EP2241724A2 - Labyrinth-Anstreifdichtung für eine Strömungsmaschine - Google Patents

Labyrinth-Anstreifdichtung für eine Strömungsmaschine Download PDF

Info

Publication number
EP2241724A2
EP2241724A2 EP10002769A EP10002769A EP2241724A2 EP 2241724 A2 EP2241724 A2 EP 2241724A2 EP 10002769 A EP10002769 A EP 10002769A EP 10002769 A EP10002769 A EP 10002769A EP 2241724 A2 EP2241724 A2 EP 2241724A2
Authority
EP
European Patent Office
Prior art keywords
labyrinth
rubbing
hollow body
sealing
seal according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10002769A
Other languages
English (en)
French (fr)
Other versions
EP2241724A3 (de
Inventor
Karl Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2241724A2 publication Critical patent/EP2241724A2/de
Publication of EP2241724A3 publication Critical patent/EP2241724A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a labyrinth-abradable seal for a turbomachine for sealing a sealing gap formed between a stationary carrier provided with a Abst slaughter of hollow material formed by porous body and a directed onto the Abst slaughter sealing webs rotating component, in particular for hot gas sealing in the turbine of a gas turbine engine.
  • the Anstreifdichtonne should not only prevent flow around the relevant stage of the turbomachine, but also the housing structure, for example, the hot gas in a turbine stage leading wall sections, thermally isolate or control the passing into the wall sections heat flow so that the thermal expansion of the stationary Components or the housing expansion according to the thermal expansion of the rotating components, that is, the rotor disks and blades, takes place and so depending is ensured by the operating conditions or hot gas temperatures as small a gap as possible.
  • the EP 1013890 B1 describes a labyrinth rubbing seal whose abradable layer consists entirely of a high temperature, foamed, metallic, corrosion-resistant alloy, that is, a closed-cell metal foam in which thin walls enclose a plurality of cavities between them.
  • a closed-cell metal foam in which thin walls enclose a plurality of cavities between them.
  • the foam structure used as the run-in layer has a high heat-insulating effect. Due to the irregular foam structure, however, material accumulations and consequent strong warming as well as break-outs from the brittle metal foam structure may also occur here.
  • the invention has for its object to provide a labyrinth-squeal with adapted to the particular application heat insulation and reliable sealing effect and long life.
  • the object is achieved with a trained according to the features of claim 1 labyrinth rubbing seal.
  • Advantageous embodiments of the invention are the subject of the dependent claims.
  • the essence of the invention is that in shape and size matching hollow body in the X, Y and Z directions are arranged exactly linear side by side and one above the other and are connected flat and form an orderly open to closed cell structure, the hollow bodies are arranged and aligned so that the tips the sealing ridges meet approximately centrally on the hollow bodies.
  • the hollow bodies are arranged in such a way that the tips of the sealing webs essentially rub the hollow bodies centrally, accumulation of material does not occur and thus also does not lead to excessive heating leading to crack formation on the sealing webs. This ensures a reliable sealing effect, safe operation and a longer service life of the turbomachine.
  • the degree of open porosity may vary and, with the maximum thermal insulation required, may also be zero.
  • FIG. 1 partially reproduced low-pressure turbine of a gas turbine engine are three with the low-pressure turbine shaft via a rotor arm 1 and interconnected via connecting webs 2 rotor disks 3 with attached thereto turbine blades 4 (rotating component) shown. Between the turbine blades 4 5 fixed vanes 6 (stationary component) are arranged on the turbine housing. At the tips of the turbine blades 4 mounted shrouds 7 each form three in the circumferential direction and transverse to the flow direction sealing webs 8. Such sealing webs 8 are also attached to the connecting webs 2 between the rotor disks 3.
  • a squeal 10 On a on the inside of the turbine housing 5 relative to the sealing webs 8 of the shrouds 7 mounted carrier 9 is - for example, by soldering - a squeal 10 attached. Such trained with a squeal layer 10 carrier 9 is also provided on connected to the tips of the vanes 6 shrouds 7.
  • the abradable layer 10 is designed such that, upon contact with the sealing webs 8, the material of the abradable layer 10 is removed, that is, the tips of the sealing webs 8 can penetrate into the abradable layer, and thus a very narrow sealing gap and a high sealing effect and a corresponding high efficiency of the turbomachine can be achieved.
  • the abradable layer 10 consists of a defined, ordered cellular structure made of sintered and pressurized high temperature resistant, consisting of a sintered material, in shape and size substantially identical hollow bodies 11, the linear in the X, Y and Z directions are aligned exactly to each other and here form three superimposed hollow body layers 13.
  • An essential feature The labyrinth rubbing seal consists in that the hollow bodies 11 of the rubbing layer 10 are positioned with respect to the sealing webs 8 so that their tips are directed substantially centrally on the hollow body 11 of the rubbing layer 10.
  • the ordered cell structure for the rubbing layer 10 is produced by sintering polystyrene beads coated with a sinterable metal powder.
  • the green spheres coated with the sintered material in accordance with the desired wall thickness and not yet sintered are introduced into a mold to produce the hollow body structure (rubbing layer 10) and sintered in this mold under the effect of pressure and temperature and simultaneously bonded together by sintering.
  • the hollow spheres formed during sintering are flattened at the contact surfaces with the mold wall or the adjacent hollow spheres and - as Fig. 2 shows - deformed in the present embodiment at the top and bottom more than at the sides flattened (elongated) hollow bodies 11 with mutual surface contact.
  • the elongated shape allows for smaller hollow bodies 11 a preferred central positioning to the tips of the sealing webs 8, so that when accumulating no accumulations of material and associated high temperatures are generated.
  • the ordered cell structure of the squealer layer 10 may be as shown in FIG Fig. 2 shown - open-pore, that is to be formed with pores 12 open to the outside, or closed-cell. Also the size of the open-pored area and the thereby possible hot gas flow or the degree of thermal insulation with respect to the stationary component (turbine housing) can be varied during the production of the hollow body structure.
  • a closed-pore or largely closed-pore formation causes a high heat insulation required in particular in the area of the high-pressure turbine and thus a small gap between the turbine blades and the turbine housing and ultimately low power losses.
  • a certain open porosity of the squeal layer may be provided in order to be able to influence the gap width. If appropriate, cooling air can also be directed through an open-pored structure to reduce the hot gas influence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

