampferrohren praktisch vollständig verdampft. Eine wesentlich größere Wassermenge fließt hingegen beim Anfahrvorgang in die Wasser-Dampf-Abscheideeinrichtung ein. Beim Anfahren eines Durchlaufdampferzeugers werden nämlich üblicherweise zunächst die Verdampferrohre aus Gründen einer ausreichenden Rohrkühlung mit einem Verdampfermindestmassenstrom durchströmt und die Brenner mit einer Teillast gezündet. Vor dem Einsetzen der Verdampfung wird dabei der gesamte Wasserstrom der Wasser-Dampf-Abscheideeinrichtung zugeführt. Bei Einsetzen der Verdampfung wird durch die dadurch bedingte plötzliche Volumenzunahme ein Teil des Wasserinhalts zwischen dem Ort des Beginns der Verdampfung und der Wasser-Dampf-Abscheideeinrichtung ausgestoßen. Um trotz dieses Wasserausstoßes eine unerwünschte Weiterleitung von unverdampftem Strömungsmedium in die nachgeschalteten Überhitzerrohre weit gehend zu vermeiden, ist üblicherweise eine entsprechend große Dimensionierung aller Bauteile der Wasser-Dampf-Abscheideeinrichtung und der nachgelagerten Wasser-Abführeinrichtung (wie z.B. Entspanner, Kondensator, Ablaufleitung etc.) erforderlich, die mit hohem Material- und Kostenaufwand verbunden ist.In the water-vapor separator comparatively little or no water flows in the continuous operation state of the continuous steam generator, since the water pumped in the evaporator tubes practically completely evaporated. A much larger amount of water, however, flows during the startup process in the water-vapor separator. When starting a continuous steam generator, namely usually the first evaporator tubes for reasons of sufficient tube cooling flows through a minimum evaporator mass flow and ignited the burner with a partial load. Before the onset of evaporation while the entire water flow of the water-vapor separator is supplied. At the onset of evaporation, the consequent sudden increase in volume ejects a portion of the water content between the start of vaporization and the water vapor separator. In order to largely avoid unwanted transmission of unvaporised flow medium into the downstream superheater tubes despite this water discharge, usually a correspondingly large dimensioning of all components of the water-vapor separator and the downstream water discharge device (such as expander, condenser, drain line, etc.) required, which is associated with high material and cost.

Verfahren zum Anfahren eines Durchlaufdampferzeugers mit einer eine Anzahl von Brennern aufweisenden Brennkammer, dessen Verdampferrohre strömungsmediumsseitig eine Wasser-Dampf-Abscheideeinrichtung mit einer nachgeschalteten Füllstandsmessvorrichtung aufweist, sind beispielsweise in der US-A-3,690,303 , US-A-3,478,726 und in der GB-A-1,207,366 offenbart.A method for starting a continuous steam generator with a number of burners having combustion chamber whose evaporator tubes flow medium side has a water-vapor separator with a downstream level measuring device, are for example in the US-A-3,690,303 . US-A-3,478,726 and in the GB-A-1,207,366 disclosed.

Ein Verfahren zum Anfahren eines Durchlaufdampferzeugers, mit dem der Wasserausstoß vermieden oder gering gehalten werden kann, ist aus der DE 19528438 bekannt. Bei diesem Verfahren wird das Verhältnis von Feuerungsleistung und Speisewasserstrom derart eingestellt, dass das in die Verdampferrohre eingepumpte Wasser auch im Teillastbereich vollständig verdampft und somit kein oder nahezu kein Wassereintritt in die Wasser-Dampf-Abscheideeinrichtung oder die Überhitzerrohre erfolgt. Der Wasserausstoß wird dabei somit durch eine entsprechend gering gehaltene Speisewasserzufuhr minimiert.A method for starting a continuous steam generator, with which the water discharge can be avoided or kept low, is from the DE 19528438 known. In this method, the ratio of firing capacity and feedwater flow is adjusted such that the water pumped into the evaporator tubes completely evaporated even in the partial load range and thus no or almost no water enters the water-vapor separator or the superheater tubes. The water output is thus minimized by a correspondingly low supply of feed water.

Allerdings ist bei Durchlaufdampferzeugern, wie in der DE 195 28 438 beschrieben, zur sicheren Kühlung der Verdampferrohre auch bei minimaler eingebrachter Feuerleistung eine Mindestmassenstromdichte und damit ein Mindestspeisewassermassenstrom notwendig. Eine Reduzierung des Speisewassermassenstroms zur Vermeidung eines Wasserausstoßes ist demnach nicht möglich.However, in continuous steam generators, as in the DE 195 28 438 described, for safe cooling of the evaporator tubes, even with a minimum installed fire power a minimum mass flow density and thus a minimum feed water mass flow necessary. A reduction of the feedwater mass flow to avoid water discharge is therefore not possible.

Der Erfindung liegt daher die Aufgabe zugrunde, ein alternatives Verfahren zum Anfahren eines Durchlaufdampferzeugers anzugeben, bei dem die beim Anfahrvorgang in die Wasser-Dampf-Abscheideeinrichtung und der Wasser-Abführeinrichtung einfließende Wassermenge gering gehalten wird, so dass eine kleinere Dimensionierung der Wasser-Dampf-Abscheideeinrichtung und/oder Wasser-Abführeinrichtung möglich ist, wobei gleichzeitig eine ausreichende Kühlung der Verdampferrohre gewährleistet sein soll. Dies soll bei einem zur Durchführung des Verfahrens geeigneten Durchlaufdampferzeuger mit einfachen Mitteln erreicht werden.The invention is therefore based on the object of specifying an alternative method for starting up a continuous steam generator, in which the amount of water flowing in during the starting process into the water-steam separator and the water discharge device is kept low so that a smaller dimensioning of the water-steam generator is achieved. Separator and / or water discharge device is possible, at the same time a sufficient cooling of the evaporator tubes should be guaranteed. This should be achieved with simple means for a suitable for carrying out the process continuous steam generator.

Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß gelöst, indem die Feuerungsleistung von zumindest einem der Brenner in Abhängigkeit von einem Füllstandskennwert für die Wasser-Dampf-Abscheideeinrichtung eingestellt wird.With regard to the method, this object is achieved according to the invention by adjusting the firing capacity of at least one of the burners as a function of a fill level characteristic value for the water-vapor separator.

Die Erfindung geht dabei von der Überlegung aus, dass eine ausreichende Kühlung der Verdampferrohre dann gewährleistet bleibt, wenn die zugeführte Speisewassermenge ausreichend groß ist. Eine Vermeidung des Wasserausstoßes durch einfache Reduzierung der Speisewassermenge ist daher nicht zweckdienlich. Dennoch soll eine vergleichsweise geringere Dimensionierung der Wasser-Dampf-Abscheideeinrichtung und der Wasser-Abführeinrichtung erzielt werden, da dies die Einsparung erheblicher Material- und Fertigungskosten bei der Auslegung der Wasser-Dampf-Abscheideeinrichtung und der Wasser-Abführeinrichtung bedeuten würde. Daher sollte der beim Anfahrprozess auftretende Wasserausstoß auf anderem Wege reduziert werden als durch Beeinflussung der Speisewassermenge. Dies kann durch eine Verteilung des Wasserausstoßes auf einen größeren Zeitraum erreicht werden. Dazu sollte die beginnende Verdampfung des Wassers während des Anfahrprozesses verlangsamt werden, da der Wasserausstoß durch das plötzliche Einsetzen der Verdampfung in den Verdampferrohren und die daraus resultierende Volumenzunahme verursacht wird. Dies kann durch eine entsprechende Beeinflussung der Wärmezufuhr in die Verdampferrohre erreicht werden. Diese wird ihrerseits durch die Feuerungsleistung bestimmt und sollte somit unter Berücksichtigung der einsetzenden Verdampfung gesteuert werden. Um den Zeitpunkt der eintretenden Verdampfung zu bestimmen, kann der durch die Verdampfung verursachte Wasserausstoß als Indikator herangezogen werden. Da der Wasserausstoß insbesondere durch eine Erhöhung des Wassereinflusses in die Wasser-Dampf-Abscheideeinrichtung angezeigt wird, kann dies durch Messung eines Füllstandskennwerts der Wasser-Dampf-Abscheideeinrichtung geschehen.The invention is based on the consideration that sufficient cooling of the evaporator tubes then ensured remains when the supplied feed water quantity is sufficiently large. Avoiding the discharge of water by simply reducing the amount of feed water is therefore not expedient. Nevertheless, a comparatively smaller dimensioning of the water-vapor separator and the water discharge device should be achieved, since this would mean the saving of significant material and manufacturing costs in the design of the water-vapor separator and the water discharge device. Therefore, the water discharge occurring during the startup process should be reduced by other means than by influencing the feedwater quantity. This can be achieved by distributing the water output over a longer period of time. For this purpose, the incipient evaporation of the water should be slowed down during the start-up process, since the water discharge is caused by the sudden onset of evaporation in the evaporator tubes and the resulting volume increase. This can be achieved by a corresponding influence on the heat input into the evaporator tubes. This is in turn determined by the firing capacity and should thus be controlled taking into account the onset of evaporation. In order to determine the time of the incoming evaporation, the water discharge caused by the evaporation can be used as an indicator. Since the water discharge is indicated in particular by an increase in the influence of water in the water-vapor separator, this can be done by measuring a level characteristic of the water-vapor separator.

Zur Bestimmung des beginnenden Wasserausstoßes ist die Auswertung verschiedener, für den Füllstand in der Wasser-Dampf-Abscheideeinrichtung charakteristischer Kennwerte denkbar. Beispielsweise könnte eine Durchlaufstrommessung am Einlass der Wasser-Dampf-Abscheideeinrichtung erfolgen, aus der mittelbar auf den Füllstand geschlossen werden kann. Eine besonders zuverlässige Umsetzung ist erreichbar, indem in besonders vorteilhafter Ausgestaltung eine direkte Messung des Füllstands der Wasser-Dampf-Abscheideeinrichtung vorgesehen ist. Ein Anstieg des Füllstandes in der Wasser-Dampf-Abscheideeinrichtung zeigt einen beginnenden Wasserausstoß besonders zuverlässig an und kann mit einfachen Mitteln gemessen werden.For the determination of the incipient discharge of water, the evaluation of different characteristics characteristic of the level in the water-vapor separation device is conceivable. For example, a flow measurement at the inlet of the water-vapor separator could be made, can be concluded indirectly from the level. A particularly reliable implementation can be achieved by providing in a particularly advantageous embodiment, a direct measurement of the level of the water-vapor separator is. An increase in the level in the water-vapor separator shows a beginning of water discharge particularly reliable and can be measured by simple means.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens kann zusätzlich die Änderungsgeschwindigkeit des gemessenen Füllstandskennwerts berücksichtigt werden, da ein besonders schneller Anstieg einen weiteren Indikator für einen beginnenden Wasserausstoß und die Höhe des Wasserausstoßes liefert.In a further advantageous embodiment of the method, the rate of change of the measured fill level characteristic value can additionally be taken into account, since a particularly rapid rise provides a further indicator for incipient water discharge and the level of water discharge.

