JP2016115596A - Electric field relaxing device of vacuum interrupter - Google Patents

Electric field relaxing device of vacuum interrupter Download PDF

Info

Publication number
JP2016115596A
JP2016115596A JP2014254630A JP2014254630A JP2016115596A JP 2016115596 A JP2016115596 A JP 2016115596A JP 2014254630 A JP2014254630 A JP 2014254630A JP 2014254630 A JP2014254630 A JP 2014254630A JP 2016115596 A JP2016115596 A JP 2016115596A
Authority
JP
Japan
Prior art keywords
intermediate shield
shield
ground
electric field
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014254630A
Other languages
Japanese (ja)
Other versions
JP6519167B2 (en
Inventor
英昭 福田
Hideaki Fukuda
英昭 福田
健太 山村
Kenta Yamamura
健太 山村
小松 秀樹
Hideki Komatsu
秀樹 小松
高明 古畑
Takaaki Furuhata
高明 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2014254630A priority Critical patent/JP6519167B2/en
Publication of JP2016115596A publication Critical patent/JP2016115596A/en
Application granted granted Critical
Publication of JP6519167B2 publication Critical patent/JP6519167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which, when a ground layer is present around a VI having an intermediate shield, the voltage sharing of the potential of the intermediate shield joined to an insulating material of the VI is biased to the ground side by being affected by the ground capacitance, so, the electric field on the power-source side of the VI becomes high.SOLUTION: A second intermediate shield is provided between a power-source side energization part inside a VI and an intermediate shield joined to a ground side energization part and an insulating material. By interposing an intermediate insulating material between the second intermediate shield and the intermediate shield joined to the insulating material to form a portion of generating a ground voltage, a potential difference between the power-source side energization part and the second intermediate shield is made to be relatively small.SELECTED DRAWING: Figure 1

Description

本発明は、真空インタラプタの電界緩和装置に係わり、特に電源側通電部と中間シールド間の電位差を小さくした電界緩和装置に関するものである。   The present invention relates to an electric field relaxation device for a vacuum interrupter, and more particularly to an electric field relaxation device that reduces a potential difference between a power supply side energization section and an intermediate shield.

遮断部に真空インタラプタ(以下VIという)を用いた真空遮断器(以下VCBという)は、小形,高性能,保守点検の容易性などの特徴を有することから遮断器に広く採用され、近年、ますます高電圧・大容量のVCBが要望されている。高電圧・大容量に対応するものとして、例えばVIの周囲が接地金属で囲われたタンク形VCBがある。   Vacuum circuit breakers (hereinafter referred to as VCB) using a vacuum interrupter (hereinafter referred to as VI) in the circuit breaker have been widely adopted for circuit breakers due to their small size, high performance, and ease of maintenance and inspection. Higher voltage and larger capacity VCBs are demanded. For example, there is a tank type VCB in which the periphery of VI is surrounded by a ground metal as one corresponding to high voltage and large capacity.

図5はタンク形VCBに使用されるVIの部分図を示したもので、1は電源側通電部、2は接地側通電部で、図示省略された操作機構を介して接地側通電部2を動作して電源側通電部1に接触又は開放制御される。3,4は絶縁物で、所定の真空度を維持しながら両絶縁物間に中間シールド5を介在させてロー付け等により接合される。10は絶縁ガスの封入された金属製のタンクである。   FIG. 5 shows a partial view of a VI used in the tank type VCB. 1 is a power supply side energization unit, 2 is a grounding side energization unit, and the grounding side energization unit 2 is connected via an operation mechanism not shown. The power supply side energization unit 1 is operated to be controlled to contact or open. Reference numerals 3 and 4 denote insulators which are joined by brazing or the like with an intermediate shield 5 interposed between both insulators while maintaining a predetermined degree of vacuum. Reference numeral 10 denotes a metal tank filled with an insulating gas.