Bei einer Labyrinth-Anstreifdichtung für eine Strömungsmaschine zur Abdichtung eines Dichtspaltes, der zwischen einem mit einer Anstreifschicht (10) aus durch Hohlkörper (11) gebildetem porösem Material versehenen stationären Träger (9) und einem auf die Anstreifschicht gerichtete Dichtstege (8) aufweisenden rotierenden Bauteil (4) gebildet ist, sind in Form und Größe übereinstimmende, vorzugsweise langgestreckte Hohlkörper (11) als geordnete Zellstruktur in X-, Y- und Z-Richtung linear neben- und übereinander angeordnet und mit oder ohne offene Poren (12) flächig oder vollflächig miteinander verbunden, wobei die Hohlkörper (11) so angeordnet sind, dass die Spitzen der Dichtstege (8) etwa mittig zu den Hohlkörpern (11) orientiert sind.

Description

  • Die Erfindung betrifft eine Labyrinth-Anstreifdichtung für eine Strömungsmaschine zur Abdichtung eines Dichtspaltes, der zwischen einem mit einer Anstreifschicht aus durch Hohlkörper gebildetem porösem Material versehenen stationären Träger und einem auf die Anstreifschicht gerichtete Dichtstege aufweisenden rotierenden Bauteil gebildet ist, insbesondere zur Heißgasabdichtung im Bereich der Turbine eines Gasturbinentriebwerks.
  • In Maschinen mit strömenden Medien sind häufig zwischen beweglichen und ruhenden Bauteilen bestehende Spalte gegen das strömende Medium abzudichten. Die Qualität der hierzu eingesetzten Dichtungen hat erheblichen Einfluss auf den Wirkungsgrad dieser Maschinen. Bekanntermaßen werden zur Abdichtung des Spaltes Labyrinthdichtungen eingesetzt, die mehrere umlaufende, quer zur Strömungsrichtung und im Abstand angeordnete Dichtbänder oder Dichtstege umfassen. Um zur Verbesserung des Wirkungsgrades und des Betriebsverhaltens von Strömungsmaschinen den Radialspalt zwischen dem rotierenden und dem stationären Bauteil möglich klein zu halten, ist es möglich, die Spitzen der Dichtbänder an einem abtragbaren Einlaufbelag anstreifen zu lassen. Die Anstreifdichtungen sollen jedoch nicht nur ein Umströmen der betreffenden Stufe der Strömungsmaschine verhindern, sondern auch die Gehäusestruktur, zum Beispiel die das Heißgas in einer Turbinenstufe führenden Wandabschnitte, thermisch isolieren bzw. den in die Wandabschnitte übertretenden Wärmestrom so steuern, dass die thermische Dehnung der stationären Bauteile bzw. die Gehäusedehnung entsprechend der thermischen Dehnung der rotierenden Bauteile, das heißt, der Rotorscheiben und Schaufeln, erfolgt und so in Abhängigkeit von den Betriebsbedingungen bzw. Heißgastemperaturen ein möglichst geringes Spaltmaß gewährleistet ist.
  • Als Einlauf- bzw. Anstreifschicht werden bekanntermaßen mit einem thermischen Isoliermaterial befüllte Wabenstrukturen eingesetzt, die zwar ein gutes Anstreif- bzw. Abriebverhalten aufweisen, jedoch den Anforderungen an die zur Erzielung einer gleichbleibend geringen Spaltweite jeweils erforderliche thermische Isolierung des stationären Bauteils nicht genügen. Zudem kann es im Anstreifbereich der Dichtstege an der Wabenstruktur zu Verschmierungen und infolge dessen zu einer Überhitzung der Dichtstege und letztlich zur Rissbildung in den Dichtstegen kommen.