Um dem Wasserausstoß ausreichend entgegenzuwirken, sollte die Wärmezufuhr zu den Verdampferrohren beeinflusst und insbesondere gedrosselt werden. Während einer im Anfahrprozess typischen Phase der Erhöhung der Feuerungsleistung kann dies durch Aussetzen der Erhöhung der Feuerungsleistung zum Zeitpunkt der einsetzenden Verdampfung erreicht werden. Dadurch wird der Verdampfungsprozess verlangsamt und eine Überspeisung der Wasser-Dampf-Abscheideeinrichtung mit Wasser verhindert. Da der beginnende Wasserausstoß insbesondere durch einen verhältnismäßig starken Anstieg des Füllstandes in der Wasser-Dampf-Abscheideeinrichtung angezeigt wird, kann diese Reduzierung vorteilhafterweise bei Erreichen eines Grenzwerts des gemessenen Füllstandskennwerts der Wasser-Dampf-Abscheideeinrichtung erfolgen. Dies ermöglicht eine technisch besonders einfach zu realisierende Schaltung.To counteract the discharge of water sufficiently, the heat supply to the evaporator tubes should be influenced and in particular throttled. During a typical in the start-up phase of increasing the firing capacity, this can be achieved by suspending the increase in firing capacity at the time of onset of evaporation. As a result, the evaporation process is slowed down and prevents over-feeding of the water-vapor separator with water. Since the incipient discharge of water is indicated in particular by a relatively high increase of the filling level in the water-vapor separator, this reduction can advantageously take place when a limit value of the measured filling level characteristic value of the water-vapor separating device is reached. This allows a technically particularly easy to implement circuit.

In einer weiteren vorteilhaften Ausgestaltung kann bei Erreichen eines Grenzwerts des gemessenen Füllstandskennwerts die Feuerungsleistung der Brenner nicht nur konstant gehalten, sondern sogar reduziert werden. Dies bewirkt eine noch stärkere Reduzierung des Wärmeeintrags in die Verdampferrohe und damit eine noch stärkere Verlangsamung des Verdampfungsprozesses. Dies ermöglicht eine noch wirksamere Verminderung des Wasserausstoßes und Begrenzung des Wassereintrags in die Wasser-Dampf-Abscheideeinrichtung.In a further advantageous embodiment, when a limit value of the measured fill level characteristic value is reached, the firing output of the burners can not only be kept constant, but even reduced. This causes an even greater reduction of the heat input into the evaporator tubes and thus an even stronger slowing down of the evaporation process. This allows even more effective reduction of water discharge and limitation of water entry into the water-vapor separator.

In weiterer vorteilhafter Ausgestaltung wird dabei allerdings berücksichtigt, dass eine minimale stationäre Anfahrfeuerungsleistung, die je nach Auslegung des Durchlaufdampferzeugers im Hinblick auf die Stabilität der Verbrennung beispielsweise zwischen 2 % und 5 % der maximalen Feuerungsleistung (entspricht einer Feuerungsleistung bei 100 % Last) betragen kann, möglichst nicht unterschritten werden sollte. Dazu beträgt die Reduzierung der Feuerungsleistung bei Erreichen des Grenzwertes vorteilhafterweise 1 % bis 5 % der maximalen Feuerungsleistung.In a further advantageous embodiment, however, it is taken into account here that a minimum stationary start-up firing power, which, depending on the design of the continuous steam generator with regard to the stability of the combustion, can for example be between 2% and 5% of the maximum firing capacity (corresponds to a firing capacity at 100% load), should not be fallen below. For this purpose, the reduction of the firing rate when reaching the limit value is advantageously 1% to 5% of the maximum firing rate.

Ein besonders effektiver Anlagenbetrieb ist erreichbar, indem der Durchlaufdampferzeuger möglichst schnell und unmittelbar nachdem das nach Einsetzen der Verdampfung ausgestoßene Wasser entfernt ist, in seinen gewünschten Betriebszustand gebracht wird. Dazu wird die Feuerungsleistung zweckmäßigerweise nach einer Wartezeit wieder gesteigert. Um einen vollständigen Abfluss des ausgestoßenen Wassers aus den Verdampferrohren zu gewährleisten, sollte dabei vorteilhafterweise eine Wartezeit von 1 bis 3 Minuten eingehalten werden.A particularly effective plant operation can be achieved by the continuous steam generator as soon as possible and immediately after the expelled after the onset of evaporation water is brought into its desired operating condition. For this purpose, the firing rate is expediently increased again after a waiting period. In order to ensure a complete outflow of the ejected water from the evaporator tubes, it should be advantageously maintained a waiting time of 1 to 3 minutes.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann, um eine zeitlich noch besser mit dem Ende des Wasserausstoßes abgestimmte Steigerung der Feuerungsleistung zu gewährleisten, diese bei Erreichen eines unteren Grenzwerts des Füllstandskennwerts für die Wasser-Dampf-Abscheideeinrichtung wieder gesteigert werden. Dies ermöglicht einen vergleichsweise noch effektiveren und zeitsparenden Anfahrvorgang.In a further advantageous embodiment of the invention, in order to ensure a temporally even better coordinated with the end of the water output increase the firing performance, these are increased again when reaching a lower limit of the level characteristic for the water-vapor separator. This allows a comparatively even more effective and time-saving starting process.