図6は、図5の構造を有するVIの静電容量と対地電圧の分布状態を示したものである。ここで、C0は電源側通電部1と接地側通電部2間の静電容量、C1は電源側通電部1と中間シールド5間の静電容量、C2は絶縁物3の静電容量、C3は電源側通電部1と中間シールド5間の静電容量、C4は絶縁物4の静電容量、C5は周囲の接地層(タンク)による対地静電容量、U0は電源電圧、U1は中間シールド5の対地電圧である。   FIG. 6 shows a distribution state of capacitance and ground voltage of VI having the structure of FIG. Here, C0 is an electrostatic capacity between the power supply side energization part 1 and the grounding side energization part 2, C1 is an electrostatic capacity between the power supply side energization part 1 and the intermediate shield 5, C2 is an electrostatic capacity of the insulator 3, and C3. Is the capacitance between the power supply side current-carrying part 1 and the intermediate shield 5, C4 is the capacitance of the insulator 4, C5 is the ground capacitance due to the surrounding ground layer (tank), U0 is the power supply voltage, U1 is the intermediate shield 5 to ground voltage.

図5で示すVIの電源側通電部1と中間シールド5の電位差は、
U0−U1[%]
となり、その値はVI周囲の接地層(タンク10など)による対地静電容量C5の大きさに依存する。一般に、対地静電容量C5が大きくなるとU0−U1[%]が大きくなり、電源側通電部1と中間シールド5におけるストレスE1は、
E1=(U0−U1)/d1[%/mm]
(ただし、d1は中間シールドと電源側及び接地側通電部間の距離)
が上昇し、上昇点での絶縁破壊確率が増加する。この現象を解決するために電圧分担コンデンサの配設、又はセラミックとシールドを多段構造化することで中間シールド5の対地電圧U1を大きくし、電位差U0−U1を小さくすることで絶縁破壊確率の低下を図っている。
The potential difference between the power supply side energization section 1 and the intermediate shield 5 of VI shown in FIG.
U0-U1 [%]
The value depends on the magnitude of the ground capacitance C5 due to the ground layer (such as the tank 10) around the VI. In general, when the ground capacitance C5 increases, U0-U1 [%] increases, and the stress E1 in the power supply side energizing section 1 and the intermediate shield 5 is:
E1 = (U0−U1) / d1 [% / mm]
(However, d1 is the distance between the intermediate shield and the current-carrying part on the power supply side and ground side)
Increases, and the breakdown probability at the rising point increases. In order to solve this phenomenon, the ground voltage U1 of the intermediate shield 5 is increased by arranging a voltage sharing capacitor, or the ceramic and the shield are multi-staged, and the potential difference U0-U1 is decreased to reduce the dielectric breakdown probability. I am trying.

なお、VIの内部に複数の中間シールドを設けるものとしては、特許文献1が公知となっている。この特許文献1は、接点と中間電位シールドとの間にシールドを取り付けることにより、中間電位シールドへの直接的なフラッシュオーバーを防止したものである。   Note that Patent Document 1 is known to provide a plurality of intermediate shields inside a VI. In this patent document 1, a direct flashover to the intermediate potential shield is prevented by attaching a shield between the contact and the intermediate potential shield.

特許第5095614Patent No. 5095614 特開平10−224923JP-A-10-224923

前述したVCBのようにVIの周囲に接地層がある場合、中間シールド5の電位が、対地静電容量の影響を受けることによって電圧分担が接地側に偏り、VIの電源側電界が高くなる。この問題を解決するために、特許文献2で示すようにVIと並列に電圧分担コンデンサを配設することや、セラミックとシールドを多段式にすることで電位の均一化を図っている。しかし、電圧分担コンデンサを配設する場合、VIの電源側の電界を緩和することを目的としていることから、その配置はVIと並列に接続するためVCBのタンク径が大きくなり、特に、高電圧・大容量のVCBの設置面積が大きくなるという問題を有している。   When there is a ground layer around the VI as in the VCB described above, the potential of the intermediate shield 5 is influenced by the ground capacitance, so that the voltage sharing is biased to the ground side, and the power supply side electric field of the VI increases. In order to solve this problem, as shown in Patent Document 2, a voltage sharing capacitor is provided in parallel with VI, and a ceramic and a shield are multistaged to equalize the potential. However, when a voltage sharing capacitor is provided, the purpose is to alleviate the electric field on the power supply side of the VI. Therefore, since the arrangement is connected in parallel with the VI, the tank diameter of the VCB increases, and in particular, the high voltage -There is a problem that the installation area of a large-capacity VCB increases.

