EP2250308A1 - Device for needling a web of fiber - Google Patents

Device for needling a web of fiber

Info

Publication number
EP2250308A1
EP2250308A1 EP09718088A EP09718088A EP2250308A1 EP 2250308 A1 EP2250308 A1 EP 2250308A1 EP 09718088 A EP09718088 A EP 09718088A EP 09718088 A EP09718088 A EP 09718088A EP 2250308 A1 EP2250308 A1 EP 2250308A1
Authority
EP
European Patent Office
Prior art keywords
mass
crank
balancing
eccentric
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09718088A
Other languages
German (de)
French (fr)
Other versions
EP2250308B1 (en
Inventor
Tilman Reutter
Andreas Plump
Andreas Mayer
Daniel Bu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP2250308A1 publication Critical patent/EP2250308A1/en
Application granted granted Critical
Publication of EP2250308B1 publication Critical patent/EP2250308B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/02Needling machines with needles

Definitions

  • the invention relates to a device for needling a fibrous web according to the preamble of claim 1.
  • a needle bar In devices for needling a fibrous web, a needle bar, on the underside of which a multiplicity of needles are held, is driven in an oscillating up and down motion, so that the needles puncture the fibrous web guided on a support in a recurring manner.
  • crank gears are usually used, with an eccentrically rotating eccentric mass for mass balance are usually compensated by appropriate balancing weights on the crankshaft.
  • the needle bar is driven by a vertical engine to an up and down movement and superimposed by a horizontal engine to a reciprocating motion.
  • the mass forces occur in the device both in the vertical direction and in the horizontal direction.
  • several balance shafts are arranged in the machine frame in the known device, which counteract the mass forces and mass moments of the crank drives by counter-rotating eccentric masses.
  • This form of mass Compensation is technically very complex and requires a considerable amount of space within the device.
  • the free mass forces and moments of inertia occurring with variable stroke adjustment of the horizontal engine are particularly problematical because they increase quadratically with the stroke frequency and linearly with the lifting height.
  • higher stroke frequencies and thus higher production speeds and larger horizontal strokes of the needle bar in the known device inevitably lead to increased vibrations in the machine frame.
  • such vibrations are very negative in terms of noise and especially in terms of product quality.
  • Another object of the invention is to provide a device of the generic type which allows variable stroke settings of the needle bar with relatively large horizontal strokes and high stroke frequencies.
  • the invention is distinguished from the principle of compensating for mass forces acting on a crank drive by means of a counterweight arranged in an eccentric plane opposite the eccentric mass.
  • the invention is based on the recognition that the crank drive of the vertical engine can be used to counteract the vertically directed inertial forces and the horizontally directed inertial forces.
  • This is a balancing mass the mass balancing device associated with the crank drive of the vertical engine and arranged at an angle in the range ⁇ 180 ° offset to an eccentric of the crank drive.
  • the size of the balancing mass and the angular position of the balancing mass on the crank drive can be selected depending on the forces acting in the vertical direction and horizontal direction and mass moments.
  • the balancing mass is for this purpose arranged directly on a crankshaft or an eccentric shaft of the crank drive. It is irrelevant whether the superimposed horizontal movement of the needle bar is generated by a horizontal engine or in phase adjustment directly by the vertical engine. In any case, the occurring horizontal mass forces can be compensated by the balancing mass on the crank mechanism of the vertical engine.
  • the balancing mass is offset by the angle of 90 ° to the eccentric of the crank drive and a second balancing mass offset by the angle of 180 ° to the eccentric of the crank drive attached.
  • the vertical mass forces of the needle bar on the crank drive can be completely compensated.
  • the horizontal mass forces is offset by 90 ° offset from the eccentric mass of the crank drive balancing mass.
  • a complete mass balance can be realized with constant horizontal stroke of the needle bar.
  • the needle bar can be operated with correspondingly high stroke frequencies without inadmissible vibrations on the machine frame becoming effective.
  • the balancing weights assigned to a crank drive can be identical or different in size.
  • the choice of the size of the compensating masses depends essentially on the mass forces occurring during operation.
  • the vertical engine is preferably formed by two synchronously rotating crank drives.
  • each of the crank drives is assigned in each case one or more compensation masses.
  • each crank drive can be used to balance the mass of vertical and horizontal inertial forces.
  • the balancing weights on the crank drives of the vertical engine can be identical or different on each of the crank drives.
  • one of the crank drives can be equipped with two balancing weights, whereas, on the other hand, the second crank drive receives only one balancing weight.
  • the mass balancing device can also be expanded by arranging an additional balancing shaft with a circumferential eccentric mass within the machine frame.
  • the mass moments within the machine frame can be fully compensated.
  • the balancer shaft can be equipped with a rotating eccentric mass or with two eccentric masses that are offset by 90 °.
  • the phase adjustment preferably has two separately controllable servo motors, which are assigned to the crankshaft of the crank mechanisms of the vertical engine. Depending on the phase difference between the crankshafts, different strokes in the horizontal movement can thus be realized.
  • the balance shaft is preferably arranged symmetrically to the two crankshafts of the crank mechanisms.
  • At least one further balancing mass is assigned to the crank drive of the horizontal engine and arranged offset by an angle in the range of ⁇ 180 ° relative to the eccentric of the crank drive.
  • balancing masses on the crank drive of the horizontal engine such that the balancing mass is held offset by 90 ° to the eccentric and a second balancing mass is arranged opposite to the eccentric mass.
  • the horizontal engine is preferably formed by two synchronously rotating crank drives.
  • at least one of the balancing weights is advantageously assigned to each of the crank drives.
  • crank drives of the horizontal engine are driven in opposite directions and designed to be adjustable in their phase positions.
  • the variable mass forces can be compensated for in addition to the constant mass forces.
  • the resulting mass force disappears approximately for each horizontal stroke adjustment between zero and a maximum stroke.
  • the crank drives of the horizontal engine are preferably connected by a coupling gear with the needle bar.
  • the drive movement of the crank drives via the coupling gear can be converted into an almost exclusive degree movement on the needle bar.
  • crank drives of the vertical engine and the horizontal engine are usually by a respective driven crankshaft or a ange- formed driven eccentric shaft, which are connected via a connecting rod with a connecting rod.
  • the balancing weights are applied directly to the crankshaft or to the eccentric shaft.
  • Fig. 1.1 and 1.2 schematically a side view of a first embodiment of the device according to the invention
  • Fig. 2 shows a schematic side view of an embodiment of a crank mechanism with mass balance
  • Figures 3.1 and 3.2 schematically a side view of another embodiment of the device according to the invention.
  • Figure 4 shows schematically a side view of another embodiment of the device according to the invention
  • Fig. 5 shows schematically a side view of another embodiment of the device according to the invention
  • FIGS. 1.1 and 1.2 show a first exemplary embodiment of the device according to the invention for needling a fibrous web.
  • the exemplary embodiment is shown in FIGS. 1.1 and 1.2 in different operating situations. The description therefore applies to both figures.
  • the embodiment of the device according to the invention comprises a beam support 2, which holds a needle bar 1 on its underside.
  • the needle bar 1 holds on its underside a needle board 24 with a plurality of needles 25th
  • On the beam support 2 engages a vertical engine 3 and a horizontal engine 10 at.
  • the vertical engine 3 the beam support 2 is oscillated in the vertical direction, so that the needle bar 1 with the needle board 24 performs an up and down movement.
  • the vertical engine 3 is formed by two parallel crank mechanisms 4.1 and 4.2.
  • crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2.
  • the crankshafts 5.1 and 5.2 each have at least one eccentric 6.1 and 6.2 each for receiving a connecting rod 7.1 and 7.2.
  • connecting rods 7.1 and 7.2 are shown, which are held with their connecting rod heads on the eccentrics 6.1 and 6.2 of the crankshaft 5.1 and 5.2. At the crankshafts 5.1 and 5.2 even further - may be arranged - connecting rods - not shown here.
  • the connecting rods 7.1 and 7.2 are connected with their free ends through the hinges 8.1 and 8.2 with the beam support 2.
  • the crankshafts 5.1 and 5.2 are driven synchronously or in opposite directions synchronously, so that the beam support 2 is guided at least approximately parallel.
  • the horizontal engine 10 engages via a crank drive 11.1 directly to the beam support 2.
  • the crank drive 11.1 of the horizontal engine 10 has for this purpose a crankshaft 12.1 and a connecting rod 14.1.
  • the connecting rod 14.1 is connected via an eccentric 13.1 with the crankshaft 12.1.
  • the connecting rod 14.1 is coupled by the rotary joint 15 with the beam support 2.
  • the crankshaft 12.1 is driven in synchronism with the crankshafts 5.1 and 5.2 of the vertical engine, so that the needle bar 1 performs a lifting movement with a constant horizontal stroke.
  • the vertical engine 3 and the horizontal engine 10 is associated with a mass balancing device to compensate for the mass forces of the crank mechanisms.
  • the mass balancing device is formed by a plurality of balancing masses which are assigned to the crank drives 4.1, 4.2 and 5.1.
  • the cure drive 4.1 has the balancing weights 9.1 and 9.2.
  • the balancing mass 9.1 is this offset by an angle of 180 ° to the eccentric 6.1 on the crankshaft 5.1.
  • the balancing mass 9.2 is held at an angle of 90 ° offset from the eccentric 6.1 on the crankshaft 5.1.
  • a third balancing mass 9.3 is arranged as a counterweight on the crank drive 4.2.
  • the balancing mass is 9.3 offset by an angle of 180 ° to the eccentric 6.2 arranged on the crankshaft 5.2.
  • the crank drive 11.1 of the horizontal engine 10, the balancing weights 16.1 and 16.2 are assigned.
  • the balancing mass 16.1 is this offset by the angle of 180 ° to the eccentric 13.1 held on the crankshaft 12.1.
  • the other balancing mass 16.2 is offset by the angle of 90 ° to the eccentric 13.1 attached to the crankshaft 12.1.
  • FIG. 1.1 the embodiment in Fig. 1.1 is shown in an operating situation in which the needle bar is shown in an upper position with vertically directed inertial forces.
  • FIG. 1.2 the exemplary embodiment is shown in a middle beam position, in which horizontal mass forces are effective.
  • the mass forces generated by the balancing weights 9.1, 9.2, 9.3, 16.1 and 16.2 are represented as vectors.
  • the force vector of the balancing mass 9.1 is marked with the code letter F EI .
  • the mass force of the balancing mass 9.2 is referred to the crank drive 4.1 by the letter F N1 .
  • the force vector of the balancing mass 9.3, which is assigned to the crank drive 4.2 denoted by the letter F E2 .
  • the the crank mechanism 11.1 of the horizontal engine 10 associated balancing weights 16.1 and 16.2 are denoted by the code letters F N3 and F E3 and shown as force vectors.
  • the balancing weights 9.2 and 16.2, which cause the mass forces F N1 and F N3 , are now chosen so that they cancel each other in each position of the needle bar and cause a mass moment to compensate for the caused by the working line distance between beam forces and balancing forces mass moment.
  • FIG. 2 shows a further possible arrangement of a compensating mass, as may alternatively be embodied, for example, on the crank drive 4.1 of the vertical drive mechanism 3 or of the crank drive 11.1 of the horizontal drive mechanism 10.
  • the crank drive 4.1 is assigned a compensating mass 9.2.
  • the balancing mass 9.2 is offset by an angle ⁇ to the eccentric 6.1 of the crankshaft 5.1.
  • the angle ⁇ is less than 180 ° and preferably chosen such that both horizontally acting and vertically acting forces can be compensated by the balancing mass 9.2.
