JP2012248525A - Polymer insulator - Google Patents

Polymer insulator Download PDF

Info

Publication number
JP2012248525A
JP2012248525A JP2011122000A JP2011122000A JP2012248525A JP 2012248525 A JP2012248525 A JP 2012248525A JP 2011122000 A JP2011122000 A JP 2011122000A JP 2011122000 A JP2011122000 A JP 2011122000A JP 2012248525 A JP2012248525 A JP 2012248525A
Authority
JP
Japan
Prior art keywords
diameter
frp core
insulator
polymer
polymer insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011122000A
Other languages
Japanese (ja)
Inventor
Masayoshi Suzuki
正義 鈴木
Masanori Isozaki
正則 磯崎
Takashi Fukuoka
崇 福岡
Ryosuke Matsuoka
良輔 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Chubu University filed Critical Tokyo Electric Power Co Inc
Priority to JP2011122000A priority Critical patent/JP2012248525A/en
Publication of JP2012248525A publication Critical patent/JP2012248525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer insulation capable of suppressing partial discharge even under a contamination wet condition, and suppressing the generation of tracking or erosion.SOLUTION: A sheath 12 is formed with shades 12A and 12B for covering an FRP core 11 sharing a mechanical load and ensuring a surface leakage distance required for insulation performance. A terminal fitting 13 provided at an end part of the FRP core 11 is connected to a building such as a steel tower or an electric wire. In a predetermined range from the terminal fitting on an electric charging end side, a ratio of a shade diameter and a drum diameter is made to be 2.87 or less. Or, semiconductive processing is performed on the whole surface of a body portion except for the shade portion of a surface of the sheath.

Description

本発明は、絶縁材料として有機絶縁物を用いたポリマーがいしに関する。   The present invention relates to a polymer insulator using an organic insulator as an insulating material.

一般に、がいしの絶縁材料としては磁器が用いられているが、軽量性や耐震性を考慮して有機絶縁物を用いたポリマーがいしも用いられるようになっている。図3は、従来の送電用のポリマーがいしの一例を示す構造図である。   In general, porcelain is used as an insulating material for an insulator, but a polymer insulator using an organic insulator is also used in consideration of light weight and earthquake resistance. FIG. 3 is a structural diagram showing an example of a conventional polymer insulator for power transmission.

図3に示すように、ポリマーがいしは、機械的荷重を分担するFRP(Fiber-glass Reinforced Plastics)コア11と、FRPコア11を紫外線やオゾンなどから保護するゴム製の外被12と、鉄塔などの構造物や電線など充電部と接続するための端子金具13とから構成されている。そして、外被12の胴体部には、汚損湿潤時の絶縁性能上必要な表面漏れ距離を確保するための複数の長短の笠部12A、12Bが形成されている。笠部12Aは笠部12Bより出張長さが大きく形成されている。このようなポリマーがいしは軽くて衝撃に強く、外被のゴム表面の撥水性のため汚損湿潤時の絶縁特性に優れるなどの特徴を有している。   As shown in FIG. 3, the polymer insulator includes an FRP (Fiber-glass Reinforced Plastics) core 11 that shares a mechanical load, a rubber sheath 12 that protects the FRP core 11 from ultraviolet rays, ozone, and the like, a steel tower, and the like. And a metal terminal 13 for connecting to a charging part such as an electric wire. A plurality of long and short shade portions 12A and 12B are formed on the body portion of the outer jacket 12 to ensure a surface leakage distance necessary for insulation performance during fouling and wetness. The cap portion 12A has a longer business trip length than the cap portion 12B. Such a polymer insulator is light and strong against impact, and has characteristics such as excellent insulation properties when wet due to water repellency of the outer rubber surface.

ここで、外被に使用される高電圧電気絶縁体用シリコーンゴム組成物を改良し、過酷な大気汚染、塩害あるいは気候に晒された条件下でも、耐吸水性、耐候性、撥水性、防汚性、耐電圧性、耐トラッキング性、耐アーク性、耐エロージョン性等の高電圧電気特性に優れたポリマー碍子を与えるようにしたものがある(例えば、特許文献1参照)。   Here, the silicone rubber composition for high voltage electrical insulators used for the jacket is improved, and even under conditions exposed to severe air pollution, salt damage or climate, water absorption resistance, weather resistance, water repellency, Some polymer insulators have excellent high voltage electrical characteristics such as dirtiness, voltage resistance, tracking resistance, arc resistance, and erosion resistance (see, for example, Patent Document 1).

