EP2243145B1 - Field-controlled composite insulator - Google Patents

Field-controlled composite insulator Download PDF

Info

Publication number
EP2243145B1
EP2243145B1 EP09709505A EP09709505A EP2243145B1 EP 2243145 B1 EP2243145 B1 EP 2243145B1 EP 09709505 A EP09709505 A EP 09709505A EP 09709505 A EP09709505 A EP 09709505A EP 2243145 B1 EP2243145 B1 EP 2243145B1
Authority
EP
European Patent Office
Prior art keywords
field control
layer
insulator
control layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09709505A
Other languages
German (de)
French (fr)
Other versions
EP2243145A1 (en
Inventor
Heinz Denndörfer
Jens Seifert
Volker Hinrichsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIW Composite GmbH
Original Assignee
Lapp Insulators GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapp Insulators GmbH filed Critical Lapp Insulators GmbH
Priority to SI200930550T priority Critical patent/SI2243145T1/en
Priority to PL09709505T priority patent/PL2243145T3/en
Publication of EP2243145A1 publication Critical patent/EP2243145A1/en
Application granted granted Critical
Publication of EP2243145B1 publication Critical patent/EP2243145B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/32Single insulators consisting of two or more dissimilar insulating bodies
    • H01B17/325Single insulators consisting of two or more dissimilar insulating bodies comprising a fibre-reinforced insulating core member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49227Insulator making

Definitions

  • the invention relates to a field-controlled composite insulator comprising a rod or tube as insulator core made of fiber-reinforced plastic, which is coated with a screen cover and equipped at its ends with fittings.
  • the materials of an insulator are heavily loaded by the inhomogeneous distribution of the electric field across its surface.
  • One of the causes lies in the structural design of an insulator.
  • the field strength changes due to the transition from the insulating materials of the screens and the insulator core to a metallic material, because of the transition to ground potential at the mast crossbar or conductor potential, where the conductors are attached.
  • the so-called geometric field control can be used. By rounding corners and edges, the geometry of the workpieces, in particular the parts carrying the tension, is defused.
  • insulating materials such as plastics such as epoxy resins and polymers are applied with deposits of dielectric and / or ferroelectric materials as field control layers.
  • a composite insulator whose screen element and optionally the core are each made of a semiconducting material.
  • the semiconductor capability of the shield shell and the core are the same size at each point of the insulator.
  • the screen cover must be additionally coated with a protective layer.
  • the field control layer of the composite insulator according to the invention accordingly comprises a layer in which the proportion of the particles influencing the electric field is different over the length of the layer.
  • the galvanic contact between the field control layer and the fitting can be produced for example by conductive ink, metal rings or wire mesh.
  • the field control layer is surrounded by a protective layer or directly by the screens extruded seamlessly on the core.
  • the insulator core as a pipe or rod is usually made of a fiberglass-reinforced thermoset such as epoxy or polyester resin.
  • the invention is suitable for all types of composite insulators, in particular for suspension insulators, post insulators or bushing insulators.
  • the field of application starts at high voltages above 1 kV and is particularly effective at voltages above 72.5 kV.
  • the field control layer is usually made of the same material as the protective layer covering it.
  • the protective layer can also be advantageous from a higher erosionsund Kriechstromfesten material.
  • the protective layer is in any case made of a material with high insulation properties. Materials with these properties are elastomeric materials, for example, polymeric plastics such as silicone rubber (HTV) of hardness classes Shore A 60 to 90 or ethylene-propylene copolymer (EPM).
  • HTV silicone rubber
  • EPM ethylene-propylene copolymer
  • the field control can be resistive or capacitive or in combination with each other.
  • the material of the field control layer is filled with particles as filler, which cause the field control.
  • a field control layer with ohmic conductive (conductive) and / or semiconducting (semiconductive) fillers is provided.
  • conductive conductive
  • semiconducting fillers the linear material dependence between voltage and current is utilized.
  • the conductive fillers include, for example, carbon black, Fe 3 O 4 and other metal oxides.
  • microvaristors are particularly suitable for resistive field control. These are varistors in powder form with grain diameters between 50 nm and 100 ⁇ m. With a suitable design, it can be achieved that a material filled with microvaristors, in particular a silicone material, exhibits high electrical conductivity and low power dissipation in continuous operation under surge stress.
  • Capacitive field control uses materials with dielectric properties such as TiO2, BaTi03 or TiOx. These materials have a high dielectric constant (permittivity).
  • Refractive field control is a special form of capacitive field control.
  • the field control layer may consist of one layer or multiple layers, wherein the individual layers may have different field control properties.
  • the particles added as fillers to the layers of the field control layer have a diameter of 10 nm to 100 ⁇ m, preferably in a range of 0.1 ⁇ m to 10 ⁇ m. Their size depends on the thickness of the layer and the intensity and extent of the expected field disturbance.
  • the proportion of particles is between 50 and 90% by weight, preferably 70%.
  • the proportion of particles, the degree of filling, may be above the percolation limit, i. that the particles are in direct electrical contact.
  • the thickness of a layer of a field control layer may be 1 mm to 5 mm, usually 2 mm to 3 mm. It depends on the intensity and extent of the expected field disturbance.
  • the field control layer can consist of one layer and contain only resistive particles as filler. Such a layer is provided at the locations of the insulator to which preferably a resistive, an ohmic field control is required.
  • the field control layer can consist of one layer and contain only capacitive particles as filler. Such a layer is provided at the locations of the insulator to which preferably a capacitive, or in particular a refractive, field control is required.
  • the field control layer may consist of one layer and the proportion of the resistive or capacitive particles may be different over the length of the layer. With the same thickness, the intensity of the effect on the field disturbances can be changed locally by changing the proportion of fillers in the position. The change in the proportion of the filler is possible if the filler has not already been added to the material of the layer before application, but only in or before the nozzle for applying the layer is mixed with the material.
  • the thickness of a layer of a field control layer can change over its length. This is possible by changing the feed rate within the extruder, which applies the layer to the core.
  • the field control layer can also consist of at least two layers with resistive or capacitive particles as fillers.
  • the one layer may have a higher proportion of resistive or capacitive particles than the other layer.
  • the field control layer may also consist of at least two layers, one layer containing exclusively resistive and another layer exclusively capacitive particles. For several layers one above the other, the layers may alternate in their order.
  • the field control layer may consist of one layer and contain a mixture of resistive and capacitive particles.
  • the field control layer can also consist of at least two layers, one layer containing a mixture of resistive and capacitive particles and the other layer containing only resistive or capacitive particles.
  • the layers may alternate in their order or composition in terms of their effect on the electric field.
  • the proportion of capacitive and / or resistive particles in the individual layers of the layer may be different.
  • the field control layer can be applied over the entire length of the insulator core. However, it can also extend only over partial areas, such as in the field of fittings.
  • the field control layer can also be divided into individual sections and thereby interrupted.
  • one layer may be longer than the other bordering the layerless section and extending beyond the layer above or below to the layerless section, so that the field influencing character of this situation comes exclusively to effect.
  • the individual layers of a field control layer can be separated from one another by insulating intermediate layers if differences in the conductivity in the contact region of the two layers themselves could lead to undesired changes in the field.
  • microvaristors are preferred, in particular ZnO.
  • a protective layer for example an insulating HTV silicone extrudate layer with extremely good tracking, erosion and weathering resistance, onto which the screens are then pushed.
  • This protective layer increases the outdoor resistance and can be up to 5 mm thick, advantageously between 2 mm and 3 mm.
  • the field control layer can be applied to the core by an extruder through which the core is pushed. If a layer with several layers is to be applied to the core, this can be done by a multi-stage nozzle or by several extruders arranged one behind the other. The application of the layers must be such that they adhere well to the insulator core and join together to form a layer. If necessary, the application of Haftverrnittiern required.
  • the invention offers the possibility of using a field control layer only at those points where critical disturbances of the electric field, in particular field strength peaks, can occur. As a result, the power losses at the insulators can be reduced to minimum values.
  • composition of the field control layer of layers with resistive and / or capacitive particles or the structure of the layer of two or more layers, in particular with different particles and / or particle proportions, as well as the variation of the overlap lengths of the layers can advantageously on the field disturbances to be eliminated, in particular field strength peaks , especially caused by local pollution.
  • the field distribution along the insulator is thereby made uniform. This avoids the formation of corona discharges, corona discharges and flashovers, which prevents premature aging of the material.
  • FIG. 1 a longitudinal section through a composite insulator 1 is shown.
  • a composite insulator 1 is the section of a long-rod insulator.
  • a field control layer 3 is applied on a core 2 made of glass fiber reinforced plastic.
  • it can have capacitive or resistive properties.
  • it may contain ZnO microvaristors for resistive field control.
  • the field control layer 3 is covered by a protective layer 4, which consists of an erosion and Kriechstromfesten material and the field control layer 3 protects against weathering and pollution.
  • the screens 5 are arranged at regular intervals, which are injected from one of the known polymeric plastics.
  • the field control layer 3 in a partial region of the insulator 1 consists of two layers 31 and 32, of which the layer 32 is arranged above the continuous layer 31.
  • the two layers 31 and 32 may have different field control properties. So can the outer Layer 32 capacitive and the continuous layer 31 have resistive properties. Such an arrangement of the layers may be advantageous, for example, in the field of fittings in terms of constructive field disturbances.
  • the field control layer 3 is uniformly thick throughout. In the area where the field control layer 3 is double-layered, by reducing the extrusion, the inner layer 31 can be thinned.
  • the outer layer 32 can be applied so thick that a uniform, uniform layer thickness is achieved.
  • FIGS. 3 and 4 show long-rod insulators 10, as used for example in high-voltage overhead lines.
  • the structure of the field control layers of these insulators may for example correspond to the structure as in the in the FIGS. 1 or 2 is described insulators described.
  • the insulators 10 each depend on a traverse 11 of a high-voltage mast, not shown here.
  • the attachment takes place in a known manner with a fitting 12 made of metal.
  • the conductor cables 14 are fastened by means of a further armature 13.
  • the isolators 10 which are 4 meters in length, are only partially cut-off, as in FIG FIG. 3 represented, or only in a certain area on a fitting, as in FIG. 4 shown coated with a field control layer.
  • the insulator 10 in FIG. 3 each has five equal areas 15 in which the core is covered with a field control layer. They are each interrupted by areas of equal size without field control layer.
  • the insulator 10 in FIG. 4 has a portion 16 which is covered with a field control layer and which extends from the armature 13, to which the conductors 14 are attached, upwards over one third of the rod length.
  • FIG. 5 shows a schematic representation of a transition region from a fitting to the shield shell area in longitudinal section. It is a section through the end of an insulator with a fitting to which the conductors are attached, as in the Figures 3 or 4 is shown. Matching features with the Figures 2 . 3 and 4 are designated by the same reference numerals.
  • the core consists of a rod 2 made of glass fiber reinforced plastic, which is coated with a field control layer 3, the in turn is enveloped by a protective layer 4. On this protective layer, the umbrellas 5 are raised.
  • the field control layer 3 corresponds in structure to that as shown in FIG FIG. 2 is shown.
  • the end of the rod 2 is enclosed by the fitting 13.
  • a layer 31 completely covers the core 2 of the insulator on the length visible in the illustration. It is a layer with resistive effect and contains microvaristors.
  • the capacitive field control is particularly suitable to reduce field strength peaks that are constructive, for example, by edges or stepped transitions, as they occur at the transition from a fitting to the insulator.
  • To improve the conductive contact between the layers and the fitting of the core enclosing cavity of the fitting may be coated with a conductive paint. Also deposits of wire loops or wire nets are, as not shown, possible.
  • FIG. 6 shows the result of a comparison test between a long-rod insulator whose surface corresponds to a field control layer FIG. 1 coated and a conventional long-rod insulator as reference insulator, which was equipped exclusively with HTV silicone without field control layer.
  • the umbrellas were each made of HTV silicone. The striking distance was 2765 mm.
  • a 3 mm thick polymer layer cross-sectional area: 1.8 cm 2 was applied to a GRP rod with a diameter of 16 mm.
  • the polymer layer for field control were microvaristors, ZnO varistors in powder form, in a proportion of 50 to 90% by weight, preferably 70% by weight with a particle size of 10 nm to 100 ⁇ m, preferably between 0, 1 [mu] m and 10 [mu] m have been added.
  • the filling level of the microvaristors was above the percolation limit, ie the microvaristors were in direct electrical contact with each other.
  • FIG. 6 On the left are the isolator with field control layer and on the right the reference insulator during the comparison test. With an applied AC voltage of 750 kV (effective), the insulators were irrigated. While the reference insulator under the bottom five, the conductor side facing screens shows strong discharge activities, the equipped with the field control layer insulator is completely discharge-free.
  • Fig. 3 is a flow chart for explaining the manufacture of an insulator.
  • the core 2 of the insulator to be produced is a rod which consists of a glass fiber reinforced plastic. This rod 2 is guided in the feed direction 20 by successively arranged stations, where it is completed to the insulator.
  • a bonding agent 211 is applied so that the layers of the field control layer 3 to be subsequently applied are intimately joined to the core 2.
  • a first layer 31 of the field control layer is applied, for example a layer with varistors, a layer with resistive character.
  • another extruder 23 is provided for applying the further layer 32, for example a layer with a capacitive character.
  • the next extruder 24 applies the protective layer 4.
  • the insulator core can now be separated with a separating tool 25.
  • the screens can be extruded or the already prefabricated umbrellas 5 are postponed.
  • a thermal treatment 27 for curing the field control layer, the protective layer and the screens concludes the manufacture of the insulator 1; 10 off. After preparing the ends of the rod, the fittings can be attached to it.

