EP2247632B1 - Beschichtungszusammensetzungen mit einem polymer mit einem oligomeren makromonomer - Google Patents
Beschichtungszusammensetzungen mit einem polymer mit einem oligomeren makromonomer Download PDFInfo
- Publication number
- EP2247632B1 EP2247632B1 EP09715968A EP09715968A EP2247632B1 EP 2247632 B1 EP2247632 B1 EP 2247632B1 EP 09715968 A EP09715968 A EP 09715968A EP 09715968 A EP09715968 A EP 09715968A EP 2247632 B1 EP2247632 B1 EP 2247632B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating composition
- weight
- oligomeric macromonomer
- polymer
- macromonomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 110
- 239000008199 coating composition Substances 0.000 title claims abstract description 87
- 125000000524 functional group Chemical group 0.000 claims abstract description 25
- 239000000178 monomer Substances 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 37
- -1 alkyl methacrylate Chemical compound 0.000 claims description 24
- 239000003086 colorant Substances 0.000 claims description 20
- 239000003999 initiator Substances 0.000 claims description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 14
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007870 radical polymerization initiator Substances 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 5
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010526 radical polymerization reaction Methods 0.000 claims description 4
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- 239000002954 polymerization reaction product Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 description 48
- 239000007787 solid Substances 0.000 description 41
- 239000011248 coating agent Substances 0.000 description 36
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 24
- 239000006260 foam Substances 0.000 description 19
- 239000004593 Epoxy Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 229910001220 stainless steel Inorganic materials 0.000 description 16
- 239000010935 stainless steel Substances 0.000 description 16
- 239000002131 composite material Substances 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000004793 Polystyrene Substances 0.000 description 13
- 239000011247 coating layer Substances 0.000 description 13
- 238000001723 curing Methods 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 13
- 229920002223 polystyrene Polymers 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- JJRDRFZYKKFYMO-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-ylperoxy)butane Chemical compound CCC(C)(C)OOC(C)(C)CC JJRDRFZYKKFYMO-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 12
- 238000013019 agitation Methods 0.000 description 12
- 238000005227 gel permeation chromatography Methods 0.000 description 12
- 239000000049 pigment Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 9
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 9
- 239000010985 leather Substances 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000002987 primer (paints) Substances 0.000 description 8
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 7
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 7
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 6
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003570 air Substances 0.000 description 6
- 238000010924 continuous production Methods 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002023 wood Substances 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 4
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000007655 standard test method Methods 0.000 description 4
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 3
- ZMWRRFHBXARRRT-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(N2N=C3C=CC=CC3=N2)=C1O ZMWRRFHBXARRRT-UHFFFAOYSA-N 0.000 description 3
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 239000004611 light stabiliser Substances 0.000 description 3
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- UZUNCLSDTUBVCN-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-(2-phenylpropan-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound C=1C(C(C)(C)CC(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C(O)C=1C(C)(C)C1=CC=CC=C1 UZUNCLSDTUBVCN-UHFFFAOYSA-N 0.000 description 2
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 229920003270 Cymel® Polymers 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 150000004056 anthraquinones Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 2
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- TWSRVQVEYJNFKQ-UHFFFAOYSA-N pentyl propanoate Chemical compound CCCCCOC(=O)CC TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical compound C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- YXOBAAZAEIZQCK-UHFFFAOYSA-N 10-oxo-10-(1,2,2,3,3-pentamethylpiperidin-4-yl)oxydecanoic acid Chemical class CN1CCC(OC(=O)CCCCCCCCC(O)=O)C(C)(C)C1(C)C YXOBAAZAEIZQCK-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- JFGQHAHJWJBOPD-UHFFFAOYSA-N 3-hydroxy-n-phenylnaphthalene-2-carboxamide Chemical compound OC1=CC2=CC=CC=C2C=C1C(=O)NC1=CC=CC=C1 JFGQHAHJWJBOPD-UHFFFAOYSA-N 0.000 description 1
- KWXICGTUELOLSQ-UHFFFAOYSA-N 4-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=C(S(O)(=O)=O)C=C1 KWXICGTUELOLSQ-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- MBSOHMUBMHZCGE-UHFFFAOYSA-N 9h-carbazole;dioxazine Chemical compound O1ON=CC=C1.C1=CC=C2C3=CC=CC=C3NC2=C1 MBSOHMUBMHZCGE-UHFFFAOYSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 235000011468 Albizia julibrissin Nutrition 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 1
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical group SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 240000005852 Mimosa quadrivalvis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 241000497192 Phyllocoptruta oleivora Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 235000017343 Quebracho blanco Nutrition 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920003265 Resimene® Polymers 0.000 description 1
- 241000065615 Schinopsis balansae Species 0.000 description 1
- 244000186561 Swietenia macrophylla Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- PGEHNUUBUQTUJB-UHFFFAOYSA-N anthanthrone Chemical compound C1=CC=C2C(=O)C3=CC=C4C=CC=C5C(=O)C6=CC=C1C2=C6C3=C54 PGEHNUUBUQTUJB-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- MYONAGGJKCJOBT-UHFFFAOYSA-N benzimidazol-2-one Chemical compound C1=CC=CC2=NC(=O)N=C21 MYONAGGJKCJOBT-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000011093 chipboard Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 229920006035 cross-linked graft co-polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-N isoindolin-1-one Chemical compound C1=CC=C2C(=O)NCC2=C1 PXZQEOJJUGGUIB-UHFFFAOYSA-N 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- OBJNZHVOCNPSCS-UHFFFAOYSA-N naphtho[2,3-f]quinazoline Chemical compound C1=NC=C2C3=CC4=CC=CC=C4C=C3C=CC2=N1 OBJNZHVOCNPSCS-UHFFFAOYSA-N 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920007790 polymethacrylimide foam Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- LLBIOIRWAYBCKK-UHFFFAOYSA-N pyranthrene-8,16-dione Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C=C4C5=CC=CC=C5C(=O)C5=C4C4=C3C2=C1C=C4C=C5 LLBIOIRWAYBCKK-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 125000005627 triarylcarbonium group Chemical group 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
- C08F290/046—Polymers of unsaturated carboxylic acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/066—Copolymers with monomers not covered by C09D133/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/068—Copolymers with monomers not covered by C09D133/06 containing glycidyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08L61/26—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
- C08L61/28—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
Definitions
- the present invention relates to a coating composition
- a coating composition comprising a polymer that comprises an oligomeric macromonomer wherein the oligomeric macromonomer comprises reactive functional groups and has an average functionality ranging from 1.0 to 30.0 depending on the configuration of the polymer.
- the coating system i.e., finish
- the coating system typically comprises an electrodepositable coating layer, a primer surfacer layer deposited onto at least a portion of the electrodepositable coating layer, at least one pigmented basecoat layer deposited onto at least a portion of the primer surfacer layer, and a clear coat layer deposited onto at least a portion of the basecoat layer.
- Each of these layers result from a coating composition which utilizes polymers as the main film forming component of the coating composition.
- Polymers, as well as additives, used in the coatings can vary depending on the type of coating and needs of the user. Coating properties may also vary depending on the type of polymer(s) and/or additives used. There remains a need for coating compositions having improved properties.
- US 2002/0019472 discloses a pigment dispersion comprising a comb-like copolymer obtained by copolymerizing a carboxyl-containing, polymerizable unsaturated macromonomer, a polymerizable macromonomer and a polymerizable unsaturated monomer which is copolymerizable with the macromonomers.
- US 5,955,532 discloses a coating composition comprising a crosslinked graft copolymer consisting of a backbone of polymerized monoethylenically unsaturated monomers and difunctional ethylenically unsaturated crosslinking monomers, and of macromonomers attached to the polymeric backbone.
- the present invention is directed to a coating composition
- a coating composition comprising a polymer that comprises an oligomeric macromonomer and a core from which the oligomeric macromonomer extends formed by free medical polymerization of the oligomeric macromonomer with a monomer comprising at least two ethylenically insaturated double bonds, wherein the oligomeric macromonomer comprises reactive functional groups and has an average functionality ranging from 1.0 to 30.0, and wherein the core is ⁇ 10 weight % of the total polymer weight.
- the present invention is also directed to a substrate coated with the composition.
- the term "cure” refers to a coating wherein any crosslinkable components of the composition are at least partially crosslinked.
- the crosslink density of the crosslinkable components i.e., the degree of crosslinking
- the presence and degree of crosslinking, i.e., the crosslink density can be determined by a variety of methods, such as dynamic mechanical thermal analysis (DMTA) using a Polymer Laboratories MK III DMTA analyzer conducted under nitrogen.