特開2007−180044号公報JP 2007-180044 A

しかし、外被12として、ゴムやエポキシ樹脂などの有機絶縁物を使っているため、紫外線やオゾン、水、放電などによる経年劣化が避けられない。特に、汚損湿潤時の放電による外被の劣化が懸念される。   However, since an organic insulator such as rubber or epoxy resin is used as the outer cover 12, deterioration over time due to ultraviolet rays, ozone, water, electric discharge, etc. cannot be avoided. In particular, there is a concern about the deterioration of the outer jacket due to the discharge when the soil is wet.

すなわち、外被12の表面に海塩などの汚損物が付着し湿潤すると、表面抵抗Rが下がり、課電下では漏れ電流Iが流れる。漏れ電流Iが流れると、ジュール熱RIが発生し湿潤した表面は乾燥するが、一様には乾燥せず、電流密度が高い胴部など乾燥し易い箇所と、電流密度が低い笠部などの乾燥し難い箇所が生じる。漏れ電流Iは課電端から接地端まで同じ電流が流れるので、乾いて抵抗の高い箇所で発生するジュール熱RIは、抵抗の低い他の部分より大きく、益々乾燥が進み、他の部分に比べ何桁も大きな抵抗になる。がいし全体に加わる電圧は、表面の抵抗分布に比例して分布するので、表面抵抗が高くなった乾燥帯の分担電圧は非常に高くなり、その部分の表面の空気の絶縁が破壊し部分放電が発生する。 That is, when a fouling substance such as sea salt adheres to the surface of the jacket 12 and gets wet, the surface resistance R decreases, and a leakage current I flows under electric power. When the leakage current I flows, Joule heat RI 2 is generated and the wet surface is dried, but it is not uniformly dried. The part where it is difficult to dry occurs. Since the leakage current I flowing the same current from the voltage application end to the ground terminal, the Joule heat RI 2 generated in dry and high resistance point is greater than the lower other part of the resistance, increasing the drying proceeds, the other part Compared to many orders of magnitude greater resistance. Since the voltage applied to the entire insulator is distributed in proportion to the resistance distribution on the surface, the shared voltage of the dry zone where the surface resistance is high becomes very high, and the insulation of the air on the surface of the part breaks down and partial discharge occurs. appear.

このような部分放電が発生すると、外被12の表面ゴムなどが酸素の不足した条件で過熱されることがあり、トラッキング(導電性の通路)が発生する。また、酸素が充分供給されているとエロージョン(絶縁性の侵食)などを引き起こす恐れがある。トラッキングが生じると、がいしの絶縁機能が失われ、エロージョンが生じ進展しFRPコア11が露出すると、脆性破壊によりがいしが離断する場合がある。   When such partial discharge occurs, the surface rubber or the like of the outer jacket 12 may be overheated under a condition where oxygen is insufficient, and tracking (conductive path) occurs. Further, if oxygen is sufficiently supplied, erosion (insulating erosion) may occur. When tracking occurs, the insulating function of the insulator is lost, and when the erosion is generated and the FRP core 11 is exposed, the insulator may break off due to brittle fracture.

本発明の目的は、汚損湿潤条件下であっても部分放電を抑制でき、トラッキングやエロージョンの発生を抑制できるポリマーがいしを提供することである。   An object of the present invention is to provide a polymer insulator capable of suppressing partial discharge even under fouling and wet conditions and suppressing generation of tracking and erosion.

