EP2240600B1 - Appareil microfluidique pour des microréseaux à large zone - Google Patents

Appareil microfluidique pour des microréseaux à large zone Download PDF

Info

Publication number
EP2240600B1
EP2240600B1 EP08798995A EP08798995A EP2240600B1 EP 2240600 B1 EP2240600 B1 EP 2240600B1 EP 08798995 A EP08798995 A EP 08798995A EP 08798995 A EP08798995 A EP 08798995A EP 2240600 B1 EP2240600 B1 EP 2240600B1
Authority
EP
European Patent Office
Prior art keywords
fluid
flow chamber
analysis
microns
microfluidic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08798995A
Other languages
German (de)
English (en)
Other versions
EP2240600A4 (fr
EP2240600A1 (fr
Inventor
Gibum Kim
R. Todd Schwoerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plexera Bioscience LLC
Original Assignee
Plexera Bioscience LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/846,883 external-priority patent/US20090060786A1/en
Priority claimed from US11/846,908 external-priority patent/US7695976B2/en
Application filed by Plexera Bioscience LLC filed Critical Plexera Bioscience LLC
Publication of EP2240600A1 publication Critical patent/EP2240600A1/fr
Publication of EP2240600A4 publication Critical patent/EP2240600A4/fr
Application granted granted Critical
Publication of EP2240600B1 publication Critical patent/EP2240600B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows

Definitions

  • Microfluidic flow cells that are used in, for example, microarray chemical analysis typically have small holes for fluid inlet and outlet.
  • the flow becomes localized between the fluid inlet and outlet, which results in high non-uniformity of the analyte across the surface of the microarray.
  • a higher flow rate for the analyte fluid may be used to exchange the fluid in the flow cell; however, such high flow rates are undesirable because the analyte is often precious and may be present at low concentration.
  • US patent application US2007140918 A 1 relates to fluidic separation devices and methods of using the same with reduced sample broadening.
  • the device contains a holding chamber, a separation column located downstream from the holding chamber, and means for providing flow effective to convey a sample along a flow path that extends from the holding chamber into the separation column.
  • One embodiment is a microfluidic device for contacting a surface with a fluid that comprises: a) a fluid inlet having a semi-circular groove; and b) a flow chamber that comprises the surface and an inner wall having an inlet end and an outlet end.
  • the fluid inlet is in communication with the flow chamber.
  • the inner wall is curved with a radius of curvature similar to the radius of curvature of the fluid inlet semi-circular groove, such that the fluid inlet is designed to introduce the fluid to the flow chamber through the inlet end.
  • the fluid enters the flow chamber and forms a pattern on the surface, the pattern approximating the semi-circular groove, and upon maintaining the flow a linear fluid front forms on the surface and moves along the surface.
  • a microfluidic device that comprises: a) a fluid inlet having a semi-circular groove and b) a flow chamber having an inlet end, wherein the fluid inlet and flow chamber are in communication and wherein the inner wall at the inlet end is curved with a radius similar to the radius of the semi-circular groove.
  • An analyte fluid introduced through the groove flows across the surface of a microarray with high uniformity and does not require high analyte fluid volumes to exchange the fluid in the flow cell.
  • the flow chamber may be in communication with a sample chip.
  • fluid flows through the flow chamber and is contained between a) the bottom surface adjacent to the fluid inlet and b) the surface of the sample chip.
  • the surface of the sample chip may have an analysis area to which is immobilized, for example, probe molecules such as peptides, proteins, DNA, RNA, etc.
  • the microfluidic device further comprises a fluid outlet end having a fluid outlet, wherein the inner wall of the flow chamber at the outlet end tapers toward the fluid outlet.
  • Another embodiment is an assembly for chemical analysis comprising any of the microfluidic devices as described above and the sample chip having a surface comprising an analysis area, wherein the surface is in communication with the flow chamber.
  • Another embodiment is a method of chemical analysis comprising: a) introducing an analyte fluid having a flow to a surface of a sample chip through a microfluidic device comprising i) a fluid inlet having a semi-circular groove and ii) a flow chamber comprising the surface and an inner wall having an inlet end and an outlet end, wherein the fluid inlet is in communication with the flow chamber, wherein the inner wall at the inlet end is curved with a radius of curvature similar to the radius of curvature of the fluid inlet semi-circular groove, wherein the fluid inlet introduces the fluid to the flow chamber through the inlet end, wherein the fluid enters the flow chamber and forms a fluid front as the fluid contacts the surface; b) maintaining the flow of the analyte fluid such that the analyte fluid forms a pattern on the surface of the sample chip, the pattern approximating the semi-circular groove; c) maintaining the flow of the analyte fluid so that a linear fluid
  • a microfluidic device that comprises: a) a fluid inlet 10 having a semi-circular groove and b) a flow chamber 20 comprising an inner wall 25 having an inlet end 30, wherein fluid inlet 10 is in communication with flow chamber 20 and wherein inner wall 25 at inlet end 30 is curved with a radius similar to the radius of the semi-circular groove.
  • Flow chamber 20 may be in communication with a sample chip 35.
  • fluid flows through flow chamber 20 and is contained between bottom surface 40 and surface 45 of sample chip 35.
  • Surface 45 of sample chip 35 may have analysis area 50 to which is immobilized, for example, probe molecules, peptides, proteins, DNA, RNA, etc.
  • FIG 2a illustrates the microfluidic device from a "top down" view relative to FIG 1 .
  • FIG 2a shows fluid inlet 10 having a semi-circular groove, the outline of analysis area 50, the outline of inner wall 25, the radius 55 of the fluid inlet 10 having a semi-circular groove, and radius 60 of inner wall 25 at inlet end 30.
  • FIG 2b illustrates a cross section view of the microfluidic device along plane 65 ( FIG 2a).
  • FIG 2b shows the cross section of the fluid inlet 10 having a semi-circular groove, flow chamber 20, inner wall 25, sample chip 35, and space 70 where the a fluid in contained between bottom surface 40 and surface 45 of sample chip 35.