Description

Die Erfindung betrifft einen feldgesteuerten Verbundisolator, enthaltend einen Stab oder Rohr als Isolatorkern aus faserverstärktem Kunststoff, der mit einer Schirmhülle überzogen und an seinen Enden mit Armaturen bestückt ist.The invention relates to a field-controlled composite insulator comprising a rod or tube as insulator core made of fiber-reinforced plastic, which is coated with a screen cover and equipped at its ends with fittings.

Die Werkstoffe eines Isolators werden durch die inhomogene Verteilung des elektrischen Feldes über seine Oberfläche stark belastet. Eine der Ursachen liegt in der konstruktiven Ausgestaltung eines Isolators. Insbesondere im Bereich der Armaturen verändert sich die Feldstärke wegen des Übergangs von den isolierenden Werkstoffen der Schirme und des Isolatorkerns zu einem metallischen Werkstoff, wegen des Übergangs zum Erdpotential an der Masttraverse beziehungsweise zum Leiterpotential, dort, wo die Leiterseile befestigt sind. Zur Verhinderung der dadurch bedingten örtlichen Feldstörung, insbesondere Feldstärkeüberhöhungen, kann die so genannte geometrische Feldsteuerung eingesetzt werden. Durch Abrundungen von Ecken und Kanten wird die Geometrie der Werkstücke, insbesondere die der Spannung führenden Teile, entschärft.The materials of an insulator are heavily loaded by the inhomogeneous distribution of the electric field across its surface. One of the causes lies in the structural design of an insulator. In particular, in the field of fittings, the field strength changes due to the transition from the insulating materials of the screens and the insulator core to a metallic material, because of the transition to ground potential at the mast crossbar or conductor potential, where the conductors are attached. To prevent the resulting local field disturbance, in particular field strength peaks, the so-called geometric field control can be used. By rounding corners and edges, the geometry of the workpieces, in particular the parts carrying the tension, is defused.

Eine weitere Ursache sind die Schmutzablagerungen, eine Belastung, die einen Isolator insgesamt betrifft. Auf Verbundisolatoren, die als Ausseninstallationen der Witterung ausgesetzt sind, lagern sich mit der Zeit dünne Schmutzschichten ab. Auf Grund der elektrischen Leitfähigkeit dieser Schichten können auf den Isolatoroberflächen Ladungsströme fliessen. Werden diese Schichten feucht, beispielsweise durch Regen oder Tau, wird die Leitfähigkeit noch weiter erhöht, was zu erhöhten Stromstärken der Leckund Entladungsströme und zu ohmschen Verlusten führt. Das bewirkt eine Erwärmung der Schmutzschichten mit der Folge ihrer Abtrocknung. Die abtrocknenden Schmutzschichten werden lokal hochohmig, so dass hier hohe Spannungsabfälle auftreten können. Wird dadurch bedingt die elektrische Durchschlagsfestigkeit der Umgebungsluft überschritten, treten Glimmentladungen oder elektrische Überschlagsentladungen auf, die die Ursache für eine Alterung und schliesslich Zerstörung des Werkstoffs der Isolatoroberfläche sind.Another cause is the dirt deposits, a burden that affects an insulator overall. On composite insulators, which are exposed as outdoor installations of the weather, deposited over time thin dirt layers. Due to the electrical conductivity of these layers, charge currents can flow on the insulator surfaces. If these layers become moist, for example due to rain or dew, the conductivity is increased even further, which leads to increased current strengths of the leakage and discharge currents and to ohmic losses. This causes a heating of the dirt layers with the result of their drying. The drying dirt layers become locally high-impedance, so that high voltage drops can occur here. If this causes the electrical dielectric strength of the ambient air to be exceeded, glow discharges or electrical flashover discharges occur, which are the cause of aging and finally destruction of the material of the insulator surface.

Als Massnahmen zur Vergleichmässigung des elektrischen Feldes und zur Vermeidung örtlicher Feldstörung, insbesondere Feldstärkeüberhöhungen, werden örtliche Überzüge oder Beschichtungen aus Isolierwerkstoffen, beispielsweise Kunststoffen wie Epoxidharze und Polymere, mit Einlagerungen aus dielektrischen oder/und ferroelektrischen Stoffen als Feldsteuerschichten aufgebracht.As measures to equalize the electric field and to avoid local field disturbance, in particular field strength peaks, local coatings or coatings of insulating materials, such as plastics such as epoxy resins and polymers are applied with deposits of dielectric and / or ferroelectric materials as field control layers.