  • Die EP 1013890 B1 beschreibt eine Labyrinth-Anstreifdichtung, deren Anstreifschicht vollständig aus einer aufgeschäumten, metallischen, korrosionsbeständigen Hochtemperaturlegierung, das heißt einem Metallschaum mit geschlossenporiger Struktur, besteht, bei dem dünne Wände eine Vielzahl von Hohlräumen zwischen sich einschließen. Alternativ wurde auch die Herstellung einer derartigen Struktur aus vorgefertigten metallischen Hohlkugeln vorgeschlagen. Die als Einlaufschicht eingesetzte Schaumstruktur hat eine hohe wärmeisolierende Wirkung. Aufgrund der unregelmäßigen Schaumstruktur kann es jedoch auch hier zu Materialanhäufungen und einer dadurch bedingten starken Erwärmung sowie zu Ausbrechungen aus der spröden Metallschaumstruktur kommen. Zudem besteht auch bei dieser Anstreifstruktur keine ausreichend gute Möglichkeit der Einflussnahme auf die Wärmeisolierung entsprechend den unterschiedlichen Temperaturverhältnissen in der Strömungsmaschine, beispielsweise den unterschiedlichen Heißgastemperaturen im Bereich der Hochdruckturbine und der Niederdruckturbine eines Gasturbinentriebwerks.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Labyrinth-Anstreifdichtung mit an den jeweiligen Einsatzfall angepasster Wärmeisolierung und zuverlässiger Dichtwirkung sowie langer Lebensdauer anzugeben.
  • Erfindungsgemäß wird die Aufgabe mit einer gemäß den Merkmalen des Patentanspruchs 1 ausgebildeten Labyrinth-Anstreifdichtung gelöst. Zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Ausgehend von einer Labyrinth-Anstreifdichtung für eine Strömungsmaschine zur Abdichtung eines Dichtspaltes, der zwischen einem mit einer Anstreifschicht aus durch Hohlkörper gebildetem porösem Material versehenen stationären Träger und einem auf die Anstreifschicht gerichtete Dichtstege aufweisenden rotierenden Bauteil gebildet ist, besteht das Wesen der Erfindung darin, dass in Form und Größe übereinstimmende Hohlkörper in X-, Y- und Z-Richtung exakt linear neben- und übereinander angeordnet und flächig miteinander verbunden sind und eine geordnete offen- bis geschlossenporige Zellstruktur bilden, wobei die Hohlkörper so angeordnet und ausgerichtet sind, dass die Spitzen der Dichtstege etwa mittig auf die Hohlkörper treffen. Da die Hohlkörper so angeordnet sind, dass die Spitzen der Dichtstege die Hohlkörper im Wesentlichen mittig anstreifen, kommt es dabei nicht zu Materialanhäufungen und somit auch nicht zu einer übermäßig starken, zu einer Rissbildung an den Dichtstegen führenden Erwärmung. Dadurch ist eine zuverlässige Dichtwirkung, ein sicherer Betrieb und eine längere Lebensdauer der Strömungsmaschine gewährleistet. Entsprechend der erforderlichen Wärmeisolierung gegenüber dem Trägerbauteil kann der Grad der Offenporigkeit variieren und bei maximal erforderlicher Wärmeisolierung auch Null sein.