  • FIG 3 illustrates a method of operating the microfluidic device by introducing a fluid flow 75 at roughly the middle 80 of fluid inlet 10 having a semi-circular groove.
  • the fluid flow passes through flow chamber 20 at inlet end 30 and contacts surface 45 of sample chip 35. From the point of contact 85 with surface 45 of sample chip 35, the fluid flows outward 90a, 90b in a pattern that approximates semi-circular groove.
  • a linear front begins forming 95a at point of contact 85 and then flows 100 along surface 45 of sample chip 35 with the linear front 95b maintained.
  • the flow of fluid through flow chamber 20 is highly uniform across the relatively large surface area of a sample chip.
  • fluid inlet 10 is shown in a separate layer 5 and flow chamber 20 is shown in a separate layer 15.
  • fluid inlet 10 and flow chamber 20 need not be in separate layers.
  • fluid inlet 10 and flow chamber 20 comprise separate layers (e.g., layer 5 and layer 15, respectively). These layers can be, for example, pressure sensitive adhesive tape, or other material such as telfon, having a variety of thicknesses.
  • fluid inlet 10 and flow chamber 20 comprise a single layer and may be, for example, fabricated as one solid piece.
  • Such embodiments may have fluid inlet 10 and flow chamber 20 fabricated sequentially or concurrently by, for example, techniques that include machining of a solid block material, embossing a material, molded UV curing, molded thermosetting, etc. and any combination thereof.
  • Materials that the layers can be made from include plastics such as, for example Lucite or Teflon, metals and alloys, and glass or silicon.
  • Bottom surface 40, the inner walls of fluid inlet 10, and/or inner wall 25 of flow chamber 20 may have additional structures protruding into or receding from the fluid path in order to, for example, enhance mixing or improve general flow dynamics.
  • the microfluidic device may have one or more of the following features.
  • Radius 60 of inner wall 25 is from about 105% to about 107% larger than radius 55 of the semi-circular groove.
  • the width of the groove is from about 350 micron to about 500 micron and radius 55 of the semi-circular groove is from about 3.5 cm to about 4 cm.
  • the depth 71 of fluid inlet 10 is from about 25 microns to about 40 microns.
  • the depth 72 of flow chamber 20 is from about 13 microns to about 20 microns.
  • the microfluidic device further comprises a fluid outlet end 105 having a fluid outlet 110, wherein inner wall 25 of flow chamber 20 at outlet end 105 tapers (115) toward fluid outlet 110.
  • Apex 120 of the taper is allows fluid to flow through fluid outlet 110 and out of flow chamber 20.
  • the invention may include one or more of the following.
  • the length 125 of flow chamber 20 may be from about 3 cm to about 4.5 cm and the width 130 of flow chamber 20 may be about 1.4 cm to about 1.6 cm.
  • the volume of flow chamber 20 is from about 6 ⁇ L to about 10 ⁇ L.
  • the microfluidic device has a fluid exchange volume between about 80% and about 130% of the volume of flow chamber 20.
  • the depth 71 of fluid inlet 10 is about 13 microns to about 20 microns
  • semi-circular groove has a width of about 350 micron to about 500 micron and radius 55 of about 3.5 cm to about 4 cm
  • the depth 72 of flow chamber 20 is about 13 microns to about 20 microns
  • flow chamber 20 has length 125 of about 3 cm to 4.5 cm and width 130 of about 1.4 cm to about 1.6 cm.
  • Analysis area 50 is at least 1.5 sq. cm.
  • Analysis area 50 includes a microarray comprising analysis spots. At least one analysis spot of the microarray may comprise a biomolecule.
  • the biomolecule may be a polypeptide or a polynucleotide.
  • the microarray may also comprise a plurality of polypeptides, polynucleotides, or both.
  • FIGs 1-4 Another embodiment, referring to FIGs 1-4 , is a method of chemical analysis comprising: a) introducing an analyte fluid having a flow to surface 45 of sample chip 35 through a microfluidic device comprising i) a fluid inlet 10 having a semi-circular groove for fluid inlet and ii) a flow chamber 20 comprising an inner wall 25 having an inlet end 30, wherein the fluid inlet 10 is in communication with flow chamber 20 and wherein inner wall 25 at inlet end 30 is curved with a radius similar to the radius of the semi-circular groove.; b) maintaining the flow of the analyte fluid such that the analyte fluid forms a pattern on surface 45 of the sample chip 35, the pattern approximating the semi-circular groove; c) maintaining the flow of the analyte fluid so that linear fluid front 95a forms on surface 45 of sample chip 35 at inlet end 30; and d) maintaining the flow so that a linear fluid front 95b moves along surface 45 of sample chip
  • the various features of the microfluidic device may include those described above and illustrated in FIGs 1-4 . Embodiments may have one or more of the following features.
  • the flow has a rate of about 180 ⁇ L/min to about 600 ⁇ L/min and a pressure of about 5 to about 30 PSI (34,500 Pa to 206,800 Pa).
  • Surface 45 of sample chip 35 comprises analysis area 50 that is at least 1.5 sq. cm.
  • Analysis area 50 includes a microarray comprising analysis spots. At least one analysis spot comprises a biomolecule.
  • the biomolecule is a polypeptide or a polynucleotide.
  • the microarray comprises a plurality of polypeptides, polynucleotides, or both.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Claims (15)

