EP2247222A1 - Support structure and method for the production and use of such a support structure - Google Patents

Support structure and method for the production and use of such a support structure

Info

Publication number
EP2247222A1
EP2247222A1 EP09712815A EP09712815A EP2247222A1 EP 2247222 A1 EP2247222 A1 EP 2247222A1 EP 09712815 A EP09712815 A EP 09712815A EP 09712815 A EP09712815 A EP 09712815A EP 2247222 A1 EP2247222 A1 EP 2247222A1
Authority
EP
European Patent Office
Prior art keywords
support structure
core
density
structure according
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09712815A
Other languages
German (de)
French (fr)
Other versions
EP2247222B1 (en
Inventor
Herbert Börger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Thermoplast Composite GmbH
Original Assignee
Thermoplast Composite GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermoplast Composite GmbH filed Critical Thermoplast Composite GmbH
Priority to SI200930245T priority Critical patent/SI2247222T1/en
Publication of EP2247222A1 publication Critical patent/EP2247222A1/en
Application granted granted Critical
Publication of EP2247222B1 publication Critical patent/EP2247222B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C23/00Spring mattresses with rigid frame or forming part of the bedstead, e.g. box springs; Divan bases; Slatted bed bases
    • A47C23/06Spring mattresses with rigid frame or forming part of the bedstead, e.g. box springs; Divan bases; Slatted bed bases using wooden springs, e.g. of slat type ; Slatted bed bases
    • A47C23/061Slat structures
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • A63B49/02Frames
    • A63B49/10Frames made of non-metallic materials, other than wood
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/10Non-metallic shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B59/00Bats, rackets, or the like, not covered by groups A63B49/00 - A63B57/00
    • A63B59/70Bats, rackets, or the like, not covered by groups A63B49/00 - A63B57/00 with bent or angled lower parts for hitting a ball on the ground, on an ice-covered surface, or in the air, e.g. for hockey or hurling
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/08Handles characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • A63B60/10Handles with means for indicating correct holding positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • A63C5/126Structure of the core
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/24Ice hockey
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • A63B2209/023Long, oriented fibres, e.g. wound filaments, woven fabrics, mats
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/02Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
    • A63B2209/026Ratio fibres-total material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B49/00Stringed rackets, e.g. for tennis
    • A63B49/02Frames