また、セラミックとシールドを多段式構造としたVIでは、複数のセラミック筒の連設構造となり、高電圧・大容量のものとしては、例えば4個のセラミック筒による多段構成となっている。このため、VI製造時にはセラミック筒間の中心軸がずれるリスクが生じている。また、多段式構造の場合、隣接するセラミック筒間は金属からなるシールドによって接合されることから、セラミックとシールドの接合点が増えると外部閃絡がしやすくなり、VIの長さも長くなる問題を有している。   Further, in the VI having a multistage structure of ceramics and shields, a structure in which a plurality of ceramic cylinders are connected is provided, and a high voltage and large capacity one has a multistage structure including, for example, four ceramic cylinders. For this reason, there is a risk that the center axis between the ceramic cylinders is shifted during VI manufacturing. In addition, in the case of a multistage structure, adjacent ceramic cylinders are joined by a shield made of metal, so if the number of junctions between the ceramic and the shield increases, external flashing tends to occur and the length of VI also becomes longer. Have.

本発明が目的とするところは、電源側通電部と中間シールド間の電位差を小さくした電界緩和装置を提供することにある。   An object of the present invention is to provide an electric field relaxation device in which a potential difference between a power supply side energization section and an intermediate shield is reduced.

本発明は、電源側通電部と接地側通電部を、中間シールドを介在接合した絶縁物で囲繞構成した真空インタラプタであって、周囲を接地層で囲まれる真空インタラプタにおいて、
前記電源側通電部および接地側通電部と中間シールドの間に第2の中間シールドを配設し、第2の中間シールドと前記中間シールドの間に中間絶縁物を介在させて対地電圧の発生部分を形成することを特徴としたものである。
The present invention is a vacuum interrupter configured by surrounding a power supply side energization part and a ground side energization part with an insulator having an intermediate shield interposed therebetween, and the vacuum interrupter surrounded by a ground layer.
A portion where a ground voltage is generated by disposing a second intermediate shield between the power supply side energization unit and the ground side energization unit and the intermediate shield, and interposing an intermediate insulator between the second intermediate shield and the intermediate shield. It is characterized by forming.

本発明の前記第1の中間シールドは、支持体を介して中間絶縁物を固定し、中間絶縁物は支持体を介して第2の中間シールドを固定して構成することを特徴としたものである。   The first intermediate shield of the present invention is characterized in that an intermediate insulator is fixed through a support, and the intermediate insulator is configured by fixing a second intermediate shield through the support. is there.

また、本発明の、前記真空インタラプタを囲む接地層は、絶縁ガスの封入された金属製タンク内に真空インタラプタを収納する真空遮断器、若しくはガス絶縁開閉装置の何れかであることを特徴としたものである。   In the present invention, the ground layer surrounding the vacuum interrupter is either a vacuum circuit breaker that houses the vacuum interrupter in a metal tank filled with an insulating gas, or a gas insulated switchgear. Is.

以上のとおり、本発明によれば、周囲を接地層で囲まれたVIに、第2の対地電圧であるU2の発生部材を設けたことにより、電源側通電部と中間シールド間の電位差を小さくでき、電界緩和を図ることが可能となってVCBの小型化ができるものである。   As described above, according to the present invention, the potential difference between the power supply side current-carrying portion and the intermediate shield is reduced by providing the generating member of U2 that is the second ground voltage in the VI surrounded by the ground layer. Thus, the electric field can be relaxed and the VCB can be downsized.

本発明の実施形態を示すVIの構成図。The block diagram of VI which shows embodiment of this invention. 本発明のVIにおける静電容量と対地電圧の分布図。The distribution figure of the electrostatic capacity and ground voltage in VI of the present invention. VCBタンク径対タンク接地電位特性図。VCB tank diameter vs. tank ground potential characteristics. 中間絶縁物の比誘電率対第2中間シールド特性図。The relative dielectric constant of the intermediate insulator versus the second intermediate shield characteristic diagram. 従来のVIの構成図。The block diagram of conventional VI. 従来のVIにおける静電容量と対地電圧の分布図。Distribution diagram of capacitance and ground voltage in conventional VI.