- DMTA dynamic mechanical thermal analysis
- polyol refers broadly to a material having an average of two or more hydroxyl groups per molecule. It will be understood, however, that a "polyol” residue or moiety in a reaction product encompasses a material that may have one or more hydroxyl groups per molecule.
- references to any monomer(s) herein refers generally to a monomer that can be polymerized with another polymerizable compound such as another monomer or polymer.
- “Monomer components” refer to the monomers used to form a compound such as the oligomeric macromonomer described herein.
- the present invention is directed to a coating composition
- a coating composition comprising a polymer that comprises an oligomeric macromonomer, wherein the oligomeric macromonomer comprises reactive functional groups and has an average functionality ranging from 1.0 to 30.0.
- average functionality can be calculated with the following equation: X Y / 100 wherein “X” is the average molecular weight of the functional monomer; and “Y” is the number of moles of the functional monomer in the macromonomer.
- the polymer has a molecular weight that is ⁇ 20,000. In some embodiments, the polymer has a molecular weight of ⁇ 3,000. It should be noted that the molecular weight of the polymer can range between any combination of values, which were recited in the preceding sentences, inclusive of the recited values. For example, in certain embodiments, the molecular weight of the branched polymer can range from 5,000 to 7,000. As used herein, "molecular weight” means weight average molecular weight.
- the polymer used in the present invention can have a number of configurations.
- the polymer comprises a polymeric core from which a branch (arm) extends.
- the oligomeric macromonomer has a terminal ethylenically unsaturated double bond.
- the oligomeric macromonomer has a molecular weight that is ⁇ 5,000.
- the oligomeric macromonomer has a molecular weight of 1,000. It should be noted that the molecular weight of the oligomeric macromonomer can range between any combination of values, which were recited in the preceding sentences, inclusive of the recited values. In certain embodiments, the molecular weight of the oligomeric macromonomer can range from 1,000 to 2,000, such as from 1,400 to 1,600. In certain embodiments, the molecular weight of the oligomeric macromonomer can be 1,500.
- the oligomeric macromonomer described herein comprises ⁇ 5 weight % functionalized monomers, such as ⁇ 20 weight % functionalized monomers.
- the oligomeric macromonomer comprises ⁇ 50 weight % functionalized monomers.
- “functionalized monomers” means a monomer that contains a reactive functional group.
- the reactive functional groups can include hydroxyl, carboxyl, carbamate, epoxy, isocyanate, aceto acetate, or combinations thereof.
- the degree of functionality in the oligomeric macromonomer varies within the ranges described above (1.0 to 30.0) depending on the desired configuration (architecture) of the polymer, the desired crosslink density of the polymer, and/or the desired physical properties of the coating comprising the polymer.
- the oligomeric macromonomer may also comprise two or more different reactive functional groups.
- the oligomeric macromonomer may comprise both epoxy and hydroxyl reactive functional groups.
- the oligomeric macromonomer can comprise a cationic salt group, which is generally prepared by neutralizing a functional group on the oligomeric macromonomer with an acid thereby enabling the polymer comprising the oligomeric macromonomer to be electrodeposited onto a cathode.
- formation of the cationic salt group is achieved by reacting an epoxy functional oligomeric macromonomer with a cationic salt group former.
- cationic salt group former means a material which is reactive with an epoxy group and which can be acidified before, during, or after reaction with the epoxy group thereby forming a cationic salt group.
- Suitable materials include amines, such as primary or secondary amines, which can be acidified after reaction with the epoxy group to form an amine salt group, or tertiary amines which can be acidified prior to reaction with the epoxy group and which, after reaction with the epoxy group, form a quaternary ammonium salt group.
- amines such as primary or secondary amines
- tertiary amines which can be acidified prior to reaction with the epoxy group and which, after reaction with the epoxy group, form a quaternary ammonium salt group.
- cationic salt group formers are sulfides which can be mixed with acid prior to reaction with the epoxy group thereby forming a ternary sulfonium salt group upon subsequent reaction with the epoxy group. It should also be noted that the formation of the cationic salt group can occur before or after the oligomeric macromonomer has been incorporated into the polymer used in the present invention.
- the oligomeric macromonomer described herein is the reaction product of (a) a monomer comprising an á-hydrogen (á-hydrogen containing monomer); (b) a free radical polymerization initiator; and optionally, (c) a monomer that is polymerizable with (a). Any suitable (a) á-hydrogen containing monomers may be used to form the oligomeric macromonomer.
- Suitable (a) á-hydrogen containing monomers include acrylate, for example, acrylate; alkyl acrylate: including methyl acrylate, ethyl acrylate, isobutyl acrylate; functional acrylate such as hydroxy functional acrylate which includes hydroxy alkyl acrylate: including hydroxy propyl acrylate and hydroxy ethyl acrylate; acrylonitrile; olefins; styrene; á-olefins; vinyl esters; maleimide; maleate, fumarate; or combinations thereof.
- Any suitable monomer may be used as component (c) so long as the monomer is polymerizable with component (a).
- component (c) can comprise an á-hydrogen containing monomer (which can be different from the one used in component (a)), a non-á-hydrogen containing monomer, or combinations thereof.
- Suitable non-á-hydrogen containing monomers that may be utilized to form the oligomeric macromonomer include, methacrylate, for example, methacrylate; alkyl methacrylate: including methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate; epoxy functional methacrylate, such as glycidyl methacrylate; hydroxy functional methacrylate which includes hydroxy alkyl methacrylate: including hydroxy propyl methacrylate and hydroxy ethyl methacrylate; isobutylene; á-methyl styrene; or combinations thereof.
- Other suitable monomers that may be used as component (c) include, vinyl chloride; diene: including butyl diene or iso
- Any suitable initiators may be used as component (b). These initiators include, without limitation, ditertiary-amyl peroxide, ditertiary-butyl peroxide, hydrogen peroxide, tertiary butyl hydroperoxide, or combinations thereof. In certain embodiments, the use of azo initiators is specifically excluded.
- the oligomeric macromonomer may be formed by any means known in the art.
- the oligomeric macromonomer is formed in a continuous process.
- a yield of ⁇ 90%, such as ⁇ 95%, of the oligomeric macromonomer is achieved.
- the process utilizes no transition metals, such as cobalt, to drive the formation of the oligomeric macromonomer.
- the formation of the oligomeric macromonomer occurs in a substantially solvent free environment.
- a "substantially solvent free environment” means that trace or incidental amounts of organic solvent, such as ⁇ 5 weight % or ⁇ 3 weight % or ⁇ 1 weight % based on all of the ingredients used in the reaction mixture, can be present.
- organic solvent such as ⁇ 5 weight % or ⁇ 3 weight % or ⁇ 1 weight % based on all of the ingredients used in the reaction mixture.
- the continuous process begins by charging a reaction vessel with the (a) ⁇ -hydrogen containing monomer; the (b) free radical polymerization initiator; and, optionally, the (c) monomer that is polymerizable with (a).
- the molar ratio of the (a) á-hydrogen containing monomer to the (c) monomer, when used, can be in any desired range, such as from 1:50 to 1:5.
- the amount of (b) initiator that is charged into the reaction vessel is ⁇ 10 weight %, such as ⁇ 5 weight % or ⁇ 1 weight %, based on the total weight of the ingredients that are charged into the reaction vessel.
- the oligomeric macromonomer may be formed only from a single type of (a) á-hydrogen containing monomer.
- the oligomeric macromonomer can be formed only from hydroxy propyl acrylate.
- reaction vessel which can be a continuous stirred-tank reactor (CSTR)
- the reaction vessel is heated to a temperature that is > 130°C, such as from 130°C to 300°C, for a time period (residence time) ranging from 2 minutes to 20 minutes.
- the pressure of the reaction vessel during the formation of the oligomeric macromonomer ranges from 50 psi to 15,000 psi.
- the molecular weight of the oligomeric macromonomer can be controlled by adjusting the temperature that is applied to the reaction vessel (reaction temperature) as well as the amount of initiator that is charged into the reaction vessel.
- the polymer can be a polymer with a polymeric core wherein an arm extends from the polymeric core.
- the polymers that are used in the present invention are the free radical polymerization reaction products of an oligomeric macromonomer, which is described above, with one or more monomers .
- the polymers can have a molecular weight ranging from ranging from 3,000 to 20,000. In certain embodiments, the molecular weight of the polymer is 6,000.
- the polymer will comprise a residue of the oligomeric macromonomer described above. Additionally, one skilled in the art would also recognize that after the polymerization process, the polymer will also comprise residues of the other components (e.g., other monomers or polymers and initiator) used to form the polymer.