請求項1の発明に係るポリマーがいしは、機械的荷重を分担するFRPコアと、前記FRPコアを被覆するとともに絶縁性能上必要な表面漏れ距離を確保するための笠部が間隔を保って胴体部に形成された外被と、前記FRPコアの端部に設けられ鉄塔などの構造物や電線に接続される端子金具とからなり、課電端側の前記端子金具からの所定範囲において前記外被の笠部の径(笠径)と前記外被の胴体部の径(胴径)との比を2.87以下としたことを特徴とする。   The polymer insulator according to the first aspect of the present invention includes a FRP core that shares a mechanical load, and a body portion that covers the FRP core and has a cap portion for securing a surface leakage distance necessary for insulation performance while maintaining a gap. And a terminal metal fitting provided at an end of the FRP core and connected to a structure such as a steel tower or an electric wire, and in a predetermined range from the terminal metal fitting on the charging end side, The ratio of the diameter of the cap portion (cap portion diameter) to the diameter of the trunk portion of the outer jacket (trunk diameter) is 2.87 or less.

請求項2の発明に係るポリマーがいしは、機械的荷重を分担するFRPコアと、前記FRPコアを被覆するとともに絶縁性能上必要な表面漏れ距離を確保するための笠部が形成された外被と、前記FRPコアの端部に設けられ鉄塔などの構造物や電線に接続される端子金具とからなり、前記外被の表面のうち前記笠部を除く胴体部の全表面に半導電性処理を施したこと特徴とする。   The polymer insulator according to the invention of claim 2 includes an FRP core that shares a mechanical load, and a jacket that covers the FRP core and has a cap portion for securing a surface leakage distance necessary for insulation performance. The FRP core is provided with a structure such as a steel tower and a terminal fitting connected to an electric wire, and semi-conductive treatment is performed on the entire surface of the body portion excluding the shade portion of the outer cover surface. It is characterized by having given.

請求項1の発明よれば、課電端側の端子金具から所定範囲において、笠径と胴径との比を2.87以下としたので、汚損湿潤条件下であっても部分放電電圧を高く保持できる。従って、放電を抑制できトラッキングやエロージョンの発生を抑制できる。   According to the first aspect of the present invention, since the ratio of the cap diameter to the trunk diameter is set to 2.87 or less within a predetermined range from the terminal fitting on the charging end side, the partial discharge voltage is increased even under the fouling and wet conditions. Can hold. Accordingly, the discharge can be suppressed and the occurrence of tracking and erosion can be suppressed.

請求項2の発明によれば、外被の表面のうち前記笠部を除く胴体部の全表面に半導電性処理を施したので、外被表面のうち胴体部の電位分布の集中を緩和でき、これにより部分放電電圧を高く保持できる。従って、放電を抑制できトラッキングやエロージョンの発生を抑制できる。   According to the second aspect of the present invention, since the entire surface of the body portion excluding the cap portion is subjected to the semiconductive process on the surface of the jacket, the concentration of potential distribution on the body portion of the jacket surface can be reduced. Thereby, the partial discharge voltage can be kept high. Accordingly, the discharge can be suppressed and the occurrence of tracking and erosion can be suppressed.

本発明の実施形態1に係るポリマーがいしの一例を示す構造図。1 is a structural diagram showing an example of a polymer insulator according to Embodiment 1 of the present invention. 本発明の実施形態2に係るポリマーがいしの一例を示す構造図。FIG. 6 is a structural diagram showing an example of a polymer insulator according to Embodiment 2 of the present invention. 従来の送電用のポリマーがいしの一例を示す構造図。The structural diagram which shows an example of the polymer insulator for the conventional power transmission.

まず、本発明に至った経緯について説明する。出願人は、同じ長さの送電用ポリマーがいしと磁器長幹がいしの表面に、同じシリコーンゴムを塗布し、人工加速劣化試験を行った。その結果、送電用ポリマーがいしが放電を発生し易く劣化し易いことを把握した。   First, the background to the present invention will be described. The applicant applied the same silicone rubber to the surfaces of the same length of power transmission polymer insulator and porcelain long insulator, and conducted an artificial accelerated deterioration test. As a result, it was understood that the polymer for power transmission is likely to generate a discharge and deteriorate easily.