Von einem Ausführungsbeispiel des Hochspannungs-Verbundisolators gemäss der DE 32 14 141 A1 (dortige Fig. 2) ist es bekannt, dass eine Vielzahl von Schirmen mit einem über den Kern geschobenen Kragen sowie einer Kontakthülse zwischen dem letzten Schirm und der Metallarmatur halbleitend sind. Bei dieser Ausgestaltung des Isolators besteht die Gefahr, dass sich Metallpartikel und in der Luft befindliche sonstige Schmutzpartikel unmittelbar auf der elektrisch halbleitenden Schicht anlagern und von dort - aufgrund elektrischer Wechselwirkungen - durch die natürliche Bewitterung schlecht abgeschwemmt werden können. Diese Partikel können bei entsprechender Geometrie zu lokalen Feldstärkeerhöhungen und dadurch zu Beschädigungen des Isolators führen.Of an embodiment of the high-voltage composite insulator according to the DE 32 14 141 A1 (local Fig. 2 ) it is known that a plurality of screens with a collar pushed over the core and a contact sleeve between the last screen and the metal fitting are semiconductive. In this embodiment of the insulator, there is the danger that metal particles and airborne dirt particles accumulate directly on the electrically semiconductive layer and from there - due to electrical interactions - can be easily washed away by the natural weathering. These particles can lead to local field strength increases and thus to damage the insulator with appropriate geometry.

Aus der DE 197 00 387 B4 ist ein Verbundisolator bekannt, dessen Schirmelement und gegebenenfalls der Kern jeweils aus einem halbleitenden Werkstoff gefertigt sind. Die Halbleiterfähigkeit der Schirmhülle und des Kerns sind an jeder Stelle des Isolators gleich gross. Gegen Witterungseinflüsse und Verschmutzung muss die Schirmhülle zusätzlich mit einer Schutzschicht überzogen werden.From the DE 197 00 387 B4 a composite insulator is known whose screen element and optionally the core are each made of a semiconducting material. The semiconductor capability of the shield shell and the core are the same size at each point of the insulator. Against weathering and pollution, the screen cover must be additionally coated with a protective layer.

Weiter wird in der EP 1 577 904 A1 ein Verbundisolator vorgeschlagen, wobei zwischen Kern und Schutzschicht mindestens in einem Abschnitt eine Feldsteuerschicht angeordnet ist, die das elektrische Feld des Isolators beeinflussende Partikel als Füllstoff enthält. Ein solcher Verbundisolator ist auch aus der DE 15 15 467 A1 bekannt.Next will be in the EP 1 577 904 A1 proposed a composite insulator, wherein between the core and protective layer at least in a section a field control layer is arranged, which contains the electrical field of the insulator influencing particles as a filler. Such a composite insulator is also from the DE 15 15 467 A1 known.

Es ist die Aufgabe der vorliegenden Erfindung einen Verbundisolator vorzustellen, bei dem die Ursachen zur Bildung von örtlichen Feldstörungen, insbesondere Feldstärkeüberhöhungen und Coronaentladungen, durch eine auf die jeweilige Störung abgestimmte Feldsteuerschicht weitestgehend beseitigt sind.It is the object of the present invention to present a composite insulator in which the causes for the formation of local field disturbances, in particular field strength peaks and corona discharges, are largely eliminated by a field control layer tuned to the respective disturbance.

Die Lösung der Aufgabe erfolgt konstruktiv mit Hilfe der kennzeichnenden Merkmale des erfindungsgemäßen Isolators nach Anspruch 1 und mittels eines Verfahrens nach Anspruch 15 zu dessen Herstellung. Vorteilhafte Ausgestaltungen des Isolators und der Verfahren zu seiner Herstellung werden in den abhängigen Ansprüchen beansprucht.The object is achieved constructively with the help of the characterizing features of the insulator according to the invention according to claim 1 and by means of a method according to claim 15 for its production. Advantageous embodiments of the Insulator and the method for its preparation are claimed in the dependent claims.

Die Feldsteuerschicht des erfindungsgemäßen Verbundisolators umfasst demnach eine Lage, worin der Anteil der das elektrische Feld beeinflussenden Partikel über die Länge der Lage unterschiedlich ist.The field control layer of the composite insulator according to the invention accordingly comprises a layer in which the proportion of the particles influencing the electric field is different over the length of the layer.

Der galvanische Kontakt zwischen der Feldsteuerschicht und der Armatur kann beispielsweise durch Leitlack, Metallringe oder Drahtgewebe hergestellt werden. Ausserhalb der Armatur wird die Feldsteuerschicht von einer Schutzschicht oder direkt von den nahtlos auf den Kern extrudierten Schirmen umgeben. Der Isolatorkern als Rohr oder Stab besteht in der Regel aus einem mit Glasfasern verstärkten Duromer wie beispielsweise Epoxidharz oder Polyesterharz.The galvanic contact between the field control layer and the fitting can be produced for example by conductive ink, metal rings or wire mesh. Outside the valve, the field control layer is surrounded by a protective layer or directly by the screens extruded seamlessly on the core. The insulator core as a pipe or rod is usually made of a fiberglass-reinforced thermoset such as epoxy or polyester resin.

Die Erfindung eignet sich für alle Arten von Verbundisolatoren, insbesondere für Hängeisolatoren, Stützisolatoren oder Durchführungsisolatoren. Der Einsatzbereich beginnt bei Hochspannungen über 1 kV und ist besonders effektiv bei Spannungen über 72,5 kV.The invention is suitable for all types of composite insulators, in particular for suspension insulators, post insulators or bushing insulators. The field of application starts at high voltages above 1 kV and is particularly effective at voltages above 72.5 kV.

Die Feldsteuerschicht besteht in der Regel aus demselben Werkstoff wie die sie überdeckende Schutzschicht. Die Schutzschicht kann aber auch vorteilhaft aus einem höheren erosionsund kriechstromfesten Werkstoff bestehen. Die Schutzschicht besteht in jedem Fall aus einem Werkstoff mit hohen Isolationseigenschaften. Werkstoffe mit diesen Eigenschaften sind elastomere Werkstoffe, beispielsweise polymere Kunststoffe wie Silikonkautschuk (HTV) der Härteklassen Shore A 60 bis 90 oder Ethylen-Propylen-Copolymer (EPM). Auf den so vorbereiteten Kern mit Feldsteuerschicht und Schutzschicht werden die Schirme aufgeschoben, die aus demselben Werkstoff wie Schutzschicht bestehen können. Die Schutzschicht und die Schirme können auch in ein und demselben Arbeitsgang aus demselben Werkstoff auf den Kern extrudiert werden, wie es aus dem Patent EP 1147525 B1 bekannt ist.The field control layer is usually made of the same material as the protective layer covering it. The protective layer can also be advantageous from a higher erosionsund Kriechstromfesten material. The protective layer is in any case made of a material with high insulation properties. Materials with these properties are elastomeric materials, for example, polymeric plastics such as silicone rubber (HTV) of hardness classes Shore A 60 to 90 or ethylene-propylene copolymer (EPM). On the thus prepared core with field control layer and protective layer, the screens are pushed, which may consist of the same material as the protective layer. The protective layer and the screens can also be extruded in one and the same operation of the same material on the core, as it is known from the patent EP 1147525 B1 is known.

Die Feldsteuerung kann resistiv oder kapazitiv oder in einer Kombination miteinander erfolgen. Dazu wird der Werkstoff der Feldsteuerschicht mit Partikeln als Füllstoff gefüllt, die die Feldsteuerung bewirken.The field control can be resistive or capacitive or in combination with each other. For this purpose, the material of the field control layer is filled with particles as filler, which cause the field control.

Zur resistiven Feldsteuerung, auch ohmschen Feldsteuerung genannt, ist eine Feldsteuerschicht mit ohmschen leitenden (conductiven) oder/und halbleitenden (semiconductiven) Füllstoffen vorgesehen. Bei den ohmschen leitenden Füllstoffen wird die lineare Werkstoffabhängigkeit zwischen Spannung und Strom ausgenutzt. Zu den leitfähigen Füllstoffen gehören beispielsweise Russ, Fe3O4 und andere Metalloxide.For resistive field control, also called ohmic field control, a field control layer with ohmic conductive (conductive) and / or semiconducting (semiconductive) fillers is provided. In the ohmic conductive fillers, the linear material dependence between voltage and current is utilized. The conductive fillers include, for example, carbon black, Fe 3 O 4 and other metal oxides.

Es gibt halbleitende Werkstoffe mit einer nicht-linearen Abhängigkeit zwischen Spannung und Strom. Diese Eigenschaften haben Varistoren, beispielsweise ZnO, die ab einer definierten Spannung beziehungsweise Feldstärke leitfähig werden und damit die Fähigkeit besitzen, Überspannungen zu begrenzen. Für die resistive Feldsteuerung eignen sich insbesondere Mikrovaristoren. Das sind Varistoren in Pulverform mit Korndurchmessern zwischen 50 nm und 100 [mu]m. Bei geeigneter Auslegung kann erreicht werden, dass ein mit Mikrovaristoren gefüllter Werkstoff, insbesondere ein Silikonwerkstoff, bei Stossspannungsbeanspruchung eine hohe elektrische Leitfähigkeit und einen niedrigen Verlustleistungsumsatz im Dauerbetrieb aufweist.There are semiconducting materials with a non-linear dependence between voltage and current. These properties have varistors, for example ZnO, which become conductive above a defined voltage or field strength and thus have the ability to limit overvoltages. Microvaristors are particularly suitable for resistive field control. These are varistors in powder form with grain diameters between 50 nm and 100 μm. With a suitable design, it can be achieved that a material filled with microvaristors, in particular a silicone material, exhibits high electrical conductivity and low power dissipation in continuous operation under surge stress.