- the other components e.g., other monomers or polymers and initiator
- the polymer can comprise a plurality of oligomeric macromonomers.
- each component can have the same functionality (reactive functional groups).
- at least one component has a different functionality than another component.
- one oligomeric macromonomer can comprise a hydroxyl reactive functional group while another oligomeric macromonomer can comprise an epoxy reactive functional group.
- a single oligomeric macromonomer can comprise two different reactive functional groups.
- an oligomeric macromonomer used to form the polymer can comprise both hydroxyl and epoxy reactive functional groups.
- one oligomeric macromonomer can comprise both hydroxyl and epoxy reactive functional groups while another oligomeric macromonomer may only comprise an epoxy functional group.
- one component used to form the polymer may have the same T g and/or molecular weight as the other components used to form the polymer or one component may have a different T g and/or molecular weight from another component used to form the polymer.
- At least one oligomeric macromonomer can be comprised of the same or different monomer components as another oligomeric macromonomer; similarly, at least one oligomeric macromonomer can have the same or different ratio of monomer components as another oligomeric macromonomer.
- a polymer can comprise two oligomeric macromonomers that are formed from a reaction mixture comprising the same acrylate, isobutylene, and initiator. In these embodiments, where the same monomers are used, the ratio of monomers can be the same or different.
- the oligomeric macromonomers used to form the polymer can comprise 50% ethyl acrylate and 50% glycidyl methacrylate, or one oligomeric macromonomer can comprise 50% ethyl acrylate and 50% glycidyl methacrylate while another oligomeric macromonomer can comprise 60% ethyl acrylate and 40% glycidyl methacrylate. In other embodiments, however, at least one oligomeric macromonomer is comprised of monomer components that are different from another oligomeric macromonomer that is used to form the polymer.
- one oligomeric macromonomer can comprise 50% ethyl acryalte and 50% glycidyl methacrylate while another macromonomer can comprise 50% acrylate and 50% hydroxy propyl methacrylate.
- the ratio of monomers can be the same or different.
- one oligomeric macromonomer can comprise 50% ethyl acryalte and 50% glycidyl methacrylate while another macromonomer can comprise 40% acrylate and 60% hydroxy propyl methacrylate.
- the oligomeric macromonomers may have the same or different T g and/or molecular weight.
- all of the oligomeric macromonomers may have the same T g or one oligomeric macromonomer may have a different T g than another oligomeric macromonomer.
- the polymers described herein can comprise one or more oligomeric macromonomers wherein the oligomeric macromonomers can have a molecular weight that is ⁇ 5,000, such as ⁇ 2,000, in order to avoid entanglement of the various oligomeric macromonomers with one another.
- the polymer comprises a core with an oligomeric macromonomer extending from the core.
- the polymer can comprise a plurality of oligomeric macromonomers.
- the polymer comprises an arm that comprise the oligomeric macromonomer described herein, and an arm that comprises other monomer(s) and/or polymer(s).
- the oligomeric macromonomer has an average functionality ranging from 1.0 to 30.0, such as 1.5 to 8.0.
- the polymer comprises ⁇ 4 weight %, such as ⁇ 20 weight %, functionalized monomers.
- the polymer described in this section can be formed by any means known in the art.
- the polymer described in this section is formed by the free radical polymerization of an oligomeric macromonomers as described herein with a monomer comprising at least two ethylenically unsaturated double bonds (which forms at least a portion of the core) and a free radical polymerization initiator, such as those initiators described above.
- the free radical polymerization initiator that is used to polymerize the core and the oligomeric macromonomer can be the same or different as the free radical polymerization initiator that is used to form the oligomeric macromonomer.
- Suitable monomers comprising at least two ethylenically unstaturated double bonds include di(meth)acrylate; including 1,6 hexanediol di(meth)acrylate, ethylene glycol di(meth)acrylate; trimethyol propane tri(meth)acryalte; pentaeritrytol tetra(meth)acrylate; dipentacritrytol hexa(meth)acrylate; ditrimethylol propane tetra(meth)acrylate; maleate polyester; ethylene glycol; bis-acrylamide; or combinations thereof.
- the core of the polymer comprises ⁇ 10 weight % of the total weight of the polymer.
- the weight % of the core is ⁇ 5 weight %, such as 3 weight %, of the total polymer weight. If the core comprises > 10 weight % of the total weight of the polymer, the possibility of gelling increases dramatically.
- an oligomeric macromonomer used to form the polymer described in this section can comprise ⁇ 5 weight %, such as 20 weight %, functionalized monomers. In certain embodiments, the oligomeric macromonomer comprises 22 weight % functionalized monomers. Moreover, in certain embodiments, the oligomeric macromonomers can comprise > 90 weight %, such as ⁇ 95 weight %, of the total polymer weight.
- a coating composition can comprise one or more of the polymers described above.
- the coating composition may be a water-based or solvent-based liquid composition, or, alternatively, may be in solid particulate form (i.e., a powder coating).
- coating compositions incorporating one or more of the polymers described above exhibit physical characteristics that are equal to or surpass coating compositions known in the art, while possibly providing one or more benefits over such coating compositions.
- the coating composition can have lower viscosities as compared to coating compositions that do not use the polymers described herein.
- a coating having a lower viscosity may have application advantages and also may have better appearance characteristics when compared to coating compositions that have higher viscosities.
- Another benefit from using one or more of the polymers described above in a coating composition is that the total amount of a curing agent (crosslinking agent) used to cure (crosslink) the coating composition may be reduced. This is because the polymers of the present invention can achieve a crosslink density, when cured, which cannot be achieved in other coatings without increasing the number of reactive functional groups in those coatings. This increase in the number of reactive functional groups would, therefore, require an increase in the total amount of curing agent.
- the coating composition comprises: (1) one or more of the polymers described above; and (2) a curing agent that is reactive with a reactive functional group of the oligomeric macromonomer.
- the curing agent comprises ⁇ 5 weight %, such as from 10 weight % to 50 weight % or from 15 weight % to 30 weight %, based on the total solid content the coating composition.
- Suitable curing agents include, without limitation, aminoplasts, polyisocyanates (including blocked isocyanates), polyepoxides, beta-hydroxyalkylamides, polyacids, anhydrides, organometallic acid-functional materials, polyamines, polyamides, and mixtures of any of the foregoing.
- the coating composition can further comprise one or more additional film-forming polymers.
- the additional film-forming polymer has functional groups that are reactive with either themselves or a crosslinking agent, such as those described above.
- the additional film-forming polymer can be selected from, for example, acrylic polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyether polymers, polysiloxane polymers, copolymers thereof, and mixtures thereof. Generally, these polymers can be any polymers of these types made by any method known to those skilled in the art. Such polymers may be solvent borne or water dispersible, emulsifiable, or of limited water solubility.
- the functional groups on the film-forming resin may be selected from any of a variety of reactive functional groups including, without limitation, carboxylic acid groups, amine groups, epoxide groups, hydroxyl groups, thiol groups, carbamate groups, amide groups, urea groups, isocyanate groups (including blocked isocyanate groups) mercaptan groups, and combinations thereof.
- the coating composition described herein can be either “one component” (“1K”), “two component” (“2K”), or even multi-component compositions.
- a 1 K composition will be understood as referring to a composition wherein all of the coating components are maintained in the same container after manufacture, during storage, etc.
- a 1 K coating can be applied to a substrate and cured by any conventional means, such as by heating, forced air, and the like.
- the present coatings can also be 2K coatings or multi-component coatings, which will be understood as coating in which various components are maintained separately until just prior to application.
- the polymer described herein can be used in an electrodepositable coating composition that can be electrodeposited directly onto at least a portion of a substrate or onto a least a portion of an underlying coating layer or an underlying coating composition, such as an underlying pretreatment layer.
- the polymers can be incorporated into the coating composition that is described in U.S. Patent App. No. 11/835,600 .
- the polymer used in the present invention can comprise a cationic salt group, as described above, which allows the polymer to be deposited onto a cathode (cathodic electrodeposition). It is noted that the electrodepositable coating composition can impart corrosion protection to the substrate onto which it is deposited.
- the polymer described herein can be used in a primer coating composition that can be applied directly onto at least a portion of a substrate or onto at least a portion of an underlying coating layer or an underlying coating composition.
- the polymers described herein can be incorporated into the coating composition that is described in U.S. Patent App. No. 11/773,482 .
- the primer coating composition can either be a primer-surfacer coating composition or an anti-chip primer coating composition. It is noted that the primer coating composition can impart chip resistance properties to the substrate onto which it is deposited.