  • Die Herstellung der Anstreifschicht erfolgt durch Sintern von Grünkugeln, die ein mit sinterfähigen Metallpulver beschichteten Kern umfassen, unter Temperatur und Druckeinwirkung, wobei das Kernmaterial ausgast und die verbleibenden Hohlkugeln flächig miteinander verbunden und zur Erzielung einer Längserstreckung in Strömungsrichtung verformt werden. Dadurch ist es leichter möglich, dass die Dichtstreifen im Wesentlichen mittig auf die Hohlkörper und nicht auf die Materialansammlungen der Hohlkörperstruktur treffen. Die Hohlkörper können aber auch in radialer oder in tangentialer Richtung langgestreckt ausgebildet sein.
  • Durch die Größe und Art der Druckeinwirkung auf das linear zueinander ausgerichtete Grünkugel-Sintermaterial wird die Form der Hohlkörper und die Größe der Flächenberührung zwischen diesen sowie die Größe und der Anteil an offenen Poren bestimmt.
  • In weiterer Ausgestaltung der Erfindung können zwischen den einzelnen Hohlkörperlagen Lagen aus kleineren Hohlkörpern, die in den vorhandenen Zwischenräumen liegen, angeordnet sein, um so die Verringerung der Offenporigkeit oder die Ausbildung einer geschlossenporigen Anstreifschicht zu erleichtern.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung, in der
  • Fig. 1
    einen Teil der mit Labyrinth-Anstreifdichtungen gedichteten Niederdruckturbine eines Gasturbinentriebwerks; und
    Fig. 2
    eine schematische Darstellung einer von einer offenporigen Anstreifschicht und Dichtstegen gebildeten Labyrinth-Anstreifdichtung.
  • In der in Fig. 1 teilweise wiedergegebenen Niederdruckturbine eines Gasturbinentriebwerks sind drei mit der Niederdruckturbinenwelle über einen Rotorarm 1 sowie untereinander über Verbindungsstege 2 verbundene Rotorscheiben 3 mit an diesen befestigten Turbinenschaufeln 4 (rotierendes Bauteil) dargestellt. Zwischen den Turbinenschaufeln 4 sind am Turbinengehäuse 5 befestigte Leitschaufeln 6 (stationäres Bauteil) angeordnet. An den Spitzen der Turbinenschaufeln 4 angebrachte Deckbänder 7 bilden jeweils drei in Umfangsrichtung und quer zur Strömungsrichtung verlaufende Dichtstege 8. Derartige Dichtstege 8 sind auch an den Verbindungsstegen 2 zwischen den Rotorscheiben 3 angebracht. An einem an der Innenseite des Turbinengehäuses 5 gegenüber den Dichtstegen 8 der Deckbänder 7 angebrachten Träger 9 ist - beispielsweise durch Löten - eine Anstreifschicht 10 befestigt. Ein derart mit einer Anstreifschicht 10 ausgebildeter Träger 9 ist auch an mit den Spitzen der Leitschaufeln 6 verbundenen Deckbändern 7 vorgesehen. Die Anstreifschicht 10 ist so ausgebildet, dass bei einem Kontakt mit den Dichtstegen 8 das Material der Anstreifschicht 10 abgetragen wird, das heißt, die Spitzen der Dichtstege 8 in die Anstreifschicht eindringen können, und somit ein sehr enger Dichtspalt und eine hohe Dichtwirkung und ein entsprechend hoher Wirkungsgrad der Strömungsmaschine erreicht werden kann.
  • Die Anstreifschicht 10 besteht aus einer definierten, geordneten zellularen Struktur aus durch Sintern und unter Druckeinwirkung miteinander verbundenen, hochtemperaturbeständigen, aus einem gesinterten Material bestehenden, in Form und Größe im Wesentlichen identischen Hohlkörpern 11, die in X-, Y- und Z-Richtung linear exakt zueinander ausgerichtet sind und hier drei genau übereinander liegende Hohlkörperlagen 13 bilden. Ein wesentliches Merkmal der Labyrinth-Anstreifdichtung besteht dabei darin, dass die Hohlkörper 11 der Anstreifschicht 10 in Bezug auf die Dichtstege 8 so positioniert sind, dass deren Spitzen im Wesentlichen mittig auf die Hohlkörper 11 der Anstreifschicht 10 gerichtet sind. Dadurch wird die Ausbildung von Materialanhäufungen beim Anstreifen der Anstreifschicht 10 und eine dadurch bedingte hohe Erwärmung oder gar Rissbildung an den Dichtstegen 8 vermieden.