Bei der kapazitiven Feldsteuerung werden Werkstoffe mit dielektrischen Eigenschaften eingesetzt wie beispielsweise TiO2, BaTi03 oder TiOx. Diese Werkstoffe haben eine hohe Dielektrizitätskonstante (Permittivität).Capacitive field control uses materials with dielectric properties such as TiO2, BaTi03 or TiOx. These materials have a high dielectric constant (permittivity).

Die refraktive Feldsteuerung ist eine Sonderform der kapazitiven Feldsteuerung. Durch geeignete Anordnung von Werkstoffen mit unterschiedlich grossen Dielektrizitätskonstanten werden an den Übergängen der Werkstoffe die Feldlinien so gebrochen, dass örtliche Feldstörungen, insbesondere Feldstärkeüberhöhungen, möglichst beseitigt werden. Die Feldsteuerschicht kann aus einer Lage oder mehreren Lagen bestehen, wobei die einzelnen Lagen unterschiedliche Feldsteuereigenschaften haben können.Refractive field control is a special form of capacitive field control. By suitable arrangement of materials with different dielectric constants, the field lines at the transitions of the materials are so broken that local field disturbances, in particular field strength peaks, are eliminated as far as possible. The field control layer may consist of one layer or multiple layers, wherein the individual layers may have different field control properties.

Die Partikel, die als Füllstoffe den Lagen der Feldsteuerschicht zugegeben werden, haben einen Durchmesser von 10 nm bis zu 100 [mu]m, vorzugsweise in einem Bereich von 0,1 [mu]m bis 10 [mu]m. Ihre Grösse richtet sich nach der Dicke der Lage und der Intensität und der Ausdehnung der zu erwartenden Feldstörung.The particles added as fillers to the layers of the field control layer have a diameter of 10 nm to 100 μm, preferably in a range of 0.1 μm to 10 μm. Their size depends on the thickness of the layer and the intensity and extent of the expected field disturbance.

Der Anteil der Partikel liegt zwischen 50 und 90 % Gewichtsprozent, vorteilhaft bei 70 %.The proportion of particles is between 50 and 90% by weight, preferably 70%.

Der Anteil der Partikel, der Füllgrad, kann oberhalb der Perkolationsgrenze liegen, d.h. dass sich die Partikel in direktem elektrischem Kontakt befinden.The proportion of particles, the degree of filling, may be above the percolation limit, i. that the particles are in direct electrical contact.

Die Dicke einer Lage einer Feldsteuerschicht kann 1 mm bis 5 mm betragen, in der Regel 2 mm bis 3 mm. Sie richtet sich nach der Intensität und der Ausdehnung der zu erwartenden Feldstörung.The thickness of a layer of a field control layer may be 1 mm to 5 mm, usually 2 mm to 3 mm. It depends on the intensity and extent of the expected field disturbance.

Die Feldsteuerschicht kann aus einer Lage bestehen und ausschliesslich resistive Partikel als Füllstoff enthalten. Eine solche Schicht ist an den Stellen des Isolators vorgesehen, an denen vorzugsweise eine resistive, eine ohmsche Feldsteuerung erforderlich ist.The field control layer can consist of one layer and contain only resistive particles as filler. Such a layer is provided at the locations of the insulator to which preferably a resistive, an ohmic field control is required.

Die Feldsteuerschicht kann aus einer Lage bestehen und ausschliesslich kapazitive Partikel als Füllstoff enthalten. Eine solche Schicht ist an den Stellen des Isolators vorgesehen, an denen vorzugsweise eine kapazitive, oder speziell eine refraktive, Feldsteuerung erforderlich ist.The field control layer can consist of one layer and contain only capacitive particles as filler. Such a layer is provided at the locations of the insulator to which preferably a capacitive, or in particular a refractive, field control is required.

Die Feldsteuerschicht kann aus einer Lage bestehen und der Anteil der resistiven oder kapazitiven Partikel kann über die Länge der Lage unterschiedlich sein. Bei gleicher Dicke kann durch Änderung des Anteils an Füllstoffen in der Lage die Intensität der Einwirkung auf die Feldstörungen örtlich verändert werden. Die Änderung des Anteils am Füllstoff ist dann möglich, wenn der Füllstoff nicht bereits dem Werkstoff der Lage vor dem Auftragen zugemischt wurde, sondern erst in oder vor der Düse zum Auftragen der Lage dem Werkstoff zugemischt wird.The field control layer may consist of one layer and the proportion of the resistive or capacitive particles may be different over the length of the layer. With the same thickness, the intensity of the effect on the field disturbances can be changed locally by changing the proportion of fillers in the position. The change in the proportion of the filler is possible if the filler has not already been added to the material of the layer before application, but only in or before the nozzle for applying the layer is mixed with the material.

Die Dicke einer Lage einer Feldsteuerschicht kann über ihre Länge wechseln. Möglich ist das durch die Änderung der Vorschubgeschwindigkeit innerhalb des Extruders, der die Lage auf den Kern aufträgt.The thickness of a layer of a field control layer can change over its length. This is possible by changing the feed rate within the extruder, which applies the layer to the core.

Die Feldsteuerschicht kann auch aus mindestens zwei Lagen mit resistiven oder kapazitiven Partikeln als Füllstoffen bestehen. Dabei kann die eine Lage einen höheren Anteil an resistiven beziehungsweise kapazitiven Partikeln haben als die andere Lage.The field control layer can also consist of at least two layers with resistive or capacitive particles as fillers. The one layer may have a higher proportion of resistive or capacitive particles than the other layer.

Die Feldsteuerschicht kann auch aus mindestens zwei Lagen bestehen, wobei eine Lage ausschliesslich resistive und eine andere Lage ausschliesslich kapazitive Partikel enthält. Bei mehreren Lagen übereinander können sich die Lagen in ihrer Reihenfolge abwechseln.The field control layer may also consist of at least two layers, one layer containing exclusively resistive and another layer exclusively capacitive particles. For several layers one above the other, the layers may alternate in their order.

Die Feldsteuerschicht kann aus einer Lage bestehen und eine Mischung von resistiven und kapazitiven Partikeln enthalten.The field control layer may consist of one layer and contain a mixture of resistive and capacitive particles.

Die Feldsteuerschicht kann auch aus mindestens zwei Lagen bestehen, wobei eine Lage eine Mischung von resistiven und kapazitiven Partikeln enthält und die andere Lage ausschliesslich resistive oder kapazitive Partikel enthält.The field control layer can also consist of at least two layers, one layer containing a mixture of resistive and capacitive particles and the other layer containing only resistive or capacitive particles.

Bei mehreren Lagen übereinander können sich die Lagen hinsichtlich ihrer Wirkung auf das elektrische Feld in ihrer Reihenfolge oder/und Zusammensetzung abwechseln. Ausserdem kann der Anteil der kapazitven oder/und resistiven Partikeln in den einzelnen Lagen der Schicht unterschiedlich sein.In the case of several layers one above the other, the layers may alternate in their order or composition in terms of their effect on the electric field. In addition, the proportion of capacitive and / or resistive particles in the individual layers of the layer may be different.

Die Feldsteuerschicht kann über die gesamte Länge des Isolatorkerns aufgetragen sein. Sie kann sich aber auch nur über Teilbereiche erstrecken, wie beispielsweise im Bereich der Armaturen. Die Feldsteuerschicht kann auch in einzelne Abschnitte unterteilt und dadurch unterbrochen sein.The field control layer can be applied over the entire length of the insulator core. However, it can also extend only over partial areas, such as in the field of fittings. The field control layer can also be divided into individual sections and thereby interrupted.

In dem Fall, in dem die Feldsteuerschicht in einzelne Abschnitte unterteilt ist und aus mindestens zwei Lagen besteht, kann im Grenzbereich zum schichtfreien Abschnitt eine Lage länger sein als die andere und über die darüber oder darunter befindliche Lage hinaus weiter bis zu dem schichtfreien Abschnitt reichen, so dass der das Feld beeinflussende Charakter dieser Lage ausschliesslich zur Wirkung kommt.In the case where the field control layer is divided into individual sections and consists of at least two layers, one layer may be longer than the other bordering the layerless section and extending beyond the layer above or below to the layerless section, so that the field influencing character of this situation comes exclusively to effect.

Durch die zuvor beschriebenen diskontinuierlichen Anordnungen der Schicht können hohe Verlustleistungen vermieden werden.By the above-described discontinuous arrangements of the layer high power losses can be avoided.

Gegebenenfalls können die einzelnen Lagen einer Feldsteuerschicht durch isolierende Zwischenlagen voneinander getrennt sein, wenn Unterschiede der Leitfähigkeit im Kontaktbereich der beiden Lagen selbst zu unerwünschten Veränderungen des Feldes führen könnten.Optionally, the individual layers of a field control layer can be separated from one another by insulating intermediate layers if differences in the conductivity in the contact region of the two layers themselves could lead to undesired changes in the field.