- the polymer of the present invention can be used in a color-imparting non-hiding (basecoat) coating composition that can be applied directly onto at least a portion of a substrate or onto at least a portion of any underlying coating layer or an underlying coating composition.
- the basecoat composition comprises a colorant, such as those described below, which results in a colored coating layer that can be deposited onto the substrate.
- the polymers of the present invention can be used in a substantially clear coating composition (clearcoat).
- a substantially clear coating composition is substantially transparent and not opaque.
- the substantially clear coating composition can comprise a colorant but not in an amount such as to render the clear coating composition opaque (not substantially transparent).
- the substantially clear coating composition can also comprise a particle, such as a silica particle, that is dispersed in the clearcoat coating composition.
- the clearcoat coating composition may further comprise a surface active agent such as a polysiloxane and/or a fluoropolymer.
- surface active agent means any material which tends to lower the solid surface tension or surface energy of the cured composition or coating.
- the cured composition or coating formed from a composition comprising a surface active agent has a lower solid surface tension or surface energy than a cured coating formed from the analogous composition which does not contain the surface active agent.
- the polymer of the present invention can be incorporated into a coating composition that is described in U.S. Pat. No. 6,387,519 B1 .
- the clearcoat coating composition can comprise a polymer, as described herein, which comprises a hydroxyl and/or carbamate functional group, and a melamine curing agent.
- the coating composition can include a colorant.
- colorant means any substance that imparts color and/or other opacity and/or other visual effect to the composition.
- the colorant can be added to the coating in any suitable form, such as discrete particles, dispersions, solutions and/or flakes. A single colorant or a mixture of two or more colorants can be used in the coating composition of the present invention.
- Example colorants include pigments, dyes and tints, such as those used in the paint industry and/or listed in the Dry Color Manufacturers Association (DCMA), as well as special effect compositions.
- a colorant may include, for example, a finely divided solid powder that is insoluble but wettable under the conditions of use.
- a colorant can be organic or inorganic and can be agglomerated or non-agglomerated. Colorants can be incorporated into the coatings by use of a grind vehicle, such as an acrylic grind vehicle, the use of which will be familiar to one skilled in the art.
- Example pigments and/or pigment compositions include carbazole dioxazine crude pigment, azo, monoazo, disazo, naphthol AS, salt type (lakes), benzimidazolone, condensation, metal complex, isoindolinone, isoindoline and polycyclic phthalocyanine, quinacridone, perylene, perinone, diketopyrrolo pyrrole, thioindigo, anthraquinone, indanthrone, anthrapyrimidine, flavanthrone, pyranthrone, anthanthrone, dioxazine, triarylcarbonium, quinophthalone pigments, diketo pyrrolo pyrrole red (“DPPBO red”), titanium dioxide, carbon black and mixtures thereof.
- the terms “pigment” and "colored filler” can be used interchangeably.
- Example dyes include, but are not limited to, those that are solvent and/or aqueous based such as phthalo green or blue, iron oxide, bismuth vanadate, anthraquinone, perylene, aluminum and quinacridone.
- solvent and/or aqueous based such as phthalo green or blue, iron oxide, bismuth vanadate, anthraquinone, perylene, aluminum and quinacridone.
- Example tints include pigments dispersed in water-based or water miscible carriers such as AQUA-CHEM 896 commercially available from Degussa, Inc., CHARISMA COLORANTS and MAXITONER INDUSTRIAL COLORANTS commercially available from Accurate Dispersions division of Eastman Chemical, Inc.
- AQUA-CHEM 896 commercially available from Degussa, Inc.
- the colorant can be in the form of a dispersion including a nanoparticle dispersion.
- Nanoparticle dispersions can include one or more highly dispersed nanoparticle colorants and/or colorant particles that produce a desired visible color and/or opacity and/or visual effect.
- Nanoparticle dispersions can include colorants such as pigments or dyes having a particle size of less than 150 nm, such as less than 70 nm, or less than 30 nm. Nanoparticles can be produced by milling stock organic or inorganic pigments with grinding media having a particle size of less than 0.5 mm. Example nanoparticle dispersions and methods for making them are identified in U.S. Patent No. 6,875,800 B2 .
- Nanoparticle dispersions can also be produced by crystallization, precipitation, gas phase condensation, and chemical attrition (i.e., partial dissolution).
- a dispersion of resin-coated nanoparticles can be used.
- a "dispersion of resin-coated nanoparticles” refers to a continuous phase in which is dispersed discreet "composite microparticles” that comprise a nanoparticle and a resin coating on the nanoparticle.
- Example dispersions of resin-coated nanoparticles and methods for making them are identified in United States Patent Application Publication 2005-0287348 A1, filed June 24, 2004 , U.S. Provisional Application No. 60/482,167 filed June 24, 2003 , and United States Patent Application Serial No. 11/337,062, filed January 20, 2006 .
- Example special effect compositions that may be used include pigments and/or compositions that produce one or more appearance effects such as reflectance, pearlescence, metallic sheen, phosphorescence, fluorescence, photochromism, photosensitivity, thermochromism, goniochromism and/or color-change. Additional special effect compositions can provide other perceptible properties, such as opacity or texture. In an embodiment, special effect compositions can produce a color shift, such that the color of the coating changes when the coating is viewed at different angles. Example color effect compositions are identified in U.S. Patent No. 6,894,086 .
- Additional color effect compositions can include transparent coated mica and/or synthetic mica, coated silica, coated alumina, a transparent liquid crystal pigment, a liquid crystal coating, and/or any composition wherein interference results from a refractive index differential within the material and not because of the refractive index differential between the surface of the material and the air.
- a photosensitive composition and/or photochromic composition which reversibly alters its color when exposed to one or more light sources, can be used in the coating composition of the present invention.
- Photochromic and/or photosensitive compositions can be activated by exposure to radiation of a specified wavelength. When the composition becomes excited, the molecular structure is changed and the altered structure exhibits a new color that is different from the original color of the composition. When the exposure to radiation is removed, the photochromic and/or photosensitive composition can return to a state of rest, in which the original color of the composition returns.
- the photochromic and/or photosensitive composition can be colorless in a non-excited state and exhibit a color in an excited state. Full color-change can appear within milliseconds to several minutes, such as from 20 seconds to 60 seconds.
- Example photochromic and/or photosensitive compositions include photochromic dyes.
- the photosensitive composition and/or photochromic composition can be associated with and/or at least partially bound to, such as by covalent bonding, a polymer and/or polymeric materials of a polymerizable component.
- the photosensitive composition and/or photochromic composition associated with and/or at least partially bound to a polymer and/or polymerizable component in accordance with a non-limiting embodiment of the present invention have minimal migration out of the coating.
- Example photosensitive compositions and/or photochromic compositions and methods for making them are identified in U.S. Application Serial No. 10/892,919 filed July 16, 2004 .
- the colorant can be present in any amount sufficient to impart the desired visual and/or color effect.
- the colorant may comprise from 1 to 65 weight percent of the present compositions, such as from 3 to 40 weight percent or 5 to 35 weight percent, with weight percent based on the total weight of the compositions.
- the coating composition can comprise other optional materials well known in the art of formulated surface coatings, such as plasticizers, anti-oxidants, hindered amine light stabilizers, UV light absorbers and stabilizers, surfactants, flow control agents, thixotropic agents such as bentonite clay, pigments, fillers, organic cosolvents, catalysts, including phosphonic acids and other customary auxiliaries.
- plasticizers such as plasticizers, anti-oxidants, hindered amine light stabilizers, UV light absorbers and stabilizers, surfactants, flow control agents, thixotropic agents such as bentonite clay, pigments, fillers, organic cosolvents, catalysts, including phosphonic acids and other customary auxiliaries.
- thixotropic agents such as bentonite clay, pigments, fillers, organic cosolvents, catalysts, including phosphonic acids and other customary auxiliaries.
- the coating composition described herein is suitable for application to any of a variety of substrates, including human and/or animal substrates, such as keratin, fur, skin, teeth, nails, and the like, as well as plants, trees, seeds, agricultural lands, such as grazing lands, crop lands and the like; turf-covered land areas, e.g., lawns, golf courses, athletic fields, etc., and other land areas, such as forests and the like.
- substrates including human and/or animal substrates, such as keratin, fur, skin, teeth, nails, and the like, as well as plants, trees, seeds, agricultural lands, such as grazing lands, crop lands and the like; turf-covered land areas, e.g., lawns, golf courses, athletic fields, etc., and other land areas, such as forests and the like.
