EP2236839A1 - Kreiselpumpenaggregat - Google Patents

Kreiselpumpenaggregat Download PDF

Info

Publication number
EP2236839A1
EP2236839A1 EP09005021A EP09005021A EP2236839A1 EP 2236839 A1 EP2236839 A1 EP 2236839A1 EP 09005021 A EP09005021 A EP 09005021A EP 09005021 A EP09005021 A EP 09005021A EP 2236839 A1 EP2236839 A1 EP 2236839A1
Authority
EP
European Patent Office
Prior art keywords
housing
centrifugal pump
inner housing
outer housing
pump assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09005021A
Other languages
English (en)
French (fr)
Other versions
EP2236839B1 (de
Inventor
Steen Mikkelsen
Rikke Z. Hansen
Uffe Staehr
Brian Lundsted Poulsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP09005021.2A priority Critical patent/EP2236839B1/de
Publication of EP2236839A1 publication Critical patent/EP2236839A1/de
Application granted granted Critical
Publication of EP2236839B1 publication Critical patent/EP2236839B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5893Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4286Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber

Definitions

  • the invention relates to a centrifugal pump unit.
  • Centrifugal pump units are used in many areas for the promotion of liquids, especially water, for example as heating circulation pumps.
  • Known centrifugal pump units usually have a pump housing made of metal, which is designed as a casting.
  • molded parts made of a foam material are adapted to the outer contour of the pump housing and enclose the pump housing from the outside.
  • this insulation layer can be outwardly clad, for example, by a plastic shell, which gives the pump unit an appealing appearance.
  • the centrifugal pump unit has a pump housing.
  • this pump housing In this pump housing, the flow paths for the medium to be delivered, in particular a liquid to be conveyed are formed.
  • one or more impellers are arranged in a known manner, which promote the medium.
  • a motor or stator housing may be attached, in which an electric motor for driving the impeller is arranged.
  • the pump housing is designed in several parts. It initially has an inner housing made of plastic. This is formed fluid-tight and defined in its interior, the flow paths for the medium or fluid to be delivered.
  • the design of the inner housing made of plastic allows cost-effective production.
  • the flow paths can be made with greater degrees of freedom and precision than in metal casting, so that the flow paths can be designed in an optimized manner.
  • the inner housing thus houses all flow channels or parts and seals the flow paths to the outside. On its outer side, the inner housing is surrounded by a thermal insulation layer, which thermally insulates the inner housing and thus the flow-leading parts to the outside.
  • an outer housing which faces away from the insulating layer on its outer side, that is, the inner housing Surrounds page.
  • This outer housing is designed to be load-bearing, so that it can absorb the forces occurring in the pump housing and acting on the pump housing. These are in particular the pressure forces occurring in the inner housing due to the fluid to be delivered. These forces are transmitted from the inner housing to the outer housing and received by the outer housing.
  • the wall thicknesses can be reduced, whereby the material costs can be reduced and, on the other hand, greater freedom is given in the design of the flow paths in the inner housing.
  • the inner housing thus has the primary task of defining the flow paths and sealing off to the outside.
  • a stator or motor housing is connected to the supporting outer housing, so that no forces are transmitted to the inner pump housing of this.
  • the outer housing may also be formed of plastic, wherein the housing is dimensioned so that the forces occurring can be absorbed or transmitted by the housing, without causing damage or undesirable deformation of the housing.
  • the outer housing is particularly preferably at least partially, ideally made entirely of metal.
  • the outer housing can be made as a casting of metal or z. B. be formed from sheet metal.
  • the formation of the outer housing made of metal is much easier than that Forming the inner housing, since it does not have to have such complex shapes as the flow channels in the interior of the inner housing. In this respect, the production is much easier and cheaper.
  • the outer metal housing compared to the outer plastic housing has the advantage that it forms a resistant housing of the pump unit to the outside, so that it is protected against damage, especially during installation and transport. In particular, the insulation layer is protected to the outside.
  • the outer housing may be formed of aluminum.
  • the inner housing is preferably made as an injection molded part. In injection molding, even complicated shapes can be inexpensively formed from plastic. In addition, high surface qualities can be achieved, which is particularly advantageous for the flow paths in the interior of the inner housing.
  • the inner housing is made of a composite material, in particular of a fiber-reinforced plastic.