Definitions

  • the invention relates to a support structure according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such a support structure and to a use of such a support structure.
  • Support structures of the type mentioned are known from DE-PS 1 1 19 503, DE 298 16 638 Ul and DE 84 32 781 Ul. Further supporting structures are known from DE 100 60 379 A1 and DE 10 2006 023 865 A1.
  • a compound of natural or wood fibers with acrylate resin offers the possibility of predetermining the core density via a compression of such a core in the as yet uncured state.
  • the wood fibers of the support structure according to the invention may be wood fibers which have been freed from a binding matrix.
  • the wood starting material can be derived from the cellulose fibers of the Partially or practically completely liberated wood binding lignin.
  • the compound of the natural or wood fibers with the acrylate resin can be done by embedding the fibers in the resin.
  • the acrylate resin can also be used as a binder between the natural or wood fibers.
  • the support structure can therefore be equipped, where it is exposed to greater loads, with a denser and thus more resilient core.
  • the sheath is preferably made of an organic sheet, ie of a thermoplastic high-performance fiber composite plastic.
  • fibers may be used in the form of endless or spun and in particular highly oriented glass fibers, natural fibers, synthetic fibers or carbon fibers.
  • a polymer matrix of the fiber reinforced plastic of the enclosure may be selected from a suitable thermoplastic material, for example polypropylene, polyamide, a thermoplastic polyester or a blend of different polymers.
  • polybutylene terephthalate PBT
  • polyethylene terephthalate PET
  • polyethersulfone acrylonitrile-butadiene-styrene
  • ABS acrylonitrile-butadiene-styrene
  • ASA acrylic ester-styrene-acrylonitrile
  • SAN styrene-acrylonitrile
  • the acrylate resin used as matrix for the core fibers in particular Aerodur® BASF AG can be used.
  • Preferred is a formaldehyde-free resin as a fiber matrix for the core. Even after pressing, the core made of the natural or wood fibers remains sufficiently porous so that the matrix of the fiber-reinforced plastic forming the cladding penetrates into these pores for the intimate connection of the cladding with the core can.
  • seed fibers such as cotton, bast fibers such as hemp, jute, linen or ramie
  • other resin fibers such as sisal or manila or fruit fibers such as coconut
  • the varying core density along the support structure causes the support structure in the longitudinal direction can be well adapted to changing load conditions.
  • the core density in the region of force introduction points or fastening sections can be purposefully increased.
  • crossmembers loaded centrally from above may have a higher density in the center than at the edge.
  • the density of the core is adapted to the respective load conditions of this functional component. The result is the possibility of an easily and inexpensively executable support structure.
  • An acrylate resin content according to claim 2 gives a particularly good loadable core.
  • a continuous density variation according to claim 3 allows an optimized density adjustment of the core, so that it is actually amplified only in the areas that require such a gain due to the loading requirements. Upon reaching predetermined load requirements, an optimally lightweight support structure is achieved in this way.
  • a graduated density variation according to claim 4 facilitates the manufacture of the support structure.
  • a core density range according to claim 5 has been found to be particularly well suited for many practical loading requirements. Vorzugswei- - A -
  • the core density varies between 450 g / l and 850 g / l, more preferably between 500 g / l and 1000 g / l.
  • Typical moduli of elasticity resulting from these density ranges are between 1,750 MPa and 3,100 MPa.
  • Bending stress values ⁇ lie at values between 18 MPa and 31 MPa for these density ranges.
  • a cross-sectional variation of the support structure according to claim 6 allows an additional geometric adaptation to the respective load requirements.
  • Fiber lengths according to claim 7 have been found to be particularly suitable for achieving a durable and resilient core.
  • the fibers have a typical diameter in the range between 10 microns and 150 microns.
  • very thin fibers for example with a fiber diameter between 10 .mu.m and 30 .mu.m, or strong fibers, for example with a diameter in the range between 100 .mu.m and 150 .mu.m, may be preferred.
  • An enclosure according to claim 8 has surprisingly been found to be sufficient to ensure the required in practice for the support structure according to the invention additional load absorption and protective effect by the enclosure.
  • the wrapper may have a thickness of 0.8 mm.
  • An enclosure according to claim 9 allows an additional load adjustment along the support structure over the envelope thickness.
  • a wrapper according to claim 10 is an inexpensive variant of a wrapper of varying thickness.
  • a supporting structure according to claim 11 combines the advantages of a load-bearing structure matched by the covering thickness with those of a supporting structure of constant external cross-section.
  • laminate thicknesses adapted to the strength of the load can be used.
  • the support structure can be used wherever a varying outer cross-section would interfere, especially where space is scarce or where good stackability of the support structure is required. In addition, this allows a cost-effective continuous production of the support structure as in particular endless profile strand.
  • a constant basis weight core layer according to claim 12 may have an over-the-plane load-bearing capacity over a varying density perpendicular to the plane in which the constant basis weight exists or over a sheath thickness varying in that plane.
  • the support structure can be used wherever it represents a ballast that must not exceed a given weight per unit area.
  • a hollow chamber design according to claim 13 increases the surface of the core, which can be used advantageously for Kemtrocknung after molding of this.
  • the envelope can be done in particular at the same time with a shaping Kernverpressung. This reduces the production cost.
  • Separate core sections according to claim 14 provide a further degree of freedom for load adjustment of the support structure. Where a higher load has to be absorbed, several, for example, juxtaposed core sections can be provided. The core sections may in particular have different lengths. Another object is to specify a production method for the support structure according to the invention. This object is achieved by the method according to claims 15 and 16.
  • a density variation for the support structure according to the invention can be specified exactly by stacking prepregs, that is to say natural or wood fibers preimpregnated with the uncured acrylate resin. Depending on the density and depending on the dimensions of the individual prepregs forming the stack, a defined density variation results after pressing
  • Supporting structure The wrapping of the core produced by the compression is usually carried out after the pressing.
  • the desired density variation is generated via a corresponding variation of the basis weight of the fiber mat.
  • the two methods according to claims 15 and 16 can also be combined with each other.
  • a fiber mat of continuously varying basis weight may be part of a prepreg stack.
  • the envelope may be designed to be plastically deformable, so that the envelope, for example, variably compensates a cross-sectional variation of the core over a longitudinal dimension of the support structure.
  • the prepreg stack can be crimped in a single step to the core of the support structure.
  • the pressing temperature of the prepreg stack may be greater than 150 0 C, greater than 200 0 C and may for example be 250 0 C.
  • the temperature of the pressing tool can be significantly lower than the temperature of the prepreg stack and can, for example, be lower than 150 0 C, lower than 100 0 C and may be, for example 7O 0 C.
  • Uses according to claim 17 exemplify the advantages of a load-adapted density variation of the core of the support structure.
  • the center of the slat in particular has an increased core density, so that the slat is particularly resistant to bending in its center.
  • battens with different maximum stiffnesses, matching the required stiffnesses in the shoulder and pelvic region on the one hand, and in the head and foot region of a slatted frame, on the other hand.
  • These different types of slats can be provided with identical dimensions, so that only one type of slat shots needs to be used regardless of the type of slat used.
  • a ski In a ski, this is equipped in particular in the binding area with increased core density.
  • This increased core density can be generated, for example, by increased lateral compression in the production of the core of the support structure in the region of the sidecut. This ensures that, especially in the bond area, the core density is increased due to the stronger compression.
  • a ski may be equipped in a fastening region, for example for bonding with increased core density. In this case, an additional prepreg layer can be placed exactly before pressing where it is intended to screw the binding to the main body of the ski. In the area of this increased core density, a sufficient pull-out force can be provided without additional measures, so that fastening screws can be screwed directly into this fastening area.
  • Figure 1 is a longitudinal section through a slat of a slatted frame for a bed frame as an example of a erf ⁇ ndungswashen support structure.
  • FIG. 2 shows a cross section along line II-II in Fig. 1.
  • Fig. 3 is a diagram showing a density along the support structure of Fig. 1;
  • FIG. 3 a in a representation similar to FIG. 3 a variant of a density variation along the slat according to FIG. 1;
  • FIG. 3 a in a representation similar to FIG. 3 a variant of a density variation along the slat according to FIG. 1;
  • FIG. 4 shows a perspective longitudinal section through a ski as a further example of a support structure according to the invention
  • Fig. 5 stacked prepreg layers as an intermediate step in the manufacture of the support structure of Fig. 4;
  • Fig. 6 is a graph showing a density along the ski of Fig. 4 in a similar manner to Fig. 3; 7 shows a side view of a hockey stick as a further example of a supporting structure according to the invention;
  • Fig. 10 is a diagram of a density along the hockey stick after
  • FIG. 7 in a similar to Figure 3 representation.
  • FIG. 11 shows a longitudinal section through a developer as another example of a support structure according to the invention.
  • FIG. 12 shows a section according to line XII-XII in FIG. 11;
  • FIG. 13 in a similar to Fig. 12 representation of a section through a
  • Support structure in the form of a developer with a core extending axially in the hollow chamber
  • FIG. 14 is a view similar to FIG. 12, showing a cross-section through another embodiment of a ski as a further example of a support structure according to the invention cut in a binding section;
  • FIG. 15 shows a further cross section through the embodiment of Figure 14 in the region of a portion spaced from the binding portion.
  • 16 shows a cross section through stacked prepreg layers as an intermediate step in the production of a further embodiment of a ski as a further example of a support structure according to the invention.
  • Fig. 17 also in cross-section a core of the ski embodiment of Fig. 16 with the compressed prepreg stack and an associated diagram illustrating the density across the width of the ski.
  • Fig. 1 shows a bar 1 of a bedframe otherwise not shown for a bed frame.
  • the bar 1 is shown in a longitudinal section.
  • the bar 1 represents a first example of a support structure according to the invention.
  • the lath 1 has a core 2, which in Fig. 1 schematically by a
  • the core 2 has a content of acrylate resin 4 in the range between 8% by weight and 25% by weight.
  • the natural or wood fibers 3 have a length in the range between 3 and 30 mm and a diameter in the range between 10 ⁇ m and 150 ⁇ m.
  • the core 2 has a sheath 5 made of a fiber-reinforced plastic.
  • the envelope 5 has along the bar 1 a constant thickness U of about 0.8 mm.
  • the entire bar 1 has in the sectional plane of Fig. 1 has a thickness L of about 8 mm.
  • the core 2 has a length along the bar 1 by more than 10% varying density.
  • the core 2 is divided in Fig. 1 from left to right in a total of six sections I, II, III, IV, V and VI.
  • the two middle sections Along the slat 1 are the sections III and IV.
  • the two end-side sections are the sections I and VI.
  • Between the end and the middle sections are the sections II and V.
  • the sections II to V have an approximately equal longitudinal extent. In contrast, the end sections I and VI are somewhat longer.
  • the core 2 has a density of 575 g / l. In the middle sections III and IV, the core 2 has a density of 810 g / l. In between, ie in sections II and V, the core 2 has a density of 690 g / l. The density of the core 2 thus varies in steps between sections I and II, II and III, IV and V, and V and VI, respectively.
  • the slat 1 is made as follows:
  • a stack of multiple layers of a acrylate resin impregnated natural or wood fiber prepreg is provided. Where there should be a higher density of the core 2 along the slat 1, there is also a higher number of prepreg layers in this provision. In sections III and IV, for example, there are three prepreg layers. In Sections II and V two prepreg layers are present. In Sections I and VI, a prepreg sheet is present. Subsequently, the stack thus provided is pressed to the core 2 of the support structure and in turn subsequently wrapped with the sheath 5. During pressing, the acrylate resin is pressed through gaps between the natural or wood fibers in the unpressed state. In this way, the prepregs can be formed plastically.
  • the prepreg layers have a temperature of 25O 0 C during pressing.
  • the pressing tool has a temperature of 7O 0 C during pressing.
  • a graded density variation of the core 2 as shown in FIG. 3
  • the density varies from the left end of the slat 1 in FIG. 1, starting from a value of about 300 g / l up to a value in the middle of the slat 1 according to FIG. 1 at 800 g / l, and then increases until in 1 right end of the bar 1 again to a value of 300 g / l.
  • This variation is approximately cosinusoidal about a center along the batten 1.
  • a continuous density variation according to FIG. 3 a can likewise be produced with the aid of a prepreg stack, with the individual prepreg layers running towards the end in each case in the shape of a wedge, ie decreasing in their thickness linearly towards their ends.
  • continuous density variation can be achieved by using a fiber mat as a core-making material, the fiber mat having a continuously varying basis weight according to the desired density variation.
  • the ski 6 has a tip portion I, a binding portion III and an end portion V. Between the tip portion I and the binding portion III and between the binding portion III and the end portion V, there is a transition portion II and IV, respectively.
  • the ski has a varying cross section over its length. In this case, both the thickness of the core 2 perpendicular to a contact plane of this and the width of the core 2 varies along the ski 6.
  • the thickness variation is such that the ski 6 is the thickest in the binding section III, the strength of the ski 6 to Shovel and towards the end continuously decreases.
  • the width of the ski 6 varies in such a way that it is waisted, ie it is the least wide in the binding section III.
  • FIG. 5 shows a stack of natural or wood fiber prepregs 7, 8, 9, 10 prepared in preparation for the ski 6.
  • the prepregs 7 to 10 have an acrylate resin content of 13%.
  • the prepreg 7 represents the basis of the stack, which covers the entire length of the ski 6.
  • the prepregs 8, 9 are each made shorter and serve to form the transition sections of the ski 6.
  • the prepreg 10 is present only in the binding section III.
  • the starting thickness of the stacked prepregs 7 to 10 is such that, after the compression of the prepregs, they have been densified most in the region of the binding section III, so that the highest density of the core 2 is present there.
  • the course of the core density is shown in FIG. 6, which is similar to FIG.
  • Transition sections II and IV have two density ranges with a lower density of about 650 g / L and a higher density of about 700 g / L.
  • Bonding Section III has a density of about 850 g / l.
  • FIGS. 7 to 10 A further variant of a support structure according to the invention using the example of a hockey stick 11 will be explained with reference to FIGS. 7 to 10. Components which correspond to those which have already been explained above with reference to FIGS. 1 to 6 bear the same reference numerals and will not be explained again in detail.
  • the hockey stick 11 is divided into a total of four sections, namely a trowel section I, a handle section IV and two transition sections II and III.
  • a center of gravity 12a of the hockey stick 11 lies in the middle of the transitional section II.
  • the cross-sectional shapes of the trough section I and of the grip section IV illustrate the two cross-sectional views of FIGS. 9 and 8, respectively.
  • the prepreg preparation before pressing the core 2 of the hockey stick 11 is such that there are four prepreg layers in the trowel section I, one prepreg layer in the grip section IV and three or two prepreg layers in the transition sections II and III.
  • In the trough portion I results in a density of the core 2 of 850 g / l (see Fig. 10).
  • a core 2 density of 790 g / l results in the transitional section III.
  • a density of the core 2 of 610 g / l results.
  • a developer 12 will be explained below as a further example of a support structure according to the invention.
  • Components corresponding to those already described above with reference to Figs. 1 to 10 bear the same reference numerals and will not be discussed again in detail.
  • the developer 12 has an enclosure 13 with a length along the developer 12 varying strength. This thickness is twice as large in a middle section II of the developer 12 as in a left-hand section I in FIG. 11 or in a right-hand section III in FIG. 11.
  • the envelope 13 is formed by a fiber-reinforced plastic laminate, which is designed in section II double-layered.
  • a second layer 14 of the sheath 13 is inwardly in this double-layered section II, that is, offset to the core 2.
  • the prepregs, which form the core 2 all have the same length in the developer 12, which coincides with the length of the developer 12, and the same strength.
  • the second layer 14 works in the outer prepreg layers, so that the core 2 in Section II receives an increased density, without that in the area II compared to the areas I and III an increased number present at prepreg layers.
  • the core 2 has a constant weight per unit area.
  • the density of the core 2 of the developer 12 is about 900 g / l.
  • the density of the core 2 is about 600 g / l.
  • the developer 12 has outer walls 15, 16, which are smooth throughout, so without steps executed.
  • FIG. 13 shows, in a cross-sectional view similar to FIG. 12, the developer 12 in an alternative embodiment to FIGS. 11 and 12.
  • the core 2 of the developer 12 according to FIG. 13 has a central hollow chamber 17 extending along the developer 12, that is perpendicular to the plane of the drawing according to FIG. 13.
  • the core 2 is also located behind the chamber wall 18, which delimits the hollow chamber 17 Applying the sheath 5 free and is accessible via at least one end of the developer 12 of FIG. 13 after applying the sheath 5.
  • a support structure 12 having a hollow chamber, as shown in FIG. 13, can be produced in such a way that a sheathing through the sheath 5 takes place simultaneously with a shaping of the core 2 taking place by means of compression.
  • the sheath 5 and the core 2 are then in the support structure produced at the same time.
  • Water or water vapor, which forms during the compression of the core 2 can then be discharged via the hollow chamber 17 to the outside of the support structure, so that a drying of the core 2 is possible.
  • Such drying can be assisted, for example, by passing dry air or another drying medium through the hollow chamber.
  • the hollow chamber 17 can be closed to the end, so that an undesirable absorption of water of the core 2 is prevented.
  • a ski 19 according to FIGS. 14 and 15 has a core 2 which is designed in several parts.
  • a central core portion 20 is in the binding portion of the ski 19 before and has a rectangular cross-section.
  • FIG. 14 right and left of the central core section 20 there are two lateral core sections 21.
  • the lateral core sections extend in the longitudinal direction of the ski 19, ie perpendicular to the plane of the drawing in FIGS. 14 and 15, not only beyond the binding section, but also beyond the binding section on both sides thereof. This is illustrated by the further cross-sectional illustration of the ski 19 according to FIG. 15, which shows a cross section outside the binding section.
  • the ski 19 is embodied between the two lateral core sections 21 as a plate section 22, which can be embodied completely from the material of the covering 5, for example.
  • Fig. 16 shows stacked prepreg sheets 23, 24, 25, 26, 27, 28, 29 in a schematic instantaneous view of an intermediate step in the manufacture of another embodiment of a ski as an example of a support structure.
  • the prepreg layers 23 to 29 are numbered from left to right in FIG. 16. In FIG. 16, to the right, the width dimension b of the ski to be produced extends. In FIG. 16, the height dimension h of the ski to be produced, ie its thickness perpendicular to the support plane, extends upwards.
  • the prepreg layers 23 to 29 are all made of the same material, as explained above, for example in connection with Prepregs 7 to 10. The prepreg layers 23 to 29 all have the same density.
  • the prepreg layers 23 to 29 are arranged in preparation for the pressing so that in FIG. 16 they are all flush down to a plane 30 which coincides with the support plane of the ski to be produced.
  • the prepreg layers 23, 25, 27 and 29 have a greater height extent compared to the prepreg layers 24, 26, 28 respectively disposed between two of these prepregs.
  • a core 2 which is generally rectangular in cross section is present as an intermediate product of the ski to be produced.
  • the prepreg layers 23, 25, 27, 29 with in the initial state of greater height are more compressed than the other prepreg layers 24, 26, 28.
  • a p (b) diagram At the place of the higher prepreg Layers 23, 25, 27, 29 each have a higher density than between them.
  • the core 2 is then provided with an envelope, as already explained above in connection with the other embodiments.
  • the core produced according to FIGS. 16 and 17 has properties which are comparable to those of a conventionally manufactured ski with a uniform core density, in which longitudinal grooves have been milled on the upper side. A corresponding milling waste can therefore be avoided in the embodiment of FIGS. 16 and 17.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The invention relates to a support structure (1) having a core (2). Said core comprises natural or wood fibers (3) embedded in an acrylate resin. A jacket (5) of the core (2) is made of a fiber-reinforced plastic. The core (2) has a density along the support structure (1) that varies by more than 10%. The result is a support structure, which can be adjusted to predetermined load requirements in a defined manner.