  • Die Herstellung der geordneten Zellstruktur für die Anstreifschicht 10 erfolgt durch Sintern von mit einem sinterbaren Metallpulver beschichteten Styroporkügelchen. In einem bevorzugten Verfahren werden die mit dem Sintermaterial entsprechend der gewünschten Wandstärke beschichteten und noch nicht gesinterten Grünkugeln zur Herstellung der Hohlkörperstruktur (Anstreifschicht 10) in eine Form eingebracht und in dieser Form unter Druck- und Temperatureinwirkung gesintert und gleichzeitig durch Sintern miteinander verbunden. Entsprechend der aufgebrachten Druckkraft und Druckrichtung werden die beim Sintern entstehenden Hohlkugeln an den Berührungsflächen mit der Formwand bzw. den benachbarten Hohlkugeln abgeflacht und - wie Fig. 2 zeigt - zu in der vorliegenden Ausführungsform an der Ober- und Unterseite stärker als an den Seiten abgeflachten (langgestreckten) Hohlkörpern 11 mit gegenseitiger flächiger Berührung verformt. Die langgestreckte Form ermöglicht auch bei kleineren Hohlkörpern 11 eine bevorzugte mittige Positionierung zu den Spitzen der Dichtstege 8, so dass beim Anstreifen keine Materialanhäufungen und damit verbundene hohe Temperaturen erzeugt werden. In Abhängigkeit von der Größe und Richtung der beim Sintern aufgebrachten Druckkräfte kann die geordnete Zellstruktur der Anstreifschicht 10 - wie in Fig. 2 dargestellt - offenporig, das heißt mit nach außen offenen Poren 12, oder auch geschlossenporig ausgebildet sein. Auch die Größe des offenporigen Bereichs und die dadurch mögliche Heißgasdurchströmung bzw. der Grad der Wärmeisolierung gegenüber dem stationären Bauteil (Turbinengehäuse) kann während der Erzeugung der Hohlkörperstruktur variiert werden. Eine geschlossenporige oder weitgehend geschlossenporige Ausbildung bewirkt eine insbesondere im Bereich der Hochdruckturbine erforderliche hohe Wärmeisolierung und somit ein geringes Spaltmaß zwischen den Turbinenschaufeln und dem Turbinengehäuse und letztlich geringe Leistungsverluste. Im Bereich der Niederdruckturbine kann, wie Fig. 2 zeigt, aufgrund der niedrigeren Temperaturen eine bestimmte Offenporigkeit der Anstreifschicht vorgesehen sein, um so die Spaltweite beeinflussen zu können. Gegebenenfalls kann aber auch durch eine offenporige Struktur zur Reduzierung des Heißgaseinflusses gezielt Kühlluft geleitet werden.
  • Bezugszeichenliste
  • 1
    Rotorarm
    2
    Verbindungssteg
    3
    Rotorscheibe (rotierendes Bauteil)
    4
    Turbinenschaufel (rotierendes Bauteil)
    5
    Turbinengehäuse
    6
    Leitschaufel (stationäres Bauteil)
    7
    Deckband
    8
    Dichtsteg
    9
    Träger (stationäres Bauteil)
    10
    Anstreifschicht (Hohlkörperstruktur)
    11
    Hohlkörper
    12
    offenen Poren
    13
    Hohlkörperlage

