JP6081065B2 - Gas insulation equipment - Google Patents

Gas insulation equipment Download PDF

Info

Publication number
JP6081065B2
JP6081065B2 JP2012040742A JP2012040742A JP6081065B2 JP 6081065 B2 JP6081065 B2 JP 6081065B2 JP 2012040742 A JP2012040742 A JP 2012040742A JP 2012040742 A JP2012040742 A JP 2012040742A JP 6081065 B2 JP6081065 B2 JP 6081065B2
Authority
JP
Japan
Prior art keywords
electric field
gas
voltage conductor
insulating
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012040742A
Other languages
Japanese (ja)
Other versions
JP2013176275A (en
Inventor
保科 好一
好一 保科
孝倫 安岡
孝倫 安岡
靖子 石田
靖子 石田
旭 島村
旭 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012040742A priority Critical patent/JP6081065B2/en
Publication of JP2013176275A publication Critical patent/JP2013176275A/en
Application granted granted Critical
Publication of JP6081065B2 publication Critical patent/JP6081065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

本発明は、電界強度により誘電率が非線形に変化する絶縁材料を用いたガス絶縁機器に関する。   The present invention relates to a gas insulating device using an insulating material whose dielectric constant changes nonlinearly with electric field strength.

現在、電力系統においては金属容器に絶縁ガスを封入したガス絶縁機器が広く用いられている。ここで、一般的なガス絶縁機器の構成例について図10を用いて具体的に説明する。図10に示すように、金属容器2内に絶縁ガス4が封入されると共に、支持絶縁部3に絶縁支持された通電用の高電圧導体1が挿通されている。   At present, gas insulation equipment in which an insulating gas is sealed in a metal container is widely used in power systems. Here, the structural example of a general gas insulation apparatus is concretely demonstrated using FIG. As shown in FIG. 10, the insulating gas 4 is sealed in the metal container 2, and the energizing high voltage conductor 1 insulated and supported by the support insulating portion 3 is inserted.

金属容器2に封入される絶縁ガス4としては、絶縁性能および冷却性能に優れたSFガスが使用されている。このようなガス絶縁機器は高い需要を得ており、今や変電所および発電所におけるガス絶縁機器の主流を成している。さらに近年では、1100kV級系統への適用も計画されており、高電圧化と高容量化がより一層進められる傾向にある。 As the insulating gas 4 sealed in the metal container 2, SF 6 gas excellent in insulating performance and cooling performance is used. Such gas insulation equipment has gained high demand and is now the mainstream of gas insulation equipment in substations and power plants. Furthermore, in recent years, application to a 1100 kV class system is also planned, and higher voltage and higher capacity tend to be further promoted.

ところで、ガス絶縁機器を高電圧化する場合、高電圧導体1の電界強度が上昇するため、優れた絶縁性能を得るためには、機器を大型化して高電圧導体1と金属容器2の絶縁距離を確保するか、あるいは封入する絶縁ガス4の圧力を上昇させる必要がある。絶縁ガス4の圧力を上昇させた場合、金属容器2はその圧力に耐えうる圧力容器としなければならない。しかし、現行の製造工程ではそのような金属容器2の製造は非常に困難である。したがって、ガス絶縁機器の高電圧化に際して優れた絶縁性能を確保するためには、機器を大型化することが余儀なくされていた。   By the way, when the voltage of the gas insulated device is increased, the electric field strength of the high voltage conductor 1 is increased. Therefore, in order to obtain excellent insulation performance, the device is enlarged and the insulation distance between the high voltage conductor 1 and the metal container 2 is increased. Or the pressure of the insulating gas 4 to be sealed needs to be increased. When the pressure of the insulating gas 4 is increased, the metal container 2 must be a pressure container that can withstand the pressure. However, it is very difficult to manufacture such a metal container 2 in the current manufacturing process. Therefore, in order to ensure excellent insulation performance when the voltage of the gas insulation device is increased, it is necessary to increase the size of the device.

このような大型のガス絶縁機器を用いた変電所は、電力供給の根幹をなすが、最近では都市部の地下変電所への適用や経済性向上が強く望まれており、装置の縮小化を図ることが急務となっている。   Substations using such large-sized gas insulation equipment form the basis of power supply, but recently there has been a strong demand for application to urban substations and improvement in economic efficiency, so the size of the equipment can be reduced. There is an urgent need to plan.

さらに、主な絶縁ガス4として広く用いられているSFガスは、空気よりも約3倍の絶縁耐力があり電力供給に資するために必要不可欠な物質であるが、昨今の地球温暖化問題への取り組みから地球温暖化係数の高い温室効果ガスが規制される動向にあり、国内外でも温室効果ガスを使用しない代替ガス、あるいは温室効果ガスの使用割合を低減した混合ガスを封入したガス絶縁機器の適用が考えられている。現在のところ、無害で環境に優しいガスはSFガスよりも絶縁性能が低く、高電圧化が困難な状態である。 Furthermore, SF 6 gas, which is widely used as the main insulating gas 4, has a dielectric strength approximately three times that of air and is an indispensable substance for contributing to power supply. Insulators that contain greenhouse gases with a high global warming potential and are not regulated in Japan and overseas, or alternative gases that do not use greenhouse gases or mixed gases that reduce the use of greenhouse gases. Is considered to be applied. At present, harmless and environmentally friendly gas has lower insulation performance than SF 6 gas, and it is difficult to increase the voltage.