  • a plastic has a high strength.
  • sufficient strength can be realized with comparatively thin wall thicknesses.
  • a sufficient compressive strength against the pressure prevailing in the interior of the inner housing fluid pressures can be realized.
  • such a fiber-reinforced plastic can also be processed by injection molding in the manner described above.
  • the inner housing, the insulating layer and / or the outer housing is in each case composed of several parts.
  • the inner housing can be composed of several parts to the cavities formed inside for the flow paths without cores, in particular to be able to train lost cores cost.
  • first of all a plurality of individual parts of the inner housing for example, be manufactured as injection molded parts and then connected to each other. The connection can be done for example by welding or gluing or in another suitable manner, for example, non-positively or positively.
  • a fluid-tight connection between the parts is preferably created so that the interior spaces of the inner housing, which are bounded outwards by the parts, are sealed to the outside in a fluid-tight manner.
  • the insulating layer may also be formed from a plurality of individual parts, in particular moldings, which are attached from the outside to the inner housing in order to enclose this.
  • the design of several parts a simple assembly of prefabricated items is possible.
  • the outer housing which may be formed of several parts or shells, which are placed from the outside around the inner housing with the adjacent insulating layer to enclose them.
  • the individual parts of the outer housing can be mechanically connected to one another in a suitable manner, for example screwed or in other suitable manner non-positively and / or positively engaged with each other.
  • the outer housing thus arranged can then simultaneously hold together the several individual parts of the insulating layer, so that they do not require individual mechanical connections.
  • the insulating layer is preferably also made of plastic, in particular in the form of a foam material. These may be conventional insulation materials available on the market. In particular, they are preferably materials from which prefabricated Moldings can be made, which can be applied from the outside to the inner housing.
  • the insulating layer may be formed of a material which is injected into a space defined between the inner and outer housing.
  • the outer housing can be placed around the inner housing, wherein the inner and outer housings are designed so that a space remains between them.
  • the material for the insulation layer can then be injected into the free space and distributed there.
  • the free space can be foamed up.
  • the insulation layer can be formed very inexpensively, since a separate shaping of individual parts for the insulation layer is not required.
  • At least one support element for transmitting power from the inner housing to the outer housing is arranged between the inner housing and the outer housing. Due to the pressure caused by the fluid inside the inner casing, the inner casing tends to expand outwardly. This can counteract support elements between the outer and inner housing by transmitting outwardly directed forces from the inner housing to the outer housing, wherein the outer housing itself is formed so dimensionally stable that it can absorb the transmitted forces.
  • a plurality or a plurality of support elements are provided, which are arranged distributed over the outer surface of the inner housing, so that forces can be transmitted in all directions to the outer housing. In this way, the inner housing can be relieved in all areas of the forces generated by the internal pressure.
  • the at least one support element preferably rests on the outer housing and / or is formed as part of the outer housing. That is, the support member is preferably on the inside of the outer housing so that forces can be transmitted from the support member to the outer housing. It is possible that the support element or a part of the support element is made as part of the outer housing, in particular integrally formed therewith. In particular, when the outer housing is manufactured as a casting, it is easily possible to cast such support elements with.
  • the at least one support element rest against the inner housing and / or be formed as part of the inner housing.
  • the support member may be integrally formed with the inner housing or fixedly connected thereto.
  • the support element may be formed together with the inner housing as a casting, in particular as an injection molded part made of plastic.
  • the support members may also be formed so as to be formed of two sections, one part fixedly formed on the inner housing and one fixed to the outer housing, both parts engaging each other for power transmission when the outer housing is mounted to the inner housing is.
  • the at least one support element is designed as a rib, which extends transversely, preferably substantially normal to the outer surface of the inner housing and / or to the inner surface of the outer housing.
  • the rib thus extends from the inner housing substantially in the radial direction to the outer housing and can transmit the outwardly directed pressure forces, which are caused by the internal pressure in the inner housing, directly in the direction of action of the forces on the outer housing. In this way undesirable moments in the housing structure are avoided.
  • At least two support elements formed as a rib are present, which extend in two mutually non-parallel planes. This makes it possible that forces which are transmitted in the longitudinal direction of the ribs can be transmitted in different spatial directions from the fin housing to the outer housing. Thus, preferably, all pressure forces caused by the internal pressure in the inner housing can be dissipated to the outer housing so that it does not come to deformations or damage to the inner housing.