  • the number of balancing weights can be reduced while maintaining the same effect.
  • FIGS. 3.1 and 3.2 a further exemplary embodiment of the device according to the invention is shown schematically in a side view in several operating positions. represented.
  • the embodiment of FIGS. 3.1 and 3.2 is substantially identical to the embodiment of FIGS. 1.1 and 1.2, so that only the differences will be explained at this point and otherwise reference is made to the above description.
  • Fig. 3.1 the embodiment is shown in an upper position of the needle bar and in Fig. 3.2 in a middle position of the needle bar.
  • FIGS. 3.1 and 3.2 two needle bars 1.1 and 1.2 are respectively held on the beam support 2, each of which carries a needle board 24 and a plurality of needles 25 on their undersides.
  • the beam support 2 is coupled to a vertical engine 3, which is identical to the aforementioned embodiment.
  • a central pivot 15 For horizontal movement of the beam support 2 of the beam support 2 is coupled via a central pivot 15 with a handlebar 19.
  • the rotary joint 15 is arranged substantially with the hinges 8.1 and 8.2 for connecting the vertical engine 3 at a common height on the beam support 2, so that arranged to the transverse sides of the beam support 2 link 19 allow the power instructions and the leadership of the beam support 2 ,
  • a horizontal engine 10 is provided, which is formed by two crank drives 11.1 and 11.2.
  • the crank mechanisms 11.1 and 11.2 each have a crankshaft 12.1 and 12.2, which are arranged parallel to each other and together with the crankshafts 5.1 and 5.2 of the vertical engine 3 form a common drive plane.
  • the crankshafts 12.1 and 12.2 are connected via their eccentric 13.1 and 13.2 each with a connecting rod 14.1 and 14.2.
  • the connecting rods 14.1 and 14.2 are directed in an inclined position to each other, so that the free ends of the connecting rods 14.1 and 14.2 are connected via a double pivot joint 21 together with a coupling gear 17.
  • the coupling mechanism 17 consists in this embodiment of a rocker arm 18 which is pivotally mounted on a pivot bearing 26.
  • the rocker arm 18 has at a free end below the pivot bearing 26 has a pivot, with which the link 19 is connected to the rocker arm 18.
  • a further rotary joint is provided, on which a push rod 20 engages.
  • the push rod 20 is coupled to an opposite end by the double pivot 21 with the connecting rods 14.1 and 14.2.
  • crankshafts 12.1 and 12.2 of the crank mechanisms 11.1 and 11.2 are driven in opposite directions at the same speed, wherein the phase angles of the crankshafts 12.1 and 12.2 are adjustable relative to each other in dependence on a desired horizontal stroke.
  • the phase angles and thus the desired horizontal stroke of the crankshafts 12.1 and 12.2 can be carried out, for example, by two separate servomotors which effect a rotation of the crankshafts 12.1 and 12.2 relative to each other.
  • the drive of the crankshafts 14.1 and 14.2 can be carried out by a common drive or separately via separate drives.
  • a mass balancing device which is formed by a plurality of the crank mechanisms associated with balancing masses.
  • Each of the crank drives 4.1 and 4.2 of the vertical engine 3 has two balancing weights.
  • a first balancing mass is arranged as a counterweight on the crank drives 4.1 and 4.2 and arranged at an angle of 180 ° offset from the eccentrics 6.1 and 6.2 of the crankshafts 5.1 and 5.2.
  • the balancing weights are denoted by the reference numeral 9.1 on the crank drive 4.1 and 9.3 on the crank drive 4.2.
  • a second balancing mass is arranged offset by 90 ° to the eccentrics 6.1 and 6.2 at the shafts 5.1 and 5.2.
  • the balancing weights 9.2 and 9.4 of the crank drive 4.1 and 4.2 are designed to be larger in mass than the balancing weights 9.1 and 9.3.
  • the crank mechanisms 11.1 and 11.2 of the horizontal engine 10 each have a balancing mass 16.1 and 16.2.
  • the balancing mass 16.1 is offset at an angle ⁇ 180 ° to the eccentric 13.1 of the crankshaft 12.1.
  • the angle ⁇ which denotes the offset between the eccentric 13.1 and the balancing mass 16.1 on the crankshaft 12.1, is approximately 20 ° in this exemplary embodiment.
  • the position of the balancing mass 16.1 and also the position of the balancing mass 16.2 is essentially determined by the arrangement of the crank drives 11.1 and 11.2 to each other. So are the connecting rods
  • crank drive 14.1 and 14.2 arranged in an inclined position and connected to each other via the double pivot 21.
  • the balancing mass 16.2 on the crank drive 11.2 is thus mounted in the same position and in the same size on the crank drive 11.2.
  • both the crank drives 4.1 and 4.2 of the vertical engine 3 and the crank mechanisms 11.1 and 11.2 of the horizontal engine 10 are driven synchronously and in opposite directions.
  • Fig. 3.1 the situation is shown in which the beam support 2 is held with the needle bar 1.1 and 1.2 in an upper dead position.
  • FIG. 3.2 illustrates the exemplary embodiment in the operating situation, in which the beam support 2 with the needle bar 1.1 and 1.2 in a middle position during execution of a horizontal movement.
  • the mass forces 9.1 to 9.4 and the balancing weights 16.1 and 16.2 are associated mass forces denoted by the code letters F A and F E.
  • the compensating force changes only slightly, especially at low adjustment angles and therefore misalignments of the force components, so that the force compensation for each horizontal stroke is maintained to a maximum adjustment angle of approximately 20 ° in very good nutrition, as can be seen from the situation in FIG 3.2.
  • the mass balance for example, to an adjustment angle that is different from zero.
  • the balancing weights 9.1 to 9.4 on the crank drives 4.1 and 4.2 of the vertical engine 3 are to be adapted in this case so that the mass forces in the vertical and horizontal directions are balanced for the region of the horizontal stroke.
  • FIGS. 3.1 and 3.2 run the device according to the invention with a mass balancing device, in which in addition to the balancing masses in addition a balance shaft with a rotating eccentric mass is provided.
  • a mass balancing device in which in addition to the balancing masses in addition a balance shaft with a rotating eccentric mass is provided.
  • FIG. 4 is identical to the embodiment of FIG. 3.1 except for the mass balancing device.
  • the mass balancing device on several balancing weights and a balancer shaft with rotating eccentric mass.
  • the balancing shaft 22 is arranged in the drive plane between the crank drives 11.1 and 11.2 of the horizontal engine 10.
  • the balance shaft 22 extends parallel to the lying in the drive plane crankshafts 12.1 and 12.2, which are also held parallel to the arranged in the same plane crankshafts 5.1 and 5.2 of the vertical engine 3.
  • an eccentric mass 23 is arranged at the balance shaft 22, an eccentric mass 23 is arranged.
  • the balancing shaft 22 is driven synchronously to the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2, wherein the balancer shaft 22 and the crankshaft 12.1 have the same direction of rotation.
  • the balancing weights 16.1 and 16.2 are arranged on the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2.
  • the arrangement is identical to the previously described embodiment of FIG. 3.1.
  • the crank mechanisms 4.1 and 4.2 of the vertical engines 3 are also each two balancing weights assigned in an offset arrangement to each other.
  • the balancing weights 9.1 and 9.2 are assigned to the crank drive 4.1 and the balancing weights 9.3 and 9.4 to the crank drive 4.2.
  • the balancing weights 9.1 to 9.4 of the crank drives 4.1 and 4.2 are designed differently in size.
  • the balancing mass 9.2, which is arranged essentially to compensate for horizontal mass forces on the crank drive 4.1, is smaller than the balancing mass 9.4 on the second crank drive 4.2 of the vertical engine 3.
  • FIG. 5 a further embodiment of the device according to the invention for needling a fibrous web is shown schematically in a side view.
  • the embodiment of FIG. 5 differs substantially from the aforementioned embodiments in that no separate horizontal engine is present to produce a superimposed horizontal movement of the needle bar.
  • the superimposed horizontal movement of the needle bar via the vertical engine 3 is initiated.
  • the vertical engine connected to the beam carrier 2 has two parallel crank drives 4.1 and 4.2 arranged parallel to each other.
  • the crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2.
  • the crankshafts 5.1 and 5.2 each have at least one eccentric section for receiving at least one connecting rod.
  • FIG. 5 shows the connecting rods 7.1 and 7.2 arranged on a beam support 2, which are guided with their connecting rod heads on the crankshafts 5.1 and 5.2.
  • the crankshafts 5.1 and 5.2 are assigned a phase adjustment device 36.
  • the phase adjustment device 36 has two servomotors 34.1 and 34.2, which are assigned to the crankshafts 5.1 and 5.2.
  • the servomotors 34.1 and 34.2 are connected to a control device 35. Via the control device 35, the servomotors 34.1 and 34.2 can be activated independently of one another in order to turn the crankshafts 5.1 and 5.2 in their positions. Thus, the phase angle between the two crankshafts 5.1 and 5.2 can be adjusted. In addition to the pure vertical up and down movement of the beam support 2 can thereby perform a superimposed horizontal movement of the beam support 2.
  • phase angle of the crankshafts 5.1 and 5.2 is introduced via the connecting rods 7.1 and 7.2 on the beam support 2 a skewing, which generates a progressive movement in the direction of movement of a fiber web movement component.
  • the size of the phase adjustment between see the crankshafts 5.1 and 5.2 is directly proportional to a stroke length of the horizontal movement. The stroke of the horizontal movement can therefore be adjusted via the phase angle of the crankshafts 5.1 and 5.2.
  • a phase difference is set between the crankshafts 5.1 and 5.2, so that the beam carrier 2 with the needle bar 1.1 and 1.2 executes a constant stroke in the horizontal direction.
  • a guide device 27 is provided.
  • the guide device has a link 19, which is connected to a free end via a rotary joint 15 with the beam support 2.
  • a first rocker 28 which is connected via a pivot bearing 32 to a machine frame and a rotary joint 30 with the handlebars.
  • a second rocker 29 is provided, which is held via a pivot 31 in the central region of the link 19 and a pivot bearing 33.
  • the guide device 27 is arranged above the beam support 2.
  • the pivot bearings 32 and 33 are arranged between the connecting rods 7.1 and 7.2.
  • the handlebar 19 is connected in the middle of the beam via the rotary joint 15 with the beam carrier. This allows a secure guidance of the beam support during the drive movement realized by the vertical engine 3.
  • the cranks drives 4.1 and 4.2 associated mass balancing device is formed in this embodiment by a total of four balancing weights 9.1, 9.2, 9.3 and 9.4.
  • the balancing weights 9.1 and 9.2 are the crankshaft
  • the balancing weights 9.3 and 9.4 are on the crankshaft 5.2 attached.
  • the balancing mass 9.1 is arranged on the crankshaft 5.1 offset by the angle 180 ° to the eccentric 6.1.
  • the balancing mass 9.2 is offset by an angle of 90 ° to the first balancing mass 9.1 attached to the crankshaft 5.1.
  • the balancing mass 9.3 is offset by 180 ° relative to the eccentric 6.2 on the crankshaft 5.2.
  • the balancing mass 9.4 is offset by the angle of 90 ° to the first balancing mass 9.3 held on the crankshaft 5.2.
  • the mass balancing device additionally has a balancing shaft 22, which is arranged above the crankshafts 5.1 and 5.2.
  • the balance shaft 22 is held symmetrically to the crank drives 4.1 and 4.2.
  • two eccentric weights 23.1 and 23.2 are arranged at the balance shaft 22 .
  • the balancer shaft 22 extends parallel to the crankshafts 5.1 and 5.2 and is driven in synchronism with the crankshafts 5.1 and 5.2.
  • the direction of rotation of the balance shaft 22 and the direction of rotation of the crankshafts 5.1 and 5.2 is indicated in Fig. 5 in each case by an arrow.
  • the invention extends not only to the embodiments shown in FIGS. 1, 3 and 4 of a device for needling a fibrous web, but can also be advantageously applied to other engine concepts in which the needle bar is guided with a constant horizontal stroke or with variable horizontal strokes. deploy.
  • the invention is particularly advantageous in the case of such devices. gene, in which the stroke adjustment of the horizontal stroke takes place by rotation of two eccentric shafts to each other. It should be expressly mentioned at this point that the invention is not limited to the fact that the crank mechanisms are driven by crankshafts. Basically, the crankshafts can easily be replaced by eccentric shafts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)
  • Nonwoven Fabrics (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