Description

Tragstruktur sowie Verfahren zur Herstellung und Verwendung einer derartigen Tragstruktur Support structure and method for producing and using such a support structure
Die Erfindung betrifft eine Tragstruktur nach dem Oberbegriff des An- Spruchs 1. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer derartigen Tragstruktur sowie eine Verwendung einer derartigen Tragstruktur.The invention relates to a support structure according to the preamble of claim 1. Furthermore, the invention relates to a method for producing such a support structure and to a use of such a support structure.
Tragstrukturen der eingangs genannten Art sind bekannt aus der DE-PS 1 1 19 503, der DE 298 16 638 Ul und der DE 84 32 781 Ul . Weitere Tragstrukturen sind bekannt aus der DE 100 60 379 Al und der DE 10 2006 023 865 Al .Support structures of the type mentioned are known from DE-PS 1 1 19 503, DE 298 16 638 Ul and DE 84 32 781 Ul. Further supporting structures are known from DE 100 60 379 A1 and DE 10 2006 023 865 A1.
Die Anpassung der bekannten Tragstrukturen an die jeweils vorliegenden Belastungsanforderungen ist verbesserungsbedürftig.The adaptation of the known support structures to the current load requirements is in need of improvement.
Es ist eine Aufgabe der vorliegenden Erfindung, eine Tragstruktur der eingangs genannten Art derart weiterzubilden, dass sie sich definiert an vorgegebene Belastungsanforderungen anpassen lässt.It is an object of the present invention to develop a support structure of the type mentioned in such a way that it can be defined to adapt to predetermined load requirements.
Diese Aufgabe ist erfindungsgemäß gelöst durch eine Tragstruktur mit den im Anspruch 1 angegebenen Merkmalen.This object is achieved by a support structure with the features specified in claim 1.
Erfindungsgemäß wurde erkannt, dass eine Verbindung von Natur- bzw. Holzfasern mit Acrylat-Harz die Möglichkeit bietet, über eine Verpressung eines derartigen Kerns im noch nicht ausgehärteten Zustand die Kerndichte definiert vorzugeben. Bei den Holzfasern der erfindungsgemäßen Tragstruktur kann es sich um Holzfasern handeln, die von einer Bindematrix befreit sind. Das Holz-Ausgangsmaterial kann vom die Cellulosefasern des Holzes bindenden Lignin teilweise oder praktisch vollständig befreit sein. Die Verbindung der Natur- bzw. Holzfasern mit dem Acrylat-Harz kann durch Einbetten der Fasern in das Harz geschehen. Alternativ kann das Acrylat-Harz auch als Binder zwischen den Natur- bzw. Holzfasern eingesetzt sein. Die Tragstruktur kann daher dort, wo sie größeren Belastungen ausgesetzt ist, mit einem dichteren und damit belastungsfähigeren Kern ausgerüstet sein. Nach dem Verpressen kommt es nicht zu einer elastischen Rückstellung des Fasermaterials, sondern nach dem Verpressen liegt eine dauerhafte, plastische Verformung und damit eine entsprechend vorgege- bene Dichte des Kerns vor. Die Umhüllung trägt einerseits zur Erhöhung der Belastbarkeit der Tragstruktur bei und schützt andererseits den Kern insbesondere vor dem Eindringen von Feuchtigkeit. Die Umhüllung ist bevorzugt aus einem Organoblech, also aus einem thermoplastischen Hoch- leistungsfaserverbundkunststoff. In der Umhüllung können Fasern in Form von endlosen bzw. gesponnenen und insbesondere hochgradig ausgerichteten Glasfasern, Naturfasern, synthetischen Fasern oder Kohlefasern eingesetzt sein. Eine Polymermatrix des faserverstärkten Kunststoffes der Umhüllung kann aus einem geeigneten Thermoplastwerkstoff, zum Beispiel Polypropylen, Polyamid, einem thermoplastischen Polyester oder einem Blend aus verschiedenen Polymeren ausgewählt werden. Hier können Po- lybutylenterephthalat (PBT), Polyethylenterephthalat (PET), Polyethersul- fon, Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA) oder Styrol-Acrylnitril (SAN) zum Einsatz kommen. Als Acrylat- Harz als Matrix für die Kernfasern kann insbesondere Aerodur® der BASF AG zum Einsatz kommen. Bevorzugt ist ein formaldehyd-freies Harz als Fasermatrix für den Kern. Auch nach dem Verpressen bleibt der aus den Natur- bzw. Holzfasern aufgebaute Kern ausreichend porös, sodass die Matrix des die Umhüllung bildenden faserverstärkten Kunststoffes zur innigen Verbindung der Umhüllung mit dem Kern in diese Poren eindringen kann. Als Naturfasern können neben Holzfasern beispielsweise Samenfasern wie Baumwolle, Bastfasern wie Hanf, Jute, Leinen oder Ramie, weitere Harzfasern wie Sisal oder Manila oder auch Fruchtfasern wie Kokos zum Einsatz kommen. Die variierende Kerndichte längs der Tragstruktur führt dazu, dass die Tragstruktur in Längsrichtung gut an wechselnde Belastungsverhältnisse angepasst sein kann. Bei einem Träger kann beispielsweise die Kerndichte im Bereich von Krafteinleitungspunkten oder von Befestigungsabschnitten gezielt erhöht sein. Von oben her mittig belastete Querträger können beispielsweise mittig eine höhere Dichte aufwei- sen als am Rand. Soweit eine erfindungsgemäße Tragstruktur als Funktionskomponente eingesetzt wird, wird die Dichte des Kerns an die jeweiligen Belastungsverhältnisse dieser Funktionskomponente angepasst. Es resultiert die Möglichkeit einer leicht und kostengünstig ausführbaren Tragstruktur.According to the invention, it has been recognized that a compound of natural or wood fibers with acrylate resin offers the possibility of predetermining the core density via a compression of such a core in the as yet uncured state. The wood fibers of the support structure according to the invention may be wood fibers which have been freed from a binding matrix. The wood starting material can be derived from the cellulose fibers of the Partially or practically completely liberated wood binding lignin. The compound of the natural or wood fibers with the acrylate resin can be done by embedding the fibers in the resin. Alternatively, the acrylate resin can also be used as a binder between the natural or wood fibers. The support structure can therefore be equipped, where it is exposed to greater loads, with a denser and thus more resilient core. After pressing, there is no elastic recovery of the fiber material, but after pressing there is a permanent, plastic deformation and thus a correspondingly predetermined density of the core. On the one hand, the covering contributes to increasing the load-carrying capacity of the support structure and, on the other hand, protects the core from the penetration of moisture. The sheath is preferably made of an organic sheet, ie of a thermoplastic high-performance fiber composite plastic. In the sheath fibers may be used in the form of endless or spun and in particular highly oriented glass fibers, natural fibers, synthetic fibers or carbon fibers. A polymer matrix of the fiber reinforced plastic of the enclosure may be selected from a suitable thermoplastic material, for example polypropylene, polyamide, a thermoplastic polyester or a blend of different polymers. Here, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethersulfone, acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA) or styrene-acrylonitrile (SAN) can be used. The acrylate resin used as matrix for the core fibers in particular Aerodur® BASF AG can be used. Preferred is a formaldehyde-free resin as a fiber matrix for the core. Even after pressing, the core made of the natural or wood fibers remains sufficiently porous so that the matrix of the fiber-reinforced plastic forming the cladding penetrates into these pores for the intimate connection of the cladding with the core can. As natural fibers, in addition to wood fibers, for example, seed fibers such as cotton, bast fibers such as hemp, jute, linen or ramie, other resin fibers such as sisal or manila or fruit fibers such as coconut can be used. The varying core density along the support structure causes the support structure in the longitudinal direction can be well adapted to changing load conditions. In the case of a carrier, for example, the core density in the region of force introduction points or fastening sections can be purposefully increased. For example, crossmembers loaded centrally from above may have a higher density in the center than at the edge. As far as a support structure according to the invention is used as a functional component, the density of the core is adapted to the respective load conditions of this functional component. The result is the possibility of an easily and inexpensively executable support structure.
Ein Acrylat-Harz- Anteil nach Anspruch 2 ergibt einen besonders gut belastbaren Kern.An acrylate resin content according to claim 2 gives a particularly good loadable core.
Eine kontinuierliche Dichtevariation nach Anspruch 3 erlaubt eine opti- mierte Dichteanpassung des Kerns, sodass dieser tatsächlich nur in den Bereichen verstärkt ist, die aufgrund der Belastungsanforderungen eine solche Verstärkung benötigen. Bei Erreichen vorgegebener Belastungsanforderungen wird auf diese Weise eine optimal leichte Tragstruktur erzielt.A continuous density variation according to claim 3 allows an optimized density adjustment of the core, so that it is actually amplified only in the areas that require such a gain due to the loading requirements. Upon reaching predetermined load requirements, an optimally lightweight support structure is achieved in this way.
Eine abgestufte Dichtevariation nach Anspruch 4 erleichtert die Herstellung der Tragstruktur.A graduated density variation according to claim 4 facilitates the manufacture of the support structure.
Ein Kerndichtebereich nach Anspruch 5 hat sich für viele praktische Belastungsanforderungen als besonders gut geeignet herausgestellt. Vorzugswei- - A -A core density range according to claim 5 has been found to be particularly well suited for many practical loading requirements. Vorzugswei- - A -
se variiert die Kemdichte im Bereich zwischen 450 g/l und 850 g/l, noch mehr bevorzugt zwischen 500 g/l und 1.000 g/l. Typische bei diesen Dichtebereichen resultierende Elastizitätsmodule liegen zwischen 1.750 MPa und 3.100 MPa. Biegespannungs werte σzB liegen bei diesen Dichteberei- chen bei Werten zwischen 18 MPa und 31 MPa.The core density varies between 450 g / l and 850 g / l, more preferably between 500 g / l and 1000 g / l. Typical moduli of elasticity resulting from these density ranges are between 1,750 MPa and 3,100 MPa. Bending stress values σ, for example, lie at values between 18 MPa and 31 MPa for these density ranges.
Eine Querschnittsvariation der Tragstruktur nach Anspruch 6 erlaubt eine zusätzliche geometrische Anpassung an die jeweiligen Belastungsanforderungen.A cross-sectional variation of the support structure according to claim 6 allows an additional geometric adaptation to the respective load requirements.
Faserlängen nach Anspruch 7 haben sich zum Erreichen eines widerstandsfähigen und belastbaren Kerns als besonders geeignet herausgestellt. Die Fasern haben einen typischen Durchmesser im Bereich zwischen 10 μm und 150 μm. Je nach dem Fließverhalten des Acrylat-Harzes können sehr dünne Fasern, beispielsweise mit einem Faserdurchmesser zwischen 10 μm und 30 μm, oder starke Fasern, beispielsweise mit einem Durchmesser im Bereich zwischen 100 μm und 150 μm, bevorzugt sein.Fiber lengths according to claim 7 have been found to be particularly suitable for achieving a durable and resilient core. The fibers have a typical diameter in the range between 10 microns and 150 microns. Depending on the flow behavior of the acrylate resin, very thin fibers, for example with a fiber diameter between 10 .mu.m and 30 .mu.m, or strong fibers, for example with a diameter in the range between 100 .mu.m and 150 .mu.m, may be preferred.