- Suitable substrates include cellulosic-containing materials, including paper, paperboard, cardboard, plywood and pressed fiber boards, hardwood, softwood, wood veneer, particleboard, chipboard, oriented strand board, and fiberboard. Such materials may be made entirely of wood, such as pine, oak, maple, mahogany, cherry, and the like. In some cases, however, the materials may comprise wood in combination with another material, such as a resinous material, i.e., wood/resin composites, such as phenolic composites, composites of wood fibers and thermoplastic polymers, and wood composites reinforced with cement, fibers, or plastic cladding.
- a resinous material i.e., wood/resin composites, such as phenolic composites, composites of wood fibers and thermoplastic polymers, and wood composites reinforced with cement, fibers, or plastic cladding.
- Suitable metallic substrates include, but are not limited to, foils, sheets, or workpieces constructed of cold rolled steel, stainless steel and steel surface-treated with any of zinc metal, zinc compounds and zinc alloys (including electrogalvanized steel, hot-dipped galvanized steel, GALVANNEAL steel, and steel plated with zinc alloy), copper, magnesium, and alloys thereof, aluminum alloys, zinc-aluminum alloys such as GALFAN, GALVALUME, aluminum plated steel and aluminum alloy plated steel substrates may also be used.
- Steel substrates (such as cold rolled steel or any of the steel substrates listed above) coated with a weldable, zinc-rich or iron phosphide-rich organic coating are also suitable for use in the process of the present invention.
- Such weldable coating compositions are disclosed in U.S. Patent Nos. 4,157,924 and 4,186,036 .
- Cold rolled steel is also suitable when pretreated with, for example, a solution selected from the group consisting of a metal phosphate solution, an aqueous solution containing at least one Group IIIB or IVB metal, an organophosphate solution, an organophosphonate solution, and combinations thereof.
- suitable metallic substrates include silver, gold, and alloys thereof.
- the substrate onto which the coating composition is applied may comprise a portion of a vehicle such as a vehicular body (e.g., without limitation, door, body panel, trunk deck lid, roof panel, hood, and/or roof) and/or a vehicular frame.
- a vehicle such as a vehicular body (e.g., without limitation, door, body panel, trunk deck lid, roof panel, hood, and/or roof) and/or a vehicular frame.
- vehicle or variations thereof includes, but is not limited to, civilian, commercial, and military land vehicles such as cars, motorcycles, and trucks.
- Suitable silicatic substrates are glass, porcelain and ceramics.
- suitable polymeric substrates are polystyrene, polyamides, polyesters, polyethylene, polypropylene, melamine resins, polyacrylates, polyacrylonitrile, polyurethanes, polycarbonates, polyvinyl chloride, polyvinyl alcohols, polyvinyl acetates, polyvinylpyrrolidones and corresponding copolymers and block copolymers, biodegradable polymers and natural polymers - such as gelatin.
- suitable textile substrates are fibers, yarns, threads, knits, wovens, nonwovens and garments composed of polyester, modified polyester, polyester blend fabrics, nylon, cotton, cotton blend fabrics, jute, flax, hemp and ramie, viscose, wool, silk, polyamide, polyamide blend fabrics, polyacrylonitrile, triacetate, acetate, polycarbonate, polypropylene, polyvinyl chloride, polyester microfibers and glass fiber fabric.
- suitable leather substrates are grain leather (e.g. nappa from sheep, goat or cow and box-leather from calf or cow), suede leather (e.g. velours from sheep, goat or calf and hunting leather), split velours (e.g. from cow or calf skin), buckskin and nubuk leather; further also woolen skins and furs (e.g. fur-bearing suede leather).
- the leather may have been tanned by any conventional tanning method, in particular vegetable, mineral, synthetic or combined tanned (e.g. chrome tanned, zirconyl tanned, aluminum tanned or semi-chrome tanned).
- the leather may also be re-tanned; for re-tanning there may be used any tanning agent conventionally employed for re-tanning, e.g. mineral, vegetable or synthetic tanning agents, e.g., chromium, zirconyl or aluminum derivatives, quebracho, chestnut or mimosa extracts, aromatic syntans, polyurethanes, (co) polymers of (meth)acrylic acid compounds or melamine/, dicyanodiamide/and/or urea/formaldehyde resins.
- any tanning agent conventionally employed for re-tanning, e.g. mineral, vegetable or synthetic tanning agents, e.g., chromium, zirconyl or aluminum derivatives, quebracho, chestnut or mimosa extracts, aromatic syntans, polyurethanes, (co) polymers of (meth)acrylic acid compounds or melamine/, dicyanodiamide/and/or urea/formaldehyde
- suitable compressible substrates include foam substrates, polymeric bladders filled with liquid, polymeric bladders filled with air and/or gas, and/or polymeric bladders filled with plasma.
- foam substrate means a polymeric or natural material that comprises a open cell foam and/or closed cell foam.
- open cell foam means that the foam comprises a plurality of interconnected air chambers.
- closed cell foam means that the foam comprises a series of discrete closed pores.
- Example foam substrates include polystyrene foams, polymethacrylimide foams, polyvinylchloride foams, polyurethane foams, polypropylene foams, polyethylene foams, and polyolefinic foams.
- Example polyolefinic foams include polypropylene foams, polyethylene foams and/or ethylene vinyl acetate EVA) foam.
- EVA foam can include flat sheets or slabs or molded EVA forms, such as shoe midsoles. Different types of EVA foam can have different types of surface porosity. Molded EVA can comprise a dense surface or "skin", whereas flat sheets or slabs can exhibit a porous surface.
- the coating composition can be deposited or applied onto a substrate using any technique that is known in the art.
- the coating composition can be applied to the substrate by any of a variety of methods including, without limitation, spraying, brushing, dipping, and/or roll coating, among other methods.
- a plurality of coating compositions are applied onto a substrate, it should be noted that one coating composition may be applied onto at least a portion of an underlying coating composition either after the underlying coating composition has been cured or prior to the underlying coating composition being cured. If the coating composition is applied onto an underlying coating composition that has not been cured, both coating compositions may be cured simultaneously.
- the coating composition may be cured using any technique that is known in the art.
- the coating composition may be cured using curing methods including, but not limited to, thermal energy, infrared, ionizing or actinic radiation, or by any combination thereof.
- the curing operation can be carried out at temperatures ⁇ 10°C (50°F).
- the curing operation can be carried out at temperature ⁇ 246°C (475°F).
- the curing operation can carried out at temperatures ranging between any combination of values, which were recited in the preceding sentences, inclusive of the recited values.
- the curing operation can be carried out at temperatures ranging from 121.1°C (250°F) - 148.9°C (300°F). It should be noted, however, that lower or higher temperatures may be used as necessary to activate the curing mechanisms.
- the coating composition described herein is a low temperature, moisture curable coating compositions.
- the term "low temperature, moisture curable” refers to coating compositions that, following application to a substrate, are capable of curing in the presence of ambient air, the air having a relative humidity of 10 % to 100 %, such as 25 % to 80 %, and a temperature in the range of -10°C to 120°C, such as 5°C to 80°C, in some cases 10°C to 60°C and, in yet other cases, 15°C to 40 °C.
- the dry film thickness of the coating that results from the coating composition described herein can range from 0.1 micron to 500 microns. In other embodiments, the dry film thickness can be ⁇ 125 microns, such as ⁇ 80 microns. For example, the dry film thickness can range from 15 microns to 60 microns.
- one or more coating compositions used to form a coating layer system, which is deposited onto a substrate comprise the polymers described herein.
- the coating layer system that is deposited onto the substrate can comprises an electrodepositable coating layer deposited onto at least a portion of the substrate; a basecoat coating layer deposited onto at least a portion of the electrodepositable coating layer; and a substantially clear coating layer deposited onto at least a portion of the basecoat coating layer.
- the substrate may be pretreated with a pretreatment solution, such as a zinc phosphate solution as described in U.S. Pat. Nos. 4,793,867 and 5,588,989 , or not pretreated with a pretreatment solution prior to application of the electrodepositable coating composition.
- Example 1 Ingredients Total Mass (grams) Charge 1 Isobutylene 2959.7 Charge2 Di-t-amyl peroxide 112.5 Hydroxypropyl acrylate 2849.6 a-Methyl styrene 1773.4 Methyl acrylate 3082.0 Isobutyl acrylate 1186.3
- Example 2 Ingredients Total Mass (grams) Charge 1 Glycidyl methacrylate 294.00 a-Methyl styrene 6.00 Methyl acrylate 200.00 Butyl acrylate 50.00 Isobutyl acrylate 50.00 Charge 2 Di-t-amyl peroxide 10.00. Charge 3 Dowanol PM acetate 210.00
- the epoxy equivalent weight was 440.