The invention relates to a device for needling a web of fiber, said device comprising at least one driven needle beam. A vertical reciprocal movement of the needle beam is carried out by a vertical drive unit and a superposed horizontal reciprocal movement is carried out by a horizontal drive unit or due to a phase adjustment by the vertical drive unit. A weight balancing device is provided for balancing the inertia forces of the crank mechanisms. In order to be able to balance both vertical and horizontal inertia forces in a simple manner, the weight balancing device is formed by at least one balance weight which is associated with the crank mechanism of the vertical drive unit and which is set-off by an angle in the range of <180° from an eccentric element of the crank mechanism.

Description

Vorrichtung zum Vernadeln einer Faserbahn Apparatus for needling a fibrous web
Die Erfindung betrifft eine Vorrichtung zum Vernadeln einer Faserbahn gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for needling a fibrous web according to the preamble of claim 1.
Bei Vorrichtungen zum Vernadeln einer Faserbahn wird ein Nadelbalken, an dessen Unterseite eine Vielzahl von Nadeln gehalten sind, in eine oszillierende Auf- und Abwärtsbewegung angetrieben, so dass die Nadeln die auf einer Unterlage geführte Faserbahn wiederkehrend durchstechen. Zum Antrieb derartiger Nadelbalken werden üblicherweise Kurbeltriebe verwendet, wobei eine exzentrisch umlaufende Exzentermasse zum Massenausgleich üblicherweise durch entsprechende Ausgleichsmassen an der Kurbelwelle kompensiert werden. Damit lassen sich die Massenwirkungen aufgrund der rotierenden uns oszillierenden Massen innerhalb der Vorrichtung derart klein halten, dass keine unzulässigen Schwingungen in dem Maschinengestell auftreten. Um höhere Produktionsgeschwindigkeiten beim Vernadeln einer Faserbahn zu erreichen sind nun Antriebskonzepte des Nadelbalkens bekannt, bei welcher eine überlagerte in horizontaler Richtung ausgerichtete Hin- und Herbewegung des Nadelbalkens zu der Auf- und Abwärtsbewegung erzeugt wird. Eine derartige Vorrichtung ist beispielsweise aus der DE 196 15 697 Al bekannt.In devices for needling a fibrous web, a needle bar, on the underside of which a multiplicity of needles are held, is driven in an oscillating up and down motion, so that the needles puncture the fibrous web guided on a support in a recurring manner. To drive such needle bar crank gears are usually used, with an eccentrically rotating eccentric mass for mass balance are usually compensated by appropriate balancing weights on the crankshaft. Thus, the mass effects due to the rotating us oscillating masses within the device can be kept so small that no inadmissible vibrations occur in the machine frame. To achieve higher production speeds when needling a fiber web drive concepts of the needle bar are now known, in which a superimposed aligned in the horizontal direction reciprocating motion of the needle bar is generated to the up and down movement. Such a device is known for example from DE 196 15 697 Al.
Bei der bekannten Vorrichtung wird der Nadelbalken durch ein Vertikaltriebwerk zu einer Auf- und Abwärtsbewegung und durch ein Horizontaltriebwerk überlagert zu einer Hin- und Herbewegung angetrieben. Hierbei treten die Massenkräfte in der Vorrichtung sowohl in vertikaler Richtung als auch in horizontaler Richtung auf. Zum Ausgleich der Massenkräfte und Massenmomente sind bei der bekannten Vorrichtung mehrere Ausgleichswellen in dem Maschinengestell ange- ordnet, die durch gegenläufig drehende Exzentermassen den Massenkräften und Massenmomenten der Kurbelantriebe entgegenwirken. Diese Form des Massen- ausgleichs ist technisch sehr aufwändig und erfordert innerhalb der Vorrichtung einen erheblichen Platzbedarf. Besonders problematisch sind die sich bei variabler Hubeinstellung des Horizontaltriebwerkes auftretenden freien Massenkräfte und Massenmomente, da diese quadratisch mit der Hubfrequenz und linear mit der Hubhöhe steigen. Somit führen höhere Hubfrequenzen und damit höhere Produktionsgeschwindigkeiten sowie größere Horizontalhübe des Nadelbalkens bei der bekannten Vorrichtung zwangsläufig zu erhöhten Schwingungen im Maschinengestell. Derartige Schwingungen sind jedoch im Hinblick auf Geräusche und insbesondere im Hinblick auf die Produktqualität sehr negativ.In the known device, the needle bar is driven by a vertical engine to an up and down movement and superimposed by a horizontal engine to a reciprocating motion. Here, the mass forces occur in the device both in the vertical direction and in the horizontal direction. To compensate for the mass forces and moments of inertia, several balance shafts are arranged in the machine frame in the known device, which counteract the mass forces and mass moments of the crank drives by counter-rotating eccentric masses. This form of mass Compensation is technically very complex and requires a considerable amount of space within the device. The free mass forces and moments of inertia occurring with variable stroke adjustment of the horizontal engine are particularly problematical because they increase quadratically with the stroke frequency and linearly with the lifting height. Thus, higher stroke frequencies and thus higher production speeds and larger horizontal strokes of the needle bar in the known device inevitably lead to increased vibrations in the machine frame. However, such vibrations are very negative in terms of noise and especially in terms of product quality.
Es ist somit Aufgabe der Erfindung eine Vorrichtung zum Vernadeln einer Faserbahn der gattungsgemäßen Art derart auszubilden, dass ein Massenausgleich der in vertikaler und horizontaler Richtung auftretenden Massenkräfte mit einfachen Mitteln möglich ist.It is therefore an object of the invention to provide a device for needling a fiber web of the generic type such that a mass balance of the vertical forces occurring in the vertical and horizontal directions is possible by simple means.
Ein weiteres Ziel der Erfindung liegt darin, eine Vorrichtung der gattungsgemäßen Art bereitzustellen, die variable Hubeinstellungen des Nadelbalkens mit relativ großen Horizontalhüben und hohen Hubfrequenzen ermöglicht.Another object of the invention is to provide a device of the generic type which allows variable stroke settings of the needle bar with relatively large horizontal strokes and high stroke frequencies.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen nach Anspruch 1 gelöst.This object is achieved by a device with the features of claim 1.
Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale und Merkmalskombinationen der Unteransprüche definiert.Advantageous developments of the invention are defined by the features and feature combinations of the subclaims.
Die Erfindung trennt sich von dem Prinzip, die an einem Kurbelantrieb wirksamen Massekräfte durch eine Gegenmasse zu kompensieren, die in einer Exzenterebene gegenüberliegend der Exzentermasse angeordnet ist. Die Erfindung basiert auf der Erkenntnis, dass der Kurbelantrieb des Vertikaltriebwerkes dazu genutzt werden kann, um neben den vertikal gerichteten Massenkräften auch die horizontal gerichteten Massenkräfte entgegenzuwirken. Hierzu ist eine Ausgleichsmasse der Massenausgleichseinrichtung dem Kurbelantrieb des Vertikaltriebwerkes zugeordnet und um einen Winkel im Bereich <180° versetzt zu einem Exzenter des Kurbelantriebes angeordnet. Die Größe der Ausgleichsmasse sowie die Winkellage der Ausgleichsmasse an dem Kurbelantrieb lässt sich dabei in Abhängigkeit von den in vertikaler Richtung und horizontaler Richtung wirkenden Massenkräften und Massenmomenten wählen. Damit lassen sich Ausgleichfunktionen an den vorhandenen Kurbelantrieben realisieren, die sonst nur durch zusätzliche Ausgleichswellen oder andere aufwändige Maßnahmen zu erreichen wären. Die Ausgleichsmasse ist hierzu unmittelbar an einer Kurbelwelle oder einer Exzenterwelle des Kurbelantriebes angeordnet. Hierbei ist es unerheblich, ob die überlagerte Horizontalbewegung des Nadelbalkens durch ein Horizontaltriebwerk oder bei Phasenverstellung direkt durch das Vertikaltriebwerk erzeugt wird. In jedem Fall lassen sich die dabei auftretenden horizontalen Massenkräfte durch die Ausgleichsmasse an dem Kurbeltrieb des Vertikaltriebwerkes ausgleichen.The invention is distinguished from the principle of compensating for mass forces acting on a crank drive by means of a counterweight arranged in an eccentric plane opposite the eccentric mass. The invention is based on the recognition that the crank drive of the vertical engine can be used to counteract the vertically directed inertial forces and the horizontally directed inertial forces. This is a balancing mass the mass balancing device associated with the crank drive of the vertical engine and arranged at an angle in the range <180 ° offset to an eccentric of the crank drive. The size of the balancing mass and the angular position of the balancing mass on the crank drive can be selected depending on the forces acting in the vertical direction and horizontal direction and mass moments. This allows compensation functions to be implemented on the existing crank drives, which would otherwise only be achieved by additional balance shafts or other complex measures. The balancing mass is for this purpose arranged directly on a crankshaft or an eccentric shaft of the crank drive. It is irrelevant whether the superimposed horizontal movement of the needle bar is generated by a horizontal engine or in phase adjustment directly by the vertical engine. In any case, the occurring horizontal mass forces can be compensated by the balancing mass on the crank mechanism of the vertical engine.
Bei einer besonders bevorzugten Weiterbildung der Erfindung ist die Ausgleichsmasse um den Winkel von 90° versetzt zu dem Exzenter des Kurbelantriebes angeordnet und eine zweite Ausgleichsmasse um den Winkel von 180° versetzt zu dem Exzenter des Kurbelantriebes angebracht. Damit lassen sich die ver- tikalen Massekräfte des Nadelbalkens an dem Kurbelantrieb vollständig kompensieren. Den horizontalen Massenkräften wird dabei die um 90° versetzt zur Exzentermasse des Kurbelantriebes angeordnete Ausgleichmasse entgegen. So lässt sich bei konstantem Horizontalhub des Nadelbalkens ein vollständiger Massenausgleich realisieren. Der Nadelbalken lässt sich mit entsprechend hohen Hubfre- quenzen betreiben ohne dass unzulässige Schwingungen an dem Maschinengestell wirksam werden.In a particularly preferred embodiment of the invention, the balancing mass is offset by the angle of 90 ° to the eccentric of the crank drive and a second balancing mass offset by the angle of 180 ° to the eccentric of the crank drive attached. Thus, the vertical mass forces of the needle bar on the crank drive can be completely compensated. The horizontal mass forces is offset by 90 ° offset from the eccentric mass of the crank drive balancing mass. Thus, a complete mass balance can be realized with constant horizontal stroke of the needle bar. The needle bar can be operated with correspondingly high stroke frequencies without inadmissible vibrations on the machine frame becoming effective.
Die einem Kurbelantrieb zugeordneten Ausgleichsmassen können in ihrer Größe gleich oder unterschiedlich ausgebildet sein. Die Wahl der Größe der Aus- gleichsmassen ist wesentlich von den während des Betriebes auftretenden Massenkräften abhängig. Um eine parallele Führung des Nadelbalkens innerhalb eines Maschinengestells zu realisieren, wird das Vertikaltriebwerk bevorzugt durch zwei synchron umlaufende Kurbelantriebe gebildet. Hierbei ist gemäß einer vorteilhaften Weiterbil- düng der Erfindung jedem der Kurbelantriebe jeweils eine oder mehrere Ausgleichsmassen zugeordnet. Somit lässt sich jeder Kurbelantrieb zum Massenausgleich der vertikalen und horizontalen Massenkräfte nutzen. Die Ausgleichsmassen an den Kurbelantrieben des Vertikaltriebwerkes können an jedem der Kurbelantriebe identisch oder unterschiedlich ausgebildet sein. So lässt sich beispiels- weise einer der Kurbelantriebe mit zwei Ausgleichsmassen bestücken, wo hingegen der zweite Kurbelantrieb nur eine Ausgleichsmasse erhält.The balancing weights assigned to a crank drive can be identical or different in size. The choice of the size of the compensating masses depends essentially on the mass forces occurring during operation. In order to realize a parallel guidance of the needle bar within a machine frame, the vertical engine is preferably formed by two synchronously rotating crank drives. In this case, according to an advantageous further development of the invention, each of the crank drives is assigned in each case one or more compensation masses. Thus, each crank drive can be used to balance the mass of vertical and horizontal inertial forces. The balancing weights on the crank drives of the vertical engine can be identical or different on each of the crank drives. Thus, for example, one of the crank drives can be equipped with two balancing weights, whereas, on the other hand, the second crank drive receives only one balancing weight.