ここで、ガス絶縁機器の金属容器内における電界分布について説明する。ガス絶縁母線に代表される高気圧ガスを封入するガス絶縁機器は、円筒形の金属容器のほぼ中心軸上に高電圧導体部を配置する同軸円筒形状となっているが、この形状では中心軸に近いほど電界強度が上昇する。   Here, the electric field distribution in the metal container of the gas insulating device will be described. Gas insulation equipment that encloses high-pressure gas typified by a gas-insulated bus has a coaxial cylindrical shape in which a high-voltage conductor is placed on the central axis of a cylindrical metal container. The closer the distance, the higher the electric field strength.

たとえば、図5(b)は高電圧導体部の外径を100mm(直径)、金属容器の内径を400mm(直径)とした場合の高電圧導体と金属容器間の電界分布を、横軸を中心軸からの軸方向距離で表したグラフである。縦軸は平均電界(高電圧導体と金属容器間の電圧を距離で除した値)を1として正規化している。高電圧導体と金属容器間が単純なガスギャップの場合は三角プロットの実線で記載した分布となるが、高電圧導体に近づくほど電界強度は上昇し、高電圧導体の表面では平均電界の2倍を超えている。   For example, FIG. 5B shows the electric field distribution between the high voltage conductor and the metal container when the outer diameter of the high voltage conductor is 100 mm (diameter) and the inner diameter of the metal container is 400 mm (diameter). It is a graph represented by the axial direction distance from an axis | shaft. The vertical axis is normalized assuming that the average electric field (the value obtained by dividing the voltage between the high-voltage conductor and the metal container by the distance) is 1. In the case of a simple gas gap between the high voltage conductor and the metal container, the distribution is indicated by the solid line of the triangular plot, but the electric field strength increases as the voltage approaches the high voltage conductor, and doubles the average electric field on the surface of the high voltage conductor. Is over.

通常の絶縁設計では、この高電圧導体表面の最大電界強度に対して、想定される過電圧が高電圧導体に侵入した場合でも許容電界以下となり絶縁性能を確保できるように機器サイズを決定している。そのため、高電圧導体表面の最大電界強度を小さくすることができれば、絶縁性能を確保しつつ機器のコンパクト化が実現できる。   In the normal insulation design, the equipment size is determined so that the insulation field can be ensured with the maximum electric field strength on the surface of the high-voltage conductor, even if an assumed overvoltage enters the high-voltage conductor, and the electric field is below the allowable electric field. . Therefore, if the maximum electric field strength on the surface of the high-voltage conductor can be reduced, the device can be made compact while ensuring the insulation performance.

以上述べたガス絶縁機器へのニーズに対応した装置としては、複合絶縁方式のガス絶縁機器が提案されている。具体的には、高電圧導体の外表面と金属容器の内表面のそれぞれに、PFA、FEP、PTFEなどのフッ素樹脂による被覆を設け、高電圧導体フッ素樹脂被覆の被覆厚さは10〜20mm、金属容器フッ素樹脂被覆の被覆厚さは1〜5mmとされている。そして、これらの高電圧導体フッ素樹脂被覆と金属容器フッ素樹脂被覆の間に、支持絶縁物を設けたもの(例えば、特許文献1参照)がある。このようなガスと絶縁被覆による絶縁方式では、絶縁力の低い窒素を絶縁ガスとした場合でも、現行のSFガスを用いた機器と同等のサイズで絶縁構成が可能となる。(例えば、非特許文献1参照)。 As a device corresponding to the needs for the gas insulation equipment described above, a composite insulation type gas insulation equipment has been proposed. Specifically, each of the outer surface of the high voltage conductor and the inner surface of the metal container is provided with a coating of fluororesin such as PFA, FEP, PTFE, etc., and the coating thickness of the high voltage conductor fluororesin coating is 10 to 20 mm, The coating thickness of the metal container fluororesin coating is 1 to 5 mm. And there exists what provided the support insulator between these high voltage conductor fluororesin coating | covers and metal container fluororesin coating | covers (for example, refer patent document 1). In such an insulation system using a gas and an insulation coating, even when nitrogen having a low insulation power is used as the insulation gas, an insulation configuration with a size equivalent to that of a device using the current SF 6 gas becomes possible. (For example, refer nonpatent literature 1).