  • At least one support element may have at least one elastic section.
  • This embodiment allows for an elastic deformation of the support element.
  • the support elements can absorb minor deformations during operation of the pump without damage.
  • they allow a backlash-free assembly between the inner and outer housing.
  • the support elements are preferably formed of a heat-insulating material to prevent unwanted heat transfer from the inner housing to the outer housing.
  • the support elements of a plastic material, which is poorly thermally conductive, are formed. This may further preferably be the same material from which the inner housing is formed.
  • the outer housing is preferably well thermally conductive, in particular made of metal. In this way, especially when used as a cold water pump condensation on the outer casing can be prevented.
  • the inner housing has at least one replaceable connecting flange.
  • the means, the connection of the flange is formed as a separate component and preferably releasably connected to the inner housing. This makes it possible to easily replace the connection flange, in order to allow the connection of the inner housing to different mating flange of subsequent piping. In this way it is avoided that different inner housing and different pump units must be provided for different connections, but only the connection flanges can be replaced depending on the required mounting.
  • the pump housing has at least one connection flange tightly connected to the inner housing, which is in engagement with the outer housing in engagement.
  • the connection flange is so tightly connected to the inner housing that an outwardly sealed flow path through the connection flange is provided through the inner housing.
  • the connection flange is engaged or connected to the outer housing in such a way that forces acting on the connection flange are transmitted to the outer housing and thus the load on the inner housing can be prevented in the case of externally acting forces. It is thus created a bearing connection between the outer housing and flange.
  • a stator housing or electric motor is preferably connected to the outer housing so that the outer housing bears the weight of the stator housing or of the electric motor and thus the inner housing is kept largely free from external forces.
  • the stator housing or a part of the stator housing may also be formed integrally with at least a part of the outer housing.
  • Fig. 1 shows a first embodiment of a centrifugal pump assembly according to the invention.
  • the centrifugal pump assembly has a pump housing 2 with axially attached connection flanges 4.
  • a motor or stator housing 6 is inserted laterally into the pump housing 2.
  • the connecting flanges 4 are interchangeable designed so that different connection flanges 4 can be used with the pump housing 2.
  • the centrifugal pump unit can be adapted to different mating flange only by replacing the connection flanges, without having to replace or change the pump housing 2 itself.
  • the pump housing 2 has an inner housing 8, which has flow paths 10 for a fluid or medium to be delivered by the centrifugal pump assembly.
  • a pump chamber 12 is formed, in which a, not shown here, impeller is arranged.
  • the impeller is driven in a known manner by an electric motor arranged in the stator housing 6.
  • the inner housing 8 is fluid-tight as an injection molded part made of plastic, preferably fiber-reinforced plastic.
  • the pump housing can be manufactured, for example, as an injection molded part.
  • the inner housing 8 is surrounded by an outer housing 14.
  • the outer housing 14 is preferably formed of metal and gives the pump housing 2, the mechanical strength, which does not have the inner plastic housing alone.
  • an insulating layer is arranged in the form of an insulating body. This consists for example of a foamed plastic.
  • the support elements 18 are formed in the example shown as parallel ribs. In this case, the support elements 18 are formed in the example shown here as a separate support body, which is inserted between the inner housing 8 and the outer housing 14.
  • the support members 18 could also be formed integrally with the inner housing 8 or the outer housing 14.
  • the flanges 4, as well as the stator housing 6 are mechanically connected directly to the outer housing 14, so that a power transmission directly to the outer housing 14 is possible, and the outer housing 14 preferably absorbs all significant forces.
  • the inner housing 8 can be relieved. This makes it possible to form the inner housing 8 thin-walled, so that the inner housing 8 can be shaped in such a way that primarily the flow paths 10 can be optimized to improve the flow guidance.
  • the outer housing 14 is composed of 2 cup-shaped parts 14a and 14b. These shells can be easily formed as castings, for example made of aluminum. It is preferred that the outer housing is made of a good heat-conducting material, ie preferably metal. Thus it can be achieved that the outer housing 14 due to the underlying insulating 16 easily assumes the ambient temperature, so that in the promotion of cold media condensation of water on the outer casing can be prevented. Also, the insulation body 16 is composed of two parts 16a and 16b, which are formed in a half-shell shape. Thus, the parts 16a and 16b enclose the inner housing 8. Due to the shared design of the insulating body, this is also inexpensive to manufacture and easy to install.