Eine Umhüllung nach Anspruch 8 hat sich überraschend als ausreichend herausgestellt, um die in der Praxis für die erfindungsgemäße Tragstruktur erforderliche zusätzliche Belastungsaufnahme und Schutzwirkung durch die Umhüllung zu gewährleisten. Die Umhüllung kann eine Stärke von 0,8 mm aufweisen.An enclosure according to claim 8 has surprisingly been found to be sufficient to ensure the required in practice for the support structure according to the invention additional load absorption and protective effect by the enclosure. The wrapper may have a thickness of 0.8 mm.
Eine Umhüllung nach Anspruch 9 ermöglicht eine zusätzliche Belastungsanpassung längs der Tragstruktur über die Umhüllungsstärke.An enclosure according to claim 9 allows an additional load adjustment along the support structure over the envelope thickness.
Eine Umhüllung nach Anspruch 10 ist eine unaufwändige Variante einer Umhüllung variierender Stärke. Eine Tragstruktur nach Anspruch 11 vereint die Vorteile einer über die Umhüllungsstärke belastungsangepassten Tragstruktur mit denen einer Tragstruktur konstanten Außenquerschnitts. Als Umhüllung können beispielsweise belastungsgerecht in ihrer Stärke angepasste Laminatverstär- kungen eingesetzt werden. Die Tragstruktur kann überall dort eingesetzt werden, wo ein variierender Außenquerschnitt stören würde, insbesondere also dort, wo Bauraum knapp ist oder dort, wo eine gute Stapelbarkeit der Tragstruktur gefordert ist. Außerdem erlaubt dies eine kostengünstige kontinuierliche Fertigung der Tragstruktur als insbesondere Endlos-Profil- Strang.A wrapper according to claim 10 is an inexpensive variant of a wrapper of varying thickness. A supporting structure according to claim 11 combines the advantages of a load-bearing structure matched by the covering thickness with those of a supporting structure of constant external cross-section. As wrapping, for example, laminate thicknesses adapted to the strength of the load can be used. The support structure can be used wherever a varying outer cross-section would interfere, especially where space is scarce or where good stackability of the support structure is required. In addition, this allows a cost-effective continuous production of the support structure as in particular endless profile strand.
Eine Kernschicht mit konstantem Flächengewicht nach Anspruch 12 kann über eine variierende Dichte senkrecht zu der Ebene, in der das konstante Flächengewicht vorliegt oder über eine in dieser Ebene variierende Umhül- lungsstärke eine über die Ebene variierende Belastungsfähigkeit aufweisen. Die Tragstruktur kann überall dort eingesetzt werden, wo sie eine Auflast darstellt, die ein vorgegebenes Flächengewicht nicht überschreiten darf.A constant basis weight core layer according to claim 12 may have an over-the-plane load-bearing capacity over a varying density perpendicular to the plane in which the constant basis weight exists or over a sheath thickness varying in that plane. The support structure can be used wherever it represents a ballast that must not exceed a given weight per unit area.
Eine Hohlkammerausführung nach Anspruch 13 vergrößert die Oberfläche des Kerns, was vorteilhaft zur Kemtrocknung nach der Formgebung von diesem genutzt werden kann. Bei der Hohlkammeraus fuhrung kann die Umhüllung insbesondere zeitgleich mit einer formgebenden Kernverpressung erfolgen. Dies reduziert den Herstellungsaufwand.A hollow chamber design according to claim 13 increases the surface of the core, which can be used advantageously for Kemtrocknung after molding of this. In the Hohlkammeraus leadership, the envelope can be done in particular at the same time with a shaping Kernverpressung. This reduces the production cost.
Separate Kernabschnitte nach Anspruch 14 ergeben einen weiteren Freiheitsgrad zur Belastungsanpassung der Tragstruktur. Dort, wo eine höhere Belastung aufgenommen werden muss, können mehrere beispielsweise nebeneinander angeordnete Kernabschnitte vorgesehen sein. Die Kernabschnitte können insbesondere unterschiedliche Längen aufweisen. Eine weitere Aufgabe ist es, ein Herstellungsverfahren für die erfindungsgemäße Tragstruktur anzugeben. Diese Aufgabe ist erfindungsgemäß gelöst durch die Verfahren nach den Ansprüchen 15 und 16.Separate core sections according to claim 14 provide a further degree of freedom for load adjustment of the support structure. Where a higher load has to be absorbed, several, for example, juxtaposed core sections can be provided. The core sections may in particular have different lengths. Another object is to specify a production method for the support structure according to the invention. This object is achieved by the method according to claims 15 and 16.
Erfindungsgemäß wurde erkannt, dass durch eine Stapelung von Prepregs, also von mit dem ungehärteten Acrylat-Harz vorimprägnierten Natur- bzw. Holzfasern nach Anspruch 15, eine Dichtevariation für die erfindungsgemäße Tragstruktur exakt vorgegeben werden kann. Je nach der Dichte und je nach den Dimensionen der einzelnen, den Stapel bildenden Prepregs er- gibt sich nach dem Verpressen eine definierte Dichtevariation längs derAccording to the invention, it has been recognized that a density variation for the support structure according to the invention can be specified exactly by stacking prepregs, that is to say natural or wood fibers preimpregnated with the uncured acrylate resin. Depending on the density and depending on the dimensions of the individual prepregs forming the stack, a defined density variation results after pressing
Tragstruktur. Die Umhüllung des durch das Verpressen hergestellten Kerns erfolgt in der Regel im Anschluss an das Verpressen.Supporting structure. The wrapping of the core produced by the compression is usually carried out after the pressing.
Beim alternativen Herstellungsverfahren nach Anspruch 16 wird die ge- wünschte Dichtevariation über eine entsprechende Variation des Flächengewichts der Fasermatte erzeugt. Die beiden Verfahren nach den Ansprüchen 15 und 16 können auch miteinander kombiniert werden. Eine Fasermatte mit kontinuierlich variierendem Flächengewicht kann beispielsweise Teil eines Prepreg-Stapels sein.In the alternative manufacturing method according to claim 16, the desired density variation is generated via a corresponding variation of the basis weight of the fiber mat. The two methods according to claims 15 and 16 can also be combined with each other. For example, a fiber mat of continuously varying basis weight may be part of a prepreg stack.
Bei den Verfahren nach den Ansprüchen 15 und 16 kann die Umhüllung plastisch verformbar ausgestaltet sein, so dass die Umhüllung beispielsweise eine Querschnittsvariation des Kerns über eine Längsdimension der Tragstruktur variabel ausgleicht. Beim Verfahren nach den Ansprüchen 15 und 16 kann der Prepreg-Stapel in einem einzigen Schritt zum Kern der Tragstruktur verpresst werden. Die Presstemperatur des Prepreg-Stapels kann größer sein als 1500C, größer sein als 2000C und kann beispielsweise 2500C betragen. Dabei kann die Temperatur des Press Werkzeuges deutlich niedriger sein als die Temperatur des Prepreg-Stapels und kann beispiel- weise geringer sein als 1500C, geringer sein als 1000C und kann beispielsweise 7O0C betragen.In the method according to claims 15 and 16, the envelope may be designed to be plastically deformable, so that the envelope, for example, variably compensates a cross-sectional variation of the core over a longitudinal dimension of the support structure. In the method according to claims 15 and 16, the prepreg stack can be crimped in a single step to the core of the support structure. The pressing temperature of the prepreg stack may be greater than 150 0 C, greater than 200 0 C and may for example be 250 0 C. In this case, the temperature of the pressing tool can be significantly lower than the temperature of the prepreg stack and can, for example, be lower than 150 0 C, lower than 100 0 C and may be, for example 7O 0 C.
Verwendungen nach Anspruch 17 nutzen beispielhaft die Vorteile einer belastungsangepassten Dichtevariation des Kerns der Tragstruktur. Bei einer Latte für einen Lattenrost ist insbesondere die Mitte der Latte mit erhöhter Kerndichte ausgeführt, sodass die Latte in ihrer Mitte besonders biegesteif ist. Es können zudem mehrere Lattentypen mit unterschiedlich großen maximalen Steifigkeiten, passend zu den erforderlichen Steifigkei- ten im Schulter- und Beckenbereich einerseits und im Kopf- und Fußbereich eines Lattenrostes andererseits bereitgestellt werden. Dabei können diese unterschiedlichen Lattentypen mit identischen Abmessungen bereitgestellt werden, so dass nur ein Typ von Lattenaufnahmen unabhängig vom verwendeten Lattentyp eingesetzt zu werden braucht. Bei einem Ski ist dieser insbesondere im Bindungsbereich mit erhöhter Kerndichte ausgerüstet. Diese erhöhte Kerndichte kann beispielsweise durch eine verstärkte seitliche Verpressung bei der Herstellung des Kerns der Tragstruktur im Bereich der Taillierung erzeugt werden. Dies gewährleistet, dass insbesondere im Bindungsbereich die Kerndichte aufgrund der stärkeren Verpres- sung erhöht ist. Alternativ oder zusätzlich kann ein Ski in einem Befestigungsbereich beispielsweise für die Bindung mit erhöhter Kerndichte ausgerüstet sein. Hierbei kann eine zusätzliche Prepreg-Lage vor dem Ver- pressen genau dort aufgelegt werden, wo eine Verschraubung der Bindung mit dem Grundkörper des Skis erfolgen soll. Im Bereich dieser erhöhten Kerndichte kann ohne zusätzliche Maßnahmen eine ausreichende Auszugskraft bereitgestellt sein, so dass Befestigungsschrauben direkt in diesen Befestigungsbereich eingeschraubt werden können. Bei einem Hockey- Schläger ist dieser insbesondere im Bereich der Kelle und im Bereich des Übergangs von der Kelle zum Griffträger mit erhöhter Kerndichte ausge- führt. Auch andere Sportschläger können mit der erfindungsgemäßen Tragstruktur ausgeführt sein, beispielsweise Tennisschläger, Squashschläger, Badmintonschläger oder auch Golfschläger. Bei einem Bootpaddel sind insbesondere die Paddel selbst und die Übergänge zwischen den Paddeln und der Griffstange mit erhöhter Kerndichte ausgeführt. Bei einem Bauträger gilt entsprechend, was vorstehend im Zusammenhang mit der erfindungsgemäßen Tragstruktur bereits ausgeführt wurde.Uses according to claim 17 exemplify the advantages of a load-adapted density variation of the core of the support structure. In the case of a slat for a slatted frame, the center of the slat in particular has an increased core density, so that the slat is particularly resistant to bending in its center. In addition, it is possible to provide several types of battens with different maximum stiffnesses, matching the required stiffnesses in