図1は本発明によるVIの部分構成図で、図5で示す従来のVIと同一若しくは相当する部分に同一符号を付してその説明を省略する。本発明は、中間シールド(第1の中間シールド)5と対向して第2の中間シールド6を設け、その第1の中間シールド5と第2の中間シールド6との間に、セラミック等からなるリング状の中間絶縁物7を配設したものである。第2の中間シールド6は、電源側通電部1と接地側通電部2に面して距離d2を有して配設される。また、中間絶縁物7は、電源側通電部1と接地側通電部2の接点位置近辺に対向した位置に配設される。
すなわち、本発明のVIは、VIの外面である第1の中間シールド5の内周側に、支持体を介して中間絶縁物7を固定し、更にこの中間絶縁物7の内周側に支持体を介して第2の中間シールド6を固定配置して構成したものである。
FIG. 1 is a partial block diagram of a VI according to the present invention. The same or corresponding parts as those of the conventional VI shown in FIG. In the present invention, a second intermediate shield 6 is provided opposite to the intermediate shield (first intermediate shield) 5, and the first intermediate shield 5 and the second intermediate shield 6 are made of ceramic or the like. A ring-shaped intermediate insulator 7 is provided. The second intermediate shield 6 faces the power supply side energization unit 1 and the ground side energization unit 2 and is disposed with a distance d2. Further, the intermediate insulator 7 is disposed at a position facing the vicinity of the contact position between the power supply side energization unit 1 and the ground side energization unit 2.
That is, in the VI of the present invention, the intermediate insulator 7 is fixed to the inner peripheral side of the first intermediate shield 5 that is the outer surface of the VI via the support, and further supported on the inner peripheral side of the intermediate insulator 7. The second intermediate shield 6 is fixedly arranged through the body.

図2は、図1で示すVIの静電容量と対地電圧の分布状態図を示したもので、C6は中間絶縁物7の静電容量、U2は第2の中間シールド6の対地電圧である。
第1,第2の中間シールド5,6間に中間絶縁物7を介在させたことによって電位差(U2−U1)が発生し、電源側通電部1と第2の中間シールド6との電位差は、U0−(U2−U1)[%]となり、相対的に、電源側通電部1と第2の中間シールド6との電位差は小さくなる。この時、電源側通電部1と第2の中間シールド6との距離d2を、d2=d1とすれば、その間の電界E2は
E2=U0−(U2−U1)/d2[%/mm]<E1[%]
(ただし、E1は従来の電源側通電部1と中間シールド5における電界)
となり、電源側通電部1と第2の中間シールド6における電界が低下して絶縁破壊確率も低下する。したがって、同一のVCBにおいては、従来のように電圧分担コンデンサを用いたり、セラミックとシールドで多段構成とすることなくVIの絶縁破壊確率の低下を図ることができる。これによって、VCBの小型化が図れるものである。
FIG. 2 shows a distribution state diagram of the capacitance and ground voltage of VI shown in FIG. 1, where C6 is the capacitance of the intermediate insulator 7, and U2 is the ground voltage of the second intermediate shield 6. .
The potential difference (U2−U1) is generated by interposing the intermediate insulator 7 between the first and second intermediate shields 5 and 6, and the potential difference between the power supply side energization section 1 and the second intermediate shield 6 is U0− (U2−U1) [%], and the potential difference between the power supply side energization unit 1 and the second intermediate shield 6 is relatively small. At this time, if the distance d2 between the power supply side energization section 1 and the second intermediate shield 6 is d2 = d1, the electric field E2 between them is E2 = U0− (U2−U1) / d2 [% / mm] < E1 [%]
(However, E1 is the electric field in the conventional power supply side energizing section 1 and intermediate shield 5)
Thus, the electric field in the power supply side energizing section 1 and the second intermediate shield 6 is lowered, and the dielectric breakdown probability is also lowered. Therefore, in the same VCB, it is possible to reduce the dielectric breakdown probability of VI without using a voltage sharing capacitor as in the prior art or using a multi-stage configuration of ceramic and shield. As a result, the VCB can be miniaturized.