  • the parts 14 a and 14 b of the outer housing 14 are preferably held together by screws or bolts which extend through the insulating body 16, but are not connected to the inner housing 8.
  • the insulating body 16 is fixed between the inner housing 8 and the outer housing 14.
  • the stator housing 6 can be connected by screws or bolts to the part 14 a of the outer housing 14.
  • the support members 18 extend in columns in the parts 16 a and 16 b of the insulator 16.
  • the support members 18 may be used as a separate component in the form of a support body, in which all support elements 18 are connected to each other, or be formed integrally with the inner housing 8.
  • the support elements 18 are preferably also formed of plastic, so that they act thermally insulating and avoid heat transfer between the inner housing 8 and the outer housing 14 as possible. Nevertheless, the support elements 18 abut both the inner housing 8 and on the inside of the outer housing 14 in order to enable a power transmission.
  • the inner housing 8 may be composed of two parts to simplify the production.
  • the inner housing 8 may be divided along the plane 20, so that the two parts of the inner housing 8 may preferably be manufactured without undercuts by injection molding. Subsequently, the two parts can be connected to one another, for example, welded together along the dividing plane 20.
  • Fig. 4 shows a further embodiment of the invention, similar to the embodiment in Fig. 3 ,
  • the embodiment corresponds essentially to the basis of Fig. 1 to 3 described embodiment, but differs in some points described below.
  • the rib-shaped support elements 18 not all parallel to each other but in mutually angled planes.
  • the inner housing 8 is here along a different dividing plane 20 'divided. That is, the inner housing 8 is made of two parts, which are welded together along the dividing plane 20 '.
  • the stator housing 6 is integrally formed with the part 14 a of the outer housing 4.
  • the outer casing 14 is formed of two parts, and in this embodiment, the two parts do not abut on a plane plane but are divided along a stepped dividing line 22 ,
  • the flanges 4 are in the embodiment according to Fig. 5 differently shaped in their shape.
  • the flanges can be designed accordingly, or in the embodiment according to Fig. 5 the flanges could be designed according to the first embodiment.
  • a part of the stator housing 6 is integrally formed with the part 14 a of the outer housing.
  • the insulating layer 16 ' may be injected into a cavity between the outer casing 14 (14a, 14b) and the inner casing 8.
  • the inner housing 8 is also composed of several parts here. The two parts are joined together along the dividing line 24, for example welded together tightly.
  • the flanges 4 are also here with the outer housing 14 into engagement, so that a power transmission from the flanges directly to the outer housing is possible.
  • web-shaped or rib-shaped support elements 18 are also provided in this embodiment between the inner housing 8 and the outer housing 14, which sections are integrally formed either with the inner housing 8 or the outer housing 14. The individual sections abut each other for power transmission, so that the support elements 18 are in communication with or in contact with both the inner housing 8 and the outer housing 14.
  • the support elements 18 are grid-shaped or honeycomb-shaped in Fig. 7 the lattice structure of the support elements 18 "is honeycomb-shaped and is preferably formed as a composite material as part of the inner housing 8.
  • the support elements 18 are formed integrally with the outer housing 14, preferably as a metal structure.”
  • the cavities 25 in the lattice structure of the support element 18 can additionally be foamed with an insulating material.
  • the support elements 18 are not in direct contact with the inner housing 8, but that the inner housing 8 is first by a in Fig.
  • insulating layer or an insulating body is sheathed, on the outside of the support body 18 "or the lattice structure of the support body 18" comes to rest.
  • This insulating body can also be produced in one piece with the foaming of the cavities 25.
  • the support elements 18 "in the form of a grid or honeycomb structure are so stiff that forces can be reliably transmitted from the inner housing 8 to the outer housing 14.
  • the walls of the honeycombs preferably extend substantially perpendicular to the inner surface of the outer housing 14 or The outer surface of the inner housing 8.
  • the walls of the honeycomb structure extend substantially in the direction of force of the forces to be transmitted Fig. 8 the outer housing 14 is formed divided.