the shoulder and pelvic region on the one hand, and in the head and foot region of a slatted frame, on the other hand. These different types of slats can be provided with identical dimensions, so that only one type of slat shots needs to be used regardless of the type of slat used. In a ski, this is equipped in particular in the binding area with increased core density. This increased core density can be generated, for example, by increased lateral compression in the production of the core of the support structure in the region of the sidecut. This ensures that, especially in the bond area, the core density is increased due to the stronger compression. Alternatively or additionally, a ski may be equipped in a fastening region, for example for bonding with increased core density. In this case, an additional prepreg layer can be placed exactly before pressing where it is intended to screw the binding to the main body of the ski. In the area of this increased core density, a sufficient pull-out force can be provided without additional measures, so that fastening screws can be screwed directly into this fastening area. In the case of a hockey stick, this is particularly pronounced in the area of the trowel and in the region of the transition from the trowel to the handle carrier with increased core density. leads. Other sports rackets can also be designed with the support structure according to the invention, for example tennis rackets, squash rackets, badminton rackets or even golf clubs. In a boot paddle especially the paddles themselves and the transitions between the paddles and the handle bar are designed with increased core density. In the case of a property developer, what has already been stated above in connection with the support structure according to the invention applies accordingly.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:Embodiments of the invention will be explained in more detail with reference to the drawing. In this show:
Fig. 1 einen Längsschnitt durch eine Latte eines Lattenrostes für ein Bettgestell als Beispiel einer erfϊndungsgemäßen Tragstruktur;Figure 1 is a longitudinal section through a slat of a slatted frame for a bed frame as an example of a erfϊndungsgemäßen support structure.
Fig. 2 einen Querschnitt gemäß Linie II-II in Fig. 1;2 shows a cross section along line II-II in Fig. 1.
Fig. 3 in einem Diagramm eine Dichte längs der Tragstruktur der Fig. 1 ;Fig. 3 is a diagram showing a density along the support structure of Fig. 1;
Fig. 3a in einer zur Fig. 3 ähnlichen Darstellung eine Variante einer Dich- tevariation längs der Latte nach Fig. 1 ;FIG. 3 a in a representation similar to FIG. 3 a variant of a density variation along the slat according to FIG. 1; FIG.
Fig. 4 einen perspektivischen Längsschnitt durch einen Ski als weiteres Beispiel einer erfindungsgemäßen Tragstruktur;4 shows a perspective longitudinal section through a ski as a further example of a support structure according to the invention;
Fig. 5 gestapelte Prepreg-Lagen als Zwischenschritt bei der Herstellung der Tragstruktur nach Fig. 4;Fig. 5 stacked prepreg layers as an intermediate step in the manufacture of the support structure of Fig. 4;
Fig. 6 in einem Diagramm eine Dichte längs des Skis nach Fig. 4 in einer zu Fig. 3 ähnlichen Darstellung; Fig. 7 eine Seitenansicht eines Hockey-Schlägers als weiteres Beispiel einer erfindungsgemäßen Tragstruktur;Fig. 6 is a graph showing a density along the ski of Fig. 4 in a similar manner to Fig. 3; 7 shows a side view of a hockey stick as a further example of a supporting structure according to the invention;
Fig. 8 einen Schnitt gemäß Linie VIII-VIII in Fig. 7;8 shows a section along line VIII-VIII in Fig. 7.
Fig. 9 einen Schnitt gemäß Linie IX-IX in Fig. 7;9 shows a section along line IX-IX in Fig. 7 .;
Fig. 10 ein Diagramm einer Dichte längs des Hockey-Schlägers nachFig. 10 is a diagram of a density along the hockey stick after
Fig. 7 in einer zu Fig. 3 ähnlichen Darstellung;Fig. 7 in a similar to Figure 3 representation.
Fig. 11 einen Längsschnitt durch einen Bauträger als weiteres Beispiel einer erfindungsgemäßen Tragstruktur;11 shows a longitudinal section through a developer as another example of a support structure according to the invention;
Fig. 12 einen Schnitt gemäß Linie XII-XII in Fig. 11 ;FIG. 12 shows a section according to line XII-XII in FIG. 11; FIG.
Fig. 13 in einer zu Fig. 12 ähnlichen Darstellung einen Schnitt durch eineFig. 13 in a similar to Fig. 12 representation of a section through a
Tragstruktur in der Form eines Bauträgers mit einer sich im Kern axial erstreckenden Hohlkammer;Support structure in the form of a developer with a core extending axially in the hollow chamber;
Fig. 14 in einer zu Fig. 12 ähnlichen Darstellung einen Querschnitt durch eine weitere Ausführung eines Skis als weiteres Beispiel einer erfindungsgemäßen Tragstruktur, geschnitten in einem Bindungsabschnitt;14 is a view similar to FIG. 12, showing a cross-section through another embodiment of a ski as a further example of a support structure according to the invention cut in a binding section;
Fig. 15 einen weiteren Querschnitt durch die Ausführung nach Fig. 14 im Bereich eines vom Bindungsabschnitt beabstandeten Abschnitts; Fig. 16 einen Querschnitt durch gestapelte Prepreg-Lagen als Zwischenschritt bei der Herstellung einer weiteren Ausführung eines Skis als weiteres Beispiel einer erfindungsgemäßen Tragstruktur; und15 shows a further cross section through the embodiment of Figure 14 in the region of a portion spaced from the binding portion. 16 shows a cross section through stacked prepreg layers as an intermediate step in the production of a further embodiment of a ski as a further example of a support structure according to the invention; and
Fig. 17 ebenfalls im Querschnitt einen Kern der Skiausführung nach Fig. 16 mit dem verpressten Prepreg-Stapel und einem zugehörigen Diagramm, dass die Dichte über die Breite des Skis darstellt.Fig. 17 also in cross-section a core of the ski embodiment of Fig. 16 with the compressed prepreg stack and an associated diagram illustrating the density across the width of the ski.
Fig. 1 zeigt eine Latte 1 eines ansonsten nicht dargestellten Lattenrostes für ein Bettgestell. Die Latte 1 ist in einem Längsschnitt dargestellt. EineFig. 1 shows a bar 1 of a bedframe otherwise not shown for a bed frame. The bar 1 is shown in a longitudinal section. A
Längsachse des Bettgestells verläuft senkrecht zur Zeichenebene der Fig. 1. Die Latte 1 stellt ein erstes Beispiel einer erfindungsgemäßen Tragstruktur dar.Longitudinal axis of the bed frame is perpendicular to the plane of Fig. 1. The bar 1 represents a first example of a support structure according to the invention.
Die Latte 1 hat einen Kern 2, der in der Fig. 1 schematisch durch eineThe lath 1 has a core 2, which in Fig. 1 schematically by a
Schraffur dargestellte Natur- bzw. Holzfasern 3 enthält, die in eine Matrix aus Acrylat-Harz 4 eingebettet sind. Der Kern 2 hat einen Anteil an Acry- lat-Harz 4 im Bereich zwischen 8 Gew.% und 25 Gew.%. Die Natur- bzw. Holzfasern 3 haben eine Länge im Bereich zwischen 3 und 30 mm und ei- nen Durchmesser im Bereich zwischen 10 μm und 150 μm.Hatching represented natural or wood fibers 3, which are embedded in a matrix of acrylate resin 4. The core 2 has a content of acrylate resin 4 in the range between 8% by weight and 25% by weight. The natural or wood fibers 3 have a length in the range between 3 and 30 mm and a diameter in the range between 10 μm and 150 μm.
Der Kern 2 hat eine Umhüllung 5 aus einem faserverstärkten Kunststoff. Die Umhüllung 5 hat längs der Latte 1 eine konstante Stärke U von etwa 0,8 mm. Die gesamte Latte 1 hat in der Schnittebene der Fig. 1 eine Stärke L von etwa 8 mm.The core 2 has a sheath 5 made of a fiber-reinforced plastic. The envelope 5 has along the bar 1 a constant thickness U of about 0.8 mm. The entire bar 1 has in the sectional plane of Fig. 1 has a thickness L of about 8 mm.
Der Kern 2 hat eine längs der Latte 1 um mehr als 10 % variierende Dichte. Der Kern 2 ist in der Fig. 1 von links nach rechts in insgesamt sechs Abschnitte I, II, III, IV, V und VI unterteilt. Die beiden mittleren Abschnitte längs der Latte 1 sind dabei die Abschnitte III und IV. Die beiden endseiti- gen Abschnitte sind die Abschnitte I und VI. Zwischen den endseitigen und den mittleren Abschnitten liegen die Abschnitte II und V. Die Abschnitte II bis V haben eine in etwa gleiche Längserstreckung. Die endseitigen Ab- schnitte I und VI sind demgegenüber etwas länger.The core 2 has a length along the bar 1 by more than 10% varying density. The core 2 is divided in Fig. 1 from left to right in a total of six sections I, II, III, IV, V and VI. The two middle sections Along the slat 1 are the sections III and IV. The two end-side sections are the sections I and VI. Between the end and the middle sections are the sections II and V. The sections II to V have an approximately equal longitudinal extent. In contrast, the end sections I and VI are somewhat longer.
In den endseitigen Abschnitten I und VI hat der Kern 2 eine Dichte von 575 g/l. In den mittleren Abschnitten III und IV hat der Kern 2 eine Dichte von 810 g/l. Dazwischen, also in den Abschnitten II und V, hat der Kern 2 eine Dichte von 690 g/l. Die Dichte des Kerns 2 variiert also zwischen den Abschnitten I und II, II und III, IV und V sowie V und VI jeweils abgestuft.In the end sections I and VI, the core 2 has a density of 575 g / l. In the middle sections III and IV, the core 2 has a density of 810 g / l. In between, ie in sections II and V, the core 2 has a density of 690 g / l. The density of the core 2 thus varies in steps between sections I and II, II and III, IV and V, and V and VI, respectively.
Die Latte 1 wird folgendermaßen hergestellt:The slat 1 is made as follows:
Zunächst wird ein Stapel mehrerer Lagen eines mit dem Acrylat-Harz imprägnierten Natur- bzw. Holzfaser-Prepregs bereitgestellt. Dort, wo längs der Latte 1 eine höhere Dichte des Kerns 2 vorliegen soll, liegt bei dieser Bereitstellung auch eine höhere Anzahl an Prepreg-Lagen vor. In den Ab- schnitten III und IV liegen beispielsweise drei Prepreg-Lagen vor. In den Abschnitten II und V liegen zwei Prepreg-Lagen vor. In den Abschnitten I und VI liegt eine Prepreg-Lage vor. Anschließend wird der so bereitgestellte Stapel zum Kern 2 der Tragstruktur verpresst und wiederum anschließend mit der Umhüllung 5 umhüllt. Beim Verpressen wird das Acrylat- Harz durch im unverpressten Zustand vorliegende Zwischenräume zwischen den Natur- bzw. Holzfasern hindurchgepresst. Auf diese Weise lassen sich die Prepregs plastisch formen. Die Prepreg-Lagen haben beim Verpressen eine Temperatur von 25O0C. Das Presswerkzeug hat beim Verpressen eine Temperatur von 7O0C. Anstelle einer abgestuften Dichtevariation des Kerns 2, wie in der Fig. 3 dargestellt, kann auch eine kontinuierliche Dichtevariation des Kerns 2 vorliegen, wie in der Fig. 3a dargestellt.First, a stack of multiple layers of a acrylate resin impregnated natural or wood fiber prepreg is provided. Where there should be a higher density of the core 2 along the slat 1, there is also a higher number of prepreg layers in this provision. In sections III and IV, for example, there are three prepreg layers. In Sections II and V two prepreg layers are present. In Sections I and VI, a prepreg sheet is present. Subsequently, the stack thus provided is pressed to the core 2 of the support structure and in turn subsequently wrapped with the sheath 5. During pressing, the acrylate resin is pressed through gaps between the natural or wood fibers in the unpressed state. In this way, the prepregs can be formed plastically. The prepreg layers have a temperature of 25O 0 C during pressing. The pressing tool has a temperature of 7O 0 C during pressing. Instead of a graded density variation of the core 2, as shown in FIG. 3, there may also be a continuous density variation of the core 2, as shown in FIG. 3a.