Der Anfangszustand eines Durchlaufdampferzeugers ist für Warm- und Kaltstart sehr unterschiedlich: Die Temperatur der verschiedenen Bauteile hat einen unmittelbaren Einfluss auf die Parameter des Anfahrvorgangs. Vorteilhafterweise sind daher für Warm- und Kaltstart des Durchlaufdampferzeugers unterschiedliche Grenzwerte vorgegeben. Umfasst die Wasser-Dampf-Abscheideeinrichtung unterschiedliche Auslassventile für Warm- und Kaltstart, so kann beim Warmstart, bei dem der Druck in der Wasser-Dampf-Abscheideeinrichtung in der Regel oberhalb des Verriegelungsdrucks für das Kaltstart-Ablaufventil liegt, der obere Grenzwert beispielsweise der oberste Wert des Regelbereichs für das Warmstartventil sein. Beim Kaltstart hingegen, bei dem der Druck in der Wasser-Dampf-Abscheideeinrichtung unterhalb des Verriegelungsdrucks für das Kaltstart-Ablaufventil liegt, kann der obere Grenzwert beispielsweise der oberste Wert des Füllstandsregelbereichs des Kaltstart-Ablaufventils sein. Somit wird eine entsprechende Optimierung des Anfahrvorgangs ermöglicht.The initial state of a continuous steam generator is very different for hot and cold start: The temperature of the various components has a direct influence on the parameters of the startup process. Advantageously, therefore, different limits are given for hot and cold start of the continuous steam generator. If the water-vapor separation device comprises different exhaust valves for hot and cold start, then in the warm start, in which the pressure in the water-vapor separator usually in is above the lock-up pressure for the cold-start drain valve, the upper limit, for example, be the uppermost value of the control range for the warm start valve. On the other hand, in the cold start, where the pressure in the water-vapor separator is below the lock-up pressure for the cold-start drain valve, the upper limit may be, for example, the uppermost value of the cold-start drain valve level control range. Thus, a corresponding optimization of the startup is possible.

Bezüglich des Durchlaufdampferzeugers mit einer eine Anzahl von Brennern aufweisenden Brennkammer, dessen Verdampferrohren strömungsmediumsseitig eine Wasser-Dampf-Abscheideeinrichtung nachgeschaltet ist, wird die Aufgabe gelöst, indem eine zur Einstellung der Feuerungsleistung vorgesehene Steuereinheit dateneingangsseitig mit einem Sensor zur Messung eines Füllstandskennwertes der Wasser-Dampf-Abscheideeinrichtung verbunden ist.With regard to the continuous-flow steam generator with a combustion chamber having a number of burners, the evaporator tubes downstream of which is a water-steam separator, the object is achieved by providing a control unit for setting the firing capacity on the data input side with a sensor for measuring a fill-level characteristic of the water-steam trap. Separating device is connected.

Vorteilhafterweise misst der Sensor direkt den Füllstand der Wasser-Dampf-Abscheideeinrichtung. Der Füllstand der Wasser-Dampf-Abscheideeinrichtung bietet eine besonders einfach zu verarbeitende Größe für die Steuerung der Feuerungsleistung.Advantageously, the sensor directly measures the level of the water-vapor separator. The level of the water-vapor separator offers a particularly easy-to-process size for the control of the firing capacity.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Messung oder Beobachtung der Wassermenge in der Wasser-Dampf-Abscheideeinrichtung eine Früherkennung des beginnenden Wasserausstoßes während der Anfahrphase, d. h. in den ersten 20 Minuten nach dem Zünden der Brenner und unterhalb von 15 % der maximalen Feuerungsleistung, möglich wird und durch eine bedarfsgerechte Steuerung der Feuerungsleistung, insbesondere eine Reduzierung der Feuerungsleistung, abgeschwächt werden kann. Somit reduziert sich die in die Wasser-Dampf-Abscheideeinrichtung eingebrachte Wassermenge und die Wasser-Dampf-Abscheideeinrichtung und Wasser-Abführeinrichtung kann insgesamt kleiner dimensioniert werden, so dass erhebliche Material- und Fertigungskosten eingespart werden können.The advantages achieved by the invention are in particular that by the measurement or observation of the amount of water in the water-vapor separator an early detection of incipient water discharge during the start-up phase, ie in the first 20 minutes after the ignition of the burner and below 15% the maximum firing capacity is possible and can be mitigated by a needs-based control of the firing capacity, in particular a reduction of the firing capacity. Thus, the amount of water introduced into the water-vapor separator and the water-vapor separator and water discharge device can be made smaller overall, so that significant material and manufacturing costs can be saved.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

FIG 1
schematisch einen Durchlaufdampferzeuger mit einer Wasser-Dampf-Abscheideeinrichtung, hier beispielhaft mit Umwälzpumpe, und einer Steuereinrichtung für die Feuerungsleistung, und
FIG 2
eine grafische Darstellung des Anfahrvorgangs eines Durchlaufdampferzeugers.
An embodiment of the invention will be explained in more detail with reference to a drawing. Show:
FIG. 1
schematically a continuous steam generator with a water-vapor separator, here for example with circulation pump, and a control device for the firing, and
FIG. 2
a graphic representation of the startup process of a continuous steam generator.