Bei besonders komplexen Antriebskonzepten des Nadelbalkens lässt sich die Massenausgleichseinrichtung auch dadurch erweitern, dass innerhalb des Maschi- nengestells eine zusätzliche Ausgleichswelle mit einer umlaufenden Exzentermasse angeordnet ist. Damit können insbesondere auch die Massenmomente innerhalb des Maschinengestells vollständig kompensiert werden. Je nach Antriebskonzept kann die Ausgleichswelle mit einer umlaufenden Exzentermasse oder mit zwei um 90° versetzt umlaufenden Exzentermassen bestückt sein.In particularly complex drive concepts of the needle bar, the mass balancing device can also be expanded by arranging an additional balancing shaft with a circumferential eccentric mass within the machine frame. Thus, in particular, the mass moments within the machine frame can be fully compensated. Depending on the drive concept, the balancer shaft can be equipped with a rotating eccentric mass or with two eccentric masses that are offset by 90 °.
Für den Fall, dass die Horizontalbewegung über die Phasenverstellung des Vertikaltriebwerkes erzeugt wird, weist die Phasenverstelleinrichtung vorzugsweise zwei separat steuerbare Stellmotore auf, die den Kurbelwellen der Kurbeltriebe des Vertikaltriebwerkes zugeordnet sind. Damit lassen sich je nach Phasendiffe- renz zwischen den Kurbelwellen verschieden große Hübe bei der Horizontalbewegung realisieren. Zum Massen- und Momentenausgleich ist die Ausgleichswelle bevorzugt symmetrisch zu den beiden Kurbelwellen der Kurbeltriebe angeordnet.In the event that the horizontal movement is generated by the phase adjustment of the vertical engine, the phase adjustment preferably has two separately controllable servo motors, which are assigned to the crankshaft of the crank mechanisms of the vertical engine. Depending on the phase difference between the crankshafts, different strokes in the horizontal movement can thus be realized. For mass and torque compensation, the balance shaft is preferably arranged symmetrically to the two crankshafts of the crank mechanisms.
Um bei einem separaten Kurbelantrieb des Horizontaltriebwerkes unmittelbar die in dem Horizontaltriebwerk wirksamen Massenkräfte kompensieren zu können,In order to be able to directly compensate for the mass forces acting in the horizontal engine at a separate crank drive of the horizontal engine,
- A - wird gemäß einer vorteilhaften Weiterbildung der Erfindung zumindest eine weitere Ausgleichsmasse dem Kurbelantrieb des Horizontaltriebwerkes zugeordnet und um einen Winkel im Bereich <180° versetzt zu dem Exzenter des Kurbelantriebes angeordnet.- A - According to an advantageous development of the invention, at least one further balancing mass is assigned to the crank drive of the horizontal engine and arranged offset by an angle in the range of <180 ° relative to the eccentric of the crank drive.
Alternativ besteht jedoch auch die Möglichkeit, die Anordnung der Ausgleichsmassen an dem Kurbelantrieb des Horizontaltriebwerkes derart zu wählen, dass die Ausgleichsmasse um 90° versetzt zu dem Exzenter gehalten wird und eine zweite Ausgleichsmasse gegenüberliegend zur Exzentermasse angeordnet ist.Alternatively, however, it is also possible to choose the arrangement of the balancing masses on the crank drive of the horizontal engine such that the balancing mass is held offset by 90 ° to the eccentric and a second balancing mass is arranged opposite to the eccentric mass.
Um möglichst einen flexiblen horizontalen Antrieb des Nadelbalkens zu realisieren, wird bevorzugt das Horizontaltriebwerk durch zwei synchron umlaufende Kurbelantriebe gebildet. Hierbei wird vorteilhaft jedem der Kurbelantriebe zumindest eine der Ausgleichsmassen zugeordnet.In order to realize as possible a flexible horizontal drive of the needle bar, the horizontal engine is preferably formed by two synchronously rotating crank drives. In this case, at least one of the balancing weights is advantageously assigned to each of the crank drives.
Um eine variable Hubeinstellung zu ermöglichen, sind die Kurbelantriebe des Horizontaltriebwerks gegensinnig antreibbar und in ihren Phasenlagen verstellbar ausgebildet. Durch die den Kurbelantrieben zugeordneten Ausgleichsmassen lassen sich dabei neben den konstanten Massenkräften auch die variablen Massen- kräfte kompensieren. Bei geeigneter Wahl der Ausgleichsmassen verschwindet somit die resultierende Massenkraft annähernd für jede horizontale Hubeinstellung zwischen null und einem Maximalhub.In order to enable a variable stroke adjustment, the crank drives of the horizontal engine are driven in opposite directions and designed to be adjustable in their phase positions. By means of the balancing weights assigned to the crank drives, the variable mass forces can be compensated for in addition to the constant mass forces. With a suitable choice of balancing weights thus the resulting mass force disappears approximately for each horizontal stroke adjustment between zero and a maximum stroke.
Um eine möglichst stabile Führung der Antriebsbewegung des Nadelbalkens zu erhalten, werden die Kurbelantriebe des Horizontaltriebwerkes bevorzugt durch ein Kopplungsgetriebe mit dem Nadelbalken verbunden. So lässt sich die Antriebsbewegung der Kurbelantriebe über das Kopplungsgetriebe in eine fast ausschließliche Gradbewegung an dem Nadelbalken umsetzen.In order to obtain the most stable possible guidance of the drive movement of the needle bar, the crank drives of the horizontal engine are preferably connected by a coupling gear with the needle bar. Thus, the drive movement of the crank drives via the coupling gear can be converted into an almost exclusive degree movement on the needle bar.
Die Kurbelantriebe des Vertikaltriebwerkes sowie des Horizontaltriebwerkes werden üblicherweise durch jeweils eine angetriebene Kurbelwelle oder eine ange- triebene Exzenterwelle ausgebildet, die über einem Pleuelkopf mit einer Pleuelstange verbunden sind.The crank drives of the vertical engine and the horizontal engine are usually by a respective driven crankshaft or a ange- formed driven eccentric shaft, which are connected via a connecting rod with a connecting rod.
Zum Ausgleich der Massenkräfte werden die Ausgleichsmassen direkt an der Kurbelwelle oder an der Exzenterwelle angebracht.To compensate for the mass forces, the balancing weights are applied directly to the crankshaft or to the eccentric shaft.
Die erfmdungsgemäße Vorrichtung wird nachfolgend anhand eines Ausführungsbeispiels unter Hinweis auf die beigefügten Figuren näher erläutert.The device according to the invention is explained in more detail below with reference to an embodiment with reference to the attached figures.
Es stellen dar:They show:
Fig. 1.1 und 1.2 schematisch eine Seitenansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung Fig. 2 schematisch eine Seitenansicht eines Ausführungsbeispiels eines Kurbelantriebes mit MassenausgleichFig. 1.1 and 1.2 schematically a side view of a first embodiment of the device according to the invention Fig. 2 shows a schematic side view of an embodiment of a crank mechanism with mass balance
Fig. 3.1 und 3.2 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung Fig. 4 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen VorrichtungFigures 3.1 and 3.2 schematically a side view of another embodiment of the device according to the invention. Figure 4 shows schematically a side view of another embodiment of the device according to the invention
Fig. 5 schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen VorrichtungFig. 5 shows schematically a side view of another embodiment of the device according to the invention
In den Fig. 1.1 und 1.2 ist ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zum Vernadeln einer Faserbahn dargestellt. Das Ausführungsbeispiel ist in den Fig. 1.1 und 1.2 in unterschiedlichen Betriebssituationen dargestellt. Die Beschreibung gilt daher für beide Figuren. Das Ausführungsbeispiel der erfindungsgemäßen Vorrichtung weist einen Balkenträger 2 auf, der an seiner Unter- seite einen Nadelbalken 1 hält. Der Nadelbalken 1 hält an seiner Unterseite ein Nadelbrett 24 mit einer Vielzahl von Nadeln 25. An dem Balkenträger 2 greift ein Vertikaltriebwerk 3 und ein Horizontaltriebwerk 10 an. Durch das Vertikaltriebwerk 3 wird der Balkenträger 2 in vertikaler Richtung oszillierend bewegt, so dass der Nadelbalken 1 mit dem Nadelbrett 24 eine Auf- und Abwärtsbewegung ausführt. Das Vertikaltriebwerk 3 ist durch zwei parallel angeordnete Kurbelantriebe 4.1 und 4.2 gebildet. Die Kurbelantriebe 4.1 und 4.2 weisen zwei parallel nebeneinander angeordnete Kurbelwellen 5.1 und 5.2 auf, die oberhalb des Balkenträgers 2 angeordnet sind. Die Kurbelwellen 5.1 und 5.2 weisen jeweils zumindest einen Exzenter 6.1 und 6.2 zur Aufnahme je- weils einer Pleuelstange 7.1 und 7.2 auf.FIGS. 1.1 and 1.2 show a first exemplary embodiment of the device according to the invention for needling a fibrous web. The exemplary embodiment is shown in FIGS. 1.1 and 1.2 in different operating situations. The description therefore applies to both figures. The embodiment of the device according to the invention comprises a beam support 2, which holds a needle bar 1 on its underside. The needle bar 1 holds on its underside a needle board 24 with a plurality of needles 25th On the beam support 2 engages a vertical engine 3 and a horizontal engine 10 at. By the vertical engine 3, the beam support 2 is oscillated in the vertical direction, so that the needle bar 1 with the needle board 24 performs an up and down movement. The vertical engine 3 is formed by two parallel crank mechanisms 4.1 and 4.2. The crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2. The crankshafts 5.1 and 5.2 each have at least one eccentric 6.1 and 6.2 each for receiving a connecting rod 7.1 and 7.2.
In Fig. 1 sind die an dem Balkenträger 2 angeordneten Pleuelstangen 7.1 und 7.2 gezeigt, die mit ihren Pleuelköpfen an den Exzentern 6.1 und 6.2 der Kurbelwellen 5.1 und 5.2 gehalten sind. An den Kurbelwellen 5.1 und 5.2 können noch wei- tere - hier nicht dargestellte - Pleuelstangen angeordnet sein.In Fig. 1 arranged on the beam support 2 connecting rods 7.1 and 7.2 are shown, which are held with their connecting rod heads on the eccentrics 6.1 and 6.2 of the crankshaft 5.1 and 5.2. At the crankshafts 5.1 and 5.2 even further - may be arranged - connecting rods - not shown here.
Die Pleuelstangen 7.1 und 7.2 sind mit ihren freien Enden durch die Drehgelenke 8.1 und 8.2 mit dem Balkenträger 2 verbunden. Die Kurbelwellen 5.1 und 5.2 werden gleich- oder gegensinnig synchron angetrieben, so dass der Balkenträger 2 zumindest annähernd parallel geführt ist.The connecting rods 7.1 and 7.2 are connected with their free ends through the hinges 8.1 and 8.2 with the beam support 2. The crankshafts 5.1 and 5.2 are driven synchronously or in opposite directions synchronously, so that the beam support 2 is guided at least approximately parallel.
Zur überlagerten Horizontalbewegung des Nadelbalkens 1 greift das Horizontaltriebwerk 10 über einen Kurbelantrieb 11.1 unmittelbar an den Balkenträger 2 an. Der Kurbelantrieb 11.1 des Horizontaltriebwerkes 10 weist hierzu eine Kurbel- welle 12.1 und eine Pleuelstange 14.1 auf. Die Pleuelstange 14.1 ist über einen Exzenter 13.1 mit der Kurbelwelle 12.1 verbunden. Am freien Ende ist die Pleuelstange 14.1 durch das Drehgelenk 15 mit dem Balkenträger 2 gekoppelt. Die Kurbelwelle 12.1 wird synchron zu den Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes angetrieben, so dass der Nadelbalken 1 eine Hubbewegung mit einem kon- stanten Horizontalhub ausführt. Dem Vertikaltriebwerk 3 und dem Horizontaltriebwerk 10 ist eine Massenausgleichseinrichtung zum Ausgleich der Massenkräfte der Kurbelantriebe zugeordnet. Die Massenausgleichseinrichtung wird hierbei durch mehrere Ausgleichmassen gebildet, die den Kurbelantrieben 4.1, 4.2 und 5.1 zugeordnet sind. Der Kur- beiantrieb 4.1 weist die Ausgleichsmassen 9.1 und 9.2 auf. Die Ausgleichsmasse 9.1 ist hierzu um einen Winkel von 180° versetzt zu dem Exzenter 6.1 an der Kurbelwelle 5.1 angeordnet. Die Ausgleichsmasse 9.2 ist um einen Winkel von 90° versetzt zu dem Exzenter 6.1 an der Kurbelwelle 5.1 gehalten.For superimposed horizontal movement of the needle bar 1, the horizontal engine 10 engages via a crank drive 11.1 directly to the beam support 2. The crank drive 11.1 of the horizontal engine 10 has for this purpose a crankshaft 12.1 and a connecting rod 14.1. The connecting rod 14.1 is connected via an eccentric 13.1 with the crankshaft 12.1. At the free end, the connecting rod 14.1 is coupled by the rotary joint 15 with the beam support 2. The crankshaft 12.1 is driven in synchronism with the crankshafts 5.1 and 5.2 of the vertical engine, so that the needle bar 1 performs a lifting movement with a constant horizontal stroke. The vertical engine 3 and the horizontal engine 10 is associated with a mass balancing device to compensate for the mass forces of the crank mechanisms. The mass balancing device is formed by a plurality of balancing masses which are assigned to the crank drives 4.1, 4.2 and 5.1. The cure drive 4.1 has the balancing weights 9.1 and 9.2. The balancing mass 9.1 is this offset by an angle of 180 ° to the eccentric 6.1 on the crankshaft 5.1. The balancing mass 9.2 is held at an angle of 90 ° offset from the eccentric 6.1 on the crankshaft 5.1.