Die Dichte variiert dabei vom in der Fig. 1 linken Ende der Latte 1 ausgehend von einem Wert von etwa 300 g/l bis zu einem Wert in der Mitte der Latte 1 nach Fig. 1 bei 800 g/l und nimmt dann bis zum in der Fig. 1 rechten Ende der Latte 1 wieder ab zu einem Wert von 300 g/l. Diese Variation ist um eine Mitte längs der Latte 1 in etwa kosinusförmig.In this case, the density varies from the left end of the slat 1 in FIG. 1, starting from a value of about 300 g / l up to a value in the middle of the slat 1 according to FIG. 1 at 800 g / l, and then increases until in 1 right end of the bar 1 again to a value of 300 g / l. This variation is approximately cosinusoidal about a center along the batten 1.
Eine kontinuierliche Dichtevariation nach Fig. 3a kann ebenfalls mit Hilfe eines Prepreg-Stapels erzeugt werden, wobei die einzelnen Prepreg-Lagen zum Ende hin jeweils keilförmig zulaufen, also in ihrer Stärke linear zu ihren Enden hin abnehmen. Alternativ kann eine kontinuierliche Dichte- Variation durch Verwendung einer Fasermatte als Ausgangsmaterial zur Kernherstellung erreicht werden, wobei die Fasermatte ein entsprechend der gewünschten Dichtevariation kontinuierlich variierendes Flächengewicht hat.A continuous density variation according to FIG. 3 a can likewise be produced with the aid of a prepreg stack, with the individual prepreg layers running towards the end in each case in the shape of a wedge, ie decreasing in their thickness linearly towards their ends. Alternatively, continuous density variation can be achieved by using a fiber mat as a core-making material, the fiber mat having a continuously varying basis weight according to the desired density variation.
Anhand der Fig. 4 bis 6 wird nachfolgend eine weitere Variante einer erfindungsgemäßen Tragstruktur am Beispiel eines Skis erläutert. Komponenten, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf die Fig. 1 bis 3 bereits erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. Der Ski 6 hat einen Spitzenabschnitt I, einen Bindungsabschnitt III und einen endseitigen Abschnitt V. Zwischen dem Spitzenabschnitt I und dem Bindungsabschnitt III und zwischen dem Bindungsabschnitt III und dem Endabschnitt V liegt jeweils ein Übergangsabschnitt II bzw. IV. Der Ski hat über seine Länge hin einen variierenden Querschnitt. Dabei variiert sowohl die Dicke des Kerns 2 senkrecht zu einer Aufstandsebene von diesem als auch die Breite des Kerns 2 längs des Skis 6. Die Dickenvariation ist dabei derart, dass der Ski 6 im Bindungsabschnitt III am dicksten ist, wobei die Stärke des Skis 6 zur Schaufel und zum Ende hin kontinuierlich abnimmt. Die Breite des Skis 6 variiert derart, dass dieser tailliert ist, im Bindungsabschnitt III also am wenigsten breit ist.A further variant of a supporting structure according to the invention using the example of a ski will be explained below with reference to FIGS. 4 to 6. Components which correspond to those already explained above with reference to FIGS. 1 to 3 bear the same reference numerals and will not be discussed again in detail. The ski 6 has a tip portion I, a binding portion III and an end portion V. Between the tip portion I and the binding portion III and between the binding portion III and the end portion V, there is a transition portion II and IV, respectively. The ski has a varying cross section over its length. In this case, both the thickness of the core 2 perpendicular to a contact plane of this and the width of the core 2 varies along the ski 6. The thickness variation is such that the ski 6 is the thickest in the binding section III, the strength of the ski 6 to Shovel and towards the end continuously decreases. The width of the ski 6 varies in such a way that it is waisted, ie it is the least wide in the binding section III.
Fig. 5 zeigt einen zur Herstellung des Skis 6 vorbereitend bereitgestellten Stapel aus Natur- bzw. Holzfaser-Prepregs 7, 8, 9, 10. Die Prepregs 7 bis 10 haben einen Acrylat-Harz- Anteil von 13 %. Der Prepreg 7 stellt dabei die Grundlage des Stapels dar, der die gesamte Länge des Skis 6 überdeckt. Die Prepregs 8, 9 sind jeweils kürzer ausgeführt und dienen zur Gestaltung der Übergangsabschnitte des Skis 6. Der Prepreg 10 liegt lediglich im Bin- dungsabschnitt III vor. Die Ausgangsstärke der gestapelten Prepregs 7 bis 10 ist derart, dass nach dem Verpressen der Prepregs diese im Bereich des Bindungsabschnitts III am stärksten verdichtet wurden, sodass dort die höchste Dichte des Kerns 2 vorliegt. Der Verlauf der Kerndichte ist in der Fig. 6 gezeigt, die der Fig. 3 ähnelt. Im Spitzenabschnitt I und im Endab- schnitt V liegt eine Dichte im Bereich von etwa 600 g/l vor. Die Übergangsabschnitte II und IV weisen zwei Dichtebereiche mit einer kleineren Dichte von etwa 650 g/l und einer größeren Dichte von etwa 700 g/l auf. Im Bindungsabschnitt III liegt eine Dichte von etwa 850 g/l vor.FIG. 5 shows a stack of natural or wood fiber prepregs 7, 8, 9, 10 prepared in preparation for the ski 6. The prepregs 7 to 10 have an acrylate resin content of 13%. The prepreg 7 represents the basis of the stack, which covers the entire length of the ski 6. The prepregs 8, 9 are each made shorter and serve to form the transition sections of the ski 6. The prepreg 10 is present only in the binding section III. The starting thickness of the stacked prepregs 7 to 10 is such that, after the compression of the prepregs, they have been densified most in the region of the binding section III, so that the highest density of the core 2 is present there. The course of the core density is shown in FIG. 6, which is similar to FIG. In the tip section I and in the end section V, a density in the range of about 600 g / l is present. Transition sections II and IV have two density ranges with a lower density of about 650 g / L and a higher density of about 700 g / L. Bonding Section III has a density of about 850 g / l.
Anhand der Fig. 7 bis 10 wird eine weitere Variante einer erfindungsgemäßen Tragstruktur am Beispiel eines Hockeyschlägers 11 erläutert. Komponenten, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf die Fig. 1 bis 6 bereits erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen erläutert. Der Hockeyschläger 11 ist unterteilt in insgesamt vier Abschnitte, nämlich einen Kellenabschnitt I, einen Griffabschnitt IV und zwei Übergangsabschnitte II und III. In der Mitte des Übergangsabschnitts II liegt ein Schwerpunkt 12a des Hockeyschlägers 11. Die Querschnittsformen des Kellenabschnitts I sowie des Griffabschnitts IV verdeutlichen die beiden Querschnittsdarstellungen der Fig. 9 bzw. 8.A further variant of a support structure according to the invention using the example of a hockey stick 11 will be explained with reference to FIGS. 7 to 10. Components which correspond to those which have already been explained above with reference to FIGS. 1 to 6 bear the same reference numerals and will not be explained again in detail. The hockey stick 11 is divided into a total of four sections, namely a trowel section I, a handle section IV and two transition sections II and III. A center of gravity 12a of the hockey stick 11 lies in the middle of the transitional section II. The cross-sectional shapes of the trough section I and of the grip section IV illustrate the two cross-sectional views of FIGS. 9 and 8, respectively.
Die Prepreg-Bereitstellung vor dem Verpressen des Kerns 2 des Hockeyschlägers 1 1 ist derart, dass im Kellenabschnitt I vier Prepreg-Lagen, im Griffabschnitt IV eine Prepreg-Lage und in den Übergangsabschnitten II und III drei bzw. zwei Prepreg-Lagen vorliegen. Im Kellenabschnitt I resultiert eine Dichte des Kerns 2 von 850 g/l (vgl. Fig. 10). Im Übergangsabschnitt II resultiert eine Dichte des Kerns 2 von 790 g/l. Im Übergangsabschnitt III resultiert eine Dichte des Kerns 2 von 690 g/l. Im Griffab- schnitt IV resultiert eine Dichte des Kerns 2 von 610 g/l.The prepreg preparation before pressing the core 2 of the hockey stick 11 is such that there are four prepreg layers in the trowel section I, one prepreg layer in the grip section IV and three or two prepreg layers in the transition sections II and III. In the trough portion I results in a density of the core 2 of 850 g / l (see Fig. 10). In Transition Section II, a core 2 density of 790 g / l results. In the transitional section III results in a density of the core 2 of 690 g / l. In the grip section IV, a density of the core 2 of 610 g / l results.
Anhand der Fig. 11 und 12 wird nachfolgend ein Bauträger 12 als weiteres Beispiel einer erfindungsgemäßen Tragstruktur erläutert. Komponenten, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf die Fig. 1 bis 10 bereits beschrieben wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert.With reference to FIGS. 11 and 12, a developer 12 will be explained below as a further example of a support structure according to the invention. Components corresponding to those already described above with reference to Figs. 1 to 10 bear the same reference numerals and will not be discussed again in detail.
Der Bauträger 12 hat eine Umhüllung 13 mit einer längs des Bauträgers 12 variierenden Stärke. Diese Stärke ist in einem mittleren Abschnitt II des Bauträgers 12 doppelt so groß wie in einem in der Fig. 11 linksseitigen Abschnitt I bzw. in einem in der Fig. 11 rechtsseitigen Abschnitt III. Die Umhüllung 13 ist durch ein faserverstärktes Kunststoff-Laminat ausgebildet, welches im Abschnitt II doppellagig ausgeführt ist. Eine zweite Lage 14 der Umhüllung 13 ist in diesem doppellagigen Abschnitt II nach innen, also zum Kern 2 hin versetzt ausgeführt. Die Prepregs, die den Kern 2 bilden, haben beim Bauträger 12 alle die gleiche Länge, die mit der Länge des Bauträgers 12 übereinstimmt, und die gleiche Stärke. Beim Verpressen dieser den Kern 2 bildenden Prepregs arbeitet sich die zweite Lage 14 in die äußeren Prepreg-Lagen ein, sodass der Kern 2 im Abschnitt II eine erhöhte Dichte erhält, ohne dass im Bereich II im Vergleich zu den Bereichen I und III eine erhöhte Anzahl an Prepreg-Lagen vorliegt.The developer 12 has an enclosure 13 with a length along the developer 12 varying strength. This thickness is twice as large in a middle section II of the developer 12 as in a left-hand section I in FIG. 11 or in a right-hand section III in FIG. 11. The envelope 13 is formed by a fiber-reinforced plastic laminate, which is designed in section II double-layered. A second layer 14 of the sheath 13 is inwardly in this double-layered section II, that is, offset to the core 2. The prepregs, which form the core 2, all have the same length in the developer 12, which coincides with the length of the developer 12, and the same strength. When pressing this forming the core 2 prepregs, the second layer 14 works in the outer prepreg layers, so that the core 2 in Section II receives an increased density, without that in the area II compared to the areas I and III an increased number present at prepreg layers.