Der Durchlaufdampferzeuger 1 gemäß FIG 1 ist in vertikaler Bauform ausgeführt. Die Menge des durch den Brennstoffeinlass 2 eingebrachten Brennstoffes B wird durch ein Steuerventil 4 beeinflusst, das durch eine Steuereinrichtung 6 eingestellt wird. Damit steuert die Steuereinrichtung 6 unmittelbar die Feuerungsleistung der Brenner 7. Das durch den Verbrennungsprozess erzeugte heiße Gas durchströmt die Brennkammer 8 und tritt in einen Gaszug 9 ein. Dem Gaszug 9 können noch weitere nicht gezeigte Bauteile wie z. B. ein Economizer nachgeschaltet sein.The continuous steam generator 1 according to FIG. 1 is designed in a vertical design. The amount of fuel B introduced through the fuel inlet 2 is influenced by a control valve 4 which is adjusted by a control device 6. The control device 6 thus directly controls the firing output of the burners 7. The hot gas produced by the combustion process flows through the combustion chamber 8 and enters a gas flue 9. The throttle cable 9 can not be shown other components such. B. be followed by an economizer.

Strömungsmediumsseitig tritt Wasser W durch einen Wassereinlass 10 zunächst in die Verdampferrohre 12 ein, die auslassseitig in die Wasser-Dampf-Abscheideeinrichtung 14 münden. Nicht verdampftes Wasser wird in der Wasser-Dampf-Abscheideeinrichtung 14 gesammelt und wird, da es unter Druck steht, entweder komplett durch ein Ablaufventil 15 aus dem System entfernt, oder es findet bei einem Verdampfersystem mit Umwälzkreislauf entsprechend anteilig eine Aufteilung des gesamten Ablaufmassenstromes aus der Wasser-Dampf-Abscheideeinrichtung auf eine Umwälzpumpe 20 (mit nachgelagertem Umwälzregelventil 21) und ein Ablaufventil 15 statt. Somit kann das ausgeschleuste Wasser entweder verworfen oder erneut über den Wassereinlass 10 ins System eingespeist werden. Anstelle des hier gezeigten einzelnen Ablaufventils 15 können auch unterschiedliche Ablaufventile für Warm- und Kaltstart vorgesehen sein, die in ihrer Auslegung an die unterschiedlichen Ausgangszustände des Durchlaufdampferzeugers 1 bei Warm- und Kaltstart angepasst sind.Flow medium side enters water W through a water inlet 10 first in the evaporator tubes 12, the discharge side open into the water-vapor separator 14. Unevaporated water is collected in the water-vapor separator 14 and, because it is under pressure, either completely removed by a drain valve 15 from the system, or it is in an evaporator system with circulation appropriately proportionately a division of the total flow mass flow from the Water-vapor separator on a circulation pump 20 (with downstream circulation control valve 21) and a drain valve 15 instead. Thus, the discharged water can either be discarded or re-fed via the water inlet 10 into the system. Instead of the individual drain valve 15 shown here, it is also possible to provide different drain valves for hot and cold start, which in their design correspond to the different initial states the continuous steam generator 1 are adapted for hot and cold start.

Der erzeugte Dampf D tritt aus der Wasser-Dampf-Abscheideeinrichtung 14 in die Überhitzerrohre 16, wo er weiter überhitzt wird, und wird anschließend durch den Dampfauslass 18 seiner weiteren Verwendung zugeführt. Typischerweise wird der Dampf zur Stromerzeugung einer hier nicht gezeigten Dampfturbine zugeführt.The generated steam D exits the water-steam separator 14 into the superheater tubes 16 where it is further overheated, and is then fed through the steam outlet 18 for further use. Typically, the steam is supplied for power generation of a steam turbine, not shown here.

Die Steuereinrichtung 6 für die Feuerungsleistung ist derart ausgelegt, dass ein übermäßiger Wasserausstoß durch die plötzlich einsetzende Verdampfung beim Anfahrvorgang durch rechtzeitige Beeinflussung, insbesondere vorübergehende Reduktion der Feuerungsleistung verhindert wird. Dazu ist die Wasser-Dampf-Abscheideeinrichtung 14 mit verschiedenen Sensoren zur Messung von Füllstandskennwerten ausgestattet: Dazu zählen ein oder mehrere Füllstandssensoren 30, die über eine Datenleitung 36 mit der Steuereinrichtung 6 verbunden sind. Die Füllstandskennwerte der Wasser-Dampf-Abscheideeinrichtung werden somit von der Steuereinrichtung 6 ausgelesen und ermöglichen damit, eine plötzliche Erhöhung des Füllstandes in der Wasser-Dampf-Abscheideeinrichtung 14 zu erkennen. Diese Füllstandsveränderung ist eine Folge des Wasserausstoßes aus den Verdampferrohren 12, der seinerseits von der einsetzenden Verdampfung ausgelöst wird. Über die Füllstandssensoren 30 empfängt die Steuereinrichtung 6 somit zuverlässige Daten über die beginnende Verdampfung in den Verdampferrohren 12 und ist für einen rechtzeitigen Eingriff in die Brennersteuerung ausgelegt, um eine weitere Verdampfung und damit den Eintritt von Wasser in die Wasser-Dampf-Abscheideeinrichtung zu begrenzen.The control device 6 for the firing power is designed such that an excessive water discharge is prevented by the sudden onset of evaporation during startup by timely influence, in particular temporary reduction of the firing capacity. For this purpose, the water-vapor separation device 14 is equipped with various sensors for measuring level characteristics: These include one or more level sensors 30, which are connected via a data line 36 to the control device 6. The level characteristic values of the water-vapor separator are thus read out by the control device 6 and thus make it possible to detect a sudden increase in the fill level in the water-steam separator 14. This level change is a consequence of the water output from the evaporator tubes 12, which in turn is triggered by the incipient evaporation. Via the level sensors 30, the control device 6 thus receives reliable data on the incipient evaporation in the evaporator tubes 12 and is designed for a timely intervention in the burner control in order to limit further evaporation and thus the entry of water into the water-vapor separator.