Eine dritte Ausgleichsmasse 9.3 ist als Gegenmasse an dem Kurbelantrieb 4.2 angeordnet. Hierzu ist die Ausgleichsmasse 9.3 um einen Winkel von 180° versetzt zu dem Exzenter 6.2 an der Kurbelwelle 5.2 angeordnet.A third balancing mass 9.3 is arranged as a counterweight on the crank drive 4.2. For this purpose, the balancing mass is 9.3 offset by an angle of 180 ° to the eccentric 6.2 arranged on the crankshaft 5.2.
Dem Kurbelantrieb 11.1 des Horizontaltriebwerkes 10 sind die Ausgleichsmassen 16.1 und 16.2 zugeordnet. Die Ausgleichsmasse 16.1 ist hierzu um den Winkel von 180° versetzt zu dem Exzenter 13.1 an der Kurbelwelle 12.1 gehalten. Die andere Ausgleichsmasse 16.2 ist um den Winkel von 90° versetzt zu dem Exzenter 13.1 an der Kurbelwelle 12.1 befestigt.The crank drive 11.1 of the horizontal engine 10, the balancing weights 16.1 and 16.2 are assigned. The balancing mass 16.1 is this offset by the angle of 180 ° to the eccentric 13.1 held on the crankshaft 12.1. The other balancing mass 16.2 is offset by the angle of 90 ° to the eccentric 13.1 attached to the crankshaft 12.1.
Zur weiteren Erläuterung der Massenausgleichseinrichtung ist das Ausführungsbeispiel in Fig. 1.1 in einer Betriebssituation dargestellt, bei welcher der Nadelbalken in einer oberen Stellung mit vertikal gerichteten Massenkräften gezeigt ist. In Fig. 1.2 ist das Ausführungsbeispiel demgegenüber in einer mittleren Balkenstellung gezeigt, in welcher horizontale Massenkräfte wirksam sind.To further explain the mass balancing device, the embodiment in Fig. 1.1 is shown in an operating situation in which the needle bar is shown in an upper position with vertically directed inertial forces. In contrast, in FIG. 1.2, the exemplary embodiment is shown in a middle beam position, in which horizontal mass forces are effective.
In der in Fig. 1.1 dargestellten Situationen sind die durch die Ausgleichsmassen 9.1, 9.2, 9.3, 16.1 und 16.2 erzeugte Massenkräfte als Vektoren dargestellt. So ist der Kraftvektor der Ausgleichmasse 9.1 mit dem Kennbuchstaben FEI gekennzeichnet. Dementsprechend wird die Massenkraft der Ausgleichsmasse 9.2 an dem Kurbelantrieb 4.1 durch den Buchstaben FN1 bezeichnet. Analog wird der Kraftvektor der Ausgleichsmasse 9.3, die dem Kurbelantrieb 4.2 zugeordnet ist, mit dem Buchstaben FE2 bezeichnet. Die dem Kurbelantrieb 11.1 des Horizontaltriebwerkes 10 zugeordneten Ausgleichsmassen 16.1 und 16.2 sind durch die Kennbuchstaben FN3 sowie FE3 bezeichnet und als Kraftvektoren eingezeichnet.In the situations shown in FIG. 1.1, the mass forces generated by the balancing weights 9.1, 9.2, 9.3, 16.1 and 16.2 are represented as vectors. Thus, the force vector of the balancing mass 9.1 is marked with the code letter F EI . Accordingly, the mass force of the balancing mass 9.2 is referred to the crank drive 4.1 by the letter F N1 . Analogously, the force vector of the balancing mass 9.3, which is assigned to the crank drive 4.2, denoted by the letter F E2 . The the crank mechanism 11.1 of the horizontal engine 10 associated balancing weights 16.1 and 16.2 are denoted by the code letters F N3 and F E3 and shown as force vectors.
Bei den in Fig. 1.1 und 1.2 dargestellten Betriebsstellungen wird die am Nadelbalken angreifende Massenkraft FB durch die Kräfte FEI + FE2 + FE3 der Ausgleichsmassen 9.1, 9.2 und 9.3 der Kurbelantriebe 4.1 und 4.2 kompensiert. In den gezeigten Betriebsstellungen stehen sich die Massenkräfte FN1 und FN3 der Ausgleichsmassen 9.2 und 16.2 gegenüber. So ist es möglich, durch die Ausgleichs- massen 9.1, 9.2 und 9.3 die horizontale und die vertikale Massenkraft auszugleichen. Die Ausgleichsmassen 9.2 und 16.2, die die Massenkräfte FN1 und FN3 hervorrufen, werden nun so gewählt, dass sie sich in jeder Stellung des Nadelbalkens gegenseitig aufheben und einen Massenmoment zur Kompensation des durch den Wirklinienabstand zwischen Balkenkräften und Ausgleichskräften verursachten Massenmomentes bewirken.In the operating positions shown in FIGS. 1.1 and 1.2, the mass force F B acting on the needle bar is compensated by the forces F EI + F E2 + F E3 of the balancing weights 9.1, 9.2 and 9.3 of the crank drives 4.1 and 4.2. In the operating positions shown, the mass forces F N1 and F N3 of the balancing weights 9.2 and 16.2 are opposite. Thus, it is possible to compensate for the horizontal and the vertical mass force by the balancing weights 9.1, 9.2 and 9.3. The balancing weights 9.2 and 16.2, which cause the mass forces F N1 and F N3 , are now chosen so that they cancel each other in each position of the needle bar and cause a mass moment to compensate for the caused by the working line distance between beam forces and balancing forces mass moment.
Bei dem in den Fig. 1.1 und 1.2 dargestellten Ausführungsbeispielen bestehen grundsätzlich zwei Möglichkeiten die Ausgleichsmassen an dem jeweiligen Kurbelantrieb anzubringen. In Fig. 2 ist eine weitere mögliche Anordnung einer Aus- gleichmasse gezeigt, wie sie beispielsweise an dem Kurbelantrieb 4.1 des Vertikalantriebwerkes 3 oder des Kurbelantriebes 11.1 des Horizontaltriebwerkes 10 alternativ ausgeführt werden können. Hierzu wird dem Kurbelantrieb 4.1 eine Ausgleichmasse 9.2 zugeordnet. Die Ausgleichsmasse 9.2 ist um einen Winkel α versetzt zu dem Exzenter 6.1 der Kurbelwelle 5.1 angeordnet. Der Winkel α ist kleiner 180° und vorzugsweise derart gewählt, dass durch die Ausgleichsmasse 9.2 sowohl horizontal wirkende als auch vertikal wirkende Kräfte kompensierbar sind. Damit lässt sich bei gleichbleibender Wirkung die Anzahl der Ausgleichsmassen verringern.In the exemplary embodiments illustrated in FIGS. 1.1 and 1.2, there are basically two options for attaching the balancing weights to the respective crank drive. FIG. 2 shows a further possible arrangement of a compensating mass, as may alternatively be embodied, for example, on the crank drive 4.1 of the vertical drive mechanism 3 or of the crank drive 11.1 of the horizontal drive mechanism 10. For this purpose, the crank drive 4.1 is assigned a compensating mass 9.2. The balancing mass 9.2 is offset by an angle α to the eccentric 6.1 of the crankshaft 5.1. The angle α is less than 180 ° and preferably chosen such that both horizontally acting and vertically acting forces can be compensated by the balancing mass 9.2. Thus, the number of balancing weights can be reduced while maintaining the same effect.
In den Fig. 3.1 und 3.2 ist ein weiteres Ausführungsbeispiel der erfmdungsgemä- ßen Vorrichtung schematisch in einer Seitenansicht in mehreren Betriebspositio- nen dargestellt. Das Ausführungsbeispiel nach Fig. 3.1 und 3.2 ist im Wesentlichen identisch zu dem Ausführungsbeispiel nach Fig. 1.1 und 1.2, so dass an dieser Stelle nur die Unterschiede erläutert werden und ansonsten Bezug zu der vorgenannten Beschreibung genommen wird. In Fig. 3.1 ist das Ausführungsbeispiel in einer oberen Stellung des Nadelbalkens und in Fig. 3.2 in einer mittleren Stellung des Nadelbalkens gezeigt.In FIGS. 3.1 and 3.2, a further exemplary embodiment of the device according to the invention is shown schematically in a side view in several operating positions. represented. The embodiment of FIGS. 3.1 and 3.2 is substantially identical to the embodiment of FIGS. 1.1 and 1.2, so that only the differences will be explained at this point and otherwise reference is made to the above description. In Fig. 3.1, the embodiment is shown in an upper position of the needle bar and in Fig. 3.2 in a middle position of the needle bar.
Bei dem in den Fig. 3.1 und 3.2 dargestellten Ausführungsbeispiel sind an dem Balkenträger 2 jeweils zwei Nadelbalken 1.1 und 1.2 gehalten, die jeweils an ih- ren Unterseiten ein Nadelbrett 24 und einer Mehrzahl von Nadeln 25 tragen. Der Balkenträger 2 ist mit einem Vertikaltriebwerk 3 gekoppelt, der identisch zu dem vorgenannten Ausführungsbeispiel ausgebildet ist. Zur horizontalen Bewegung des Balkenträgers 2 ist der Balkenträger 2 über ein mittleres Drehgelenk 15 mit einem Lenker 19 gekoppelt. In diesem Ausführungsbeispiel ist das Drehgelenk 15 im wesentlichen mit den Drehgelenken 8.1 und 8.2 zur Anbindung des Vertikaltriebwerkes 3 auf einer gemeinsamen Höhe am Balkenträger 2 angeordnet, so dass die zu den Querseiten des Balkenträgers 2 angeordneten Lenker 19 die Kraftanleitung und die Führung des Balkenträgers 2 ermöglichen.In the exemplary embodiment illustrated in FIGS. 3.1 and 3.2, two needle bars 1.1 and 1.2 are respectively held on the beam support 2, each of which carries a needle board 24 and a plurality of needles 25 on their undersides. The beam support 2 is coupled to a vertical engine 3, which is identical to the aforementioned embodiment. For horizontal movement of the beam support 2 of the beam support 2 is coupled via a central pivot 15 with a handlebar 19. In this embodiment, the rotary joint 15 is arranged substantially with the hinges 8.1 and 8.2 for connecting the vertical engine 3 at a common height on the beam support 2, so that arranged to the transverse sides of the beam support 2 link 19 allow the power instructions and the leadership of the beam support 2 ,
Zur Auslenkung des Lenkers 19 ist ein Horizontaltriebwerk 10 vorgesehen, das durch zwei Kurbelantriebe 11.1 und 11.2 gebildet wird. Die Kurbelantriebe 11.1 und 11.2 weisen jeweils eine Kurbelwelle 12.1 und 12.2 auf, die parallel nebeneinander angeordnet sind und gemeinsam mit den Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes 3 eine gemeinsame Antriebsebene bilden. Die Kurbelwellen 12.1 und 12.2 sind über ihre Exzenter 13.1 und 13.2 jeweils mit einer Pleuelstange 14.1 und 14.2 verbunden. Die Pleuelstangen 14.1 und 14.2 sind in einer Schräglage zueinander gerichtet, so dass die freien Enden der Pleuelstangen 14.1 und 14.2 über ein Doppeldrehgelenk 21 gemeinsam mit einem Koppelgetriebe 17 verbunden sind. Das Koppelgetriebe 17 besteht in diesem Ausführungsbeispiel aus einem Kipphebel 18, der an einem Schwenklager 26 schwenkbar gelagert ist. Der Kipphebel 18 weist an einem freien Ende unterhalb des Schwenklagers 26 ein Drehgelenk auf, mit welchem der Lenker 19 mit dem Kipphebel 18 verbunden ist. An dem gege- nüberliegenden freien Ende des Kipphebels 18 ist ein weiteres Drehgelenk vorgesehen, an welchem eine Schubstange 20 angreift. Die Schubstange 20 ist mit einem gegenüberliegenden Ende durch das Doppeldrehgelenk 21 mit den Pleuelstangen 14.1 und 14.2 gekoppelt.For the deflection of the link 19, a horizontal engine 10 is provided, which is formed by two crank drives 11.1 and 11.2. The crank mechanisms 11.1 and 11.2 each have a crankshaft 12.1 and 12.2, which are arranged parallel to each other and together with the crankshafts 5.1 and 5.2 of the vertical engine 3 form a common drive plane. The crankshafts 12.1 and 12.2 are connected via their eccentric 13.1 and 13.2 each with a connecting rod 14.1 and 14.2. The connecting rods 14.1 and 14.2 are directed in an inclined position to each other, so that the free ends of the connecting rods 14.1 and 14.2 are connected via a double pivot joint 21 together with a coupling gear 17. The coupling mechanism 17 consists in this embodiment of a rocker arm 18 which is pivotally mounted on a pivot bearing 26. The rocker arm 18 has at a free end below the pivot bearing 26 has a pivot, with which the link 19 is connected to the rocker arm 18. At the opposite free end of the rocker arm 18, a further rotary joint is provided, on which a push rod 20 engages. The push rod 20 is coupled to an opposite end by the double pivot 21 with the connecting rods 14.1 and 14.2.
Die Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 werden gegensinnig mit gleicher Drehzahl angetrieben, wobei die Phasenlagen der Kurbelwellen 12.1 und 12.2 in Abhängigkeit von einem gewünschten Horizontalhub zueinander einstellbar sind. Die Phasenlagen und damit der gewünschte Horizontalhub der Kurbelwellen 12.1 und 12.2 lässt sich beispielsweise durch zwei separate Stellmotoren ausführen, die eine Verdrehung der Kurbelwellen 12.1 und 12.2 zueinander bewirken. Der Antrieb der Kurbelwellen 14.1 und 14.2 lässt sich durch einen gemeinsamen Antrieb oder separat über getrennte Antriebe ausführen.The crankshafts 12.1 and 12.2 of the crank mechanisms 11.1 and 11.2 are driven in opposite directions at the same speed, wherein the phase angles of the crankshafts 12.1 and 12.2 are adjustable relative to each other in dependence on a desired horizontal stroke. The phase angles and thus the desired horizontal stroke of the crankshafts 12.1 and 12.2 can be carried out, for example, by two separate servomotors which effect a rotation of the crankshafts 12.1 and 12.2 relative to each other. The drive of the crankshafts 14.1 and 14.2 can be carried out by a common drive or separately via separate drives.