Claims (8)

  1. Labyrinth-Anstreifdichtung für eine Strömungsmaschine zur Abdichtung eines Dichtspaltes, der zwischen einem mit einer Anstreifschicht (10) aus durch Hohlkörper gebildetem porösem Material versehenen stationären Träger (9) und einem auf die Anstreifschicht gerichtete Dichtstege (8) aufweisenden rotierenden Bauteil (3, 4) gebildet ist, insbesondere zur Heißgasabdichtung im Bereich der Turbine eines Gasturbinentriebwerks, dadurch gekennzeichnet, dass in Form und Größe übereinstimmende Hohlkörper (11) als geordnete Zellstruktur in X-, Y- und Z-Richtung linear neben- und übereinander angeordnet sind und mit oder ohne offene Poren (12) flächig miteinander verbunden sind und die Hohlkörper (11) so angeordnet sind, dass die Spitzen der Dichtstege etwa mittig zu den Hohlkörpern (11) orientiert sind.
  2. Labyrinth-Anstreifdichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Anstreifschicht (10) aus mit einem sinterfähigen Metallpulver beschichteten, zueinander geordnet ausgerichteten Grünkugeln in einem Sinterprozess gefertigt ist.
  3. Labyrinth-Anstreifdichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Form der Hohlkörper (11) und die Größe der Flächenberührung zwischen diesen sowie die Größe und der Anteil an offenen Poren (12) durch eine beim Sintern aufgebrachte Druckeinwirkung auf die Grünkugelanordnung variabel ist.
  4. Labyrinth-Anstreifdichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Hohlkörper (11) in axialer Richtung der Strömungsmaschine langgestreckt ausgebildet sind.
  5. Labyrinth-Anstreifdichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Hohlkörper (11) radial langgestreckt ausgebildet sind.
  6. Labyrinth-Anstreifdichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Hohlkörper (11) in Umfangsrichtung der Strömungsmaschine langgestreckt ausgebildet sind.
  7. Labyrinth-Anstreifdichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil an offenen Poren (12) in der Anstreifschicht (10) in Abhängigkeit von der erforderlichen Wärmeisolierung gegenüber dem Träger (9) eingestellt ist.
  8. Labyrinth-Anstreifdichtung nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzielung einer geschlossenporigen Ausbildung in den zwischen den einzelnen Hohlkörperlagen (13) vorhandenen Zwischenräumen kleinere gesinterte Hohlkörper angeordnet sind.
EP10002769.7A 2009-04-09 2010-03-16 Labyrinth-Anstreifdichtung für eine Strömungsmaschine Withdrawn EP2241724A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009016803A DE102009016803A1 (de) 2009-04-09 2009-04-09 Labyrinth-Anstreifdichtung für eine Strömungsmaschine

Publications (2)

Publication Number Publication Date
EP2241724A2 true EP2241724A2 (de) 2010-10-20
EP2241724A3 EP2241724A3 (de) 2014-01-15

Family

ID=42237305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10002769.7A Withdrawn EP2241724A3 (de) 2009-04-09 2010-03-16 Labyrinth-Anstreifdichtung für eine Strömungsmaschine

Country Status (3)

Country Link
US (1) US20100259013A1 (de)
EP (1) EP2241724A3 (de)
DE (1) DE102009016803A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150377123A1 (en) 2007-08-01 2015-12-31 United Technologies Corporation Turbine section of high bypass turbofan
US11346289B2 (en) 2007-08-01 2022-05-31 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11486311B2 (en) 2007-08-01 2022-11-01 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11242805B2 (en) 2007-08-01 2022-02-08 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US11149650B2 (en) 2007-08-01 2021-10-19 Raytheon Technologies Corporation Turbine section of high bypass turbofan
US20110120263A1 (en) * 2009-11-23 2011-05-26 Short Keith E Porous metal gland seal
EP2647795B1 (de) * 2012-04-04 2018-11-07 MTU Aero Engines AG Dichtungssystem für eine Strömungsmaschine
EP3085900B1 (de) * 2015-04-21 2020-08-05 Ansaldo Energia Switzerland AG Abreibbare lippe für eine gasturbine
CN105134954A (zh) * 2015-09-14 2015-12-09 沈阳航空航天大学 一种提高封严特性与阻尼特性的新型孔型密封结构
CN105156680A (zh) * 2015-09-14 2015-12-16 沈阳航空航天大学 一种提高封严特性与阻尼特性的新型蜂窝密封结构
DE102018107433A1 (de) 2018-03-28 2019-10-02 Rolls-Royce Deutschland Ltd & Co Kg Einlaufbelagstruktur aus einem metallischen Werkstoff, Verfahren zur Herstellung einer Einlaufbelagstruktur und Bauteil mit einer Einlaufbelagstruktur