Die oben aufgeführten Kombinationsmöglichkeiten der Anzahl der Lagen, der Anordnung der einzelnen Lagen innerhalb einer Schicht und der Grad der Füllung mit kapazitven oder/und resistiven Partikeln erlaubt es, an den möglichen Stellen, wo eine für den Isolator schädliche Inhomogenität des elektrischen Feldes auftreten kann, diese durch eine darauf abgestimmte Schicht zu verhindern oder zu unterdrücken.The above-mentioned possible combinations of the number of layers, the arrangement of the individual layers within a layer and the degree of filling with capacitive and / or resistive particles makes it possible to occur at the possible locations where a harmonic inhomogeneity of the electric field can occur. to prevent or suppress them by means of a coordinated layer.

Für die resistive Feldsteuerung werden Mikrovaristoren bevorzugt, insbesondere aus ZnO.For resistive field control, microvaristors are preferred, in particular ZnO.

Zum Schutz der Feldsteuerschicht kann diese mit einer Schutzschicht, beispielsweise einer isolierenden HTV-Silikon-Extrudatschicht mit extrem guten Kriechstrom-, Erosionsund Witterungsbeständigkeiten, überzogen sein, auf die dann die Schirme geschoben werden. Diese Schutzschicht erhöht die Freiluftbeständigkeit und kann bis zu 5 mm dick sein, vorteilhaft zwischen 2 mm und 3 mm.To protect the field control layer, it can be coated with a protective layer, for example an insulating HTV silicone extrudate layer with extremely good tracking, erosion and weathering resistance, onto which the screens are then pushed. This protective layer increases the outdoor resistance and can be up to 5 mm thick, advantageously between 2 mm and 3 mm.

Auf den Kern mit der Feldsteuerschicht können aber auch die Schirme direkt lückenlos aufextrudiert werden, wie es aus dem Patent EP 1147525 B1 bekannt ist. Schutzschicht und Schirme bestehen dann aus demselben Werkstoff.On the core with the field control layer but also the umbrellas can be extruded directly without gaps, as it is known from the patent EP 1147525 B1 is known. Protective layer and umbrellas then consist of the same material.

Die Feldsteuerschicht kann auf den Kern durch einen Extruder aufgebracht werden, durch den der Kern hindurchgeschoben wird. Soll eine Schicht mit mehreren Lagen auf dem Kern aufgetragen werden, so kann das durch eine mehrstufige Düse oder durch mehrere hintereinander angeordnete Extruder erfolgen. Das Auftragen der Lagen muss so erfolgen, dass sie gut am Isolatorkern haften und sich miteinander zu einer Schicht verbinden. Gegebenenfalls ist das Auftragen von Haftverrnittiern erforderlich.The field control layer can be applied to the core by an extruder through which the core is pushed. If a layer with several layers is to be applied to the core, this can be done by a multi-stage nozzle or by several extruders arranged one behind the other. The application of the layers must be such that they adhere well to the insulator core and join together to form a layer. If necessary, the application of Haftverrnittiern required.

Die Erfindung bietet die Möglichkeit, eine Feldsteuerschicht nur an den Stellen einzusetzen, an denen kritische Störungen des elektrischen Feldes, insbesondere Feldstärkeüberhöhungen, auftreten können. Dadurch können die Verlustleistungen an den Isolatoren auf Minimalwerte reduziert werden.The invention offers the possibility of using a field control layer only at those points where critical disturbances of the electric field, in particular field strength peaks, can occur. As a result, the power losses at the insulators can be reduced to minimum values.

Die Zusammensetzung der Feldsteuerschicht aus Lagen mit resistiven oder/und kapazitiven Partikeln oder der Aufbau der Schicht aus zwei oder mehreren Lagen, insbesondere mit unterschiedlichen Partikeln oder/und Partikelanteilen, sowie die Variation der Überdeckungslängen der Lagen können vorteilhaft auf die zu beseitigenden Feldstörungen, insbesondere Feldstärkeüberhöhungen, besonders durch lokale Verschmutzungen hervorgerufen, abgestimmt werden. Die Feldverteilung entlang des Isolators wird dadurch vergleichmässigt. Dadurch wird die Entstehung von Glimmentladungen, Koronaentladungen und Überschlägen vermieden, wodurch eine vorzeitige Alterung des Werkstoffs vermieden wird.The composition of the field control layer of layers with resistive and / or capacitive particles or the structure of the layer of two or more layers, in particular with different particles and / or particle proportions, as well as the variation of the overlap lengths of the layers can advantageously on the field disturbances to be eliminated, in particular field strength peaks , especially caused by local pollution. The field distribution along the insulator is thereby made uniform. This avoids the formation of corona discharges, corona discharges and flashovers, which prevents premature aging of the material.

An Hand von Beispielen wird die Erfindung näher erläutert. Es zeigen:

Fig. 1
einen Ausschnitt aus einem Verbundisolator mit einer Feldsteuerschicht, aus einer Lage bestehend, im Längsschnitt,
Fig. 2
einen Ausschnitt aus einem Verbundisolator mit einer Feldsteuerschicht aus zwei Lagen, wobei eine Lage nur einen Teil des Kerns überdeckt,
Fig. 3
einen Langstabisolator, bei dem die Bereiche gekennzeichnet sind, in denen eine Feldsteuerschicht aufgetragen ist,
Fig. 4
einen Langstabisolator, bei dem eine Feldsteuerschicht im Bereich der Armatur aufgetragen ist, an der die Leiterseile befestigt sind, Fig. 5 den Übergangsbereich von einem Isolatorkern zu einer Armatur im Längsschnitt,
Fig. 6
einen Vergleichstest zwischen einem Isolator mit Feldsteuerschicht und einem herkömmlichen Isolator bei anliegender Wechselspannung unter Beregnung und
Fig. 7
ein Ablaufdiagramm zur Erläuterung der Herstellung eines Isolators.
By way of examples, the invention will be explained in more detail. Show it:
Fig. 1
a section of a composite insulator with a field control layer, consisting of a layer, in longitudinal section,
Fig. 2
a section of a composite insulator with a field control layer of two layers, wherein a layer covers only a part of the core,
Fig. 3
a long-rod insulator, in which the areas are marked in which a field control layer is applied,
Fig. 4
a long-rod insulator in which a field control layer is applied in the region of the armature to which the conductor cables are attached, Fig. 5 the transition region from an insulator core to a valve in longitudinal section,
Fig. 6
a comparison test between an insulator with field control layer and a conventional insulator with applied AC voltage under irrigation and
Fig. 7
a flowchart for explaining the production of an insulator.

In Figur 1 ist ein Längsschnitt durch einen Verbundisolator 1 dargestellt. Im vorliegenden Fall ist es der Ausschnitt aus einem Langstabisolator. Auf einem Kern 2 aus glasfaserverstärktem Kunststoff ist eine Feldsteuerschicht 3 aufgetragen. In Abstimmung auf die auftretenden Feldstörungen kann sie kapazitive oder resistive Eigenschaften haben. Beispielsweise kann sie Mikrovaristoren aus ZnO zur resistiven Feldsteuerung enthalten. Die Feldsteuerschicht 3 ist von einer Schutzschicht 4 überzogen, welche aus einem erosionsund kriechstromfesten Werkstoff besteht und die Feldsteuerschicht 3 gegen Witterungseinflüsse und Verschmutzung schützt. Auf dieser Schutzschicht 4 sind in regelmässigen Abständen die Schirme 5 angeordnet, die aus einem der bekannten polymeren Kunststoffe gespritzt sind.In FIG. 1 a longitudinal section through a composite insulator 1 is shown. In the present case, it is the section of a long-rod insulator. On a core 2 made of glass fiber reinforced plastic, a field control layer 3 is applied. In coordination with the occurring field disturbances, it can have capacitive or resistive properties. For example, it may contain ZnO microvaristors for resistive field control. The field control layer 3 is covered by a protective layer 4, which consists of an erosion and Kriechstromfesten material and the field control layer 3 protects against weathering and pollution. On this protective layer 4, the screens 5 are arranged at regular intervals, which are injected from one of the known polymeric plastics.

In Figur 2 ist ebenfalls ein Längsschnitt durch einen Verbundisolator 1 dargestellt. Mit der Figur 1 übereinstimmende Merkmale sind mit denselben Bezugsziffern bezeichnet. Bei vorliegendem Beispiel besteht die Feldsteuerschicht 3 in einem Teilbereich des Isolators 1 aus zwei Lagen 31 und 32, von denen die Lage 32 über der durchgehenden Lage 31 angeordnet ist. Die beiden Lagen 31 und 32 können unterschiedliche Feldsteuereigenschaften aufweisen. So kann die äussere Lage 32 kapazitive und die durchgehende Lage 31 resistive Eigenschaften aufweisen. Eine solche Anordnung der Schichten kann beispielsweise im Bereich der Armaturen im Hinblick auf konstruktiv bedingte Feldstörungen vorteilhaft sein. Im vorliegenden Beispiel ist die Feldsteuerschicht 3 durchgehend gleichmässige dick. In dem Bereich, in dem die Feldsteuerschicht 3 zweilagig ist, kann durch Reduktion der Extrusion die inneren Lage 31 dünner aufgetragen werden. So kann in einem zweiten Arbeitsschritt die äussere Lage 32 so dick aufgetragen werden, dass eine durchgehend gleichmässige Schichtdicke erreicht wird.In FIG. 2 also a longitudinal section through a composite insulator 1 is shown. With the FIG. 1 Matching features are designated by the same reference numerals. In the present example, the field control layer 3 in a partial region of the insulator 1 consists of two layers 31 and 32, of which the layer 32 is arranged above the continuous layer 31. The two layers 31 and 32 may have different field control properties. So can the outer Layer 32 capacitive and the continuous layer 31 have resistive properties. Such an arrangement of the layers may be advantageous, for example, in the field of fittings in terms of constructive field disturbances. In the present example, the field control layer 3 is uniformly thick throughout. In the area where the field control layer 3 is double-layered, by reducing the extrusion, the inner layer 31 can be thinned. Thus, in a second step, the outer layer 32 can be applied so thick that a uniform, uniform layer thickness is achieved.