ポリマーがいしが劣化しやすい要因としては、胴径の違いと笠部形状の違いが考えられる。そこで、各種のポリマーがいし類と磁器がいし類とを用意し、全表面に同じシリコーンゴムを塗布し、人工加速劣化試験を行った。   As a factor that polymer insulators are likely to deteriorate, a difference in trunk diameter and a difference in cap shape can be considered. Therefore, various polymer insulators and porcelain insulators were prepared, the same silicone rubber was applied to the entire surface, and an artificial accelerated deterioration test was conducted.

表1は、3種類のポリマーがいし(送電用ポリマーがいし、SPがいし(ステーションポストがいし)、ポリマーがい管)、2種類の磁器がいし(磁器エアロ長幹がいし、磁器JIS長幹がいし)の寸法及び形状を示した表である。

Figure 2012248525
Table 1 shows the dimensions and shapes of three types of polymer insulators (transmission polymer insulators, SP insulators (station post insulators), polymer insulator tubes), and two types of porcelain insulators (porcelain aero insulators and porcelain JIS insulators). It is the table | surface which showed.
Figure 2012248525

人工加速劣化試験の結果、同じ笠部形状、同じ外被材、同じ長さでも送電用ポリマーがいしのみが劣化し易いことが判った。   As a result of the artificial accelerated deterioration test, it was found that only the insulator for the power transmission polymer is likely to deteriorate even with the same cap shape, the same jacket material, and the same length.

表1に基づいて、放電を発生しやすい送電用ポリマーがいしが他のがいしと構造上異なる点を抽出することとした。その結果、送電用ポリマーがいしは他のがいしと比較して、胴径が細いという知見を得た。   Based on Table 1, it was decided to extract the point where the polymer for power transmission, which is likely to generate electric discharge, is structurally different from other insulators. As a result, we have found that the power transmission polymer insulator has a smaller body diameter than other insulators.

表1に示すように、送電用ポリマーがいしの笠径/胴径は4.08、SPがいしの笠径/胴径は2.34、ポリマーがい管の笠径/胴径は1.25、磁器エアロ長幹がいしの笠径/胴径は2.87、磁器JIS長幹がいしの笠径/胴径は2.00であり、放電を発生しやすい送電用ポリマーがいしの笠径/胴径は4.08であるのに対し、放電を発生し難い他のがいしの笠径/胴径は2.87以下である。   As shown in Table 1, the diameter / body diameter of the power transmission polymer insulator is 4.08, the diameter / body diameter of the SP insulator is 2.34, and the diameter / body diameter of the polymer insulator pipe is 1.25, porcelain The diameter of the aero long insulator is 2.87, the diameter of the porcelain JIS long insulator is 2.00, and the diameter of the power transmission polymer insulator is 4 and the diameter of the insulator is 4. The diameter of the insulator / body diameter of other insulators, which are less likely to generate electric discharge, is 2.87 or less.

そこで、本発明では、胴径を太くして、笠径/胴径の比を2.87以下にすることを検討するとともに、がいしの課電端に電位が集中し放電が発生し易いことを考慮に入れ、がいしの課電端への電位分布の集中を緩和することを検討した。   Therefore, in the present invention, it is considered that the barrel diameter is increased and the ratio of the cap diameter / trunk diameter is set to 2.87 or less, and that the potential is concentrated at the charging end of the insulator and discharge is likely to occur. Taking into consideration, we studied to alleviate the concentration of potential distribution at the charging end of the insulator.