特許第3028975号公報Japanese Patent No. 3028975

平成11年電気学会全国大会No.15421999 IEEJ National Convention No. 1542

しかし、上記特許文献1のような複合絶縁方式のガス絶縁機器は、絶縁性能を高めるためには複雑な構成となってしまうため、より簡易的な高電圧導体の構成が求められている。   However, the gas insulation device of the composite insulation system as in Patent Document 1 has a complicated configuration in order to improve the insulation performance, and thus a simpler configuration of a high voltage conductor is required.

本発明は、以上のような問題点を解決するために提案されたものであり、金属容器と高電圧導体の間に絶縁材料を配置するだけの簡単な構成でありながら、金属容器内の最大電界を低減して小型化を実現できるガス絶縁機器を提供することを目的としている。   The present invention has been proposed in order to solve the above-described problems, and has a simple configuration in which an insulating material is simply disposed between a metal container and a high-voltage conductor. It aims at providing the gas insulation apparatus which can implement | achieve size reduction by reducing an electric field.

本実施形態のガス絶縁機器は、次の構成を有することを特徴とする。すなわち、絶縁ガスが封入された金属容器内に高電圧導体を挿入し、前記高電圧導体を絶縁支持する支持絶縁部を配置したガス絶縁機器において、前記金属容器と高電圧導体の間に、電界強度により誘電率が非線形に変化する絶縁材料を配置し、前記絶縁材料の誘電率は、ガス絶縁機器の通常運転時よりも前記高電圧導体に異常電圧が侵入した時の方が大きい。
The gas insulation apparatus of this embodiment has the following configuration. That is, in a gas insulating apparatus in which a high voltage conductor is inserted into a metal container in which an insulating gas is sealed and a support insulating portion for insulatingly supporting the high voltage conductor is disposed, an electric field is interposed between the metal container and the high voltage conductor. dielectric constant is arranged an insulating material varies nonlinearly with the intensity, dielectric constant of the insulating material, is greater when the normal abnormal voltage in the high voltage conductor than during operation of the gas insulated apparatus has entered.

第1の実施形態に係るガス絶縁機器の構成を示す軸方向断面図である。It is an axial direction sectional view showing the composition of the gas insulation equipment concerning a 1st embodiment. 高電圧導体に被覆のない場合の等電位分布(5%)を示す軸方向断面図である。It is an axial direction sectional view showing equipotential distribution (5%) when a high voltage conductor is not covered. 高電圧導体に絶縁被覆(比誘電率ε=2)のある場合の等電位分布(5%)を示す軸方向断面図である。It is an axial direction sectional view showing equipotential distribution (5%) when the high voltage conductor has an insulating coating (relative permittivity ε = 2). 高電圧導体に絶縁被覆(比誘電率ε=4)のある場合の等電位分布(5%)を示す軸方向断面図である。It is an axial direction sectional view showing equipotential distribution (5%) when the high voltage conductor has an insulating coating (relative permittivity ε = 4). (a)はガス絶縁機器の半径方向の断面図であり、(b)は電界分布を示す図である。(A) is sectional drawing of the radial direction of a gas insulation apparatus, (b) is a figure which shows electric field distribution. 支持絶縁物の比誘電率がε=6で一様な場合の等電位分布(5%)を示す軸方向断面図である。It is an axial direction sectional view showing equipotential distribution (5%) when the relative dielectric constant of the supporting insulator is uniform at ε = 6. 支持絶縁物の一部の比誘電率がε=30に上昇した場合の等電位分布(5%)を示す軸方向断面図である。It is an axial direction sectional view showing equipotential distribution (5%) when the relative dielectric constant of a part of the support insulator rises to ε = 30. 第3の実施形態に係るガス絶縁機器の構成を示す軸線方向断面図である。It is an axial direction sectional view showing the composition of the gas insulation equipment concerning a 3rd embodiment. 第4の実施形態に係るガス絶縁機器の構成を示す軸線方向断面図である。It is an axial direction sectional view showing the composition of the gas insulation equipment concerning a 4th embodiment. 従来のガス絶縁機器の構成を示す軸方向断面図である。It is an axial sectional view showing the configuration of a conventional gas insulation device.

以下に、本発明の各実施形態について図1から図9を用いて説明する。
[第1の実施形態]
(構成)
図1は、第1の実施形態に係るガス絶縁機器の構成図である。図1に示すように、第1の実施形態の特徴は、高電圧導体1を絶縁被覆部5で被覆している点にある。絶縁被覆部5は、絶縁被覆部5内の電界強度によって、その誘電率が非線形に変化する絶縁材料から構成されている。この絶縁被覆部5は、その絶縁被覆部5内の電界強度が所定の大きさになったとき、すなわち閾値を超えたときに誘電率が変化する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[First Embodiment]
(Constitution)
FIG. 1 is a configuration diagram of a gas insulating device according to the first embodiment. As shown in FIG. 1, the first embodiment is characterized in that the high-voltage conductor 1 is covered with an insulating coating portion 5. The insulating coating 5 is made of an insulating material whose dielectric constant changes nonlinearly depending on the electric field strength in the insulating coating 5. The dielectric constant of the insulating coating 5 changes when the electric field strength in the insulating coating 5 reaches a predetermined level, that is, when the threshold value is exceeded.