- Example 3 Ingredients Total Mass (grams) Charge 1 Glycidyl methacrylate 150.00 Hydroxypropyl acrylate 150.00 Ethyl acrylate 150.00 a-Methyl styrene 60.00 Isobutyl methacrylate 90.00 Charge 2 Di-t-amyl peroxide 10.00 Charge 3 Amyl propionate solvent 210.00
- the epoxy equivalent weight was 840 and hydroxyl value 62.
- Example 4 Ingredients Total Mass (grams) Charge 1 Methacrylic acid 30.00 Hydroxypropyl methacrylate 100.00 Methyl acrylate 236.00 a-Methyl styrene 194.00 Isobutyl acrylate 40.00 Charge 2 Di-t-amyl peroxide 10.00 Charge 3 Dowanol PM acetate 210.00
- Example 5 Ingredients Total Mass (grams) Charge 1 Hydroxypropyl acrylate 160.00 Methyl acrylate 44.00 ⁇ -Methyl styrene 164.00 Charge 2 Di-t-amyl peroxide 5.00 Charge 3 Xylene 165.00
- Example 6 Ingredients Total Mass (grams) Charge 1 Isobutylene 400.00 Charge2 Di-t-amyl peroxide 11.40 Charge3 Hydroxypropyl Acrylate 480.00 2-Hydroxyethyl acrylate 480.00 Butyl acrylate 240.00
- Example 7 Ingredients Total Mass (grams) Charge 1 Isobutylene 150 . 00 Charge2 Di-t-amyl peroxide 6.00 Charge3 4-Hydroxybutyl Acrylate 72.00 a-Methyl styrene 90.00 Butyl acrylate 288.00 Charge 4 Butyl acetate 90.00
- Example 8 Ingredients Total Mass-(grams) Charge 1 Example 1 11963.5 Charge 2 Di-t-amyl peroxide 256.8 Charge 3 1,6 Hexanediol diacrylate 366.9 Charge 4 Aromatic 100 solvent 2400
- Example 1 was added to second reactor 300 cc stirred stainless steel pressure reactor at 25.9 g/min.
- Charge 2 and 3 were added to 300 cc stirred stainless steel pressure reactor at 0.7 ml/min and 0.8 ml/min respectively.
- the agitation on the reactor was set at 500 rpm and the reactor temperature was adjusted to 210°C. During the monomer addition the temperature was maintained 210°C at pressure of 2.76-4.14 MPa (400-600 psi).
- the charge 4 was added to flash tank at 150°C.
- the final solids of the resulting star was determined to be 70.7 % determined at 110°C for one hour.
- the hydroxyl number was 70.
- Example 9 Ingredients Total Mass (grams) Charge 1 Example 2 820.00 Charge 2 1,6 Hexanediol diacrylate 53.00 Charge 3 Di-t-amyl peroxide 14.00 Charge 3 Dowanol PM acetate 70.00
- the epoxy equivalent weight was 455.
- Example 10 Ingredients Total Mass (grams) Charge 1 Example 3 810.00 Charge 2 1,6 Hexanediol diacrylate 18.00 Charge 3 Di-t-amyl peroxide 17.00 Charge 3 Dowanol PM acetate 60.00
- the temperature was maintained 220°C at 0.689-0.965 MPa (100-140 psi).
- the reactor was than cooled to 100°C and Charge 3 was added to the reactor.
- the final solids of the resulting star was determined to be 71 % determined at 110°C for one hour.
- the epoxy equivalent weight was 862 and hydroxyl value 60.
- Example 11 Ingredients Total Mass (grams) Charge 1
- Example 4 820.00 Charge 2 1,6 Hexanediol diacrylate 53.00 Charge 3 Di-t-amyl peroxide 14.00 Charge 3 Dowanol PM acetate 20.00
- the temperature was maintained 220°C at 0.689-0.965 MPa (100-140 psi)
- the reactor was than cooled to 100°C and Charge 3 was added to the reactor.
- the final solids of the resulting star was determined to be 70 % determined at 110°C for one hour.
- the acid value was 20 and hydroxyl value 42.
- Example 12 Ingredients Total Mass (grams) Charge 1 Example 1 214.30 Example 5 264.80 Charge 2 1,6 Hexanediol diacrylate 32.00 Charge 3 Di-t-amyl peroxide 12.00 Charge 3 Xylene 155.00
- the temperature was maintained 220°C at 100 psi.
- the reactor was than cooled to 100°C and Charge 3 was added to the reactor.
- the final solids of the resulting star was determined to be 63 % determined at 110°C for one hour.
- the hydroxyl value was 84.
- Example A Total Mass Ethyl 3-ethoxypropionate 13.93 TINUVIN 928 1.00 CHISORB 328 0.35 TINUVIN 123 0.50 N-Amyl Alcohol 6.17 Fumed Silica Dispersions 1 5.57 Colloidal Silica Dispersion 2 1.76
- Example 9 3 37.04 CYMEL 202 3.73 Polyacid Resin 4 28.14 DYNOADD F1 Solution 0.20 ARMEEN M2C 6 0.60 NACURE 4054 7 1.01 ------------------- 100.00 Silica, CAB-O-SIL CT 1206 (CABOT Corporation), dispersed in polyacid half ester reaction Fumed product of Trimethylolpropane, Methyl Hexahydrophthalic Anhydride and Hexahydrophthalic Anhydride (8.9% fumed silica and 28.6% resin) diluted with Amyl Alcohol.
- Example A was made to 54.3% solids by weight and had a # 4 Ford Cup Viscosity of 25 seconds at 23 °C.
- a black basecoat and Example A clear were applied by SPRAYMATION machine onto steel panels pre-coated with ED 6060 Electrocoat and HP77224ER Primer. These pre-coated panels are available from ACT Test Panels, Inc. of Hillsdale, Michigan.
- the clear was applied to the EVLD 8555 black waterborne basecoat available from PPG Industries.
- the basecoat was flashed for five minutes at 80°C before clear application. After clear application the composite coating was allowed to flash for 10 minutes at room temperature before baking for thirty minutes at 141 °C.
- the basecoat dry film thickness was measured to be 0.58 mils and the clear film thickness was 1.87 mils.
- the composite coating had very good visual appearance.
- the clear showed the following measured values: 20° Gloss of 82, a DOI of 98, BYK WAVE SCAN Long Wave of 2.5, Short Wave of 4.3 and a Rating of 9.8.
- the composite coating had a measured FISCHER MICROHARDNESS of 120.
- the clear retained 68% of the original gloss after 10 cycles of Car Wash testing using the AMTEC Car Wash Machine and retained 62% of the original gloss after 10 rubs with 3M nine micron polishing paper using an Atlas CROCKMETER Machine.
- Example B Total Mass Ethyl 3-ethoxypropionate 13.58 AROMATIC 100 7.81 N-Butyl Acetate 2.60 N-Amyl Alcohol 2.60 TINUVIN 328 1.30 CHISORB 353 0.26 RESIMENE 741 11.84
- Example B was made to 54.4% solids by weight and had a # 4 Ford Cup Viscosity of 29 seconds at 23°C.
- a black basecoat and Example B clear were applied by SPRAYMATION machine to steel panels pre-coated with ED 6100H Electrocoat. These pre-coated panels are available from ACT Test Panels, Inc. of Hillsdale, Michigan.
- the clear was applied to the HWH-9517 black waterborne basecoat available from PPG Industries.
- the basecoat was flashed for five minutes at 80°C before clear application. After clear application the composite coating was allowed to flash for 10 minutes at room temperature before baking for thirty minutes at 141 °C.
- the basecoat dry film thickness was measured to be 0.58 mils and the clear film thickness was 1.70 mils.
- the clear showed the following appearance values: 20° Gloss of 86 and a DOI of 87.
- the composite coating had a measured FISCHER MICROHARDNESS of 112.
- the clear retained 72% of the original gloss after 10 cycles of Car Wash testing using the AMTEC Car Wash Machine.
- Example C Total Mass Solvesso 100 60.00 TINUVIN 292 1.00 TINUVIN 928 1.50 Butyl Cellosolve Acetate 3.00
- a black basecoat and Example C clear were applied by SPRAYMATION machine onto 4" x 12" TRU steel panels, available from ACT Test Panels, Inc. of Hillsdale, Michigan.
- the clear was applied to the Schwarz black waterborne basecoat available from BASF Corp.
- the basecoat was flashed for seven minutes at 141 °C before clear application. After clear application the composite coating was allowed to flash for 10 minutes at room temperature before baking for thirty minutes at 141 °C.