以上の検討結果を踏まえ、本発明の実施形態を説明する。図1は本発明の実施形態1に係るポリマーがいしの一例を示す構造図である。この実施形態1に係るポリマーがいしは、図3に示した従来の送電用ポリマーがいしに対し、課電端側の端子金具13から所定範囲において、笠径と胴径との比を2.87以下としたものである。図3と同一要素には、同一符号を付し重複する説明は省略する。   Based on the above examination results, an embodiment of the present invention will be described. FIG. 1 is a structural diagram showing an example of a polymer insulator according to Embodiment 1 of the present invention. In the polymer insulator according to the first embodiment, the ratio of the shade diameter to the trunk diameter is 2.87 or less in a predetermined range from the terminal fitting 13 on the charging end side with respect to the conventional power transmission polymer insulator shown in FIG. It is what. The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図1に示すように、送電用ポリマーがいしは両端に端子金具13を有する棒状がいしであり、図中の下側が電線を支持する課電端である。この課電端側の端子金具13から所定範囲において、胴径を太くし、笠径と胴径との比が2.87以下となるようにしている。これは、ポリマーがいしは棒状形状のため、電線を支持する課電端に電位が集中するので、課電端でも特に劣化が生じ易い胴部への、乾燥による更なる電位の集中を緩和するためである。   As shown in FIG. 1, the polymer insulator for power transmission is a rod-shaped insulator having terminal fittings 13 at both ends, and the lower side in the figure is a charging end for supporting the electric wire. In a predetermined range from the terminal fitting 13 on the charging end side, the barrel diameter is increased so that the ratio of the shade diameter to the trunk diameter is 2.87 or less. This is because the polymer insulator is rod-shaped, and the potential concentrates on the charging end that supports the wire. Therefore, to reduce further concentration of potential due to drying on the trunk, which is particularly susceptible to deterioration at the charging end. It is.

このように実施形態1では、課電端胴部の電界を緩和すれば、ポリマーがいしの寿命を左右するような劣化を抑えることができると考え、送電用ポリマーがいしの課電端側の笠部12A、12Bの5ピッチ分(約30cm分)の胴径を、約26mmから約46mmにして、胴径に対する笠径の比を約2.3にした。笠径/胴径が約2.3である場合には、放電が発生し難いSPがいし(笠径/胴径2.34)や磁器エアロ長幹がいし(笠径/胴径2.87)より笠径/胴径が小さい値となっており、胴径が太くなっている。従って、放電を発生し難くできる。ここで、笠径/胴径の値は、本発明の実施の形態では、2.87以下とする。これは、部分放電が発生し難かった磁器エアロ長幹がいしの笠径/胴径2.87以下とするためである。   As described above, in Embodiment 1, it is considered that if the electric field of the charging end body portion is relaxed, it is possible to suppress deterioration such that the polymer affects the life of the insulator. The body diameter of 5 pitches (about 30 cm) of 12A and 12B was changed from about 26 mm to about 46 mm, and the ratio of the shade diameter to the body diameter was about 2.3. When the cap diameter / trunk diameter is about 2.3, the SP insulator (caps diameter / trunk diameter 2.34) and the porcelain aero long insulator (caps diameter / trunk diameter 2.87) are less likely to cause discharge. The shade diameter / trunk diameter is a small value, and the trunk diameter is large. Therefore, it is difficult to generate discharge. Here, the value of the shade diameter / body diameter is 2.87 or less in the embodiment of the present invention. This is because the diameter of the porcelain aero long trunk, where the partial discharge is difficult to occur, is set to 2.87 or less.

図2は本発明の実施形態2に係るポリマーがいしの一例を示す構造図である。この実施形態2に係るポリマーがいしは、図3に示した従来の送電用ポリマーがいしに対し、外被の表面のうち笠部12A、12Bを除く胴体部の全表面に半導電性処理14を施したものである。図3と同一要素には、同一符号を付し重複する説明は省略する。   FIG. 2 is a structural diagram showing an example of a polymer insulator according to Embodiment 2 of the present invention. The polymer insulator according to the second embodiment is different from the conventional polymer insulator for power transmission shown in FIG. 3 in that a semiconductive treatment 14 is applied to the entire surface of the body portion except for the cap portions 12A and 12B on the outer cover surface. It is a thing. The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図2に示すように、ポリマーがいしの外被の表面のうち、笠部12A、12Bを除く胴体部の全表面に半導電性処理14を施す。   As shown in FIG. 2, the semiconductive treatment 14 is applied to the entire surface of the body portion except the shade portions 12A and 12B, of the surface of the jacket of the polymer insulator.