また、絶縁ガス4としては、絶縁耐力の優れたSFガスまたはSFガス以外のガス、すなわち窒素ガス、乾燥空気または炭酸ガスのいずれかによる単体ガスあるいはこれら単体ガスを含む混合ガスを使用することも可能である。その他の構成については、前に述べた一般的なガス絶縁機器の構成と同様である。 Further, as the insulating gas 4, SF 6 gas having excellent dielectric strength or gas other than SF 6 gas, that is, a single gas of nitrogen gas, dry air or carbon dioxide gas or a mixed gas containing these single gases is used. It is also possible. About another structure, it is the same as that of the structure of the general gas insulation apparatus described previously.

(作用効果)
図2は高電圧導体1に絶縁被覆部5を被覆していない場合の高電圧導体1と金属容器2のガスギャップの電位分布を示している。図中のLは、高電圧導体1および金属容器2が共通とする中心軸線を示している。図2より、金属容器2内では中心部に配置された高電圧導体1に近づくほど電位分布間隔が狭くなり、電界強度が上昇することがわかる。
(Function and effect)
FIG. 2 shows the potential distribution of the gas gap between the high voltage conductor 1 and the metal container 2 when the high voltage conductor 1 is not covered with the insulating coating 5. L in the figure indicates a central axis common to the high voltage conductor 1 and the metal container 2. From FIG. 2, it can be seen that the potential distribution interval becomes narrower and the electric field strength increases as the metal container 2 approaches the high voltage conductor 1 arranged at the center.

図3は高電圧導体1に絶縁被覆部5を被覆した場合の電位分布であり、絶縁被覆部5の比誘電率をε=2とした場合を示している。この場合、比誘電率の低い絶縁被覆部5と金属容器2のガスギャップの電位分担が大きくなり、高電圧導体1表面の電界強度は低減される。   FIG. 3 shows a potential distribution when the high voltage conductor 1 is coated with the insulating coating 5 and shows a case where the dielectric constant of the insulating coating 5 is ε = 2. In this case, the potential sharing of the gas gap between the insulating coating 5 having a low relative dielectric constant and the metal container 2 is increased, and the electric field strength on the surface of the high voltage conductor 1 is reduced.

さらに、絶縁被覆部5の比誘電率をε=4とした場合の電位分布を図4に示す。図3で示した絶縁被覆部5の比誘電率がε=2の場合と比べて、高電圧導体1表面の電界強度がさらに低減されている。このように、絶縁被覆部5の比誘電率が大きくなればなるほど、絶縁被覆部5と金属容器2のガスギャップの電位負担が増大し、高電圧導体1表面の電界強度は低減される。   Further, FIG. 4 shows a potential distribution when the dielectric constant of the insulating coating 5 is ε = 4. Compared with the case where the dielectric constant of the insulating coating 5 shown in FIG. 3 is ε = 2, the electric field strength on the surface of the high voltage conductor 1 is further reduced. Thus, as the relative dielectric constant of the insulating coating portion 5 increases, the potential burden of the gas gap between the insulating coating portion 5 and the metal container 2 increases, and the electric field strength on the surface of the high voltage conductor 1 is reduced.

絶縁被覆部5の誘電率と電界分布の特性について、図5を用いて詳述する。図5(a)は、ガス絶縁機器の半径方向の断面図である。図中のZは高電圧導体1の軸中心の位置を示している。また、Aは高電圧導体1の表面を、Bは絶縁被覆部5の表面を、Cは金属容器2の内面をそれぞれ示している。図5(b)は、ガス絶縁機器内の電解分布を示すグラフである。この図5(b)では、高電圧導体部1の外径を100mm(直径)、絶縁材料被覆部5の外径を200mm(直径)、金属容器2の内径を400mm(直径)とした場合の金属容器2内の電界分布を、横軸を中心軸Zからの半径方向の距離で表したグラフである。縦軸は平均電界(高電圧導体と金属容器間の電圧を距離で除した値)を1として正規化している。   The dielectric constant and electric field distribution characteristics of the insulating coating 5 will be described in detail with reference to FIG. Fig.5 (a) is sectional drawing of the radial direction of a gas insulation apparatus. Z in the figure indicates the position of the axial center of the high-voltage conductor 1. A indicates the surface of the high-voltage conductor 1, B indicates the surface of the insulating coating 5, and C indicates the inner surface of the metal container 2. FIG.5 (b) is a graph which shows the electrolysis distribution in a gas insulation apparatus. In FIG. 5B, the outer diameter of the high voltage conductor portion 1 is 100 mm (diameter), the outer diameter of the insulating material coating portion 5 is 200 mm (diameter), and the inner diameter of the metal container 2 is 400 mm (diameter). 4 is a graph showing the electric field distribution in the metal container 2 with the horizontal axis representing the distance from the central axis Z in the radial direction. The vertical axis is normalized assuming that the average electric field (the value obtained by dividing the voltage between the high-voltage conductor and the metal container by the distance) is 1.