Zum Ausgleich der Massenkräfte an den Kurbelantrieben 4.1, 4.2, 11.1 und 11.2 ist eine Massenausgleichseinrichtung vorgesehen, die durch mehrere den Kurbelantrieben zugeordnete Ausgleichmassen gebildet wird. Jeder der Kurbelantriebe 4.1 und 4.2 des Vertikaltriebwerkes 3 weist zwei Ausgleichsmassen auf. Eine erste Ausgleichsmasse ist als Gegenmasse an den Kurbelantrieben 4.1 und 4.2 angeordnet und um einen Winkel von 180° versetzt zu den Exzentern 6.1 und 6.2 der Kurbelwellen 5.1 und 5.2 angeordnet. Die Ausgleichsmassen sind mit dem Bezugszeichen 9.1 an dem Kurbelantrieb 4.1 und 9.3 an dem Kurbelantrieb 4.2 bezeichnet. Eine zweite Ausgleichsmasse ist um 90° versetzt zu den Exzentern 6.1 und 6.2 an den Kurbewellen 5.1 und 5.2 angeordnet. Die Ausgleichsmassen 9.2 und 9.4 der Kurbelantrieb 4.1 und 4.2 sind dabei in ihrer Masse größer ausgebil- det, als die Ausgleichsmassen 9.1 und 9.3. Die Kurbelantriebe 11.1 und 11.2 des Horizontaltriebwerkes 10 weisen jeweils eine Ausgleichsmasse 16.1 und 16.2 auf. An dem Kurbelantrieb 11.1 ist die Ausgleichsmasse 16.1 in einem Winkel <180° versetzt zu dem Exzenter 13.1 der Kurbelwelle 12.1 angeordnet. Der Winkel α, der den Versatz zwischen dem Exzenter 13.1 und der Ausgleichsmasse 16.1 an der Kurbelwelle 12.1 bezeichnet ist in diesem Ausführungsbeispiel ca. 20°. Die Lage der Ausgleichsmasse 16.1 und auch die Lage der Ausgleichsmasse 16.2 wird im Wesentlichen durch die Anordnung der Kurbelantriebe 11.1 und 11.2 zueinander bestimmt. So sind die PleuelstangenTo compensate for the mass forces on the crank mechanisms 4.1, 4.2, 11.1 and 11.2, a mass balancing device is provided, which is formed by a plurality of the crank mechanisms associated with balancing masses. Each of the crank drives 4.1 and 4.2 of the vertical engine 3 has two balancing weights. A first balancing mass is arranged as a counterweight on the crank drives 4.1 and 4.2 and arranged at an angle of 180 ° offset from the eccentrics 6.1 and 6.2 of the crankshafts 5.1 and 5.2. The balancing weights are denoted by the reference numeral 9.1 on the crank drive 4.1 and 9.3 on the crank drive 4.2. A second balancing mass is arranged offset by 90 ° to the eccentrics 6.1 and 6.2 at the shafts 5.1 and 5.2. The balancing weights 9.2 and 9.4 of the crank drive 4.1 and 4.2 are designed to be larger in mass than the balancing weights 9.1 and 9.3. The crank mechanisms 11.1 and 11.2 of the horizontal engine 10 each have a balancing mass 16.1 and 16.2. At the crank drive 11.1 the balancing mass 16.1 is offset at an angle <180 ° to the eccentric 13.1 of the crankshaft 12.1. The angle α, which denotes the offset between the eccentric 13.1 and the balancing mass 16.1 on the crankshaft 12.1, is approximately 20 ° in this exemplary embodiment. The position of the balancing mass 16.1 and also the position of the balancing mass 16.2 is essentially determined by the arrangement of the crank drives 11.1 and 11.2 to each other. So are the connecting rods
14.1 und 14.2 in einer Schräglage angeordnet und über das Doppeldrehgelenk 21 miteinander verbunden. Die Ausgleichsmasse 16.2 an dem Kurbelantrieb 11.2 ist somit in gleicher Lage und in gleicher Größe an dem Kurbelantrieb 11.2 angebracht.14.1 and 14.2 arranged in an inclined position and connected to each other via the double pivot 21. The balancing mass 16.2 on the crank drive 11.2 is thus mounted in the same position and in the same size on the crank drive 11.2.
Zum Antrieb der Nadelbalken 1.1 und 1.2 werden sowohl die Kurbelantriebe 4.1 und 4.2 des Vertikaltriebwerkes 3 als auch die Kurbelantriebe 11.1 und 11.2 des Horizontaltriebwerkes 10 synchron und gegensinnig angetrieben. In der Fig. 3.1 ist die Situation gezeigt, bei welcher der Balkenträger 2 mit dem Nadelbalken 1.1 und 1.2 in einer oberen Todlage gehalten ist. Die Fig. 3.2 stellt das Ausführungsbeispiel in der Betriebssituation dar, in welcher der Balkenträger 2 mit dem Na- delbalken 1.1 und 1.2 in einer mittleren Stellung bei Ausführung einer Horizontalbewegung dar. Die den Ausgleichsmassen 9.1 bis 9.4 sowie den Ausgleichsmassen 16.1 und 16.2 zugeordneten Massenkräfte sind mit den Kennbuchstaben FA und FE bezeichnet.To drive the needle bar 1.1 and 1.2, both the crank drives 4.1 and 4.2 of the vertical engine 3 and the crank mechanisms 11.1 and 11.2 of the horizontal engine 10 are driven synchronously and in opposite directions. In Fig. 3.1, the situation is shown in which the beam support 2 is held with the needle bar 1.1 and 1.2 in an upper dead position. FIG. 3.2 illustrates the exemplary embodiment in the operating situation, in which the beam support 2 with the needle bar 1.1 and 1.2 in a middle position during execution of a horizontal movement. The mass forces 9.1 to 9.4 and the balancing weights 16.1 and 16.2 are associated mass forces denoted by the code letters F A and F E.
Die vier Ausgleichskräfte FA1 bis FA4 der Ausgleichsmassen 9.2, 9.4, 16.1 undThe four balancing forces F A1 to F A4 of the balancing weights 9.2, 9.4, 16.1 and
16.2 kompensieren sich in den Todlagen des Balkenträgers 2 wie aus der Fig. 3.1 ersichtlich ist. Die durch die Ausgleichsmassen 9.1 und 9.4 bewirkten Massenkräfte FEI und FE2 stehen der am Balkenträger 2 angreifenden Massenkraft FB gegenüber. Zwischen den Todlagen verbleibt aufgrund der Schiefstellung der Kraftkomponenten eine resultierende Massenkraft. Bei geeigneter Wahl der Ausgleichsmassen 9.2, 9.4, 16.1 und 16.2 wird mit dieser Kraftkomponente die hori- zontale Massenkraft des Balkenträgers mit den Nadelbalken 1.1 und 1.2 in horizontaler Richtung kompensiert. In vertikaler Richtung ändert sich die Ausgleichskraft insbesondere bei geringen Verstellwinkeln und damit Schiefstellungen der Kraftkomponenten nur wenig, so dass der Kraftausgleich für jeden Horizontalhub bis zu einem maximalen Verstellwinkel von ca. 20° in sehr guter Nährung erhalten bleibt, wie dies aus der Situation in Fig. 3.2 hervorgeht.16.2 compensate each other in the dead states of the beam carrier 2, as can be seen from FIG. 3.1. The mass forces F EI and F E2 caused by the balancing weights 9.1 and 9.4 are opposite to the mass force F B acting on the beam carrier 2. Between the death positions remains due to the misalignment of the force components, a resultant inertial force. With a suitable choice of the balancing weights 9.2, 9.4, 16.1 and 16.2, with this force component the hori- zontal mass force of the beam carrier with the needle bar 1.1 and 1.2 compensated in the horizontal direction. In the vertical direction, the compensating force changes only slightly, especially at low adjustment angles and therefore misalignments of the force components, so that the force compensation for each horizontal stroke is maintained to a maximum adjustment angle of approximately 20 ° in very good nutrition, as can be seen from the situation in FIG 3.2.
Es ist jedoch auch möglich, den Massenausgleich beispielsweise auf einen Verstellwinkel auszulegen, der von null verschieden ist. Das bedeutet, dass die Aus- gleichsmassen auf den Kurbelantrieben 11.1 und 11.2 des Horizontaltriebwerkes 10 um den Winkel α verdreht angebracht werden, so dass die entsprechenden Ausgleichskräfte bei einem entsprechenden Verstellwinkel senkrecht stehen. Dies hat zur Folge, dass der nutzbare Verstellwinkel verdoppelt werden kann, ohne dass es zu nennenswerten Abweichungen im vertikalen Kraftausgleich kommt. Die Ausgleichsmassen 9.1 bis 9.4 an den Kurbelantrieben 4.1 und 4.2 des Vertikaltriebwerkes 3 sind in diesem Fall so anzupassen, dass für den Bereich des Horizontalhubes die Massenkräfte in vertikaler und horizontaler Richtung ausgeglichen sind.However, it is also possible to design the mass balance, for example, to an adjustment angle that is different from zero. This means that the compensating masses on the crank drives 11.1 and 11.2 of the horizontal engine 10 are rotated by the angle α, so that the corresponding compensating forces are perpendicular at a corresponding displacement angle. This has the consequence that the usable adjustment angle can be doubled, without there being significant deviations in the vertical force compensation. The balancing weights 9.1 to 9.4 on the crank drives 4.1 and 4.2 of the vertical engine 3 are to be adapted in this case so that the mass forces in the vertical and horizontal directions are balanced for the region of the horizontal stroke.
Um insbesondere neben dem Ausgleich der Massenkräfte auch jede Form von auftretenden freien Massenmomenten zu kompensieren, lässt sich die in den Fig. 3.1 und3.2 dargestellte Ausführung der erfindungsgemäßen Vorrichtung mit einer Massenausgleichseinrichtung ausführen, bei welcher neben den Ausgleichsmassen zusätzlich eine Ausgleichswelle mit einer umlaufenden Exzentermasse vorge- sehen ist. Ein derartiges Ausführungsbeispiel ist in Fig. 4 dargestellt.In order to compensate in particular in addition to the balance of inertial forces and any form of occurring free mass moments, the embodiment shown in FIGS. 3.1 and 3.2 run the device according to the invention with a mass balancing device, in which in addition to the balancing masses in addition a balance shaft with a rotating eccentric mass is provided. Such an embodiment is shown in FIG.
Das Ausführungsbeispiel nach Fig. 4 ist bis auf die Massenausgleichseinrichtung identisch zu dem Ausführungsbeispiel nach Fig. 3.1. Insoweit wird auf die vorgenannte Beschreibung Bezug genommen und anschließend nur die Unterschiede erläutert. Zum Massenausgleich weist die Massenausgleichseinrichtung mehrere Ausgleichsmassen sowie eine Ausgleichswelle mit umlaufender Exzentermasse auf. Die Ausgleichswelle 22 ist in der Antriebsebene zwischen den Kurbelantrieben 11.1 und 11.2 des Horizontaltriebwerkes 10 angeordnet. Die Ausgleichswelle 22 erstreckt sich parallel zu den in der Antriebsebene liegenden Kurbelwellen 12.1 und 12.2, die ebenfalls parallel zu den in gleicher Ebene angeordneten Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes 3 gehalten sind. An der Ausgleichswelle 22 ist eine Exzentermasse 23 angeordnet. Die Ausgleichswelle 22 wird synchron zu den Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 angetrieben, wobei die Ausgleichswelle 22 und die Kurbelwelle 12.1 den gleichen Drehsinn aufweisen.The embodiment of FIG. 4 is identical to the embodiment of FIG. 3.1 except for the mass balancing device. In that regard, reference is made to the above description and then explained only the differences. For mass balance, the mass balancing device on several balancing weights and a balancer shaft with rotating eccentric mass. The balancing shaft 22 is arranged in the drive plane between the crank drives 11.1 and 11.2 of the horizontal engine 10. The balance shaft 22 extends parallel to the lying in the drive plane crankshafts 12.1 and 12.2, which are also held parallel to the arranged in the same plane crankshafts 5.1 and 5.2 of the vertical engine 3. At the balance shaft 22, an eccentric mass 23 is arranged. The balancing shaft 22 is driven synchronously to the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2, wherein the balancer shaft 22 and the crankshaft 12.1 have the same direction of rotation.
Zum Massenausgleich sind die Ausgleichsmassen 16.1 und 16.2 an den Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 angeordnet. Die Anord- nung ist dabei identisch zu dem vorher beschriebenen Ausführungsbeispiel nach Fig. 3.1.For mass balance, the balancing weights 16.1 and 16.2 are arranged on the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2. The arrangement is identical to the previously described embodiment of FIG. 3.1.
Den Kurbelantrieben 4.1 und 4.2 der Vertikaltriebwerke 3 sind ebenfalls jeweils zwei Ausgleichsmassen in versetzter Anordnung zueinander zugeordnet. So sind die Ausgleichsmassen 9.1 und 9.2 dem Kurbelantrieb 4.1 und die Ausgleichsmassen 9.3 und 9.4 dem Kurbelantrieb 4.2 zugeordnet. Die Ausgleichsmassen 9.1 bis 9.4 der Kurbelantriebe 4.1 und 4.2 sind in ihrer Größe unterschiedlich ausgebildet. Die im Wesentlichen zur Ausgleichung von horizontalen Massenkräften an dem Kurbelantrieb 4.1 angeordnete Ausgleichsmasse 9.2 ist kleiner ausgebildet als die Ausgleichsmasse 9.4 an dem zweiten Kurbelantrieb 4.2 des Vertikaltriebwerkes 3.The crank mechanisms 4.1 and 4.2 of the vertical engines 3 are also each two balancing weights assigned in an offset arrangement to each other. Thus, the balancing weights 9.1 and 9.2 are assigned to the crank drive 4.1 and the balancing weights 9.3 and 9.4 to the crank drive 4.2. The balancing weights 9.1 to 9.4 of the crank drives 4.1 and 4.2 are designed differently in size. The balancing mass 9.2, which is arranged essentially to compensate for horizontal mass forces on the crank drive 4.1, is smaller than the balancing mass 9.4 on the second crank drive 4.2 of the vertical engine 3.
Insgesamt ergibt sich bei der in Fig. 4 dargestellten Situation ein Kräftegleichgewicht zwischen den durch die Ausgleichsmassen erzeugten Kräfte. Die Massenkraft FM der Exzentermasse 23 wirkt gleichgerichtet zur Massenkraft FA4 der Ausgleichsmasse 16.2 an dem Kurbelantrieb 11.2. Die Massenkräfte FM und FA4 stehen die Massekräfte FA1, FA2 und FA3 entgegen. Die an dem Balkenträger 2 wirksame vertikale Massenkraft FB wird durch die an den Kurbelantrieben 4.1 und 4.2 angeordneten Ausgleichsmassen 9.1 und 9.4 und deren Massenkräfte FEI und FE2 ausgeglichen.Overall, results in the situation shown in Fig. 4, a balance of power between the forces generated by the balancing weights. The mass force F M of the eccentric mass 23 acts rectified to the mass force F A4 of the balancing mass 16.2 on the crank drive 11.2. The mass forces F M and F A4 are opposed by the mass forces F A1 , F A2 and F A3 . The on the beam support 2 effective vertical mass force F B is compensated by arranged on the crank drives 4.1 and 4.2 balancing weights 9.1 and 9.4 and their mass forces F EI and F E2 .