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013890B1 (de) 1998-12-16 2004-02-04 Rolls-Royce Deutschland Ltd & Co KG Anstreifdichtung für Turbomaschinen

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547455A (en) * 1969-05-02 1970-12-15 Gen Electric Rotary seal including organic abradable material
US3575427A (en) * 1969-11-03 1971-04-20 United Aircraft Corp Composite abradable seal
US3701536A (en) * 1970-05-19 1972-10-31 Garrett Corp Labyrinth seal
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
US4257735A (en) * 1978-12-15 1981-03-24 General Electric Company Gas turbine engine seal and method for making same
FR2507729B1 (fr) * 1981-06-12 1986-08-22 Snecma Joint susceptible d'etre use par abrasion et son procede de realisation
US4460185A (en) * 1982-08-23 1984-07-17 General Electric Company Seal including a non-metallic abradable material
DE3424661A1 (de) * 1984-07-05 1986-01-16 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Einlaufbelag einer stroemungsmaschine
FR2570764B1 (fr) * 1984-09-27 1986-11-28 Snecma Dispositif de controle automatique du jeu d'un joint a labyrinthe de turbomachine
DE3640586A1 (de) * 1986-11-27 1988-06-09 Norddeutsche Affinerie Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
US4936745A (en) * 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal
US5314304A (en) * 1991-08-15 1994-05-24 The United States Of America As Represented By The Secretary Of The Air Force Abradeable labyrinth stator seal
DE4130946C1 (de) * 1991-09-18 1992-09-03 Mtu Muenchen Gmbh
US5388959A (en) * 1993-08-23 1995-02-14 General Electric Company Seal including a non-metallic abradable material
FR2732416B1 (fr) * 1995-03-29 1997-04-30 Snecma Agencement de raccordement de deux secteurs angulaires de turbomachine et joint concu pour servir dans cet agencement
GB9717857D0 (en) * 1997-08-23 1997-10-29 Rolls Royce Plc Fluid Seal
US7067181B2 (en) * 2003-08-05 2006-06-27 Siemens Power Generation, Inc. Insulating ceramic based on partially filled shapes
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
US7563504B2 (en) * 1998-03-27 2009-07-21 Siemens Energy, Inc. Utilization of discontinuous fibers for improving properties of high temperature insulation of ceramic matrix composites
US6352264B1 (en) * 1999-12-17 2002-03-05 United Technologies Corporation Abradable seal having improved properties
DE10038452B4 (de) * 2000-08-07 2011-05-26 Alstom Technology Ltd. Abdichtung einer thermischen Turbomaschine
DE10047307A1 (de) * 2000-09-25 2002-08-01 Alstom Switzerland Ltd Dichtungsanordnung
US6652226B2 (en) * 2001-02-09 2003-11-25 General Electric Co. Methods and apparatus for reducing seal teeth wear
US6610416B2 (en) * 2001-04-26 2003-08-26 General Electric Company Material treatment for reduced cutting energy and improved temperature capability of honeycomb seals
US6884384B2 (en) * 2001-09-27 2005-04-26 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant material containing compacted hollow geometric shapes
DE10221114C1 (de) * 2002-05-03 2003-09-11 Glatt Systemtechnik Gmbh Dichtung für Strömungsmaschinen
DE10238551A1 (de) * 2002-08-22 2004-03-04 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils durch Fügen mit Aluminium
CN1692179B (zh) * 2002-10-09 2011-07-13 石川岛播磨重工业株式会社 回转体及其涂覆方法
US6916529B2 (en) * 2003-01-09 2005-07-12 General Electric Company High temperature, oxidation-resistant abradable coatings containing microballoons and method for applying same
DE102004034312A1 (de) * 2004-07-15 2006-02-02 Mtu Aero Engines Gmbh Dichtungsanordnung und Verfahren zur Herstellung eines Dichtkörpers für eine Dichtungsanordnung
DE102005002270A1 (de) * 2005-01-18 2006-07-20 Mtu Aero Engines Gmbh Triebwerk
US20070132193A1 (en) * 2005-12-13 2007-06-14 Wolfe Christopher E Compliant abradable sealing system and method for rotary machines
DE102006016147A1 (de) * 2006-04-06 2007-10-11 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Wabendichtung
US20080260522A1 (en) * 2007-04-18 2008-10-23 Ioannis Alvanos Gas turbine engine with integrated abradable seal and mount plate
US20080260523A1 (en) * 2007-04-18 2008-10-23 Ioannis Alvanos Gas turbine engine with integrated abradable seal
US8360712B2 (en) * 2010-01-22 2013-01-29 General Electric Company Method and apparatus for labyrinth seal packing rings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013890B1 (de) 1998-12-16 2004-02-04 Rolls-Royce Deutschland Ltd & Co KG Anstreifdichtung für Turbomaschinen