図5(b)において、四角のプロットは絶縁被膜5の比誘電率がε=2の場合であり、丸のプロットは絶縁被膜5の比誘電率がε=4の場合を示している。高電圧導体1の表面Aにおいては、絶縁被膜5の比誘電率が大きい方が、絶縁被覆部5と金属容器2のガスギャップの電位負担が増加し、高電圧導体1表面の電界は低減されている。一方、金属容器2の内面Cでは、ガスギャップの電位負担が増加するため、絶縁被膜5の比誘電率が大きい方が電界強度は高くなっている。   In FIG. 5B, the square plot shows the case where the relative dielectric constant of the insulating coating 5 is ε = 2, and the round plot shows the case where the relative dielectric constant of the insulating coating 5 is ε = 4. On the surface A of the high voltage conductor 1, the larger the relative dielectric constant of the insulating coating 5, the greater the potential burden on the gas gap between the insulating coating 5 and the metal container 2, and the lower the electric field on the surface of the high voltage conductor 1. ing. On the other hand, on the inner surface C of the metal container 2, since the potential burden of the gas gap increases, the electric field strength increases as the relative dielectric constant of the insulating coating 5 increases.

ここで、ガス絶縁装置は、通常の運転電圧(交流電圧)においては、金属容器2の表面に停留した金属異物の挙動を抑えるため、金属容器2表面の電界を抑える必要がある。一方、雷によるインパルス電圧など過電圧が高電圧導体1に侵入した場合は、継続時間の非常に短い現象であるため、金属異物よりも放電発端となりやすい高電圧導体1表面の電界を抑えた方が望ましい。   Here, the gas insulating device needs to suppress the electric field on the surface of the metal container 2 in order to suppress the behavior of the metal foreign matter retained on the surface of the metal container 2 at a normal operation voltage (AC voltage). On the other hand, when an overvoltage such as an impulse voltage caused by lightning enters the high-voltage conductor 1, it is a phenomenon with a very short duration. Therefore, it is better to suppress the electric field on the surface of the high-voltage conductor 1 that tends to be a discharge start than a metal foreign object. desirable.

そのため、通常の交流電圧による運転電圧では、絶縁被覆部5の比誘電率を抑え、雷などによる異常電圧侵入時には、絶縁被覆部5内の電界強度がその絶縁被覆部5の誘電率が変化する境界である閾値を超えて、絶縁被覆部5の比誘電率が大きくなるように構成している。例えば、絶縁被覆部5内の電界について、通常運転時の電界強度で比誘電率をε=2と抑え、異常電圧侵入時に比誘電率がε=4と大きくなるように構成することで、図5(b)に示すように、通常運転時(ε=2)には金属容器2内面の電界強度を低くし、異常電圧侵入時(ε=4)においても、高電圧導体1表面の電界強度を平均電界以下とすることができる。   For this reason, the operating voltage by the normal AC voltage suppresses the relative dielectric constant of the insulating coating part 5, and the electric field strength in the insulating coating part 5 changes the dielectric constant of the insulating coating part 5 when an abnormal voltage enters due to lightning or the like. The relative dielectric constant of the insulating coating 5 is increased beyond a threshold value that is a boundary. For example, with respect to the electric field in the insulating coating portion 5, the relative dielectric constant is suppressed to ε = 2 by the electric field strength during normal operation, and the relative dielectric constant is increased to ε = 4 at the time of abnormal voltage intrusion. As shown in FIG. 5 (b), the electric field strength on the inner surface of the metal container 2 is lowered during normal operation (ε = 2), and the electric field strength on the surface of the high-voltage conductor 1 even during abnormal voltage entry (ε = 4). Can be less than or equal to the average electric field.

以上のような構成を有する第1の実施形態は、高電圧導体1の表面に絶縁被覆部5を被覆した簡単な構成としながらも、高電圧導体1表面の最大電界強度を低減することができる。そのため、高電圧導体1と金属容器2の絶縁距離を短くすることができ、すなわち機器サイズを小型化することができる。また、高電圧導体1表面の最大電界強度が低減されるため、機器の大きさをそのままとしてSFよりも絶縁性能の低いガスを利用することができ、環境負荷の低減に貢献することができる。 The first embodiment having the above-described configuration can reduce the maximum electric field strength on the surface of the high-voltage conductor 1 while having a simple configuration in which the surface of the high-voltage conductor 1 is covered with the insulating coating portion 5. . Therefore, the insulation distance between the high voltage conductor 1 and the metal container 2 can be shortened, that is, the equipment size can be reduced. Further, since the maximum electric field strength on the surface of the high-voltage conductor 1 is reduced, a gas having a lower insulation performance than SF 6 can be used without changing the size of the device, which can contribute to a reduction in environmental load. .