Der zeitliche Ablauf eines Anfahrvorgangs des Durchlaufdampferzeugers ist anhand der relevanten Parameter oder Daten im Diagramm nach FIG 2 dargestellt. Dabei sind die mit einem Simulationsprogramm ermittelten Prozessdaten eines typischen Anfahrvorganges in FIG 2 gegen die Zeit aufgetragen. Dabei zeigt Linie L1 die Feuerungsleistung der Brenner 7 in Prozent der maximalen Feuerungsleistung, gesteuert durch die Steuereinrichtung 6. Die Linie L2 zeigt den Eintrittsmassenstrom in die Wasser-Dampf-Abscheideeinrichtung 14, die Linie L3 zeigt den Austrittsmassenstrom der Wassermenge durch das Ablaufventil 15. Die Linie L4 zeigt die Daten des Füllstandssensors 30 und damit den Füllstand der Wasser-Dampf-Abscheideeinrichtung 14.The timing of a start-up process of the continuous steam generator is based on the relevant parameters or data in the diagram after FIG. 2 shown. In this case, the process data of a typical starting process determined in a simulation program are in FIG. 2 applied against time. there Line L1 shows the firing rate of the burners 7 as a percentage of the maximum firing rate, controlled by the controller 6. The line L2 shows the inlet mass flow into the water vapor separator 14, the line L3 shows the outlet mass flow rate of the water through the drain valve 15. The line L4 shows the data of the level sensor 30 and thus the level of the water-vapor separator 14th

Im Bereich I werden die Brenner 7 zunächst auf eine Feuerungsleistung von 5 % der maximalen Feuerungsleistung hochgefahren. Nach etwa 75 Sekunden beginnt die Verdampfung in den Verdampferrohren 12, die einen Wasserausstoß initiiert, erkennbar durch den plötzlichen Anstieg des Eintrittsmassenstroms in die Wasser-Dampf-Abscheideeinrichtung. Nach etwa 90 Sekunden erreicht der Austrittsmassenstrom die maximalen Durchsatzkapazität des Ablaufventils 15 und der Wasserstand der Wasser-Dampf-Abscheideeinrichtung 14 steigt an.In area I, the burners 7 are first raised to a firing rate of 5% of the maximum firing rate. After about 75 seconds, evaporation begins in the evaporator tubes 12, which initiates water ejection, evidenced by the sudden increase in the inlet mass flow into the water-vapor separator. After about 90 seconds, the exit mass flow reaches the maximum throughput capacity of the drain valve 15 and the water level of the water-steam separator 14 increases.

Bei Erreichen des Grenzwerts von 1,2 m für den Füllstand in der Wasser-Dampf-Abscheideeinrichtung 14 wird in Bereich II eine Reduzierung der Feuerungsleistung um 2,5 % der maximalen Feuerungsleistung ausgelöst. Es könnte hier auch eine andere Messgröße als Indikator benutzt werden, beispielsweise die erste Ableitung, d. h. die Änderungsgeschwindigkeit des Füllstands könnte als Indikator dienen.Upon reaching the limit of 1.2 m for the level in the water-vapor separator 14, a reduction of the firing capacity is triggered by 2.5% of the maximum firing capacity in area II. It could also be a different measure used as an indicator, such as the first derivative, d. H. the rate of change of the level could serve as an indicator.

Durch die Reduzierung der Feuerungsleistung wird der Wärmeeintrag in die Verdampferrohre gedrosselt und damit der Verdampfungsprozess verlangsamt. Durch die Verlangsamung der durch den Verdampfungsprozess bedingten Volumenzunahme wird der Wasserausstoß reduziert und der weitere Anstieg des Füllstandes in der Wasser-Dampf-Abscheideeinrichtung 14 kann auf ca. 2,9 m begrenzt werden. Dies ermöglicht eine entsprechend kostengünstige kleinere Dimensionierung aller Bauteile der Wasser-Dampf-Abscheideeinrichtung und der Wasser-Abführeinrichtung.By reducing the firing capacity of the heat input is throttled into the evaporator tubes and thus slows the evaporation process. By slowing down the increase in volume caused by the evaporation process, the water output is reduced and the further increase in the level in the water-vapor separator 14 can be limited to approximately 2.9 m. This allows a correspondingly inexpensive smaller dimensions of all components of the water-vapor separator and the water discharge device.