Die Figuren 3 und 4 zeigen Langstabisolatoren 10, wie sie beispielsweise bei Hochspannungs-Freileitungen eingesetzt werden. Der Aufbau der Feldsteuerschichten dieser Isolatoren kann beispielsweise dem Aufbau entsprechen, wie er bei den in den Figuren 1 oder 2 dargestellten Isolatoren beschrieben ist. Die Isolatoren 10 hängen jeweils an einer Traverse 11 eines hier nicht dargestellten Hochspannungsmasten. Die Befestigung erfolgt in bekannter Weise mit einer Armatur 12 aus Metall. Am unteren Ende sind mittels einer weiteren Armatur 13 die Leiterseile 14 befestigt. Bei den vorliegenden Beispielen sind die Isolatoren 10, die eine Länge von 4 m haben, zur Vermeidung zu hoher Verlustleistungen entweder nur abschnittsweise, wie in Figur 3 dargestellt, oder nur in einem bestimmten Bereich an einer Armatur, wie in Figur 4 dargestellt, mit einer Feldsteuerschicht überzogen. Der Isolator 10 in Figur 3 hat jeweils fünf gleich grosse Bereiche 15, in denen der Kern mit einer Feldsteuerschicht überzogen ist. Sie sind jeweils durch gleich grosse Bereiche ohne Feldsteuerschicht unterbrochen. Der Isolator 10 in Figur 4 hat einen Bereich 16, der mit einer Feldsteuerschicht überzogen ist und der sich von der Armatur 13, an denen die Leiterseile 14 befestigt sind, über ein Drittel der Stablänge aufwärts erstreckt.The FIGS. 3 and 4 show long-rod insulators 10, as used for example in high-voltage overhead lines. The structure of the field control layers of these insulators may for example correspond to the structure as in the in the FIGS. 1 or 2 is described insulators described. The insulators 10 each depend on a traverse 11 of a high-voltage mast, not shown here. The attachment takes place in a known manner with a fitting 12 made of metal. At the lower end, the conductor cables 14 are fastened by means of a further armature 13. In the present examples, the isolators 10, which are 4 meters in length, are only partially cut-off, as in FIG FIG. 3 represented, or only in a certain area on a fitting, as in FIG. 4 shown coated with a field control layer. The insulator 10 in FIG. 3 each has five equal areas 15 in which the core is covered with a field control layer. They are each interrupted by areas of equal size without field control layer. The insulator 10 in FIG. 4 has a portion 16 which is covered with a field control layer and which extends from the armature 13, to which the conductors 14 are attached, upwards over one third of the rod length.

Figur 5 zeigt in schematisierter Darstellung einen Übergangsbereich von einer Armatur zum Schirmhüllenbereich im Längsschnitt. Es ist ein Schnitt durch das Ende eines Isolators mit einer Armatur, an der die Leiterseile befestigt sind, wie er in den Figuren 3 oder 4 dargestellt ist. Übereinstimmende Merkmale mit den Figuren 2, 3 und 4 sind mit denselben Bezugsziffern bezeichnet. FIG. 5 shows a schematic representation of a transition region from a fitting to the shield shell area in longitudinal section. It is a section through the end of an insulator with a fitting to which the conductors are attached, as in the Figures 3 or 4 is shown. Matching features with the Figures 2 . 3 and 4 are designated by the same reference numerals.

Bei dem Isolator 1 oder 10 besteht der Kern aus einem Stab 2 aus glasfaserverstärktem Kunststoff, der mit einer Feldsteuerschicht 3 überzogen ist, die wiederum von einer Schutzschicht 4 umhüllt ist. Auf dieser Schutzschicht sind die Schirme 5 aufgezogen. Die Feldsteuerschicht 3 entspricht in ihrem Aufbau der, wie sie in Figur 2 dargestellt ist. Das Ende des Stabs 2 wird von der Armatur 13 umschlossen. Eine Lage 31 überzieht den Kern 2 des Isolators auf der in der Darstellung sichtbaren Länge vollständig. Es ist eine Lage mit resistiver Wirkung und enthält Mikrovaristoren. Darüber liegt nach aussen eine Lage 32 mit kapazitiver Wirkung, die Füllstoffe mit dielektrischen Eigenschaften enthält. Die Lage 32 reicht vom Inneren der Armatur 13 bis oberhalb des ersten Schirms 5. Die kapazitive Feldsteuerung ist besonders geeignet, Feldstärkeüberhöhungen abzubauen, die konstruktiv bedingt sind, beispielsweise durch Kanten oder stufige Übergänge, wie sie am Übergang von einer Armatur zum Isolatorstab auftreten. Zur Verbesserung des leitfähigen Kontaktes zwischen den Lagen und der Armatur kann der den Kern umschliessende Hohlraum der Armatur mit einem leitfähigen Lack überzogen sein. Auch Einlagen von Drahtschlingen oder Drahtnetzen sind, wie hier nicht dargestellt, möglich.In the insulator 1 or 10, the core consists of a rod 2 made of glass fiber reinforced plastic, which is coated with a field control layer 3, the in turn is enveloped by a protective layer 4. On this protective layer, the umbrellas 5 are raised. The field control layer 3 corresponds in structure to that as shown in FIG FIG. 2 is shown. The end of the rod 2 is enclosed by the fitting 13. A layer 31 completely covers the core 2 of the insulator on the length visible in the illustration. It is a layer with resistive effect and contains microvaristors. On the outside there is a layer 32 with capacitive effect containing fillers with dielectric properties. The layer 32 extends from the interior of the fitting 13 to above the first screen 5. The capacitive field control is particularly suitable to reduce field strength peaks that are constructive, for example, by edges or stepped transitions, as they occur at the transition from a fitting to the insulator. To improve the conductive contact between the layers and the fitting of the core enclosing cavity of the fitting may be coated with a conductive paint. Also deposits of wire loops or wire nets are, as not shown, possible.

Figur 6 zeigt das Ergebnis eines Vergleichstests zwischen einem Langstabisolator, dessen Oberfläche mit einer Feldsteuerschicht entsprechend Figur 1 überzogen war, und einem herkömmlichen Langstabisolator als Referenzisolator, der ausschliesslich mit HTV-Silikon ohne Feldsteuerschicht ausgestattet war. Die Schirme waren jeweils aus HTV-Silikon. Die Schlagweite betrug 2765 mm. Bei beiden Prüflingen wurde auf einem GFK- Stab mit 16 mm Durchmesser eine 3 mm dicke Polymerschicht (Querschnittsfläche: 1 ,8 cm<2>) aufgetragen. Bei einem der Prüflinge waren der Polymerschicht zur Feldsteuerung Mikrovaristoren, ZnO-Varistoren in Pulverform, in einem Anteil von 50 bis 90 Gewichts-%, vorzugsweise 70 Gewichts-% mit einer Korngrösse von 10 nm bis 100 [mu]m, vorzugsweise zwischen 0,1 [mu]m und 10 [mu]m beigemischt worden. Im vorliegenden Beispiel lag der Füllgrad der Mikrovaristoren oberhalb der Perkolationsgrenze, d.h. die Mikrovaristoren befanden sich in direktem elektrischen Kontakt untereinander. FIG. 6 shows the result of a comparison test between a long-rod insulator whose surface corresponds to a field control layer FIG. 1 coated and a conventional long-rod insulator as reference insulator, which was equipped exclusively with HTV silicone without field control layer. The umbrellas were each made of HTV silicone. The striking distance was 2765 mm. For both specimens, a 3 mm thick polymer layer (cross-sectional area: 1.8 cm 2) was applied to a GRP rod with a diameter of 16 mm. In one of the specimens, the polymer layer for field control were microvaristors, ZnO varistors in powder form, in a proportion of 50 to 90% by weight, preferably 70% by weight with a particle size of 10 nm to 100 μm, preferably between 0, 1 [mu] m and 10 [mu] m have been added. In the present example, the filling level of the microvaristors was above the percolation limit, ie the microvaristors were in direct electrical contact with each other.

In Figur 6 sind links der Isolator mit Feldsteuerschicht und rechts der Referenzisolator während des Vergleichstests zu sehen. Bei einer anliegenden Wechselspannung von 750 kV (effektiv) wurden die Isolatoren beregnet. Während der Referenzisolator unter den untersten fünf, der Leiterseite zugewandten Schirmen starke Entladungsaktivitäten zeigt, ist der mit der Feldsteuerschicht ausgestattete Isolator völlig entladungsfrei.In FIG. 6 On the left are the isolator with field control layer and on the right the reference insulator during the comparison test. With an applied AC voltage of 750 kV (effective), the insulators were irrigated. While the reference insulator under the bottom five, the conductor side facing screens shows strong discharge activities, the equipped with the field control layer insulator is completely discharge-free.