[第2の実施形態]
(構成)
図7は、第2の実施形態に係るガス絶縁機器の等電位分布(5%)を示している。本実施例では、支持絶縁物3を電界強度によって誘電率が非線形に変化する絶縁材料で構成したことが特徴である。その他の構成については、第1の実施形態と同様である。この支持絶縁物3は、その支持絶縁物3内の電界強度が所定の大きさになったとき、すなわち閾値を超えたときに誘電率が変化する。
[Second Embodiment]
(Constitution)
FIG. 7 shows an equipotential distribution (5%) of the gas insulating apparatus according to the second embodiment. This embodiment is characterized in that the support insulator 3 is made of an insulating material whose dielectric constant changes nonlinearly depending on the electric field strength. About another structure, it is the same as that of 1st Embodiment. The dielectric constant of the support insulator 3 changes when the electric field strength in the support insulator 3 reaches a predetermined level, that is, when the threshold value is exceeded.

(作用効果)
図6は、支持絶縁物3の比誘電率がε=6で一定であり変化しない場合を示している。図6に示すように高電圧導体1表面の電界強度が最も高くなっている。一方、図7は支持絶縁物3に電界強度によって非線形に変化する絶縁材料を使用した場合を示している。具体的には、支持絶縁物3内の電界強度が誘電率の変化する境界である閾値よりも小さい場合に比誘電率ε=6となり、閾値を超えた場合には比誘電率がε=30となる絶縁材料を使用した。
(Function and effect)
FIG. 6 shows a case where the relative dielectric constant of the support insulator 3 is constant at ε = 6 and does not change. As shown in FIG. 6, the electric field strength on the surface of the high voltage conductor 1 is the highest. On the other hand, FIG. 7 shows a case where an insulating material that changes nonlinearly with the electric field strength is used for the supporting insulator 3. Specifically, the relative dielectric constant ε = 6 when the electric field strength in the support insulator 3 is smaller than a threshold value that is a boundary where the dielectric constant changes, and when the electric field strength exceeds the threshold value, the relative dielectric constant is ε = 30. Insulating material was used.

このような構成により、図7に示すようにD線を境に、支持絶縁物3の高電圧導体1側と金属容器2側で誘電率が変化し、支持絶縁物3の高電圧導体1側は比誘電率がε=30となり、金属容器2側は比誘電率ε=6となっている。これにより、支持絶縁物3の金属容器2側の電位負担が増加するため、支持絶縁物3と高電圧導体1の接続部分およびその近傍の電界強度が低減される。   With such a configuration, as shown in FIG. 7, the dielectric constant changes between the high voltage conductor 1 side of the support insulator 3 and the metal container 2 side at the D line as shown in FIG. 7, and the high voltage conductor 1 side of the support insulator 3. Has a relative dielectric constant ε = 30, and the dielectric constant ε = 6 on the metal container 2 side. As a result, the potential burden on the metal container 2 side of the support insulator 3 is increased, so that the electric field strength in the connection portion between the support insulator 3 and the high voltage conductor 1 and in the vicinity thereof is reduced.

このような構成を有する第2の実施形態は、支持絶縁物3を電界強度によって誘電率が変化する絶縁材料で構成する簡単な方法でありながらも、高電圧導体1表面の最大電界強度を低減することができる。そのため、支持絶縁物3を小型化することができ、すなわち機器サイズをコンパクトにすることができる。また、高電圧導体1表面の最大電界強度が低減されるため、機器の大きさをそのままとしてSFよりも絶縁性能の低いガスを利用することができ、環境負荷の低減に貢献することができる。
[第3の実施形態]
The second embodiment having such a configuration reduces the maximum electric field strength on the surface of the high-voltage conductor 1 while being a simple method of configuring the support insulator 3 with an insulating material whose dielectric constant changes depending on the electric field strength. can do. Therefore, the support insulator 3 can be reduced in size, that is, the equipment size can be reduced. Further, since the maximum electric field strength on the surface of the high-voltage conductor 1 is reduced, a gas having a lower insulation performance than SF 6 can be used without changing the size of the device, which can contribute to a reduction in environmental load. .
[Third Embodiment]

(構成)
図8は、第3の実施形態に係るガス絶縁機器を示す構成図である。本実施例では、高電圧導体1と金属容器2の間に、電界強度によって誘電率が変化する絶縁材料で構成したバリア絶縁物6を挿入配置したことが特徴である。このバリア絶縁物6は、高電圧導体1および金属容器2と同軸で円筒状の部材である。その他の構成については、第1の実施形態と同様である。
(Constitution)
FIG. 8 is a configuration diagram illustrating a gas insulating device according to the third embodiment. The present embodiment is characterized in that a barrier insulator 6 made of an insulating material whose dielectric constant changes depending on the electric field strength is interposed between the high voltage conductor 1 and the metal container 2. The barrier insulator 6 is a cylindrical member coaxial with the high voltage conductor 1 and the metal container 2. About another structure, it is the same as that of 1st Embodiment.