本発明の実施形態1、実施形態2、従来例の各ポリマーがいしについて、汚損湿潤条件下で部分放電試験を行い部分放電開始電圧を調査した。その結果を表2に示す。

Figure 2012248525
For the polymer insulators of Embodiment 1, Embodiment 2 and the conventional example of the present invention, a partial discharge test was conducted under a fouling wet condition to investigate a partial discharge start voltage. The results are shown in Table 2.
Figure 2012248525

表2に示すように、従来の送電用ポリマーがいしでは電圧70kVで課電端において部分放電を開始した。実施形態1のポリマーがいしでは電圧120kVで胴径の細い箇所において部分放電を開始し、実施形態2のポリマーがいしでは電圧100kVで課電端半導電化処理端部において部分放電を開始した。   As shown in Table 2, partial discharge was started at the charging end at a voltage of 70 kV with a conventional polymer for power transmission. In the polymer insulator of the first embodiment, partial discharge was started at a portion having a small body diameter at a voltage of 120 kV, and in the polymer insulator of the second embodiment, partial discharge was started at a voltage application end semiconductive treatment end portion at a voltage of 100 kV.

このように、実施形態1の胴部太径化したポリマーがいしの場合は1.7倍以上となり、実施形態2の胴部半導電化したポリマーがいしの場合は1.4倍以上となり、優れた部分放電抑制効果が認められ、ポリマーがいしの劣化防止効果が確認できた。   As described above, in the case of the insulator having a thickened body diameter of the first embodiment, it is 1.7 times or more, and in the case of the polymer having a semiconductive body part of the second embodiment, which is 1.4 times or more, excellent. A partial discharge suppressing effect was observed, and the polymer insulator insulation deterioration preventing effect was confirmed.

11…FRPコア、12…外被、12A、12B…笠部、13…端子金具、14…半導電性材料 DESCRIPTION OF SYMBOLS 11 ... FRP core, 12 ... Jacket | cover, 12A, 12B ... Shade part, 13 ... Terminal metal fitting, 14 ... Semiconductive material

Claims (2)

機械的荷重を分担するFRPコアと、
前記FRPコアを被覆するとともに絶縁性能上必要な表面漏れ距離を確保するための笠部が間隔を保って胴体部に形成された外被と、
前記FRPコアの端部に設けられ鉄塔などの構造物や電線に接続される端子金具とからなり、
課電端側の前記端子金具からの所定範囲において笠径と胴径との比を2.87以下としたことを特徴とするポリマーがいし。
An FRP core that shares the mechanical load;
An outer cover formed on the body portion with a gap between the cap portions for covering the FRP core and securing a surface leakage distance necessary for insulation performance;
The FRP core is provided at the end of the FRP core with a structure such as a steel tower and a terminal fitting connected to an electric wire,
A polymer insulator characterized in that the ratio of the shade diameter to the trunk diameter is 2.87 or less in a predetermined range from the terminal fitting on the charging end side.
機械的荷重を分担するFRPコアと、
前記FRPコアを被覆するとともに絶縁性能上必要な表面漏れ距離を確保するための笠部が形成された外被と、
前記FRPコアの端部に設けられ鉄塔などの構造物や電線に接続される端子金具とからなり、
前記外被の表面のうち前記笠部を除く胴体部の全表面に半導電性処理を施したこと特徴とするポリマーがいし。
An FRP core that shares the mechanical load;
A jacket on which the cap portion for covering the FRP core and securing a surface leakage distance necessary for insulation performance is formed;
The FRP core is provided at the end of the FRP core with a structure such as a steel tower and a terminal fitting connected to an electric wire,
A polymer insulator characterized in that a semiconductive treatment is applied to the entire surface of the body part excluding the shade part among the surface of the jacket.
JP2011122000A 2011-05-31 2011-05-31 Polymer insulator Pending JP2012248525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122000A JP2012248525A (en) 2011-05-31 2011-05-31 Polymer insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122000A JP2012248525A (en) 2011-05-31 2011-05-31 Polymer insulator

Publications (1)

Publication Number Publication Date
JP2012248525A true JP2012248525A (en) 2012-12-13

Family

ID=47468768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122000A Pending JP2012248525A (en) 2011-05-31 2011-05-31 Polymer insulator

Country Status (1)