In Figur 7 ist ein Ablaufdiagramm zur Erläuterung der Herstellung eines Isolators dargestellt. Der Kern 2 des herzustellenden Isolators ist ein Stab, der aus einem glasfaserverstärkten Kunststoff besteht. Dieser Stab 2 wird in Vorschubrichtung 20 durch nacheinander angeordnete Stationen geführt, wo er zum Isolator komplettiert wird. In der ersten Station 21 wird ein Haftvermittler 211 aufgetragen, damit sich die nachfolgend aufzutragenden Lagen der Feldsteuerschicht 3 innig mit dem Kern 2 verbinden. In dem Extruder 22 wird eine erste Lage 31 der Feldsteuerschicht aufgetragen, beispielsweise eine Lage mit Varistoren, eine Lage mit resistivem Charakter. Soll noch eine weitere Lage folgen, ist ein weiterer Extruder 23 zum Auftragen der weiteren Lage 32 vorgesehen, beispielsweise eine Lage mit kapazitivem Charakter. Statt zwei hintereinander angeordneter Extruder kann auch ein Zwei-Düsen-Extruder eingesetzt werden, der beide Lagen übereinander auf den Stab extrudiert. Der nächste Extruder 24 trägt die Schutzschicht 4 auf.In FIG. 7 Fig. 3 is a flow chart for explaining the manufacture of an insulator. The core 2 of the insulator to be produced is a rod which consists of a glass fiber reinforced plastic. This rod 2 is guided in the feed direction 20 by successively arranged stations, where it is completed to the insulator. In the first station 21, a bonding agent 211 is applied so that the layers of the field control layer 3 to be subsequently applied are intimately joined to the core 2. In the extruder 22, a first layer 31 of the field control layer is applied, for example a layer with varistors, a layer with resistive character. If another layer is to follow, another extruder 23 is provided for applying the further layer 32, for example a layer with a capacitive character. Instead of two extruders arranged one behind the other, it is also possible to use a two-nozzle extruder which extrudes both layers one above the other onto the rod. The next extruder 24 applies the protective layer 4.

Je nach Herstellungsverfahren der Schirmhülle kann jetzt der Isolatorkern mit einem Trennwerkzeug 25 getrennt werden. Im nächsten Schritt 26 können die Schirme aufextrudiert oder die bereits vorgefertigten Schirme 5 aufgeschoben werden. Eine thermische Behandlung 27 zur Aushärtung der Feldsteuerschicht, der Schutzschicht und der Schirme schliesst die Herstellung des Isolators 1 ; 10 ab. Nach Vorbereitung der Enden des Stabs können die Armaturen darauf befestigt werden.Depending on the manufacturing process of the screen cover, the insulator core can now be separated with a separating tool 25. In the next step 26, the screens can be extruded or the already prefabricated umbrellas 5 are postponed. A thermal treatment 27 for curing the field control layer, the protective layer and the screens concludes the manufacture of the insulator 1; 10 off. After preparing the ends of the rod, the fittings can be attached to it.

Werden die Schutzschicht und die Schirmhülle in ein und demselben Arbeitsgang als eine gemeinsame Schicht auf den Isolatorkern 2 aufgebracht, erfolgt die Herstellung in der Station 26, entsprechend dem Patent EP 1147525 B1 . Eine Trennung in einzelne, fertige Isolatoren 1 ; 10 erfolgt hier erst nach der thermischen Behandlung 27 mit einem Trennwerkzeug 28.If the protective layer and the screen cover are applied in one and the same operation as a common layer on the insulator core 2, the production takes place in the station 26, according to the patent EP 1147525 B1 , A separation into individual, finished insulators 1; 10 takes place here only after the thermal treatment 27 with a cutting tool 28th

Claims (19)

  1. Composite insulator (1, 10) containing a core (2) and a protective layer (4) which surrounds the core (2), wherein a field control layer (3) which contains particles, as a filler, which influence the electrical field of the insulator, is arranged between the core (2) and the protective layer (4) in at least one section (15, 16) of the insulator (1, 10),
    characterized in that
    the field control layer (3) has a stratum (31, 32) wherein the proportion of the particles which influence the electrical field differs over the length of the stratum (31, 32).
  2. Composite insulator (1, 10) according to Claim 1,
    characterized in that
    the field control layer (3) consists of one, two or more strata (31, 32), and in that the individual strata (31, 32) have different field control characteristics.
  3. Composite insulator (1, 10) according to Claim 1 or 2,
    characterized in that
    the field control layer (3) consists of one stratum (31, 32) and contains exclusively resistive or capacitive particles as a filler.
  4. Composite insulator (1, 10) according to one of Claims 1 or 2,
    characterized in that
    the field control layer (3) consists of at least two strata (31, 32), and in that one of the strata (31, 32) has a higher proportion of resistive or capacitive particles than the other.
  5. Composite insulator (1, 10) according to one of Claims 1 or 2,
    characterized in that
    the field control layer (3) consists of at least two strata (31, 32), and in that one of the strata (31) contains exclusively resistive particles, and the other stratum (32) contains exclusively capacitive particles.
  6. Composite insulator (1, 10) according to one of Claims 1 or 2,
    characterized in that
    the field control layer (3) consists of one stratum (31, 32) and contains a mixture of resistive and capacitive particles.
  7. Composite insulator (1, 10) according to one of Claims 1 or 2,
    characterized in that
    the field control layer (3) consists of at least two strata (31, 32), and in that one stratum (31, 32) contains a mixture of resistive or capacitive particles, and the other stratum (31, 32) contains exclusively resistive or capacitive particles.
  8. Composite insulator (1, 10) according to one of Claims 1 or 7,
    characterized in that
    the strata (31, 32) in a field control layer (3) when there are a plurality of strata (31, 32) one on top of the other alternate with respect to their effect on the electrical field, in their sequence and/or composition.
  9. Composite insulator (1, 10) according to Claim 8,
    characterized in that
    the proportion of the capacitive and/or resistive particles in the individual strata (31, 32) of the layer (3) is different.
  10. Composite insulator (1, 10) according to one of Claims 1 or 9,
    characterized in that
    the field control layer (3) is applied in individual sections (15) over the length of the core (2) of the insulator (10).
  11. Composite insulator (1, 10) according to Claim 10,
    characterized in that,
    in the case of a field control layer (3) which is subdivided into individual sections and consists of at least two strata (31, 32), one stratum (31, 32) in the boundary area to the layer-free section is longer than the other and extends beyond the stratum (31, 32) located above or below it, to the layer-free section.
  12. Composite insulator (1, 10) according to one of Claims 1 or 11,
    characterized in that
    the individual strata (31, 32) of the field control layer (3) are separated from one another by a stratum composed of an insulating material.
  13. Composite insulator (1, 10) according to one of Claims 1 to 12,
    characterized in that
    the proportion of the particles in a layer is between 50 and 90 per cent by weight, preferably 70 per cent by weight.
  14. Composite insulator (1, 10) according to Claim 13,
    characterized in that
    the proportion of the particles, the filling level, is above the percolation limit.
  15. Method for producing a composite insulator (1, 10) containing a core (2) and a protective layer (4) which surrounds the core (2), according to one of Claims 1 to 14,
    characterized in that
    a field control layer (3) comprising at least one stratum (31, 32) of an elastomer material having a proportion of particles, which influence the electrical field of the insulator (1, 10), which proportion changes over the length of the layer, is applied to the core (2) of the insulator (1, 10) in at least one section (15, 16), and in that the entire core (2) is coated with the applied field control layer (3) with the protective layer (4), and in that the insulator (1, 10) is then subjected to heat treatment (27) in order to vulcanize the plastics.
  16. Method according to Claim 15,
    characterized in that
    the field control layer (3) is applied in at least two strata (31, 32) with different effects on the electrical field.
  17. Method according to Claim 15 or 16,
    characterized in that
    the field control layer (3) is applied in sections (15) to the core (2) of the insulator.
  18. Method according to Claim 17,
    characterized in that,
    in the case of a field control layer (3) which is subdivided into individual sections and consists of at least two strata (31, 32), one stratum (31, 32) is applied in the boundary area to the layer-free section, beyond the stratum (31, 32) which is located above or below it, to the layer-free section.
  19. Method according to one of Claims 15 to 18,
    characterized in that
    the particles which influence the electrical field of the insulator (1, 10) are added to the extrudate in a different amount, during the application of the stratum (31, 32) of the field control layer (3) to the core (2).
EP09709505A 2008-02-14 2009-02-12 Field-controlled composite insulator Active EP2243145B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200930550T SI2243145T1 (en) 2008-02-14 2009-02-12 Field-controlled composite insulator
PL09709505T PL2243145T3 (en) 2008-02-14 2009-02-12 Field-controlled composite insulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008009333A DE102008009333A1 (en) 2008-02-14 2008-02-14 Field-controlled composite insulator
PCT/EP2009/000983 WO2009100904A1 (en) 2008-02-14 2009-02-12 Field-controlled composite insulator