In Fig. 5 ist ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zum Vernadeln einer Faserbahn schematisch in einer Seitenansicht dargestellt. Das Ausführungsbeispiel nach Fig. 5 unterscheidet sich im Wesentlichen von den vorgenannten Ausführungsbeispielen dadurch, dass zur Erzeugung einer überlagerten Horizontalbewegung des Nadelbalkens kein separates Horizontaltriebwerk vorhanden ist. Bei dem in Fig. 5 dargestellten Ausführungsbeispiel der erfindungsgemäßen Vorrichtung wird die überlagerte Horizontalbewegung des Nadelbalkens über das Vertikaltriebwerk 3 eingeleitet.5, a further embodiment of the device according to the invention for needling a fibrous web is shown schematically in a side view. The embodiment of FIG. 5 differs substantially from the aforementioned embodiments in that no separate horizontal engine is present to produce a superimposed horizontal movement of the needle bar. In the embodiment of the device according to the invention shown in Fig. 5, the superimposed horizontal movement of the needle bar via the vertical engine 3 is initiated.
Hierzu weist das mit dem Balkenträger 2 verbundene Vertikaltriebwerk zwei pa- rallel nebeneinander angeordnete Kurbelantriebe 4.1 und 4.2 auf. Die Kurbelantriebe 4.1 und 4.2 besitzen zwei parallel nebeneinander angeordnete Kurbelwellen 5.1 und 5.2, die oberhalb des Balkenträgers 2 angeordnet sind. Die Kurbelwellen 5.1 und 5.2 weisen jeweils mindestens einen Exzenterabschnitt zur Aufnahme mindestens einer Pleuelstange auf. In Fig. 5 sind die an einem Balkenträger 2 an- geordneten Pleuelstangen 7.1 und 7.2 gezeigt, die mit ihren Pleuelköpfen an den Kurbelwellen 5.1 und 5.2 geführt sind.For this purpose, the vertical engine connected to the beam carrier 2 has two parallel crank drives 4.1 and 4.2 arranged parallel to each other. The crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2. The crankshafts 5.1 and 5.2 each have at least one eccentric section for receiving at least one connecting rod. FIG. 5 shows the connecting rods 7.1 and 7.2 arranged on a beam support 2, which are guided with their connecting rod heads on the crankshafts 5.1 and 5.2.
Den Kurbelwellen 5.1 und 5.2 ist eine Phasenverstelleinrichtung 36 zugeordnet. Die Phasenverstelleinrichtung 36 weist zwei Stellmotoren 34.1 und 34.2 auf, die den Kurbelwellen 5.1 und 5.2 zugeordnet sind. Die Stellmotoren 34.1 und 34.2 sind mit einer Steuereinrichtung 35 verbunden. Über die Steuereinrichtung 35 lassen sich die Stellmotoren 34.1 und 34.2 unabhängig voneinander aktivieren, um die Kurbelwellen 5.1 und 5.2 in ihren Lagen zu verdrehen. Somit lässt sich die Phasenlage zwischen den beiden Kurbelwellen 5.1 und 5.2 verstellen. Neben der reinen vertikalen Auf- und Abwärtsbewegung des Balkenträgers 2 lässt sich dadurch eine überlagerte Horizontalbewegung an dem Balkenträger 2 ausführen. Bei einem Versatz der Phasenlagen der Kurbelwellen 5.1 und 5.2 wird über die Pleuelstangen 7.1 und 7.2 an dem Balkenträger 2 eine Schiefstellung eingeleitet, die bei fortschreitender Bewegung eine in Bewegungsrichtung einer Faserbahn gerichtete Bewegungskomponente erzeugt. Die Größe der Phasenverstellung zwi- sehen den Kurbelwellen 5.1 und 5.2 ist direkt proportional einer Hublänge der Horizontalbewegung. Der Hub der Horizontalbewegung lässt sich also über den Phasenwinkel der Kurbelwellen 5.1 und 5.2 einstellen.The crankshafts 5.1 and 5.2 are assigned a phase adjustment device 36. The phase adjustment device 36 has two servomotors 34.1 and 34.2, which are assigned to the crankshafts 5.1 and 5.2. The servomotors 34.1 and 34.2 are connected to a control device 35. Via the control device 35, the servomotors 34.1 and 34.2 can be activated independently of one another in order to turn the crankshafts 5.1 and 5.2 in their positions. Thus, the phase angle between the two crankshafts 5.1 and 5.2 can be adjusted. In addition to the pure vertical up and down movement of the beam support 2 can thereby perform a superimposed horizontal movement of the beam support 2. at an offset of the phase angles of the crankshafts 5.1 and 5.2 is introduced via the connecting rods 7.1 and 7.2 on the beam support 2 a skewing, which generates a progressive movement in the direction of movement of a fiber web movement component. The size of the phase adjustment between see the crankshafts 5.1 and 5.2 is directly proportional to a stroke length of the horizontal movement. The stroke of the horizontal movement can therefore be adjusted via the phase angle of the crankshafts 5.1 and 5.2.
Bei der in Fig. 5 dargestellten Situation ist zwischen den Kurbelwellen 5.1 und 5.2 eine Phasendifferenz eingestellt, so dass der Balkenträger 2 mit dem Nadelbalken 1.1 und 1.2 einen konstanten Hub in horizontaler Richtung ausführt.In the situation illustrated in FIG. 5, a phase difference is set between the crankshafts 5.1 and 5.2, so that the beam carrier 2 with the needle bar 1.1 and 1.2 executes a constant stroke in the horizontal direction.
Zur Führung des Balkenträgers 2 ist eine Führungseinrichtung 27 vorgesehen. Die Führungseinrichtung weist einen Lenker 19 auf, der mit einem freien Ende über ein Drehgelenk 15 mit dem Balkenträger 2 verbunden ist. An dem gegenüberliegenden Ende des Lenkers greift eine erste Schwinge 28 an, die über ein Drehlager 32 an ein Maschinengestell und über ein Drehgelenk 30 mit dem Lenker verbunden ist. Im Abstand zu der ersten Schwinge 28 ist eine zweite Schwinge 29 vorgesehen, die über ein Drehgelenk 31 im mittleren Bereich des Lenkers 19 und über ein Drehlager 33 gehalten ist.To guide the beam carrier 2, a guide device 27 is provided. The guide device has a link 19, which is connected to a free end via a rotary joint 15 with the beam support 2. At the opposite end of the handlebar engages a first rocker 28, which is connected via a pivot bearing 32 to a machine frame and a rotary joint 30 with the handlebars. At a distance from the first rocker 28, a second rocker 29 is provided, which is held via a pivot 31 in the central region of the link 19 and a pivot bearing 33.
Die Führungseinrichtung 27 ist oberhalb des Balkenträgers 2 angeordnet. Die Drehlager 32 und 33 sind zwischen den Pleuelstangen 7.1 und 7.2 angeordnet. Der Lenker 19 ist in der Balkenmitte über das Drehgelenk 15 mit dem Balkenträ- ger verbunden. Damit lässt sich eine sichere Führung des Balkenträgers während der Antriebsbewegung durch das Vertikaltriebwerk 3 realisieren.The guide device 27 is arranged above the beam support 2. The pivot bearings 32 and 33 are arranged between the connecting rods 7.1 and 7.2. The handlebar 19 is connected in the middle of the beam via the rotary joint 15 with the beam carrier. This allows a secure guidance of the beam support during the drive movement realized by the vertical engine 3.
Die den Kurbelantrieben 4.1 und 4.2 zugeordnete Massenausgleichseinrichtung wird in diesem Ausführungsbeispiel durch insgesamt vier Ausgleichsmassen 9.1, 9.2, 9.3 und 9.4 gebildet. Die Ausgleichsmassen 9.1 und 9.2 sind der KurbelwelleThe cranks drives 4.1 and 4.2 associated mass balancing device is formed in this embodiment by a total of four balancing weights 9.1, 9.2, 9.3 and 9.4. The balancing weights 9.1 and 9.2 are the crankshaft
5.1 zugeordnet. Die Ausgleichsmassen 9.3 und 9.4 sind an der Kurbelwelle 5.2 befestigt. Die Ausgleichsmasse 9.1 ist an der Kurbelwelle 5.1 um den Winkel 180° versetzt zu dem Exzenter 6.1 angeordnet. Die Ausgleichsmasse 9.2 ist um einen Winkel um 90° versetzt zu der ersten Ausgleichsmasse 9.1 an der Kurbelwelle 5.1 befestigt.5.1 assigned. The balancing weights 9.3 and 9.4 are on the crankshaft 5.2 attached. The balancing mass 9.1 is arranged on the crankshaft 5.1 offset by the angle 180 ° to the eccentric 6.1. The balancing mass 9.2 is offset by an angle of 90 ° to the first balancing mass 9.1 attached to the crankshaft 5.1.
Bei dem Kurbelantrieb 4.2 ist die Ausgleichsmasse 9.3 um 180° versetzt zu dem Exzenter 6.2 an der Kurbelwelle 5.2 gehalten. Die Ausgleichsmasse 9.4 ist um den Winkel von 90° versetzt zu der ersten Ausgleichsmasse 9.3 an der Kurbelwelle 5.2 gehalten. Somit lassen sich sowohl die vertikalen als auch die horizontalen Massenkräfte an den Kurbelantrieben 4.1 und 4.2 vorteilhaft durch die Ausgleichsmassen 9.1 bis 9.4 ausgleichen.In the case of the crank drive 4.2, the balancing mass 9.3 is offset by 180 ° relative to the eccentric 6.2 on the crankshaft 5.2. The balancing mass 9.4 is offset by the angle of 90 ° to the first balancing mass 9.3 held on the crankshaft 5.2. Thus, both the vertical and the horizontal inertia forces on the crank drives 4.1 and 4.2 can be compensated advantageously by the balancing weights 9.1 to 9.4.
Um insbesondere einen vollständigen Ausgleich der Massenkräfte und Massenmomente zu erreichen, weist die Massenausgleichseinrichtung zusätzliche eine Ausgleichwelle 22 auf, die oberhalb der Kurbelwellen 5.1 und 5.2 angeordnet ist. Die Ausgleichswelle 22 wird hierbei symmetrisch zu den Kurbelantrieben 4.1 und 4.2 gehalten. An der Ausgleichswelle 22 sind zwei Exzentermassen 23.1 und 23.2 angeordnet. Die Ausgleichswelle 22 erstreckt sich parallel zu den Kurbelwellen 5.1 und 5.2 und wird synchron zu den Kurbelwellen 5.1 und 5.2 angetrieben. Der Drehsinn der Ausgleichswelle 22 und der Drehsinn der Kurbelwellen 5.1 und 5.2 ist in Fig. 5 jeweils durch einen Pfeil gekennzeichnet.In order to achieve in particular complete compensation of the mass forces and moments of inertia, the mass balancing device additionally has a balancing shaft 22, which is arranged above the crankshafts 5.1 and 5.2. The balance shaft 22 is held symmetrically to the crank drives 4.1 and 4.2. At the balance shaft 22 two eccentric weights 23.1 and 23.2 are arranged. The balancer shaft 22 extends parallel to the crankshafts 5.1 and 5.2 and is driven in synchronism with the crankshafts 5.1 and 5.2. The direction of rotation of the balance shaft 22 and the direction of rotation of the crankshafts 5.1 and 5.2 is indicated in Fig. 5 in each case by an arrow.
Die Funktion zum Ausgleich der Massenkräfte im Betrieb der in Fig. 5 dargestellten Vorrichtung ist identisch zu den vorgenannten Ausführungsbeispielen, so dass hierzu keine weitere Erläuterung erfolgt.The function for balancing the mass forces in the operation of the device shown in Fig. 5 is identical to the aforementioned embodiments, so that there is no further explanation.
Die Erfindung erstreckt sich nicht nur auf die in Fig. 1, 3 und 4 gezeigten Ausführungsbeispielen einer Vorrichtung zum Vernadeln einer Faserbahn, sondern lässt sich auch vorteilhaft auf andere Triebwerkskonzepte, bei welchem der Nadelbal- ken mit konstantem Horizontalhub oder mit variablen Horizontalhüben geführt wird, einsetzen. Besonders vorteilhaft ist die Erfindung bei derartigen Vorrichtun- gen, bei welchem die Hubeinstellung des Horizontalhubes durch Verdrehung zweier Exzenterwellen zueinander erfolgt. So sei an dieser Stelle ausdrücklich erwähnt, dass die Erfindung nicht darauf beschränkt ist, dass die Kurbelantriebe durch Kurbelwellen angetrieben werden. Grundsätzlich können die Kurbelwellen problemlos durch Exzenterwellen ersetzt werden. The invention extends not only to the embodiments shown in FIGS. 1, 3 and 4 of a device for needling a fibrous web, but can also be advantageously applied to other engine concepts in which the needle bar is guided with a constant horizontal stroke or with variable horizontal strokes. deploy. The invention is particularly advantageous in the case of such devices. gene, in which the stroke adjustment of the horizontal stroke takes place by rotation of two eccentric shafts to each other. It should be expressly mentioned at this point that the invention is not limited to the fact that the crank mechanisms are driven by crankshafts. Basically, the crankshafts can easily be replaced by eccentric shafts.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1, 1.1, 1.2 Nadelbalken1, 1.1, 1.2 Needle bars
2 Balkenträger2 beam supports
3 Vertikaltriebwerk3 vertical engine
4.1,4.2 Kurbelantriebe4.1.4.2 Crank drives
5.1,5.2 Kurbelwellen5.1.5.2 Crankshafts
6.1,6.2 Exzenter6.1,6.2 eccentric
7.1,7.2 Pleuelstangen7.1,7.2 connecting rods
8.1,8.2 Drehgelenk8.1,8.2 swivel joint
9.1,9.2,9.3 Ausgleichsmasse9.1,9.2,9.3 balancing mass
10 Horizontalantrieb10 horizontal drive
11.1, 11.2 Kurbelantrieb11.1, 11.2 Crank drive
12.1, 12.2 Kurbelwelle12.1, 12.2 crankshaft
13.1, 13.2 Exzenter13.1, 13.2 eccentric
14.1, 14.2 Pleuelstange14.1, 14.2 connecting rod
15 Drehgelenk15 swivel joint
16.1, 16.2 Ausgleichsmasse16.1, 16.2 balancing mass
17 Koppelgetriebe17 coupling gear
18 Kipphebel18 rocker arms
19 Lenker19 handlebars
20 Koppelglied20 coupling link
21 Doppeldrehgelenk21 double swivel joint
22 Ausgleichswelle22 balance shaft
23,23.1,23.2 Exzentermasse23,23.1,23.2 eccentric mass
24 Nadelbrett24 needle board
25 Nadeln25 needles
26 Schwenklager26 pivot bearings
27 Führungseinrichtung 28 erste Schwinge27 guide device 28 first swingarm
29 zweite Schwinge29 second swingarm
30 Drehgelenk30 swivel joint
31 Drehgelenk 32 Drehlager31 swivel joint 32 swivel bearings
33 Drehlager33 pivot bearings
34.1, 34.2 Stellmotor34.1, 34.2 servomotor
35 Steuereinrichtung35 control device
36 Phasenverstelleinrichtun 36 phase adjuster