  • the division line 26 is similar to the dividing line 22 in FIG Fig. 5 ,
  • the flanges are formed so that they are positively engaged with the outer housing 14, so that forces from the flanges 4 directly to the outer housing 4 can be transmitted.
  • the outer housing 14 engages with a projection in a circumferential groove 28 of the flange 4 a.
  • a part of the stator housing 6 is formed integrally with the outer housing 14.
  • the remaining features of the embodiments according to Fig. 7 and 8th correspond to the above-mentioned embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft Kreiselpumpenaggregat mit einem Pumpengehäuse (2), welches durch ein Innengehäuse (8) aus Kunststoff, welches fluiddicht ausgebildet ist und die Strömungswege (10) für das zu fördernde Fluid definiert, eine das Innengehäuse (8) an seiner Außenseite umgebende thermische Isolationsschicht (16, 16'), und ein die Isolationsschicht (16, 16') außen umgebendes tragendes Außengehäuse (14) aufweist.

Description

  • Die Erfindung betrifft ein Kreiselpumpenaggregat.
  • Kreiselpumpenaggregate werden in vielen Bereichen zu Förderung von Flüssigkeiten, insbesondere von Wasser eingesetzt, beispielsweise als Heizungsumwälzpumpen. Bekannte Kreiselpumpenaggregate weisen üblicherweise ein Pumpengehäuse aus Metall auf, welches als Gussteil ausgebildet ist. Darüber hinaus ist es bekannt, solche Kreiselpumpenaggregate mit einer thermischen Isolierung zu umhüllen, beispielsweise um bei Kaltwasserpumpen einen Niederschlag von Kondenswasser an der Außenseite zu vermeiden oder bei Warmwasserpumpen Wärmeverluste zu reduzieren. Beispielsweise sind Formteile aus einem Schaummaterial an die Außenkontur des Pumpengehäuses angepasst und umschließen das Pumpengehäuse von außen. Zusätzlich kann diese Isolationsschicht nach außen beispielsweise durch eine Kunststoffschale verkleidet sein, welche dem Pumpenaggregat ein ansprechendes Äußeres gibt.
  • Pumpengehäuse aus Metallguss haben den Nachteil, dass sie teuer in der Fertigung sind und die Formgebung der Strömungswege im Inneren und insbesondere die Oberflächengestaltung der Strömungswege eingeschränkt ist, sodass eine Strömungsoptimierung nur schwer möglich ist.
  • Es ist daher Aufgabe der Erfindung, ein verbessertes Kreiselpumpenaggregat bereitzustellen, welches eine thermische Isolierung aufweist und im Übrigen eine optimierte Gestaltung der Strömungswege im Inneren bei gleichzeitig kostengünstiger Fertigung zulässt.
  • Diese Aufgabe wird durch ein Kreiselpumpenaggregat mit den im Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Das erfindungsgemäße Kreiselpumpenaggregat weist ein Pumpengehäuse auf. In diesem Pumpengehäuse sind die Strömungswege für das zu fördernde Medium, insbesondere eine zu fördernde Flüssigkeit ausgebildet. In dem Pumpengehäuse werden in bekannter Weise ein oder mehrere Laufräder angeordnet, welche das Medium fördern. An das Pumpengehäuse kann ein Motor- bzw. Statorgehäuse angesetzt sein, in welchem ein Elektromotor zum Antrieb des Laufrades angeordnet ist.
  • Erfindungsgemäß ist das Pumpengehäuse mehrteilig ausgebildet. Es weist zunächst ein Innengehäuse aus Kunststoff auf. Dieses ist fluiddicht ausgebildet und definiert in seinem Inneren die Strömungswege für das zu fördernde Medium bzw. Fluid. Die Ausgestaltung des Innengehäuses aus Kunststoff ermöglicht eine kostengünstige Fertigung. Darüber hinaus können die Strömungswege mit größeren Freiheitsgraden und größerer Präzision als im Metallguss gefertigt werden, sodass die Strömungswege in optimierter Weise ausgestaltet werden können. Das Innengehäuse beherbergt somit alle strömungsführenden Kanäle bzw. Teile und dichtet die Strömungswege nach außen ab. An seiner Außenseite ist das Innengehäuse von einer thermischen Isolationsschicht umgeben, welche das Innengehäuse und damit die strömungsführenden Teile nach außen thermisch isoliert.