In einer in der Fig. 11 horizontalen und senkrecht zur Zeichenebene ausge- führten Ebene 15a hat der Kern 2 ein konstantes Flächengewicht. Im Bereich II beträgt die Dichte des Kerns 2 des Bauträgers 12 etwa 900 g/l. In den Bereichen I und III beträgt die Dichte des Kerns 2 etwa 600 g/l.In a plane 15a which is horizontal and perpendicular to the plane of the drawing in FIG. 11, the core 2 has a constant weight per unit area. In area II, the density of the core 2 of the developer 12 is about 900 g / l. In regions I and III, the density of the core 2 is about 600 g / l.
Der Bauträger 12 hat Außenwände 15, 16, die durchgehend glatt, also ohne Stufen, ausgeführt sind.The developer 12 has outer walls 15, 16, which are smooth throughout, so without steps executed.
Fig. 13 zeigt in einer zu Fig. 12 ähnlichen Querschnittsdarstellung den Bauträger 12 in einer zu den Fig. 11 und 12 alternativen Ausführung. Der Kern 2 des Bauträgers 12 nach Fig. 13 hat eine sich längs des Bauträgers 12, also senkrecht zur Zeichenebene nach Fig. 13, erstreckende zentrale Hohlkammer 17. Über eine Kammerwand 18, die die Hohlkammer 17 begrenzt, liegt der Kern 2 auch nach dem Aufbringen der Umhüllung 5 frei und ist über mindestens ein Ende des Bauträgers 12 nach Fig. 13 nach Aufbringen der Umhüllung 5 zugänglich.FIG. 13 shows, in a cross-sectional view similar to FIG. 12, the developer 12 in an alternative embodiment to FIGS. 11 and 12. The core 2 of the developer 12 according to FIG. 13 has a central hollow chamber 17 extending along the developer 12, that is perpendicular to the plane of the drawing according to FIG. 13. The core 2 is also located behind the chamber wall 18, which delimits the hollow chamber 17 Applying the sheath 5 free and is accessible via at least one end of the developer 12 of FIG. 13 after applying the sheath 5.
Eine nach Fig. 13 eine Hohlkammer aufweisende Tragstruktur 12 kann derart hergestellt werden, dass eine Ummantelung durch die Umhüllung 5 gleichzeitig mit einer durch Verpressung erfolgenden Formung des Kerns 2 erfolgt. Die Umhüllung 5 und der Kern 2 werden dann bei der Tragstruktur gleichzeitig hergestellt. Wasser bzw. Wasserdampf, welches sich bei der Verpressung des Kerns 2 bildet, kann dann über die Hohlkammer 17 nach außerhalb der Tragstruktur abgeleitet werden, sodass eine Trocknung des Kerns 2 möglich ist. Eine derartige Trocknung kann beispielsweise da- durch unterstützt werden, dass trockene Luft oder ein anderes Trocknungsmedium durch die Hohlkammer hindurchgeführt wird. Nach der Trocknung des Kerns 2 kann die Hohlkammer 17 nach endseitig verschlossen werden, sodass eine unerwünschte Wasseraufnahme des Kerns 2 verhindert ist.A support structure 12 having a hollow chamber, as shown in FIG. 13, can be produced in such a way that a sheathing through the sheath 5 takes place simultaneously with a shaping of the core 2 taking place by means of compression. The sheath 5 and the core 2 are then in the support structure produced at the same time. Water or water vapor, which forms during the compression of the core 2, can then be discharged via the hollow chamber 17 to the outside of the support structure, so that a drying of the core 2 is possible. Such drying can be assisted, for example, by passing dry air or another drying medium through the hollow chamber. After drying of the core 2, the hollow chamber 17 can be closed to the end, so that an undesirable absorption of water of the core 2 is prevented.
Die Fig. 14 bis 17 zeigen weitere Querschnitte von Tragstrukturen bzw. Prepreg-Lagen als Zwischenschritt von deren Herstellung, wobei diese Querschnittsgestaltung beim Anwendungsbeispiel „Ski" für die Tragstruktur zum Einsatz kommen können. Komponenten, die denjenigen entspre- chen, die vorstehend unter Bezugnahme auf die Ausführungen der Fig. 1 bis 13 bereits erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert.14 to 17 show further cross-sections of support structures or prepreg layers as an intermediate step of their production, wherein these cross-sectional design can be used for the support structure in the application example "ski." Components corresponding to those described above with reference to FIG have been explained to the embodiments of Figs. 1 to 13, bear the same reference numerals and will not be discussed again in detail.
Ein Ski 19 nach den Fig. 14 und 15 hat einen Kern 2, der mehrteilig ausge- führt ist. Ein zentraler Kernabschnitt 20 liegt im Bindungsabschnitt des Skis 19 vor und hat einen rechteckigen Querschnitt. In der Fig. 14 rechts und links des zentralen Kernabschnitts 20 liegen zwei seitliche Kernabschnitte 21 vor. Die seitlichen Kernabschnitte erstrecken sich in Längsrichtung des Skis 19, also senkrecht zur Zeichenebene der Fig. 14 und 15, nicht nur über den Bindungsabschnitt, sondern auch zu beiden Seiten des Bindungsabschnitt über diesen hinaus. Dies ist durch die weitere Querschnittsdarstellung des Skis 19 nach Fig. 15 verdeutlicht, die einen Querschnitt außerhalb des Bindungsabschnitts zeigt. Dort liegen nurmehr die seitlichen Kernabschnitte 21 , nicht aber der zentrale Kernabschnitt 20 vor. Im Quer- schnitt nach Fig. 15 ist der Ski 19 zwischen den beiden seitlichen Kernab- schnitten 21 als Plattenabschnitt 22 ausgeführt, der beispielsweise komplett aus dem Material der Umhüllung 5 ausgeführt sein kann.A ski 19 according to FIGS. 14 and 15 has a core 2 which is designed in several parts. A central core portion 20 is in the binding portion of the ski 19 before and has a rectangular cross-section. In FIG. 14 right and left of the central core section 20, there are two lateral core sections 21. The lateral core sections extend in the longitudinal direction of the ski 19, ie perpendicular to the plane of the drawing in FIGS. 14 and 15, not only beyond the binding section, but also beyond the binding section on both sides thereof. This is illustrated by the further cross-sectional illustration of the ski 19 according to FIG. 15, which shows a cross section outside the binding section. There are only the lateral core portions 21, but not the central core portion 20 before. In the transverse 15, the ski 19 is embodied between the two lateral core sections 21 as a plate section 22, which can be embodied completely from the material of the covering 5, for example.
Fig. 16 zeigt gestapelte Prepreg-Lagen 23, 24, 25, 26, 27, 28, 29 in einer schematischen Momentandarstellung eines Zwischenschritts bei der Herstellung einer weiteren Ausführung eines Skis als Beispiel für eine Tragstruktur. Die Prepreg-Lagen 23 bis 29 sind in der Fig. 16 von links nach rechts durchnummeriert. In der Fig. 16 nach rechts verläuft die Breiten- dimension b des herzustellenden Skis. In der Fig. 16 nach oben verläuft die Höhendimension h des herzustellenden Skis, also dessen Stärke senkrecht zur Auflageebene. Die Prepreg-Lagen 23 bis 29 sind alle aus dem gleichen Material, wie vorstehend beispielsweise im Zusammenhang mit den Pre- pregs 7 bis 10 erläutert wurde. Die Prepreg-Lagen 23 bis 29 haben alle die gleiche Dichte. Die Prepreg-Lagen 23 bis 29 sind zur Vorbereitung des Verpressens so angeordnet, dass sie in der Fig. 16 nach unten alle bündig zu einer Ebene 30 abschließen, die mit der Auflageebene des herzustellenden Skis zusammenfällt. Die Prepreg-Lagen 23, 25, 27 und 29 haben im Vergleich zu den jeweils zwischen zweien dieser Prepregs angeordneten Prepreg-Lagen 24, 26, 28 eine größere Höhenerstreckung.Fig. 16 shows stacked prepreg sheets 23, 24, 25, 26, 27, 28, 29 in a schematic instantaneous view of an intermediate step in the manufacture of another embodiment of a ski as an example of a support structure. The prepreg layers 23 to 29 are numbered from left to right in FIG. 16. In FIG. 16, to the right, the width dimension b of the ski to be produced extends. In FIG. 16, the height dimension h of the ski to be produced, ie its thickness perpendicular to the support plane, extends upwards. The prepreg layers 23 to 29 are all made of the same material, as explained above, for example in connection with Prepregs 7 to 10. The prepreg layers 23 to 29 all have the same density. The prepreg layers 23 to 29 are arranged in preparation for the pressing so that in FIG. 16 they are all flush down to a plane 30 which coincides with the support plane of the ski to be produced. The prepreg layers 23, 25, 27 and 29 have a greater height extent compared to the prepreg layers 24, 26, 28 respectively disposed between two of these prepregs.
Nach dem Verpressen der nach Fig. 16 gestapelten Prepreg-Lagen 23 bis 29 liegt ein im Querschnitt insgesamt rechteckiger Kern 2 als Zwischenprodukt des herzustellenden Skis vor. Die Prepreg-Lagen 23, 25, 27, 29 mit im Ausgangszustand größerer Höhe sind dabei stärker verpresst als die anderen Prepreg-Lagen 24, 26, 28. Nach dem Verpressen resultiert daher eine abgestufte Dichtevariation über die Breite b des Kerns 2, die in der Fig. 17 oben in einem p(b)-Diagramm dargestellt ist. Am Ort der höheren Prepreg- Lagen 23, 25, 27, 29 liegt jeweils eine höhere Dichte vor als zwischen diesen.After pressing the prepreg layers 23 to 29 stacked according to FIG. 16, a core 2 which is generally rectangular in cross section is present as an intermediate product of the ski to be produced. The prepreg layers 23, 25, 27, 29 with in the initial state of greater height are more compressed than the other prepreg layers 24, 26, 28. After pressing therefore results in a graded density variation across the width b of the core 2, in 17 is shown at the top in a p (b) diagram. At the place of the higher prepreg Layers 23, 25, 27, 29 each have a higher density than between them.
Der Kern 2 wird anschließend noch mit einer Umhüllung versehen, wie vorstehend im Zusammenhang mit den anderen Ausführungsbeispielen bereits erläutert.The core 2 is then provided with an envelope, as already explained above in connection with the other embodiments.
Hinsichtlich seiner Belastbarkeit und seines Gewichts hat der nach den Fig. 16 und 17 hergestellte Kern Eigenschaften, die mit denen eines konventio- nell hergestellten Skis mit einheitlicher Kerndichte vergleichbar sind, bei dem auf der Oberseite Längsnuten eingefräst wurden. Ein entsprechender Fräsabfall kann daher bei der Ausführung nach den Fig. 16 und 17 vermieden werden. With regard to its loading capacity and its weight, the core produced according to FIGS. 16 and 17 has properties which are comparable to those of a conventionally manufactured ski with a uniform core density, in which longitudinal grooves have been milled on the upper side. A corresponding milling waste can therefore be avoided in the embodiment of FIGS. 16 and 17.