Publications (2)

Publication Number Publication Date
EP2243145A1 EP2243145A1 (en) 2010-10-27
EP2243145B1 true EP2243145B1 (en) 2013-01-23

Family

ID=40622154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09709505A Active EP2243145B1 (en) 2008-02-14 2009-02-12 Field-controlled composite insulator

Country Status (9)

Country Link
US (1) US8637769B2 (en)
EP (1) EP2243145B1 (en)
JP (1) JP5302978B2 (en)
CA (1) CA2715651C (en)
DE (2) DE102008009333A1 (en)
ES (1) ES2401885T3 (en)
PL (1) PL2243145T3 (en)
SI (1) SI2243145T1 (en)
WO (1) WO2009100904A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663085B2 (en) * 2010-05-28 2015-02-04 ラップ インシュレータース ゲゼルシャフト ミット ベシュレンクテルハフツング Composite insulator
DE102010043990A1 (en) * 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Insulator arrangement and method for producing an insulator arrangement
DE102010043995A1 (en) * 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Insulator arrangement and method for producing an insulator arrangement
JP2012248525A (en) * 2011-05-31 2012-12-13 Tokyo Electric Power Co Inc:The Polymer insulator
DE102011055401A1 (en) 2011-11-16 2013-05-16 Rwth Aachen Funnel-shaped insulating body for isolating electric field producing conductor i.e. lead wire, of gas insulated direct current switchgear, has micro-hollow elements influencing field nonuniformly distributed in matrix material
DE102012104137A1 (en) * 2012-05-11 2013-11-14 Maschinenfabrik Reinhausen Gmbh Field controlled composite insulator e.g. rod, has core, shielding sheath and field control layer that is applied by plasma coating to core, where dielectric properties are controlled by geometric structure of field-control layer
US9876342B2 (en) 2013-09-25 2018-01-23 3M Innovative Properties Company Compositions for electric field grading
FR3057697B1 (en) * 2016-10-18 2020-02-14 Sediver Sa ISOLATOR FOR OVERHEAD POWER LINES WITH A PROTECTED LEAKAGE CURRENT
GB2578251B (en) * 2017-07-13 2022-04-27 Sumitomo Electric Industries Non-ohmic composition and method for manufacturing same, cable interconnect unit and cable end-connect unit
CA2989069A1 (en) * 2017-12-13 2019-06-13 Hydro-Quebec Composite, crosspiece coated with the composite and their use in an electric network
EP3591672B1 (en) 2018-07-02 2023-03-29 Hitachi Energy Switzerland AG Insulator with resistivity gradient
CN109786047A (en) * 2018-12-29 2019-05-21 江苏神马电力股份有限公司 Hollow combined insulator and breaker
EP3813082B1 (en) * 2019-10-21 2023-07-19 Hitachi Energy Switzerland AG Insulator shed having non-circular tip
DE102022206149A1 (en) 2022-06-21 2023-12-21 Siemens Energy Global GmbH & Co. KG Bushing insulator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1465287B2 (en) 1964-05-14 1973-05-03 Brown, Boveri & Cie Ag, 6800 Mannheim HIGH VOLTAGE COMPOSITE INSULATOR
DE1515467B2 (en) * 1965-04-01 1971-04-15 Brown, Boven & Cie AG, 6800 Mann heim HIGH VOLTAGE COMPOSITE INSULATOR
DE2006247A1 (en) 1970-02-12 1971-10-07 Jenaer Glaswerk Schott & Gen High voltage insulator
DD139962A3 (en) 1978-04-18 1980-01-30 Manfred Kahle METHOD FOR PRODUCING A PLASTIC INSULATOR
DE3214141A1 (en) 1982-04-14 1983-10-20 Interpace Corp., Parsippany, N.J. Polymer rod insulator with improved interference-field and corona characteristics
NO167618C (en) * 1989-03-20 1991-11-20 Alcatel Stk As SURVIVAL DEVICE FOR ELECTRICAL APPLIANCES.
JP3602634B2 (en) 1996-01-09 2004-12-15 日本碍子株式会社 Semiconductive composite insulator
SE510819C2 (en) * 1997-02-14 1999-06-28 Ifoe Ceramics Ab Electric high voltage insulator with a semiconducting surface layer
DE19856123C2 (en) 1998-12-04 2000-12-07 Siemens Ag Hollow insulator
DE19858215C2 (en) 1998-12-17 2003-07-24 Ceramtec Ag Method and device for producing composite insulators
GB0103255D0 (en) * 2001-02-09 2001-03-28 Tyco Electronics Raychem Gmbh Insulator arrangement
EP1337022A1 (en) * 2002-02-18 2003-08-20 ABB Schweiz AG Surrounding body for a high voltage cable and cable element, which is provided with such a surrounding body
EP1577904B1 (en) * 2004-03-15 2012-02-22 ABB Research Ltd. High voltage bushing with element for electric-field control
DE102005041167A1 (en) * 2005-08-30 2007-03-01 Obo Bettermann Gmbh & Co. Kg Lightning rod conductor has conductor embedded in particle filled polymer as isolator with outer covering of electrical non linear material
EP1870975B1 (en) * 2006-06-21 2010-08-04 ABB Technology Ltd A device for electric field control
EP1936638A1 (en) * 2006-12-18 2008-06-25 Abb Research Ltd. An electric insulator and use thereof

Also Published As

Publication number Publication date
ES2401885T3 (en) 2013-04-25
DE202009018686U1 (en) 2012-11-06
EP2243145A1 (en) 2010-10-27
US8637769B2 (en) 2014-01-28
CA2715651C (en) 2016-05-24
JP2011514626A (en) 2011-05-06
DE102008009333A1 (en) 2009-08-20
SI2243145T1 (en) 2013-05-31
PL2243145T3 (en) 2013-06-28
CA2715651A1 (en) 2009-08-20
US20110017488A1 (en) 2011-01-27
JP5302978B2 (en) 2013-10-02
WO2009100904A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
EP2243145B1 (en) Field-controlled composite insulator
EP1476928B1 (en) Sleeve for a high-voltage cable and cable element provided with a sleeve of this type
EP0416452B1 (en) Electro-filter cable
EP1577904A1 (en) High voltage bushing with element for electric-field control
DE2746870A1 (en) METHOD FOR PRODUCING OUTDOOR COMPOSITE INSULATORS
DE2436413A1 (en) HIGH VOLTAGE CABLE
AT518664B1 (en) HVDC air choke coil and method of manufacture
EP1760855A1 (en) Lightning current conducting device
EP2577685B1 (en) Composite insulator
EP0068067B1 (en) High voltage resistor for open air insulating arrangements
DE1765602B1 (en) Abrasion-resistant electrical cable with a smooth surface
EP2715743A1 (en) Electric component for a high-voltage system
CH715655B1 (en) Grommet with a self-adaptively regulating electrical conductivity composite material.
DE102006056563B4 (en) Spacer for ensuring the separation distance for partially insulated lightning protection systems
DE602005005694T2 (en) HIGH OR MEDIUM VOLTAGE DEVICE WITH PARTICULAR DIELECTRIC SYSTEM
EP3410451B1 (en) Shield ring for a transformer coil
DE102017217163B4 (en) Electrical equipment and manufacturing process for electrical equipment
WO2020030753A1 (en) Material for controlling an electric field according to the direction
EP0779692A1 (en) Process for earthing a screen of an electrical cable and electrical cable
DE102017212026A1 (en) Shield ring and / or pitch compensation for a transformer coil
DE3214141A1 (en) Polymer rod insulator with improved interference-field and corona characteristics
DE102012000125A1 (en) Device for improving the electrical properties of a coating of a conductor or the like by insulating materials, and a method for using such a device
CH170845A (en) Process for the manufacture of products with mutually insulated electrical conductors and insulated conductors manufactured according to this process.
DE1538405A1 (en) Surge arresters
DE1957460B2 (en) High voltage composite insulator for overhead lines and switchgear - with fibre reinforced resin tension rod core and insulating shields

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEIFERT, JENS

Inventor name: HINRICHSEN, VOLKER

Inventor name: DENNDOERFER, HEINZ

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 595349

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006099

Country of ref document: DE

Effective date: 20130314

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2401885

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130425

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

BERE Be: lapsed

Owner name: LAPP INSULATORS G.M.B.H.

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E017493

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009006099

Country of ref document: DE

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230203

Year of fee payment: 15

Ref country code: FR

Payment date: 20230217

Year of fee payment: 15

Ref country code: ES

Payment date: 20230317

Year of fee payment: 15

Ref country code: CH

Payment date: 20230307

Year of fee payment: 15

Ref country code: AT

Payment date: 20230215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230209

Year of fee payment: 15

Ref country code: SI

Payment date: 20230127

Year of fee payment: 15

Ref country code: SE

Payment date: 20230220

Year of fee payment: 15

Ref country code: PL

Payment date: 20230127

Year of fee payment: 15

Ref country code: IT

Payment date: 20230228

Year of fee payment: 15

Ref country code: HU

Payment date: 20230203

Year of fee payment: 15

Ref country code: GB

Payment date: 20230221

Year of fee payment: 15

Ref country code: DE

Payment date: 20230221

Year of fee payment: 15