図3は、VCBのタンク径−中間シールド対地電圧(U1)関係の試験結果を示したものである。従来のVIでは、電源側通電部1と中間シールド5におけるE1の電界はU1とd1によって決まるため、対地電圧U1を25%から29%にするにはVCBのタンク10の径をΦ500→Φ650へと約150mm拡大しなければならない。   FIG. 3 shows the test results of the relationship between the tank diameter of the VCB and the intermediate shield ground voltage (U1). In the conventional VI, since the electric field of E1 in the power supply side energization section 1 and the intermediate shield 5 is determined by U1 and d1, the diameter of the VCB tank 10 is changed from Φ500 to Φ650 in order to reduce the ground voltage U1 from 25% to 29%. And must be enlarged by about 150 mm.

図4は本発明における中間絶縁物7の比誘電率−第2中間シールド6の対地電圧(U2)関係の試験結果を示したものでうる。本発明では、Φ500を有するタンク10の外形を変えずとも、誘電率10の中間絶縁物7を配設したことで対地電圧U2が25→29%に改善され、電界E2がE1より低くなる。   FIG. 4 shows the test result of the relative dielectric constant of the intermediate insulator 7 to the ground voltage (U2) relationship of the second intermediate shield 6 in the present invention. In the present invention, the ground voltage U2 is improved from 25 to 29% and the electric field E2 becomes lower than E1 by disposing the intermediate insulator 7 having a dielectric constant of 10 without changing the outer shape of the tank 10 having Φ500.

以上本発明によれば、周囲を接地層で囲まれたVIに、第2の対地電圧であるU2の発生部材を設けたことにより、電源側通電部と中間シールド間の電位差を小さくでき、電界緩和を図ることが可能となってVCBの小型化ができるものである。
なお、上記ではVCBについて説明してきたが、VIが用いられているガス絶縁開閉装置GISについても同様の効果を有するものである。
As described above, according to the present invention, by providing a member for generating U2 which is the second ground voltage in the VI surrounded by the ground layer, the potential difference between the power supply side energization part and the intermediate shield can be reduced. The relaxation can be achieved and the VCB can be downsized.
In addition, although VCB was demonstrated above, it has the same effect also about the gas insulated switchgear GIS in which VI is used.

1… 電源側通電部
2… 接地側通電部
3,4… 絶縁物
5… 中間シールド(第1の中間シールド)
6… 第2の中間シールド
7… 中間絶縁物
10… タンク
DESCRIPTION OF SYMBOLS 1 ... Power supply side energization part 2 ... Ground side energization part 3, 4 ... Insulator 5 ... Intermediate shield (1st intermediate shield)
6 ... Second intermediate shield 7 ... Intermediate insulator 10 ... Tank

Claims (3)

電源側通電部と接地側通電部を、中間シールド(第1の中間シールド)を介在接合した絶縁物で囲繞構成した真空インタラプタであって、周囲を接地層で囲まれる真空インタラプタにおいて、
前記電源側通電部および接地側通電部と前記第1の中間シールドの間に第2の中間シールドを配設し、第2の中間シールドと前記第1の中間シールドの間に中間絶縁物を介在させて対地電圧の発生部分を構成することを特徴とした真空インタラプタの電界緩和装置。
In a vacuum interrupter in which a power supply side energization unit and a ground side energization unit are surrounded by an insulator having an intermediate shield (first intermediate shield) interposed therebetween, the periphery being surrounded by a ground layer,
A second intermediate shield is disposed between the power supply side energization section and the ground side energization section and the first intermediate shield, and an intermediate insulator is interposed between the second intermediate shield and the first intermediate shield. An electric field relaxation device for a vacuum interrupter, characterized in that it constitutes a part for generating ground voltage.
前記第1の中間シールドは支持体を介して中間絶縁物を固定し、中間絶縁物は支持体を介して第2の中間シールドを固定して構成することを特徴とした請求項1記載の真空インタラプタの電界緩和装置。 2. The vacuum according to claim 1, wherein the first intermediate shield has an intermediate insulator fixed through a support, and the intermediate insulator has a second intermediate shield fixed through the support. Electric field relaxation device for interrupters. 前記真空インタラプタを囲む接地層は、絶縁ガスの封入された金属製タンク内に真空インタラプタを収納する真空遮断器、若しくはガス絶縁開閉装置の何れかであることを特徴とした請求項1又は2記載の真空インタラプタの電界緩和装置。
3. The grounding layer surrounding the vacuum interrupter is either a vacuum circuit breaker that houses the vacuum interrupter in a metal tank filled with an insulating gas, or a gas insulated switchgear. Vacuum interrupter electric field relaxation device.
JP2014254630A 2014-12-17 2014-12-17 Electric field relaxation device of vacuum interrupter Active JP6519167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254630A JP6519167B2 (en) 2014-12-17 2014-12-17 Electric field relaxation device of vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254630A JP6519167B2 (en) 2014-12-17 2014-12-17 Electric field relaxation device of vacuum interrupter