Claims

Patentansprüche claims
1. Tragstruktur (1; 6; 11 ; 12; 19) mit einem Kern (2), enthaltend Natur- bzw. Holzfasern (3), die über ein Acrylat-Harz miteinander verbunden sind, mit einer Umhüllung (5) aus einem faserverstärkten Kunststoff, dadurch gekennzeichnet, dass der Kern (2) eine längs der Tragstruktur (1 ; 6; 11 ; 12) um mehr als 10 % variierende Dichte aufweist.A support structure (1; 6; 11; 12; 19) comprising a core (2) containing natural or wood fibers (3) joined together by an acrylate resin and a cladding (5) of a fiber-reinforced one Plastic, characterized in that the core (2) has a density which varies along the support structure (1; 6; 11; 12) by more than 10%.
2. Tragstruktur nach Anspruch 1, dadurch gekennzeichnet, dass der Kern einen Anteil des Acrylat-Harzes (4) im Bereich zwischen2. Support structure according to claim 1, characterized in that the core a portion of the acrylate resin (4) in the range between
8 Gew.% und 25 Gew.% aufweist.8% by weight and 25% by weight.
3. Tragstruktur nach Anspruch 1 oder 2, gekennzeichnet durch eine kontinuierliche Dichtevariation des Kerns (2).3. Support structure according to claim 1 or 2, characterized by a continuous density variation of the core (2).
4. Tragstruktur nach Anspruch 1 oder 2, gekennzeichnet durch eine angestufte Dichtevariation des Kerns (2).4. Support structure according to claim 1 or 2, characterized by a stepped density variation of the core (2).
5. Tragstruktur nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Dichte des Kerns (2) im Bereich zwischen 300 g/l und 1100 g/l variiert.5. Support structure according to one of claims 1 to 4, characterized in that the density of the core (2) in the range between 300 g / l and 1100 g / l varies.
6. Tragstruktur nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen in Längsrichtung variierenden Querschnitt. 6. Support structure according to one of claims 1 to 5, characterized by a varying cross section in the longitudinal direction.
7. Tragstruktur nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Natur- bzw. Holzfasern (3) eine Länge im Bereich zwischen 3 mm und 60 mm aufweisen.7. Support structure according to one of claims 1 to 6, characterized in that the natural or wood fibers (3) have a length in the range between 3 mm and 60 mm.
8. Tragstruktur nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umhüllung (5) eine Stärke (U) aufweist, die geringer ist als 1 mm.8. Support structure according to one of claims 1 to 7, characterized in that the sheath (5) has a thickness (U) which is less than 1 mm.
9. Tragstruktur nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Umhüllung (5) mit einer längs der Tragstruktur (1; 6; 11;9. supporting structure according to one of claims 1 to 8, characterized by a sheath (5) with a longitudinally of the support structure (1; 6; 11;
12) variierenden Stärke.12) varying strength.
10. Tragstruktur nach Anspruch 9, gekennzeichnet durch eine mehrlagige Umhüllung (13, 14).10. Support structure according to claim 9, characterized by a multi-layer enclosure (13, 14).
11. Tragstruktur nach Anspruch 9 und 10, dadurch gekennzeichnet, dass längs dieser in Bereichen der Stärke der Umhüllung (13. 14) ein Außenquerschnitt der Tragstruktur (12) konstant ist.11. Support structure according to claim 9 and 10, characterized in that along this in areas of the thickness of the sheath (13. 14), an outer cross section of the support structure (12) is constant.
12. Tragstruktur nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Kern (2) in einer eine Längsachse der Tragstruktur (12) enthaltenden Ebene (15a) ein konstantes Flächengewicht aufweist.12. Support structure according to one of claims 1 to 11, characterized in that the core (2) in a longitudinal axis of the support structure (12) containing plane (15a) has a constant weight per unit area.
13. Tragstruktur nach einem der Ansprüche 1 bis 12, dadurch gekenn- zeichnet, dass der Kern (2) eine sich längs der Tragstruktur (12)13. Support structure according to one of claims 1 to 12, characterized in that the core (2) extends along the support structure (12).
. erstreckende Hohlkammer (17) aufweist. , having extending hollow chamber (17).
14. Tragstruktur nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Kern (2) mindestens zwei separate Kernabschnitte (20, 21) aufweist.14. Support structure according to one of claims 1 to 13, characterized in that the core (2) has at least two separate core sections (20, 21).
15. Verfahren zur Herstellung einer Tragstruktur (1; 6; 11 ; 12; 19) nach einem der Ansprüche 1 bis 14 mit folgenden Schritten:15. A method for producing a support structure (1; 6; 11; 12; 19) according to one of claims 1 to 14, comprising the following steps:
Bereitstellen eines Stapels mehrerer Lagen eines mit dem Acrylat-Providing a stack of several layers of one with the acrylate
Harz (4) imprägnierten Naturfaser/Holzfaser-Prepregs (7 bis 10), wobei dort, wo längs der Tragstruktur (1; 6; 11; 12) eine höhere Dichte des Kerns (2) vorliegen soll, eine höhere Anzahl anResin (4) impregnated natural fiber / wood fiber prepregs (7 to 10), wherein there, where along the support structure (1; 6; 11; 12) should have a higher density of the core (2), a higher number
Prepreg-Lagen vorliegt,Prepreg layers is present,
Verpressen des Prepreg-Stapels zum Kern (2) der TragstrukturPressing the prepreg stack to the core (2) of the support structure
(1; 6; 11; 12),(1; 6; 11; 12)
Umhüllen des Kerns (2) mit der Umhüllung (5).Enveloping the core (2) with the envelope (5).
16. Verfahren zur Herstellung einer Tragstruktur (1; 6; 11; 12; 19) nach einem der Ansprüche 1 bis 14 mit folgenden Schritten:16. A method for producing a support structure (1; 6; 11; 12; 19) according to one of claims 1 to 14, comprising the following steps:
Bereitstellen einer Fasermatte mit einem entsprechend der gewünschten Kerndichtevariation variierenden Flächengewicht in Längsrichtung der herzustellenden Tragstruktur,Providing a fiber mat with a surface weight varying according to the desired density of core density in the longitudinal direction of the support structure to be produced,
Verpressen der Fasermatte zum Kern (2) der Tragstruktur, Umhüllen des Kerns (2) mit der Umhüllung (5).Pressing the fiber mat to the core (2) of the support structure, wrapping the core (2) with the sheath (5).
17. Verwendung einer Tragstruktur nach einem der Ansprüche 1 bis 14 als - Latte (1) eines Lattenrostes für ein Bettgestell,17. Use of a support structure according to one of claims 1 to 14 as - lath (1) of a slatted frame for a bed frame,
- Ski (6; 19), Hockey-Schläger (1 1), Bootpaddel,- skis (6; 19), hockey sticks (1 1), boot paddles,
- Bauträger (12). - Property developer (12).
EP09712815A 2008-02-23 2009-02-16 Support structure and method for the production and use of such a support structure Not-in-force EP2247222B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200930245T SI2247222T1 (en) 2008-02-23 2009-02-16 Support structure and method for the production and use of such a support structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008010869A DE102008010869A1 (en) 2008-02-23 2008-02-23 Support structure and method for producing and using such a support structure
PCT/EP2009/001077 WO2009103474A1 (en) 2008-02-23 2009-02-16 Support structure and method for the production and use of such a support structure

Publications (2)

Publication Number Publication Date
EP2247222A1 true EP2247222A1 (en) 2010-11-10
EP2247222B1 EP2247222B1 (en) 2012-02-08

Family

ID=40602494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09712815A Not-in-force EP2247222B1 (en) 2008-02-23 2009-02-16 Support structure and method for the production and use of such a support structure

Country Status (5)

Country Link
EP (1) EP2247222B1 (en)
AT (1) ATE544376T1 (en)
DE (1) DE102008010869A1 (en)
SI (1) SI2247222T1 (en)
WO (1) WO2009103474A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076873A1 (en) 2011-06-01 2012-12-06 Thermoplast Composite Gmbh Support structure and component with such a support structure
WO2013026925A1 (en) * 2011-08-25 2013-02-28 Bcomp Ag A method for manufacturing a composite material, and a sheet made of this composite material
DE102011088149A1 (en) * 2011-12-09 2013-06-13 Evonik Industries Ag A coated composite comprising a composite material
DE102012208017A1 (en) 2012-05-14 2013-11-14 Thermoplast Composite Gmbh Plate-shaped support structure
FR2999944B1 (en) 2012-12-20 2015-02-13 Salomon Sas LATERAL SINGING FOR SLIDING BOARD
EP3000504B1 (en) * 2014-08-07 2018-10-31 Xiamen Aolro Technology Co., Ltd Running board for running machine and running machine using same
WO2021099836A1 (en) * 2019-11-19 2021-05-27 Pda Ecolab Shaft for athletic activities and method of forming the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1119503B (en) 1956-08-22 1961-12-14 Johann Dombrovskis Process for the production of objects encased in cast plastic
JPS4837751B1 (en) * 1969-05-14 1973-11-13
DE8432781U1 (en) 1984-11-09 1986-10-16 Schock & Co Gmbh, 7060 Schorndorf Profile strip for the production of window frames
US5087511A (en) * 1990-08-31 1992-02-11 General Electric Company Composite element having a variable density core
DE29816638U1 (en) 1998-09-16 1999-05-20 FIAP Fischtechnik GmbH, 92289 Ursensollen Transport container made of GRP with wooden core
DE10060379B4 (en) * 2000-12-05 2004-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of multidirectional thread or fiber fabrics
US20060131437A1 (en) * 2004-12-21 2006-06-22 General Electric Company Load bearing structure and method of manufacture thereof
DE102006023865B4 (en) * 2006-05-19 2012-02-16 Eads Deutschland Gmbh Process for producing a fiber-reinforced component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009103474A1 *

Also Published As

Publication number Publication date
SI2247222T1 (en) 2012-06-29
WO2009103474A1 (en) 2009-08-27
EP2247222B1 (en) 2012-02-08
DE102008010869A1 (en) 2009-09-10
ATE544376T1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP2247222B1 (en) Support structure and method for the production and use of such a support structure
AT504841B1 (en) SLIDING BOARDS FOR SCHI OR SNOWBOARDS
AT410518B (en) CORE FOR A SLIDING BOARD
DE3803507A1 (en) DISTRIBUTED SKI
DE102005053123A1 (en) innerspring
DE3438312C2 (en) Longitudinal member for helicopter rotor blades and method for manufacturing the same
DE4017539A1 (en) Ski with top and bottom laminate - flanking the ski core and comprising specified laminate layers
DE10224721B4 (en) Molded part made of wood and process for its production
EP0573039B1 (en) Fibre mats containing a binding agent made from cellulosic and ligno-cellulosic fibres
EP1063081A2 (en) Profile, its use and method for its manufacture
DE3025416A1 (en) METHOD FOR THE PRODUCTION OF HOCKEY RACKETS
DE60116028T2 (en) Shock-absorbing device with improved efficiency
DE10030457A1 (en) Rigid plywood panel
EP1493468B1 (en) Board for gliding sports comprising a bamboo core
AT406825B (en) HOCKEY RACKETS
DE3011528A1 (en) Layered building scaffolding panel - has rigid non-absorbent covering layer totally enclosing light foam core
EP2403712B1 (en) Lightweight building board and method and device for the production thereof
DE102009032663B4 (en) Highly elastic composite material and sports arch made from a highly elastic composite material
DE2135278A1 (en) Light ski
EP2157271B1 (en) Door blank and method for producing same
AT523223B1 (en) Gliding or roller board and method for its manufacture
EP1792698A2 (en) Reinforced board
DE3913969A1 (en) Laminated ski with wooden middle core - has less rigid bottom and top parts, with more flexible back and front parts
DE1578762A1 (en) ski
EP3124193B1 (en) Method for producing a material board comprising wood particles having reinforced board areas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17Q First examination report despatched

Effective date: 20110204

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOERGER, HERBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 544376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002712

Country of ref document: DE

Effective date: 20120405

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11584

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002712

Country of ref document: DE

Effective date: 20121109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20150219

Year of fee payment: 7

Ref country code: LU

Payment date: 20150219

Year of fee payment: 7

Ref country code: SK

Payment date: 20150206

Year of fee payment: 7

Ref country code: CZ

Payment date: 20150205

Year of fee payment: 7

Ref country code: CH

Payment date: 20150119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20150205

Year of fee payment: 7

Ref country code: AT

Payment date: 20150121

Year of fee payment: 7

Ref country code: SE

Payment date: 20150223

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002712

Country of ref document: DE

Representative=s name: DERLIN, STEFANIE, DR., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002712

Country of ref document: DE

Representative=s name: LEVPAT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150216

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002712

Country of ref document: DE

Representative=s name: LEVPAT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 544376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 11584

Country of ref document: SK

Effective date: 20160216

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160217

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160217

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20161013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170126

Year of fee payment: 9

Ref country code: DE

Payment date: 20170207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170221

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002712

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228