Nach einer Wartezeit von etwa 60 Sekunden wird die Feuerungsleistung in Bereich III um die vorher reduzierten 2,5 % der maximalen Feuerungsleistung angehoben. Im Weiteren wird die Feuerungsleistung weiter erhöht und so der Dauerbetriebszustand des Durchlaufdampferzeugers hergestellt.After a waiting period of about 60 seconds, the firing capacity in area III is increased by the previously reduced 2.5% of the maximum firing capacity. Furthermore, the firing capacity is further increased, thus producing the continuous operating state of the continuous steam generator.

Das Verfahren begrenzt somit wirksam den maximalen Füllstand der Wasser-Dampf-Abscheideeinrichtung 14 durch rechtzeitigen Eingriff in die Feuerungsleistung der Brenner 7 und verhindert somit sicher einen Wassereintritt in die Überhitzerrohre 16.The method thus effectively limits the maximum level of the water-steam separator 14 by timely intervention in the firing capacity of the burner 7 and thus reliably prevents water from entering the superheater 16.

Claims (12)

  1. Method for starting a continuous steam generator (1) having a combustion chamber (8) comprising a number of burners (7), a water-steam separation device (14) being arranged downstream of the evaporator tubes (12) thereof on the flow medium side, with the firing power of at least one of the burners (7) being adjusted as a function of a fill level characteristic value for the water-steam separation device (14).
  2. Method according to claim 1, in which the firing power is adjusted as a function of the fill level of the water-steam separation device (14).
  3. Method according to claim 1 or 2, in which the firing power is also adjusted as a function of the change in speed of the fill level characteristic value.
  4. Method according to one of claims 1 to 3, in which the firing power is not increased further when an upper limit value of the fill level characteristic value is reached.
  5. Method according to one of claims 1 to 4, in which the firing power is reduced when an upper limit value of the fill level characteristic value is reached.
  6. Method according to claim 5, in which the reduction amounts to 1% to 5% of the maximum firing power.
  7. Method according to one of claims 4 to 6, in which the firing power is increased further after a holding time.
  8. Method according to claim 7, in which a holding time of 1 to 3 minutes is maintained after reaching the limit value.
  9. Method according to one of claims 4 to 8, in which the firing power is increased again when a lower limit value of the fill level characteristic value is reached.
  10. Method according to one of claims 4 to 9, in which different limit values are predetermined for warm and cold start processes of the continuous steam generator (1).
  11. Continuous steam generator (1) having a combustion chamber (8) comprising a number of burners (7), a water-steam separation device (14) being arranged downstream of the evaporator tubes (12) thereof on the flow medium side, with a control unit provided for adjusting the firing power being connected on the data input side to a sensor for measuring a fill level characteristic value of the water-steam separation device (14).
  12. Continuous steam generator (1) according to claim 11, in which the sensor (30) measures the fill level of the water-steam separation device (14).
EP09709775.2A 2008-02-15 2009-02-10 Method for starting a continuous steam generator Active EP2257696B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09709775.2A EP2257696B1 (en) 2008-02-15 2009-02-10 Method for starting a continuous steam generator
PL09709775T PL2257696T3 (en) 2008-02-15 2009-02-10 Method for starting a continuous steam generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08002850A EP2119880A1 (en) 2008-02-15 2008-02-15 Method for starting a steam producer
PCT/EP2009/051496 WO2009101075A2 (en) 2008-02-15 2009-02-10 Method for starting a continuous steam generator
EP09709775.2A EP2257696B1 (en) 2008-02-15 2009-02-10 Method for starting a continuous steam generator

Publications (2)

Publication Number Publication Date
EP2257696A2 EP2257696A2 (en) 2010-12-08
EP2257696B1 true EP2257696B1 (en) 2016-09-28

Family

ID=40786683

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08002850A Withdrawn EP2119880A1 (en) 2008-02-15 2008-02-15 Method for starting a steam producer
EP09709775.2A Active EP2257696B1 (en) 2008-02-15 2009-02-10 Method for starting a continuous steam generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08002850A Withdrawn EP2119880A1 (en) 2008-02-15 2008-02-15 Method for starting a steam producer

Country Status (12)

Country Link
US (1) US9810101B2 (en)
EP (2) EP2119880A1 (en)
JP (1) JP5189174B2 (en)
CN (1) CN101932796B (en)
AU (1) AU2009214171B2 (en)
BR (1) BRPI0907888A2 (en)
CA (1) CA2715533A1 (en)
DK (1) DK2257696T3 (en)
PL (1) PL2257696T3 (en)
RU (1) RU2010138156A (en)
TW (1) TWI458919B (en)
WO (1) WO2009101075A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065641A3 (en) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102009040250B4 (en) * 2009-09-04 2015-05-21 Alstom Technology Ltd. Forced-circulation steam generator for the use of steam temperatures of more than 650 degrees C
EP2810322A1 (en) 2012-01-30 2014-12-10 Nexeon Limited Composition of si/c electro active material
CN103453509B (en) * 2013-09-12 2014-10-08 国家电网公司 Automatic control method for saturated steam heating rate in startup temperature-rise period of thermal power generating unit
CN105180137B (en) * 2015-10-20 2016-10-26 国家电网公司 Thermal power generation unit starts temperature rise period saturated vapor heating rate control method
CN109683522B (en) * 2018-12-24 2020-03-17 奥克斯空调股份有限公司 Method and device for controlling fire quantity of induction cooker and induction cooker