(作用効果)
このような構成を有する第3の実施形態は、第1の実施形態の作用効果に加えて、バリア絶縁物6は配置や形状など変更が可能であるため、それらの配置や形状と電界を組み合わせて制御することで誘電率を変化させて、金属容器2内の電界分布をコントロールすることができるという特徴がある。
[第4の実施形態]
(Function and effect)
In the third embodiment having such a configuration, in addition to the effects of the first embodiment, the arrangement and shape of the barrier insulator 6 can be changed. Therefore, the arrangement, shape, and electric field are combined. The electric field distribution in the metal container 2 can be controlled by changing the dielectric constant by controlling the electric field.
[Fourth Embodiment]

(構成)
図9は、第4の実施形態に係るガス絶縁機器を示す構成図である。第4の実施形態は、本発明を、電流遮断能力を有するガス絶縁機器に適用したもので、金属容器2内には固定接触部7と可動接触部8とが対向配置され収容されている。本実施形態では、両接触部7、8の外周面を電界強度によって誘電率が変化する絶縁被覆部5を被覆している。
(Constitution)
FIG. 9 is a configuration diagram illustrating a gas insulating device according to the fourth embodiment. In the fourth embodiment, the present invention is applied to a gas insulating device having a current interrupting capability, and a fixed contact portion 7 and a movable contact portion 8 are arranged oppositely and accommodated in the metal container 2. In this embodiment, the outer peripheral surfaces of both the contact portions 7 and 8 are covered with the insulating coating portion 5 whose dielectric constant changes depending on the electric field strength.

このような構成を有する第4の実施形態は、電流の通電および遮断時において、両接触部7、8の外周面の電界強度を低減することが可能であり、機器サイズをコンパクトにすることができる。また、第1の実施形態と同様、高電圧導体1表面の最大電界強度が低減されるため、機器の大きさをそのままとしてSFよりも絶縁性能の低いガスを利用することができ、環境負荷の低減に貢献することができる。 The fourth embodiment having such a configuration can reduce the electric field strength of the outer peripheral surfaces of both contact portions 7 and 8 during the energization and interruption of the current, and can reduce the equipment size. it can. Further, as in the first embodiment, since the maximum electric field strength on the surface of the high voltage conductor 1 is reduced, it is possible to use a gas having a lower insulation performance than SF 6 without changing the size of the device, and to reduce the environmental load. Can contribute to the reduction of

[その他の実施の形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、第1乃至第4の実施形態を全て又はいずれかを組み合わせたものも包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. Specifically, a combination of all or any of the first to fourth embodiments is also included. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

1 高電圧導体
2 金属容器
3 支持絶縁部
4 絶縁ガス
5 絶縁被覆部
6 バリア絶縁物
7 固定接触部
8 可動接触部
DESCRIPTION OF SYMBOLS 1 High voltage conductor 2 Metal container 3 Support insulation part 4 Insulation gas 5 Insulation coating part 6 Barrier insulator 7 Fixed contact part 8 Movable contact part

Claims (5)

絶縁ガスが封入された金属容器内に高電圧導体を挿入し、前記高電圧導体を絶縁支持する支持絶縁部を配置したガス絶縁機器において、
前記金属容器と高電圧導体の間に、電界強度により誘電率が非線形に変化する絶縁材料を配置し
前記絶縁材料の誘電率は、ガス絶縁機器の通常運転時よりも前記高電圧導体に異常電圧が侵入した時の方が大きいこと、
を特徴とするガス絶縁機器。
In a gas insulating apparatus in which a high voltage conductor is inserted into a metal container in which an insulating gas is sealed, and a support insulating portion that supports the high voltage conductor is disposed.
Between the metal container and the high voltage conductor, an insulating material whose dielectric constant changes nonlinearly due to the electric field strength is disposed ,
The dielectric constant of the insulating material is greater when an abnormal voltage enters the high-voltage conductor than during normal operation of the gas-insulated equipment,
Gas insulation equipment characterized by.
前記高電圧導体の少なくとも一部を、電界強度により誘電率が非線形に変化する前記絶縁材料で被覆したこと、を特徴とする請求項1に記載のガス絶縁機器。   2. The gas insulating apparatus according to claim 1, wherein at least a part of the high voltage conductor is covered with the insulating material whose dielectric constant changes nonlinearly according to electric field strength. 前記支持絶縁部の少なくとも一部が、電界強度により誘電率が変化する前記絶縁材料を用いて構成されていること、
を特徴とする請求項1または2に記載のガス絶縁機器。
That at least a portion of the insulating support portion is configured by using the insulating material having a dielectric constant is changed by the electric field strength,
The gas insulation apparatus according to claim 1 or 2, characterized by the above-mentioned.
前記絶縁材料は、誘電率が前記絶縁材料内の電界強度と所定の閾値との関係によって変化し、
前記通常運転時には、前記絶縁材料内の電界強度が前記閾値よりも小さく、前記高電圧導体に異常電圧が侵入した時には、前記絶縁材料内の電界強度が前記閾値よりも大きいこと、
を特徴とする請求項1乃至3のいずれか1項に記載のガス絶縁機器。
The insulating material has a dielectric constant that changes depending on a relationship between an electric field strength in the insulating material and a predetermined threshold value.
During the normal operation, the electric field strength in the insulating material is smaller than the threshold, and when an abnormal voltage enters the high-voltage conductor, the electric field strength in the insulating material is larger than the threshold.
The gas insulation apparatus according to any one of claims 1 to 3, wherein
絶縁ガスが封入された金属容器内に高電圧導体を挿入し、前記高電圧導体を絶縁支持する支持絶縁部を配置したガス絶縁機器において、
前記金属容器と高電圧導体の間に、電界強度により誘電率が非線形に変化する絶縁材料を配置し
前記絶縁材料は、誘電率が前記絶縁材料内の電界強度と所定の閾値との関係によって変化し、
通常運転時には、前記絶縁材料内の電界強度が前記閾値よりも小さく、前記高電圧導体に異常電圧が侵入した時には、前記絶縁材料内の電界強度が前記閾値よりも大きいこと、
を特徴とするガス絶縁機器。
In a gas insulating apparatus in which a high voltage conductor is inserted into a metal container in which an insulating gas is sealed, and a support insulating portion that supports the high voltage conductor is disposed.
Between the metal container and the high voltage conductor, an insulating material whose dielectric constant changes nonlinearly due to the electric field strength is disposed ,
The insulating material has a dielectric constant that changes depending on a relationship between an electric field strength in the insulating material and a predetermined threshold value.
During normal operation, the electric field strength in the insulating material is smaller than the threshold, and when an abnormal voltage enters the high-voltage conductor, the electric field strength in the insulating material is larger than the threshold.
Gas insulation equipment characterized by.
JP2012040742A 2012-02-27 2012-02-27 Gas insulation equipment Active JP6081065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040742A JP6081065B2 (en) 2012-02-27 2012-02-27 Gas insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040742A JP6081065B2 (en) 2012-02-27 2012-02-27 Gas insulation equipment