Also Published As

Publication number Publication date
DE102009016803A1 (de) 2010-10-14
EP2241724A3 (de) 2014-01-15
US20100259013A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
EP2241724A2 (de) Labyrinth-Anstreifdichtung für eine Strömungsmaschine
EP1500790B1 (de) Deckbandsegment für eine Strömungsmaschine
EP3420196B1 (de) Turbinenschaufel mit kühlstruktur und zugehöriges herstellungsverfahren
EP2719484A1 (de) Bauteil und Verfahren zur Herstellung des Bauteils
DE102011081323B3 (de) Laufschaufel für eine Strömungsmaschine und Strömungsmaschine mit der Laufschaufel
EP2734710B1 (de) Verfahren zur herstellung eines einlaufbelags sowie leitschaufel
EP3054106B1 (de) Gasturbinenbauteil
EP1766193B1 (de) Einlaufbelag
US9982358B2 (en) Abrasive tip blade manufacture methods
EP1375696A2 (de) Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine
EP2829689A1 (de) Dämmeinrichtung für eine thermischen Gastrubine, zugehörige thermische Gasturbine und Herstellungsverfahren
DE3018621C2 (de) Außengehäuse für Axialverdichter oder -turbinen von Strömungsmaschinen, insbesondere Gasturbinentriebwerken
EP3121307A1 (de) Dichtrippenpanzerung und verfahren zur herstellung derselben
EP2826959A2 (de) Verfahren zum Herstellen eines Isolationselements und Isolationselement für ein Gehäuse eines Flugtriebwerks
EP2411631B1 (de) Dichtplatte und Laufschaufelsystem
EP2460981A1 (de) Wärmedämmende Auskleidung für eine Fluggasturbine
DE102013205883A1 (de) Leitschaufelsegment mit integrierter Hitzeisolierung
EP1654441B1 (de) Einlaufbelag für Gasturbinen und Verfahren zur Herstellung dieses Einlaufbelags
EP3214275B1 (de) Verfahren zur herstellung von zwei bürstendichtungen
EP1013890B1 (de) Anstreifdichtung für Turbomaschinen
EP1876336A2 (de) Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke
EP3290649A1 (de) Einlaufbelag und verfahren zum herstellen eines einlaufbelags zum abdichten eines spaltes zwischen einem rotor und einem stator einer strömungsmaschine
DE10221114C1 (de) Dichtung für Strömungsmaschinen
DE102011014292A1 (de) Zwischenstufendichtungsring sowie Verfahren zu dessen Herstellung
EP3543461B1 (de) Gasturbinenrotorkomponenten umfassend presspassung mit material mit hoher reibung und zugehöriges herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/12 20060101AFI20131210BHEP

Ipc: B22F 3/11 20060101ALI20131210BHEP

Ipc: F01D 5/28 20060101ALI20131210BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140716