Country Link
JP (1) JP2012248525A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947675B1 (en) * 1969-04-14 1974-12-17
JPS5787016A (en) * 1980-11-20 1982-05-31 Ngk Insulators Ltd Synthetic resin insulator
JPS61144533U (en) * 1985-02-27 1986-09-06
JPH0641030U (en) * 1992-10-30 1994-05-31 古河電気工業株式会社 Insulator
JPH07272558A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Polymer insulator
JPH09190729A (en) * 1996-01-09 1997-07-22 Ngk Insulators Ltd Semiconducting composite insulator
JPH09237535A (en) * 1996-02-29 1997-09-09 Ngk Insulators Ltd Polymer porcelain tube
JP2002157932A (en) * 2000-11-21 2002-05-31 Furukawa Electric Co Ltd:The Organic composite porcelain tube and its manufacturing method
JP2011514626A (en) * 2008-02-14 2011-05-06 ラップ インシュレータース ゲゼルシャフト ミット ベシュレンクテル ハフツング Electric field control type compound insulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947675B1 (en) * 1969-04-14 1974-12-17
JPS5787016A (en) * 1980-11-20 1982-05-31 Ngk Insulators Ltd Synthetic resin insulator
JPS61144533U (en) * 1985-02-27 1986-09-06
JPH0641030U (en) * 1992-10-30 1994-05-31 古河電気工業株式会社 Insulator
JPH07272558A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Polymer insulator
JPH09190729A (en) * 1996-01-09 1997-07-22 Ngk Insulators Ltd Semiconducting composite insulator
JPH09237535A (en) * 1996-02-29 1997-09-09 Ngk Insulators Ltd Polymer porcelain tube
JP2002157932A (en) * 2000-11-21 2002-05-31 Furukawa Electric Co Ltd:The Organic composite porcelain tube and its manufacturing method
JP2011514626A (en) * 2008-02-14 2011-05-06 ラップ インシュレータース ゲゼルシャフト ミット ベシュレンクテル ハフツング Electric field control type compound insulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015003521; 'ポリマーがいしの汚損特性' NGKレビュー Vol.57, 199809, p.19-29 *

Similar Documents

Publication Publication Date Title
Rowland et al. Electrical and material characterization of field-aged 400 kV silicone rubber composite insulators
US10283242B2 (en) Polymer bushing
BRPI0911792A8 (en) HIGH VOLTAGE INSULATOR AND HIGH VOLTAGE ELECTRIC POWER LINE THAT USES SAID INSULATOR
AR092625A1 (en) COMPOSITION OF REMOVABLE SEMI-CONDUCTING SHIELDS, METHOD FOR MAKING IT, AND CABLE THAT INCLUDES SUCH COMPOSITION
JP6001136B2 (en) Active lightning striker
He et al. Flashover of insulators in a wet environment
CN101605449B (en) Device for decreased risk of dielectric breakdown in high voltage apparatuses
DK2230670T3 (en) Medium Voltage Cable
ES2765449T3 (en) Anti-rain protection system, in particular external anti-rain protection system for an electrical machine
JP6081065B2 (en) Gas insulation equipment
US3328515A (en) Polymeric insulator with means for preventing burning due to leakage current and arcs
Oliveira Filho et al. The use of booster sheds to improve the performance of 800 kV multicone type insulators under heavy rain
JP2012248525A (en) Polymer insulator
CN105259440A (en) DC cable test terminal
US20090218208A1 (en) Disconnector and a support insulator therefor
Volat et al. Numerical simulations of ice-covered EHV post station insulator performance equipped with booster sheds
US7964268B2 (en) Insulating structures
Joneidi et al. Electric field distribution under water droplet and effect of thickness and conductivity of pollution layer on polymer insulators using finite element method
JP5490334B1 (en) Polymer hulls and lightning arresters
BOUHAOUCHE et al. Composite insulators in a 400 kV AC line in Algeria for improving electric field distribution
RU61463U1 (en) PASS-INSULATOR WITH SILICONE INSULATING LAYER
Kerendian et al. Effect of corona ring on potential distribution and electric field on silicon insulator in polluted condition
JP6168852B2 (en) Floating structure and grounding electrode
RU204479U1 (en) DEVICE DESIGNED TO PROTECT BIRDS AGAINST ELECTRIC SHOCK ON AIR POWER LINES
RU75500U1 (en) SUSPENDED INSULATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707