Publications (2)

Publication Number Publication Date
JP2013176275A JP2013176275A (en) 2013-09-05
JP6081065B2 true JP6081065B2 (en) 2017-02-15

Family

ID=49268673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040742A Active JP6081065B2 (en) 2012-02-27 2012-02-27 Gas insulation equipment

Country Status (1)

Country Link
JP (1) JP6081065B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352782B2 (en) * 2014-11-26 2018-07-04 株式会社東芝 Insulating spacer
KR20160081365A (en) * 2014-12-31 2016-07-08 주식회사 효성 Electrode device for gas-insulated switchgear
JP2017060209A (en) * 2015-09-14 2017-03-23 株式会社東芝 Gas insulated equipment
DE102020212384A1 (en) * 2020-09-30 2022-03-31 Siemens Energy Global GmbH & Co. KG Coated conductor in high voltage equipment and method of increasing dielectric strength
DE102022200568A1 (en) * 2022-01-19 2023-07-20 Siemens Energy Global GmbH & Co. KG Gas-insulated electric power transmission equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111203A (en) * 1981-12-23 1983-07-02 株式会社日立製作所 Coating material for gas insulating equipment
DE19500849A1 (en) * 1995-01-13 1996-07-18 Abb Research Ltd Electrical component
JP5200282B2 (en) * 2008-10-03 2013-06-05 三菱電機株式会社 Insulating spacer
JP5135263B2 (en) * 2009-03-06 2013-02-06 株式会社東芝 Sealed insulation device

Also Published As

Publication number Publication date
JP2013176275A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP6081065B2 (en) Gas insulation equipment
US20100265635A1 (en) Gas-insulated switchgear
JPWO2015198420A1 (en) Gas insulation equipment
US9343879B2 (en) Carrier platform
KR20160081365A (en) Electrode device for gas-insulated switchgear
US20160134072A1 (en) Device for diverting earth currents, more particularly in wind turbines
JP4177628B2 (en) Compound insulation type gas insulated switchgear
JP6067150B2 (en) Gas insulated electrical equipment
JP2016033861A (en) Capacitor bushing and method for producing the same
US20090218208A1 (en) Disconnector and a support insulator therefor
JP2011142274A (en) Lightning arrester
CN105529617A (en) Line lightning arrester
KR20090114373A (en) Transformer
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
JP2016115596A (en) Electric field relaxing device of vacuum interrupter
JP6352782B2 (en) Insulating spacer
KR101860439B1 (en) Electrode device for gas-insulated switchgear
JP2008172976A (en) Dc-gas insulated bus-bar
JP7418672B1 (en) insulation equipment
JP2017060209A (en) Gas insulated equipment
CN205282878U (en) Line gap
JP6391453B2 (en) Lightning arrestor
JP6039135B2 (en) Mushroom type high voltage electrode
JP2011135675A (en) Gas insulated apparatus
JP5317930B2 (en) Static induction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R151 Written notification of patent or utility model registration

Ref document number: 6081065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151