Claims

Patentansprüche claims
1. Vorrichtung zum Vernadeln einer Faserbahn mit zumindest einem angetriebenen Nadelbalken (1), mit einem Vertikaltriebwerk (3) zur oszillierenden Bewegung des Nadelbalkens (1) in einer vertikalen Auf- und Abwärtsbewegung, mit einem Horizontaltriebwerk (10) oder einer dem Vertikaltriebwerk (3) zugeordneten Phasenverstelleinrichtung (36) zur Ausführung einer über- lagerten oszillierenden Bewegung des Nadelbalkens (1) in einer horizontalen Hin- und Herbewegung, wobei das Vertikaltriebwerk (3) separate Kurbelantriebe (4.1, 4.2) aufweist, und mit einer Massenausgleichseinrichtung (9.1, 9.2) zum Ausgleich der Massenkräfte der Kurbelantriebe (4.1, 4.2), dadurch gekennzeichnet, dass die Massensausgleichseinrichtung durch zumindest eine AusgleichsmasseA device for needling a fiber web with at least one driven needle bar (1), with a vertical engine (3) for oscillating movement of the needle bar (1) in a vertical upward and downward movement, with a horizontal engine (10) or a vertical engine (3 ) for performing a superimposed oscillating movement of the needle bar (1) in a horizontal reciprocating motion, wherein the vertical engine (3) separate crank drives (4.1, 4.2), and with a mass balancing device (9.1, 9.2 ) to compensate for the mass forces of the crank drives (4.1, 4.2), characterized in that the mass balancing device by at least one balancing mass
(9.2) gebildet ist, die dem Kurbelantrieb (4.1) des Vertikaltriebwerkes (3) zugeordnet ist und die um einen Winkel (α) im Bereich kleiner 180° versetzt zu einem Exzenter (6.1) des Kurbelantriebs (4.1) angeordnet ist.(9.2) is formed, which is associated with the crank drive (4.1) of the vertical engine (3) and which is offset by an angle (α) in the range of less than 180 ° to an eccentric (6.1) of the crank drive (4.1).
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Ausgleichsmasse (9.2) um den Winkel von 90° versetzt zu dem Exzenter (6.1) des Kurbelantriebs (4.1) angeordnet ist und dass eine zweite Ausgleichsmasse (9.1) um den Winkel von 180° versetzt zu dem Exzenter (6.1) des Kurbelantriebs (4.1) angeordnet ist.2. Apparatus according to claim 1, characterized in that the balancing mass (9.2) offset by the angle of 90 ° to the eccentric (6.1) of the crank drive (4.1) is arranged and that a second balancing weight (9.1) by the angle of 180 ° offset from the eccentric (6.1) of the crank drive (4.1) is arranged.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Ausgleichsmassen (9.1, 9.2) gleich groß oder ungleich groß aus- gebildet sind. 3. A device according to claim 2, characterized in that the two balancing weights (9.1, 9.2) are the same size or unequal size formed.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Vertikaltriebwerk (3) durch zwei synchron umlaufende Kurbelantriebe (4.1, 4.2) gebildet ist und dass die Massenausgleichseinrichtung durch meh- rere Ausgleichsmassen (9.1 - 9.4) gebildet ist, die den beiden Kurbelantrieben (4.1, 4.2) zugeordnet sind.4. Device according to one of claims 1 to 3, characterized in that the vertical engine (3) by two synchronously rotating crank drives (4.1, 4.2) is formed and that the mass balancing device is formed by several balancing weights (9.1 - 9.4), the the two crank mechanisms (4.1, 4.2) are assigned.
5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass den Exzentern (6.1, 6.2) der Kurbelantriebe (4.1, 4.2) des Vertikaltriebwerk5. Apparatus according to claim 3, characterized in that the eccentrics (6.1, 6.2) of the crank drives (4.1, 4.2) of the vertical engine
(3) jeweils zumindest eine der Ausgleichsmassen (9.1 - 9.4) zugeordnet sind.(3) in each case at least one of the balancing weights (9.1 - 9.4) are assigned.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Massenausgleichseinrichtung eine zusätzlich Ausgleichswelle (22) mit einer umlaufenden Exzentermasse (23) oder mit zwei um 90° versetzt zueinander umlaufenden Exzentermassen (23.1, 23.2) aufweist.6. Device according to one of claims 1 to 5, characterized in that the mass balance device has an additional balance shaft (22) with a circumferential eccentric mass (23) or with two offset by 90 ° to each other rotating eccentric masses (23.1, 23.2).
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Phasenverstelleinrichtung (36) zwei den Kurbelwellen (5.1 , 5.2) der Kurbelantriebe (4.1, 4.2) zugeordnete Stellmotoren (34.1, 34.2) aufweist und dass die Ausgleichswelle (22) symmetrische zu den Kurbelwellen (5.1, 5.2) angeordnet ist.7. Device according to one of claims 1 to 6, characterized in that the phase adjustment device (36) has two crankshafts (5.1, 5.2) of the crank mechanisms (4.1, 4.2) associated actuating motors (34.1, 34.2) and that the balance shaft (22) symmetrical to the crankshaft (5.1, 5.2) is arranged.
8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Horizontaltriebwerk (10) zumindest einen separaten Kurbelantrieb (11 -1) aufweist und dass zumindest eine weitere Ausgleichsmasse (16.1) vorgesehen ist, die dem Kurbelantrieb (11.1) des Horizontaltriebwerks (10) zugeordnet ist und die um einen Winkel im Bereich kleiner 180° versetzt zu einem Exzenter (13.1) des Kurbelantriebs (11.1) angeordnet ist.8. Device according to one of claims 1 to 6, characterized in that the horizontal engine (10) has at least one separate crank drive (11 -1) and that at least one further balancing mass (16.1) is provided, the crank drive (11.1) of the horizontal engine (10) is assigned and offset by an angle in the range of less than 180 ° to an eccentric (13.1) of the crank drive (11.1) is arranged.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Ausgleichsmasse (16.1) um den Winkel von 90° versetzt zu dem Exzenter (13.1) des Kurbelantriebs (11.1) angeordnet ist und dass eine zweite Ausgleichsmasse (16.2) um den Winkel von 180° versetzt zu dem Exzenter (13.1) des Kurbelantriebs (11.1) angeordnet ist.9. Apparatus according to claim 8, characterized in that the compensating mass (16.1) offset by the angle of 90 ° to the eccentric (13.1) of the crank drive (11.1) is arranged and that a second balancing mass (16.2) by the angle of 180 ° offset from the eccentric (13.1) of the crank drive (11.1) is arranged.
10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Horizontaltriebwerk (10) durch zwei synchron umlaufende Kurbelantriebe (11.1, 11.2) gebildet ist und dass jedem der Kurbelantriebe (11.1, 11.2) zumindest eine der Ausgleichsmassen (16.1, 16.2) zugeordnet sind.10. Apparatus according to claim 8 or 9, characterized in that the horizontal engine (10) by two synchronously revolving crank drives (11.1, 11.2) is formed and that each of the crank mechanisms (11.1, 11.2) at least one of the balancing weights (16.1, 16.2) assigned are.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Kurbelantriebe (11.1, 11.2) des Horizontaltriebwerks (10) gegensinnig antreibbar sind und dass die Phasenlagen der beiden Kurbelantriebe (11.1,11. The device according to claim 10, characterized in that the crank mechanisms (11.1, 11.2) of the horizontal engine (10) are driven in opposite directions and that the phase angles of the two crank mechanisms (11.1,
11.2) zur Einstellung eines Hubes verstellbar ausgebildet sind.11.2) are designed to adjust a stroke adjustable.
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das Horizontaltriebwerk (10) ein Kopplungsgetriebe (17) aufweist, das die12. The apparatus of claim 10 or 11, characterized in that the horizontal engine (10) has a coupling gear (17), which is the
Verbindung zwischen den Kurbelantrieben (11.1, 11.2) und dem Nadelbalken (1) bildet.Connection between the crank drives (11.1, 11.2) and the needle bar (1) forms.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Kurbelantriebe (4.1, 4.2, 11.1, 11.2) jeweils eine angetriebene Kurbelwelle (5.1, 5.2, 12.1, 12.2) oder Exzenterwelle und eine über einen Pleuelkopf mit der Kurbelwelle oder Exzenterwelle verbundene Pleuelstange (7.1, 7.2, 14.1, 14.2) aufweisen.13. Device according to one of claims 1 to 12, characterized in that the crank drives (4.1, 4.2, 11.1, 11.2) each have a driven crankshaft (5.1, 5.2, 12.1, 12.2) or eccentric shaft and a connecting rod connected via a connecting rod with the crankshaft or eccentric shaft connecting rod (7.1, 7.2, 14.1, 14.2).
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Ausgleichsmasse (9.2) oder die Ausgleichsmassen (9.1 - 9.4, 16.1, 16.2) an der Kurbelwelle (5.1, 5.2, 12.1, 12.2) oder Exzenterwelle angeordnet sind. 14. The apparatus according to claim 13, characterized in that the compensating mass (9.2) or the balancing weights (9.1 - 9.4, 16.1, 16.2) on the crankshaft (5.1, 5.2, 12.1, 12.2) or eccentric shaft are arranged.
EP09718088A 2008-03-03 2009-03-02 Device for needling a web of fiber Not-in-force EP2250308B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008012294 2008-03-03
DE102008021958 2008-05-02
PCT/EP2009/052467 WO2009109553A1 (en) 2008-03-03 2009-03-02 Device for needling a web of fiber

Publications (2)

Publication Number Publication Date
EP2250308A1 true EP2250308A1 (en) 2010-11-17
EP2250308B1 EP2250308B1 (en) 2011-09-21

Family

ID=40740005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09718088A Not-in-force EP2250308B1 (en) 2008-03-03 2009-03-02 Device for needling a web of fiber

Country Status (5)

Country Link
US (1) US8099840B2 (en)
EP (1) EP2250308B1 (en)
CN (1) CN101960065B (en)
AT (1) ATE525509T1 (en)
WO (1) WO2009109553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012088A1 (en) * 2020-11-16 2022-06-15 AUTEFA Solutions Austria GmbH Needle machine and needling method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009267A1 (en) * 2013-06-04 2014-12-18 Autefa Solutions Germany Gmbh Device for separating needles
EP2886694B1 (en) * 2013-12-17 2016-09-07 Oskar Dilo Maschinenfabrik KG Method for driving a needle bar in a needling machine
CN106436033B (en) * 2016-11-03 2018-08-31 汕头三辉无纺机械厂有限公司 The acupuncture mechanism of single main shaft single needle area needing machine
EP3372716B1 (en) * 2017-03-09 2019-09-04 Oskar Dilo Maschinenfabrik KG Needling machine
CN110409062A (en) * 2019-07-17 2019-11-05 王永祥 A kind of horizontally-opposed balanced type ultrahigh speed needing machine of lever
FR3109587B1 (en) * 2020-04-23 2022-05-20 Andritz Asselin Thibeau Device for controlling the movement of the needles of a needling machine, in particular an elliptical, and needling machine comprising such a device
CN115199704B (en) * 2022-09-15 2022-11-29 仪征市佳禾机械有限公司 Dynamic balancing device for needling machine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1288935A (en) 1969-05-14 1972-09-13
GB1257669A (en) 1969-05-17 1971-12-22
DE19615697B4 (en) * 1995-09-15 2006-04-20 Oskar Dilo Maschinenfabrik Kg Needle bar drive of a needle machine
US5732453A (en) 1995-09-15 1998-03-31 Oskar Dilo Maschinenfabrik Kg Needle bar driving apparatus of a needle loom
AT406390B (en) * 1998-03-31 2000-04-25 Fehrer Textilmasch DEVICE FOR NEEDING A FLEECE
AT408235B (en) * 1999-10-29 2001-09-25 Fehrer Textilmasch DEVICE FOR NEEDING A FLEECE
AT412162B (en) 2002-10-07 2004-10-25 Fehrer Textilmasch Assembly for needle bonding nonwovens, with a reciprocating needle board, has connecting rods from two eccentric shafts linked to a push rod, which rides through a swing guide sleeve
FR2862988B1 (en) * 2003-11-28 2007-11-09 Fehrer Textilmasch DEVICE FOR NEEDLING A FIBER MATTRESS
DE102004043890B3 (en) * 2004-09-08 2006-04-20 Oskar Dilo Maschinenfabrik Kg needle loom
FR2887563B1 (en) * 2005-06-22 2009-03-13 Asselin Soc Par Actions Simpli "METHOD AND INSTALLATION FOR NEEDING A FIBER TABLE WITH TWO NEEDLE BOARDS"
FR2887564B1 (en) * 2005-06-22 2007-10-26 Asselin Soc Par Actions Simpli CLAMPING APPARATUS FOR CONSOLIDATING A FIBER TABLE
AT502044B1 (en) * 2005-10-27 2007-01-15 Neumag Saurer Austria Gmbh Apparatus for needling nonwovens comprises a hydrostatic resonance drive comprising pistons acted upon on both sides by hydraulic springs and a device for applying pressure to the pistons at a resonance frequency
CN100489174C (en) * 2005-12-16 2009-05-20 厦门三维丝环保工业有限公司 Production process of polytetrafluoroethylene fiber acupuncture filtering felt
TW200806839A (en) * 2006-05-20 2008-02-01 Saurer Gmbh & Amp Co Kg Apparatus for needling a non-woven web

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009109553A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012088A1 (en) * 2020-11-16 2022-06-15 AUTEFA Solutions Austria GmbH Needle machine and needling method

Also Published As

Publication number Publication date
ATE525509T1 (en) 2011-10-15
EP2250308B1 (en) 2011-09-21
WO2009109553A1 (en) 2009-09-11
US8099840B2 (en) 2012-01-24
CN101960065A (en) 2011-01-26
CN101960065B (en) 2012-03-14
US20110047767A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
EP2250308B1 (en) Device for needling a web of fiber
EP2021539B1 (en) Apparatus for needling a nonwoven web
EP1725373B9 (en) Wobble drive
EP2475814B1 (en) Device for needling a fibrous web
DE19615697B4 (en) Needle bar drive of a needle machine
EP2158348B1 (en) Device for needling a nonwoven web
EP2173936B1 (en) Device for needling a fibrous web
EP3372716B1 (en) Needling machine
EP2265757B1 (en) Apparatus for needling a fibrous web
DE19513392A1 (en) Device for needling a fleece
EP0395964B1 (en) Apparatus for balancing inerta forces in a crank operated machine, in particular a punching machine
EP2363212B1 (en) Continuously adjustable vibration generator
DE102004043890B3 (en) needle loom
DE4430201C2 (en) Mechanical press
DE102010055584B4 (en) Device for mass balancing
DE69019939T2 (en) PRESS AND METHOD FOR MATERIAL MACHINING.
DE4441798A1 (en) Lifting piston machine, especially combustion engine
EP2201164A1 (en) Device for needling a fiber web
EP3938196B1 (en) Punching press
CH695763A5 (en) Press machine.
DE184832C (en)
EP0531804A2 (en) Drive for the ram of a mechanical press
DE202007018589U1 (en) Traversing drive
CH710639B1 (en) Embroidery machine, vibration compensator and method for compensating vibrations in an embroidery machine.
EP1987946A2 (en) Press with a parallel pressing module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BU, DANIEL

Inventor name: DIE ANDERE ERFINDER HABEN AUF IHRE NENNUNG VERZICH

Inventor name: PLUMP, ANDREAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BU, DANIEL

Inventor name: MAYER, ANDREAS

Inventor name: PLUMP, ANDREAS

Inventor name: REUTTER, TILMAN

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001393

Country of ref document: DE

Effective date: 20111117

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111222

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

26N No opposition filed

Effective date: 20120622

BERE Be: lapsed

Owner name: OERLIKON TEXTILE G.M.B.H. & CO. KG

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001393

Country of ref document: DE

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190503

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200325

Year of fee payment: 12

Ref country code: AT

Payment date: 20200319

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001393

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 525509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302