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042007A (en) * 1958-07-28 1962-07-03 Beckman Instruments Inc Boiler controller
CH467973A (en) * 1966-12-30 1969-01-31 Sulzer Ag Forced steam generator
DK118565B (en) * 1967-01-25 1970-09-07 Siemens Ag Throughput steam generator.
CH475509A (en) * 1967-05-23 1969-07-15 Sulzer Ag Forced once-through steam generator with recirculation of working medium
CH517266A (en) * 1969-12-24 1971-12-31 Sulzer Ag Method for sliding pressure operation of a forced-flow steam generator and forced-flow steam generator system for carrying out the method
BE788957A (en) * 1971-09-24 1973-03-19 Sulzer Ag PROCESS FOR ADJUSTING THE POWER SUPPLY OF A FORCED CIRCULATION STEAM GENERATOR
JPS55112809A (en) * 1979-02-21 1980-09-01 Hitachi Ltd Method of running combined-cycle power plant and controller therefor
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator
US4941113A (en) * 1988-06-15 1990-07-10 Dundics Marton J Computer monitoring and testing of automatic control system
EP0549522B1 (en) * 1991-12-23 1996-05-08 ABB Management AG Method of operating a forced circulation steam generator and forced circulation steam generator therefor
DE19504308C1 (en) * 1995-02-09 1996-08-08 Siemens Ag Method and device for starting a once-through steam generator
DE19528438C2 (en) 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
DE19510619A1 (en) * 1995-03-23 1996-09-26 Abb Management Ag Method of water supply regulation for waste heat steam generator
US5771849A (en) * 1995-09-15 1998-06-30 Hamy; Norbert Internal combustion engine with crankcase pressure barrier
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
DE19717158C2 (en) 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
DE19907451A1 (en) * 1999-02-22 2000-08-24 Abb Alstom Power Ch Ag Method for starting a once-through waste heat boiler and device for carrying out the method
JP2001033005A (en) 1999-07-19 2001-02-09 Kawasaki Thermal Engineering Co Ltd Method and apparatus for controlling water level of steam separator for multitubular once-through boiler
GB2374135A (en) * 2001-04-02 2002-10-09 Autoflame Eng Ltd Pressurised steam boilers and their control
EP1429073A1 (en) * 2002-12-02 2004-06-16 Siemens Aktiengesellschaft Method of manufacturing a once-through steam generator and the once-through steam generator
US6918356B2 (en) * 2003-08-29 2005-07-19 Intelliburn Energy Systems Method and apparatus for optimizing a steam boiler system
JP2005188801A (en) 2003-12-25 2005-07-14 Miura Co Ltd Combustion control method of boiler
EP1710498A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Steam generator

Also Published As

Publication number Publication date
WO2009101075A3 (en) 2009-12-23
CA2715533A1 (en) 2009-08-20
US20110011090A1 (en) 2011-01-20
US9810101B2 (en) 2017-11-07
EP2257696A2 (en) 2010-12-08
EP2119880A1 (en) 2009-11-18
TW200940906A (en) 2009-10-01
TWI458919B (en) 2014-11-01
CN101932796A (en) 2010-12-29
BRPI0907888A2 (en) 2015-07-21
AU2009214171A1 (en) 2009-08-20
JP5189174B2 (en) 2013-04-24
RU2010138156A (en) 2012-03-20
AU2009214171B2 (en) 2013-04-04
JP2011512506A (en) 2011-04-21
PL2257696T3 (en) 2017-04-28
WO2009101075A2 (en) 2009-08-20
DK2257696T3 (en) 2017-01-09
CN101932796B (en) 2015-02-04

Similar Documents

Publication Publication Date Title
EP2257696B1 (en) Method for starting a continuous steam generator
DE69018693T2 (en) Power plant with a combined cycle.
EP1848925B1 (en) Horizontally positioned steam generator
EP2359058B1 (en) Method of operating a waste heat steam generator
EP2126291B1 (en) Method for operating a gas and steam turbine plant and a gas and steam turbine plant for this purpose
EP2865854B1 (en) Device and method for reliable starting of ORC systems
EP1710498A1 (en) Steam generator
EP0013045B1 (en) Steam-generation plant
EP0781960B1 (en) Purification of a water-steam cycle in an once-through steam generator
EP1390606B2 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
EP1701091A1 (en) Once-through steam generator
DE19544224B4 (en) Chemical operation of a water / steam cycle
EP0410111B1 (en) Heat recovery boiler for a gas and steam turbine plant
DE2740883C3 (en) Forced steam generator
WO2011057881A1 (en) Steam power plant and method for operating a steam power plant
CH497664A (en) High pressure steam power plant
EP2676072B1 (en) Method for operating a once-through steam generator
DE69717165T2 (en) METHOD FOR OPERATING A COMPULSORY STEAM GENERATOR AND STEAM GENERATOR FOR IMPLEMENTING THE METHOD
DE2006410B2 (en) METHOD AND DEVICE FOR CONTROLLING SHORT LOAD PEAKS IN STEAM GENERATORS
AT201627B (en) Steam power plant
WO2014146845A2 (en) Method for starting up a solar thermal power plant
DE1248677B (en) Procedure for starting up a forced-flow steam generator
CH193158A (en) Device for separating salts and impurities from the pipe system of tubular steam generators.
CH178325A (en) Tubular high pressure steam generator.
CH172623A (en) High pressure tubular steam generator.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100823

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832957

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013134

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013134

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832957

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013134

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 16

Ref country code: GB

Payment date: 20240220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240117

Year of fee payment: 16

Ref country code: IT

Payment date: 20240222

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20240229