  1. Dispositif microfluidique pour mettre une surface en contact avec un fluide, comprenant :
    a) une entrée de fluide (10) possédant une rainure semi-circulaire ; et
    b) une chambre d'écoulement (20) comprenant ladite surface et une paroi interne (25) possédant une extrémité d'entrée (30) et une extrémité de sortie (105), dans laquelle l'entrée de fluide (10) est en communication avec la chambre d'écoulement (20), caractérisé en ce que la paroi interne (25) au niveau de l'extrémité d'entrée (30) est courbée avec un rayon de courbure similaire au rayon de courbure de la rainure semi-circulaire d'entrée de fluide, de sorte que l'entrée de fluide (10) est conçue pour introduire le fluide dans la chambre d'écoulement (20) au travers de l'extrémité d'entrée, ce par quoi en utilisation, le fluide entre dans la chambre d'écoulement (20) et forme un motif sur la surface, le motif se rapprochant de la rainure semi-circulaire, et ce par quoi en maintenant l'écoulement un front de fluide linéaire (95b) se forme sur la surface et se déplace le long de la surface.
  2. Dispositif microfluidique selon la revendication 1, dans lequel :
    l'entrée de fluide (10) et la chambre d'écoulement (20) comprennent des couches séparées ;
    l'entrée de fluide (10) et la chambre d'écoulement (20) comprennent une couche unique ;
    le rayon de la paroi interne est d'environ 5 % à environ 7 % plus grand que le rayon de la rainure ;
    la largeur de la rainure est d'environ 350 microns à environ 500 microns et le rayon de la rainure est d'environ 1,75 cm à environ 2 cm ;
    la profondeur de l'entrée de fluide (10) est d'environ 25 microns à environ 40 microns ; ou
    la profondeur de la chambre d'écoulement (20) est d'environ 13 microns à environ 20 microns.
  3. Dispositif microfluidique selon la revendication 1 ou la revendication 2, comprenant en outre une extrémité de sortie de fluide (105) possédant une sortie de fluide (110), dans lequel la paroi interne (25) au niveau de l'extrémité de sortie (105) s'effile vers la sortie de fluide (110).
  4. Dispositif microfluidique selon l'une quelconque des revendications 1 à 3, dans lequel la longueur de la chambre d'écoulement (20) est d'environ 3,5 cm à environ 4 cm et la largeur de la chambre d'écoulement est d'environ 1,4 cm à environ 1,6 cm.
  5. Dispositif microfluidique selon l'une quelconque des revendications 1 à 4, dans lequel le volume de la chambre d'écoulement (20) est d'environ 6 µl à environ 10 µl.
  6. Dispositif microfluidique selon l'une quelconque des revendications 1 à 5, dans lequel le dispositif microfluidique possède un volume d'échange de fluide entre environ 80 % et environ 130 % du volume de la chambre d'écoulement.
  7. Dispositif microfluidique selon l'une quelconque des revendications 1 à 6, dans lequel la profondeur de l'entrée de fluide (10) est d'environ 25 microns à environ 40 microns, la rainure semi-circulaire a une largeur d'environ 350 microns à environ 500 microns et un rayon d'environ 1,8 cm à environ 2 cm, la profondeur de la chambre d'écoulement (20) est d'environ 13 microns à environ 20 microns, et la chambre d'écoulement (20) a une longueur d'environ 3 cm à environ 4,5 cm et une largeur d'environ 1,4 cm à environ 1,6 cm.
  8. Ensemble pour une analyse chimique comprenant le dispositif microfluidique selon la revendication 1 et une puce échantillon (35) possédant une surface (45) comprenant une zone d'analyse (50), dans lequel la surface (45) et la chambre d'écoulement (20) sont en communication.
  9. Ensemble selon la revendication 8, dans lequel :
    la zone d'analyse (50) est d'au moins 1,5 cm2 ;
    la zone d'analyse (50) inclut un microréseau comprenant des points d'analyse ;
    la zone d'analyse (50) inclut un microréseau comprenant des points d'analyse et au moins un point d'analyse comprend une biomolécule ;
    la zone d'analyse (50) inclut un microréseau comprenant des points d'analyse et au moins un point d'analyse comprend un polypeptide ou un polynucléotide ; ou
    le microréseau comprend une pluralité de polypeptides, de polynucléotides ou les deux.
  10. Procédé d'analyse chimique comprenant les étapes consistant à :