- the basecoat dry film thickness was measured to be 0.5 mils and the clear film thickness was 1.7 mils.
- the composite coating had very good visual appearance.
- the clear showed the following measured values: 20° Gloss of 86, a DOI of 88, BYK WAVE SCAN Long Wave of 5.3, Short Wave of 27.9 and a Rating of 8.2.
- the composite coating had a measured FISHER MICROHARDNESS of 122.
- the clear retained 76% of the original gloss after 10 cycles of Car Wash testing using the AMTEC Car Wash Machine and retained 9% of the original gloss after 10 rubs with 3M nine micron polishing paper using an Atlas CROCKMETER Machine.
- Example D Total Mass Methyl n-Amyl Ketone 20.42 Xylene 1.29 Aromatic-100 4.78 Butyl Cellosolve Acetate 20.32 Hexyl Cellosolve 0.63 Eversorb 76 1.49 CHISORB 328 1.49 Colloidal Silica Dispersions 1 16.88 Ethanol 5.48 Poly Butylacrylate 0.69 Multiflow 2 0.47 Resimene-757 32.99
- Example 8 3 74.84 Catalyst Grind 4 1.92 ------------ 183.58 1 Nissan Chemical MT-ST colloidal silica dispersed in a siloxane polyol resin (83% weight solids in Methyl Amyl Ketone and Methanol).
- Example D was made to 57.7% solids by weight and had a # 4 Ford Cup Viscosity of 28 seconds at 74 °F.
- a black basecoat and Example D clear were applied by SPRAYMATION machine onto 4" x 12" steel panels pre-coated with ED 6061 Electrocoat, available from ACT Test Panels, Inc. of Hillsdale, Michigan.
- the clear was applied to HMB-301134 silver waterborne basecoat available from PPG Industries.
- the basecoat was flashed for five minutes at room temperature and then for three minutes at 82°C before clear application. After clear application the composite coating was allowed to flash for 10 minutes at room temperature before baking for thirty minutes at 141 °C.
- the basecoat dry film thickness was measured to be 0.7 mils and the clear film thickness was 1.7 mils.
- the composite coating had very good visual appearance.
- the clear showed the following measured values: 20° Gloss of 95, a DOI of 88, BYK WAVE SCAN Long Wave of 3.2, Short Wave of 9.0 and a Cf rating of 59.3.
- the composite coating had a measured FISHER MICROHARDNESS of 108.
- Example E Total Mass BYK-300 1 0.15 EVERSORB 74 2 1.47 SANOL LS-292/BLS 292 3 2.02 DABCO T-12 4 0.20
- Example 12 5 63.66 ISOCYANATE HARDENER 6 32.50 ---------- 100.00 1
- Flow additive available from BYK-CHEMIE 52% weight solids in Xylene and isobutanol.
- 2 Ultra-violet absorber available from CIBA Additives (Benzotriazole 100% weight solids).
- 3 Hindered Amine Light Stabilizer available from SANKYO, Co. (100% weight solids Pentamethyl-4-Piperidinyl sebacates).
- Example E was made to 49.64% weight solids with the addition of solvents (blend of Dowanol PM Acetate, Xylene, MIBK and Acetone) for spray application.
- the solution had a Brookfield viscosity of 33 centipoise at 25°C.
- DELTRON DBC 3964 Sapphire Blue basecoat and Example E clearcoat were applied by a DeVilbiss GTI-620G HVLP hand spray gun onto steel panels pyrecoated with ED 6060 Electrocoat and HP77224ER Primer. These pre-coated panels are available from ACT Test Panels, Inc. of Hillsdale, Michigan.
- the basecoat was ambient cured prior to clearcoat application.
- the clear coat was applied to the basecoat and ambient cured one week prior to testing.
- the basecoat dry film thickness was measured to be 0.50 mils and the clear film thickness was 2.3 mils (57.5 microns).
- the composite coating had a measured Konig Pendulum hardness a of 23 and a measured 20° Gloss b of 91.9.
- the clearcoat had a taped adhesion c rating of 5 (50% retention over the basecoat) and a tack-free time d of 75 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Claims (15)
- Beschichtungszusammensetzung enthaltend:ein Polymer, das ein oligomeres Makromonomer und einen Kern, von dem sich dieses oligomere Makromonomer erstreckt, aufweist, gebildet durch Radikalpolymerisation des oligomeren Makromonomers mit einem Monomer, das wenigstens zwei ethylenisch ungesättigte Doppelbindungen aufweist, wobei dieses oligomere Makromonomer reaktive funktionelle Gruppen aufweist und eine mittlere Funktionalität im Bereich von 1,0 bis 30,0 aufweist, wobei dieser Kern < 10 Gew.-% des Gesamtpolymergewichts ausmacht.
- Beschichtungszusammensetzung nach Anspruch 1, wobei dieses oligomere Makromonomer ≥ 5 Gew.-% funktionalisierte Monomere enthält.
- Beschichtungszusammensetzung nach Anspruch 1, wobei dieser polymere Kern ≤ 5 Gew.-% des Gesamtpolymergewichts ausmacht und dieses oligomere Makromonomer ≥ 95 Gew.-% des Gesamtpolymergewichts ausmacht.
- Beschichtungszusammensetzung nach Anspruch 1, wobei dieses oligomere Makromonomer ein Molekulargewicht von ≤ 5.000 aufweist.
- Beschichtungszusammensetzung nach Anspruch 4, wobei dieses oligomere Makromonomer ein Molekulargewicht im Bereich von 1.400 bis 1.600 aufweist und wobei dieses oligomere Makromonomer eine mittlere Funktionalität von 2,2 bis 2,6 aufweist.
- Beschichtungszusammensetzung nach Anspruch 1, wobei dieses oligomere Makromonomer ein Radikalpolymerisationsreaktionsprodukt ist von: (a) einem Monomer, das einen α-Wasserstoff enthält, (b) einem ersten Radikalpolymerisationsinitiator und optional (c) einem Monomer, das mit(a) polymerisierbar ist.
- Beschichtungszusammensetzung nach Anspruch 6, worin (a) Acrylat, Alkylacrylat, Hydroxyalkylacrylat oder Kombinationen davon umfasst oder worin (c) Methacrylat, Alkylmethacrylat, Hydroxyalkylmethacrylat, Gycidylmethacrylat oder Kombinationen davon umfasst oder worin Initiator (b) < 10 Gew.-% des Gesamtgewichts von (a), (b) und (c), falls verwendet, ausmacht.
- Beschichtungszusammensetzung nach Anspruch 1, wobei dieses Polymer einen Kern und ≥ 4 Gew.-% funktionalisierte Monomere aufweist.
- Beschichtungszusammensetzung nach Anspruch 1, die weiterhin ein zusätzliches filmbildendes Polymer enthält.
- Beschichtungszusammensetzung nach Anspruch 1, wobei diese Beschichtungszusammensetzung weiterhin ein Härtungsmittel enthält, das mit den reaktiven funktionellen Gruppen dieses oligomeren Makromonomers reaktiv ist.
- Beschichtungszusammensetzung nach Anspruch 10, wobei diese Beschichtungszusammensetzung eine 2K-Zusammensetzung, worin dieses Polymer in einer Komponente vorliegt und dieses Härtungsmittel in einer anderen Komponente, oder eine 1 K-Zusammensetzung ist.
- Beschichtungszusammensetzung nach Anspruch 1, wobei diese Beschichtungszusammensetzung eine elektroabscheidbare Beschichtungszusammensetzung ist.
- Beschichtungszusammensetzung nach Anspruch 1, wobei diese Beschichtungszusammensetzung ein Färbungsmittel enthält oder im Wesentlichen klar ist, wobei, falls die Beschichtungszusammensetzung im Wesentlichen klar ist, dieses oligomere Makromonomer vorzugsweise Glycidylmethacrylat, Isobutylacrylat und Isobutylmethacrylat enthält.
- Substrat, das wenigstens teilweise mit der Beschichtungszusammensetzung nach Anspruch 1 beschichtet.