Publications (2)

Publication Number Publication Date
JP2016115596A true JP2016115596A (en) 2016-06-23
JP6519167B2 JP6519167B2 (en) 2019-05-29

Family

ID=56142169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254630A Active JP6519167B2 (en) 2014-12-17 2014-12-17 Electric field relaxation device of vacuum interrupter

Country Status (1)

Country Link
JP (1) JP6519167B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002887T5 (en) 2016-06-09 2019-03-07 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho webbing retractor
KR20190003056U (en) * 2018-06-01 2019-12-11 엘에스산전 주식회사 Gas-insulated switch gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172038U (en) * 1987-04-28 1988-11-09
JP2009252475A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Switch device
JP2012064416A (en) * 2010-09-15 2012-03-29 Toshiba Corp Vacuum valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172038U (en) * 1987-04-28 1988-11-09
JP2009252475A (en) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp Switch device
JP2012064416A (en) * 2010-09-15 2012-03-29 Toshiba Corp Vacuum valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002887T5 (en) 2016-06-09 2019-03-07 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho webbing retractor
KR20190003056U (en) * 2018-06-01 2019-12-11 엘에스산전 주식회사 Gas-insulated switch gear
KR200496186Y1 (en) 2018-06-01 2022-11-18 엘에스일렉트릭(주) Gas-insulated switch gear

Also Published As

Publication number Publication date
JP6519167B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
RU2543984C2 (en) Compact vacuum interrupter with selective encapsulation
US10818455B2 (en) Series vacuum interrupters with grading capacitors integrated in a molded switch housing
US9472347B2 (en) Variable vacuum capacitor
US11378594B2 (en) Capacitive voltage sensor with hidden sensing electrode
US9215825B2 (en) Gas insulated switchgear
US20150244156A1 (en) Integrated compact bushing structure combining the functionality of primary contact with a current transformer primary conductor and a post insulator
US8785801B2 (en) Dual structured contact for switchgear and switchgear having the same
CN109716475B (en) Vacuum switch
CN111480212B (en) High-voltage power switch and method for electromagnetically shielding a vacuum interrupter in an insulator
AU2010270499A1 (en) Vacuum switching tube
JP2016115596A (en) Electric field relaxing device of vacuum interrupter
JP6081065B2 (en) Gas insulation equipment
JP4436896B1 (en) Gas insulated bus
CN105529209A (en) Axial magnetic field coil for vacuum interrupter
CN117716460A (en) Gas-insulated switchgear
KR102545133B1 (en) Vacuum interubter for a circuit breaker
US7589295B2 (en) Electrical switchgear
US20080308298A1 (en) Electrical Switching Device, in Particular High-Voltage Circuit Breaker, with a Housing
JP2024527807A (en) Vacuum interrupter, assembly including a plurality of vacuum interrupters, and method for voltage distribution of a plurality of vacuum interrupters
CA2830764C (en) Vacuum interrupter and switch pole
JP2024527806A (en) Vacuum interrupter, assembly including a plurality of vacuum interrupters, and method for voltage distribution of a plurality of vacuum interrupters
JP4695496B2 (en) Vacuum switchgear
JP2006344557A (en) Vacuum valve and conditioning treatment method
CN118648079A (en) Controllable vacuum interrupter and device and method for controlling a vacuum interrupter
Kulkarni et al. Significance of shields in high voltage performance of vacuum interrupters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150