    a) introduire un fluide d'analyte ayant un écoulement sur une surface (45) d'une puce échantillon (35) au travers d'un dispositif microfluidique comprenant i) une entrée de fluide (10) possédant une rainure semi-circulaire ; et ii) une chambre d'écoulement (20) comprenant la surface et une paroi interne (25) possédant une extrémité d'entrée (30) et une extrémité de sortie (105), dans lequel l'entrée de fluide (10) est en communication avec la chambre d'écoulement (20), dans lequel la paroi interne (25) au niveau de l'extrémité d'entrée (30) est courbée avec un rayon de courbure similaire au rayon de courbure de la rainure semi-circulaire de l'entrée de fluide, dans lequel l'entrée de fluide (10) introduit le fluide dans la chambre d'écoulement (20) au travers de l'extrémité d'entrée (30), dans lequel le fluide entre dans la chambre d'écoulement (20) et forme un front de fluide (95a) quand le fluide entre au contact de la surface (45),
    b) maintenir l'écoulement du fluide d'analyte de sorte que le fluide d'analyte forme un motif sur la surface (45) de la puce échantillon (35), le motif se rapprochant de la rainure semi-circulaire ;
    c) maintenir l'écoulement du fluide d'analyte de sorte qu'un front de fluide linéaire (95b) se forme sur la surface (45) de la puce échantillon (35) au niveau de l'extrémité d'entrée (30) ; et
    d) maintenir l'écoulement de sorte que le front de fluide linéaire (95b) se déplace le long de la surface (45) de la puce d'échantillon (35).
  11. Procédé d'analyse chimique selon la revendication 10, dans lequel dans le dispositif microfluidique :
    l'entrée de fluide (10) et la chambre d'écoulement (20) comprennent des couches séparées ;
    l'entrée de fluide (10) et la chambre d'écoulement (20) comprennent une couche unique ;
    le rayon de la paroi interne (25) est d'environ 5 % à environ 7 % plus grand que le rayon de la rainure ;
    la largeur de la rainure est d'environ 350 microns à environ 500 microns et le rayon de la rainure est d'environ 1,8 cm à environ 2 cm ;
    la profondeur de l'entrée de fluide est d'environ 20 microns à environ 40 microns ; ou
    la profondeur de la chambre d'écoulement est d'environ 13 microns à environ 20 microns.
  12. Procédé d'analyse chimique selon la revendication 10 ou la revendication 11, dans lequel le dispositif microfluidique comprend en outre une extrémité de sortie de fluide (105) possédant une sortie de fluide (110), dans lequel la paroi interne (25) au niveau de l'extrémité de sortie s'effile vers la sortie de fluide (110).
  13. Procédé d'analyse chimique selon l'une quelconque des revendications 10 à 12, dans lequel dans le dispositif microfluidique :
    la longueur de la chambre d'écoulement (20) est d'environ 4 cm à environ 4,5 cm et la largeur de la chambre d'écoulement (20) est d'environ 1,4 cm à environ 1,6 cm ;
    le volume de la chambre d'écoulement (20) est d'environ 6 µl à environ 10 µl ; ou
    la profondeur de l'entrée de fluide (10) est d'environ 20 microns à environ 40 microns, la rainure semi-circulaire possède une largeur d'environ 350 microns à environ 500 microns et un rayon d'environ 3,5 mm à environ 4 mm, la profondeur de la chambre d'écoulement (20) est d'environ 13 microns à environ 20 microns, et la chambre d'écoulement possède une longueur d'environ 3,5 cm à environ 4 cm et une largeur d'environ 1,4 cm à environ 1,6 cm.
  14. Procédé d'analyse chimique selon l'une quelconque des revendications 10 à 13, dans lequel le dispositif microfluidique possède un volume d'échange de fluide entre environ 80 % et environ 130 % du volume de la chambre d'écoulement.
  15. Procédé d'analyse chimique selon l'une quelconque des revendications 10 à 14, dans lequel :
    le débit est d'environ 180 µl/mn à environ 600 µl/mn et une pression d'environ 34 500 Pa à environ 206 800 Pa (environ 5 à environ 30 PSI) ;
    la surface (45) de la puce échantillon (35) comprend une zone d'analyse qui est d'au moins 0,00015 m2 (1,5 cm2) ;
    la zone d'analyse (50) est un microréseau comprenant des points d'analyse ;
    la zone d'analyse (50) inclut un microréseau comprenant des points d'analyse et au moins un point d'analyse comprend une biomolécule ;
    la zone d'analyse (50) inclut un microréseau comprenant des points d'analyse et au moins un point d'analyse comprend un polypeptide ou un polynucléotide ; ou
    le microréseau comprend une pluralité de polypeptides, de polynucléotides ou les deux.
EP08798995A 2007-08-29 2008-08-29 Appareil microfluidique pour des microréseaux à large zone Active EP2240600B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/846,883 US20090060786A1 (en) 2007-08-29 2007-08-29 Microfluidic apparatus for wide area microarrays
US11/846,908 US7695976B2 (en) 2007-08-29 2007-08-29 Method for uniform analyte fluid delivery to microarrays
PCT/US2008/074865 WO2009029845A1 (fr) 2007-08-29 2008-08-29 Appareil microfluidique pour des microréseaux à large zone