- Substrat nach Anspruch 14, wobei dieses Substrat einen Teil eines Fahrzeugs umfasst.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/040,380 US8071679B2 (en) | 2008-02-29 | 2008-02-29 | Coating compositions comprising a polymer containing an oligomeric macromonomer |
| PCT/US2009/033707 WO2009108493A1 (en) | 2008-02-29 | 2009-02-11 | Coating compositions comprising a polymer containing an oligomeric macromonomer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2247632A1 EP2247632A1 (de) | 2010-11-10 |
| EP2247632B1 true EP2247632B1 (de) | 2012-07-25 |
Family
ID=40578480
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP09715968A Active EP2247632B1 (de) | 2008-02-29 | 2009-02-11 | Beschichtungszusammensetzungen mit einem polymer mit einem oligomeren makromonomer |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US8071679B2 (de) |
| EP (1) | EP2247632B1 (de) |
| KR (1) | KR101201575B1 (de) |
| CN (1) | CN101977950B (de) |
| AU (1) | AU2009217537A1 (de) |
| CA (1) | CA2717096C (de) |
| ES (1) | ES2390558T3 (de) |
| RU (1) | RU2010139878A (de) |
| UA (1) | UA101023C2 (de) |
| WO (1) | WO2009108493A1 (de) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019125482A1 (en) | 2017-12-22 | 2019-06-27 | Ppg Industries Ohio, Inc. | Thermally curable film-forming compositions providing benefits in appearance and sag control performance |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2011154465A (ru) * | 2009-06-03 | 2013-07-20 | ДжиЛТ ТЕХНОВЭЙШНЗ, ЛЛСи | Материал для использования с емкостным сенсорным экраном |
| CN103797038A (zh) | 2011-06-02 | 2014-05-14 | 朗盛德国有限责任公司 | 作为合成丹宁的基于多糖和/或多肽的接枝聚合物 |
| RU2458953C1 (ru) * | 2011-06-30 | 2012-08-20 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" (ГОУ ВПО "МГУИЭ") | Фотополимеризующаяся акриловая олигомер-олигомерная композиция, износостойкое покрытие на органических стеклах для элементов остекления зданий, сооружений и транспортных средств на ее основе и способ получения износостойкого покрытия |
| US9834634B2 (en) * | 2014-02-27 | 2017-12-05 | Akzo Nobel Coatings International, B.V. | Acrylic resins and powder coating compositions and powder coated substrates including the same |
| JP2021172688A (ja) * | 2020-04-20 | 2021-11-01 | 日本ペイント・オートモーティブコーティングス株式会社 | 塗料組成物 |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4794144A (en) * | 1984-07-05 | 1988-12-27 | E. I. Du Pont De Nemours And Company | Acrylic star polymers containing multi-functional monomers in the core, made by group transfer polymerization |
| US5723511A (en) * | 1996-06-17 | 1998-03-03 | Xerox Corporation | Processes for preparing telechelic, branched and star thermoplastic resin polymers |
| CA2296297A1 (en) | 1997-07-16 | 1999-01-28 | E.I. Du Pont De Nemours And Company | Graft copolymer emulsions and two-package waterborne urethane coatings |
| US5955532A (en) | 1997-07-17 | 1999-09-21 | E. I. Du Pont De Nemours And Company | Aqueous coating composition of a self-stabilized crosslinked latex |
| US6355729B1 (en) * | 1998-08-31 | 2002-03-12 | Ppg Industries Ohio, Inc. | Electrodepositable coating compositions comprising amine salt group-containing polymers prepared by atom transfer radical polymerization |
| US6294631B1 (en) * | 1998-12-15 | 2001-09-25 | Exxonmobil Chemical Patents Inc. | Hyperbranched polymers by coordination polymerization |
| US6596793B2 (en) | 2000-06-13 | 2003-07-22 | Kansai Paint Co., Ltd. | Copolymer excelling in pigment dispersibility |
| JP2002069144A (ja) | 2000-06-13 | 2002-03-08 | Kansai Paint Co Ltd | 顔料分散性に優れた共重合体 |
| US6512056B1 (en) * | 2001-03-09 | 2003-01-28 | The University Of Akron | Star polymers having statistical poly(isobutylene-co-styrene) copolymer arms |
| US20060100351A1 (en) | 2004-11-08 | 2006-05-11 | Butera Robert J | Rapid drying lacquers containing impoved rheology control additive |
| EP2325236A1 (de) * | 2005-04-20 | 2011-05-25 | Dendritic Nanotechnologies Inc. | Dendritische Polymere mit verbesserter Amplifikation und innerer Funktionalität |
-
2008
- 2008-02-29 US US12/040,380 patent/US8071679B2/en active Active
-
2009
- 2009-02-11 RU RU2010139878/04A patent/RU2010139878A/ru not_active Application Discontinuation
- 2009-02-11 UA UAA201011503A patent/UA101023C2/ru unknown
- 2009-02-11 AU AU2009217537A patent/AU2009217537A1/en not_active Abandoned
- 2009-02-11 ES ES09715968T patent/ES2390558T3/es active Active
- 2009-02-11 WO PCT/US2009/033707 patent/WO2009108493A1/en not_active Ceased
- 2009-02-11 EP EP09715968A patent/EP2247632B1/de active Active
- 2009-02-11 CA CA2717096A patent/CA2717096C/en active Active
- 2009-02-11 CN CN200980109818.4A patent/CN101977950B/zh active Active
- 2009-02-11 KR KR1020107021575A patent/KR101201575B1/ko not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019125482A1 (en) | 2017-12-22 | 2019-06-27 | Ppg Industries Ohio, Inc. | Thermally curable film-forming compositions providing benefits in appearance and sag control performance |
Also Published As
| Publication number | Publication date |
|---|---|
| HK1148544A1 (en) | 2011-09-09 |
| KR101201575B1 (ko) | 2012-11-14 |
| CA2717096C (en) | 2013-10-01 |
| WO2009108493A1 (en) | 2009-09-03 |
| CN101977950A (zh) | 2011-02-16 |
| EP2247632A1 (de) | 2010-11-10 |
| AU2009217537A1 (en) | 2009-09-03 |
| US20090221748A1 (en) | 2009-09-03 |
| KR20100117141A (ko) | 2010-11-02 |
| US8071679B2 (en) | 2011-12-06 |
| CA2717096A1 (en) | 2009-09-03 |
| ES2390558T3 (es) | 2012-11-14 |
| RU2010139878A (ru) | 2012-04-10 |
| UA101023C2 (ru) | 2013-02-25 |
| CN101977950B (zh) | 2013-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2901963C (en) | Methods and compositions for coating substrates | |
| US8062761B2 (en) | Method of forming multi-layer coating films on automobile bodies without a primer bake | |
| US9598597B2 (en) | Waterborne coating compositions and heat sensitive substrates coated therewith | |
| EP2265679B1 (de) | Beschichtungzusammensetzungen aus fluorkohlenstoffpolymeren | |
| EP2247632B1 (de) | Beschichtungszusammensetzungen mit einem polymer mit einem oligomeren makromonomer | |
| CN107177294A (zh) | 高固体分涂料组合物 | |
| EP1954771B1 (de) | Verfahren zur herstellung einer mehrschichtigen lackierung auf automobilkarosserien ohne einbrennen des grundiermittels | |
| CN115244141B (zh) | 低温固化涂料组合物 | |
| US20050123781A1 (en) | One-component flexible etch resistant clearcoat | |
| KR20220045971A (ko) | 저온 경화 코팅 조성물 | |
| CA2648672C (en) | Adhesion-promoting compositions and methods of promoting adhesion between a coating and a substrate | |
| US20090221757A1 (en) | Polymers containing an oligomeric macromonomer | |
| US20230058746A1 (en) | Coating composition comprising a poly(ethylene-acrylate) copolymer and method of coating substrates | |
| US8242211B2 (en) | Method for producing a dispersion comprising a two stage reaction product and an associated coating | |
| HK1148544B (en) | Coating compositions comprising a polymer containing an oligomeric macromonomer | |
| US20100087598A1 (en) | Polymer and coating composition comprising the same | |
| JP2023540195A (ja) | 多層コーティング系製造のための2ウェットコーティング法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20100826 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
| 17Q | First examination report despatched |
Effective date: 20110210 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 290/04 20060101AFI20111219BHEP Ipc: C09D 201/00 20060101ALI20111219BHEP Ipc: C09D 151/06 20060101ALI20111219BHEP Ipc: C09D 201/02 20060101ALI20111219BHEP Ipc: C09D 133/06 20060101ALI20111219BHEP |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 567691 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009008497 Country of ref document: DE Effective date: 20120920 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2390558 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121114 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120725 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 567691 Country of ref document: AT Kind code of ref document: T Effective date: 20120725 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120725 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121025 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121026 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121126 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20130426 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121025 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009008497 Country of ref document: DE Effective date: 20130426 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130211 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602009008497 Country of ref document: DE Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090211 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130211 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230223 Year of fee payment: 15 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240229 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240229 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250227 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250303 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20250220 Year of fee payment: 17 Ref country code: GB Payment date: 20250227 Year of fee payment: 17 |