Publications (3)

Publication Number Publication Date
EP2240600A1 EP2240600A1 (fr) 2010-10-20
EP2240600A4 EP2240600A4 (fr) 2011-08-03
EP2240600B1 true EP2240600B1 (fr) 2013-03-13

Family

ID=40387838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08798995A Active EP2240600B1 (fr) 2007-08-29 2008-08-29 Appareil microfluidique pour des microréseaux à large zone

Country Status (2)

Country Link
EP (1) EP2240600B1 (fr)
WO (1) WO2009029845A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4171818A4 (fr) * 2020-06-30 2024-07-10 Plexium Inc Dispositif et procédé fluidique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747521B (zh) * 2010-01-14 2012-02-29 同济大学 一种tpu输送带用自清洁涂层的制备方法
EP2819783B1 (fr) 2012-02-27 2018-10-10 Ecole Polytechnique Fédérale de Lausanne (EPFL) Dispositif de manipulation d'echantillon avec plaque interchangeable
US11198120B2 (en) 2016-12-19 2021-12-14 Bforcure Microfluidic thermalization chip with variable temperature cycles, system using such a chip and PCR method for detecting DNA sequences

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618476A (en) * 1984-02-10 1986-10-21 Eastman Kodak Company Capillary transport device having speed and meniscus control means
US5234813A (en) * 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
EP1324828A1 (fr) * 2000-10-06 2003-07-09 Protasis Corporation Cartouche a canal separateur de fluide dotee d'une fonction de chiffrement
AU2001297830A1 (en) * 2000-10-25 2002-12-09 Exiqon A/S Closed substrate platforms suitable for analysis of biomolecules
JP3856763B2 (ja) * 2003-03-11 2006-12-13 財団法人川村理化学研究所 マイクロ流体素子の製造方法
SE528638C2 (sv) * 2005-04-08 2007-01-09 Boule Medical Ab Anordning för fyllning av en enhet för bestämning av en provvolym
US20070140918A1 (en) 2005-12-19 2007-06-21 Hongfeng Yin Fluidic separation devices and methods with reduced sample broadening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4171818A4 (fr) * 2020-06-30 2024-07-10 Plexium Inc Dispositif et procédé fluidique

Also Published As

Publication number Publication date
WO2009029845A1 (fr) 2009-03-05
EP2240600A4 (fr) 2011-08-03
EP2240600A1 (fr) 2010-10-20

Similar Documents

Publication Publication Date Title
US7695976B2 (en) Method for uniform analyte fluid delivery to microarrays
US20090060786A1 (en) Microfluidic apparatus for wide area microarrays
JP4142280B2 (ja) 流体の分析及び流体の制御された搬送のための装置
CN107583692B (zh) 液滴微流控芯片及其制备方法
Erickson et al. Integrated microfluidic devices
Saias et al. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems
US8889085B2 (en) Microfluidic channel for removing bubbles in fluid
EP2163306A1 (fr) Plaque multipuits avec chambres personnalisées
US20120004139A1 (en) Flow cells for biochemical analysis
JP2004093558A (ja) 分析用チップ、分析用チップユニット及び分析装置ならびに分析用チップの作製方法
WO2001035088A1 (fr) Dispositifs microfluidiques avec detection electrochimique a film epais
JP2009008690A (ja) 分析用チップ、分析用チップユニット及び分析装置ならびに分析用チップの作製方法
KR20020043553A (ko) 소량 용적의 제어 조작용 마이크로 유체공학 장치
JP2012073269A (ja) 対象液体を捕捉するための局在化区域を備える作業装置
EP2240600B1 (fr) Appareil microfluidique pour des microréseaux à large zone
JP4878200B2 (ja) 生化学反応カセット
US10234446B2 (en) Serpentine flow channels for flowing fluids over chip sensors
JP2007216123A (ja) マイクロチャネルチップ
JP4307074B2 (ja) 生物学的、化学的または生化学的プロトコルを連続フローで実行するための方法及びシステム
US8967853B2 (en) Method and apparatus for mixing fluids
WO2015150742A1 (fr) Distribution de fluide
US20160303562A1 (en) Microfluidic devices and arrangements for supplying such devices with reagents and biological samples
US20080241956A1 (en) Method for detecting analyte and biochip
WO2017125567A1 (fr) Canal d'écoulement moulé
JP2004157097A (ja) 液体制御機構

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20110705

RIC1 Information provided on ipc code assigned before grant

Ipc: C12Q 1/68 20060101AFI20110629BHEP

17Q First examination report despatched

Effective date: 20120222

RIC1 Information provided on ipc code assigned before grant

Ipc: C12Q 1/68 20060101AFI20120727BHEP

Ipc: B01L 3/00 20060101ALI20120727BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 600856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008022916

Country of ref document: DE

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 600856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130313

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

26N No opposition filed

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008022916

Country of ref document: DE

Effective date: 20131216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008022916

Country of ref document: DE

Representative=s name: SCHIWECK WEINZIERL KOCH PATENTANWAELTE PARTNER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 16

Ref country code: GB

Payment date: 20240219

Year of fee payment: 16