  • Darüber hinaus ist ein Außengehäuse vorgesehen, welches die Isolationsschicht an ihrer Außenseite, d. h. der dem Innengehäuse abgewandten Seite umgibt. Dieses Außengehäuse ist tragend ausgebildet, sodass es die in dem Pumpengehäuse auftretenden und die an dem Pumpengehäuse angreifenden Kräfte aufnehmen kann. Dies sind insbesondere die in dem Innengehäuse auftretenden Druckkräfte aufgrund des zu fördernden Fluids. Diese Kräfte werden von dem Innengehäuse auf das Außengehäuse übertragen und von dem Außengehäuse aufgenommen. Dies ermöglicht es, das Innengehäuse selber weniger stark zu dimensionieren, sodass hier die Ausgestaltung aus Kunststoff problemlos möglich ist. Ferner können die Wandstärken reduziert werden, wodurch die Materialkosten verringert werden können und zum anderen bei der Gestaltung der Strömungswege in dem Innengehäuse größere Freiheiten gegeben sind. Das Innengehäuse hat somit vorrangig die Aufgabe, die Strömungswege zu definieren und nach außen dichtend abzuschließen. Es muss jedoch nicht allein die auftretenden Kräfte aufnehmen, diese werden vielmehr zum Teil, idealerweise zum Großteil von dem Außengehäuse aufgenommen, welches ein mechanisch tragendes Element des Pumpengehäuses bildet. Auch von außen auf das Pumpenaggregat wirkenden Kräfte beispielsweise Haltekräfte werden idealerweise vom Außengehäuse aufgenommen. So ist vorzugsweise auch ein Stator- bzw. Motorgehäuse mit dem tragenden Außengehäuse verbunden, sodass von diesem keine Kräfte auf das innere Pumpengehäuse übertragen werden.
  • Das Außengehäuse kann ebenfalls aus Kunststoff ausgebildet sein, wobei das Gehäuse so dimensioniert wird, dass die auftretenden Kräfte von dem Gehäuse aufgenommen bzw. übertragen werden können, ohne dass es zu Beschädigungen oder unerwünschten Verformungen des Gehäuses kommt. Besonders bevorzugt ist das Außengehäuse jedoch zumindest teilweise, idealerweise vollständig aus Metall gefertigt. Das Außengehäuse kann dabei als Gussteil aus Metall gefertigt sein oder aber auch z. B. umformend aus Blech gefertigt sein. Die Ausbildung des Außengehäuses aus Metall ist wesentlich einfacher als die Ausbildung des Innengehäuses, da es keine derart komplexen Formen wie die Strömungskanäle im Inneren des Innengehäuses aufweisen muss. Insofern ist hier die Fertigung wesentlich einfacher und kostengünstiger. Darüber hinaus bietet das Außengehäuse aus Metall gegenüber dem Außengehäuse aus Kunststoff den Vorteil, dass es nach außen ein widerstandsfähiges Gehäuse des Pumpenaggregates bildet, sodass dieses vor Beschädigungen insbesondere beim Einbau und Transport geschützt ist. Insbesondere die Isolationsschicht wird so nach außen geschützt. Besonders bevorzugt kann das Außengehäuse aus Aluminium ausgebildet sein.
  • Das Innengehäuse ist vorzugsweise als Spritzgussteil gefertigt. Im Spritzguss lassen sich auch komplizierte Formen kostengünstig aus Kunststoff ausbilden. Darüber hinaus können hohe Oberflächenqualitäten erzielt werden, was insbesondere für die Strömungswege im Inneren des Innengehäuses von Vorteil ist.
  • Weiter bevorzugt ist das Innengehäuse aus einem Kompositmaterial, insbesondere aus einem faserverstärkten Kunststoff gefertigt. Ein solcher Kunststoff weist eine hohe Festigkeit auf. Insbesondere kann eine ausreichende Festigkeit bei vergleichsweise dünnen Wandstärken realisiert werden. Auch eine ausreichende Druckfestigkeit gegenüber den im Inneren des Innengehäuses herrschenden Fluiddrücken kann so realisiert werden. Insbesondere wird sichergestellt, dass auch bei hohen Innendrücken das Innengehäuse seine definierte Form behält. Ein solcher faserverstärkter Kunststoff kann darüber hinaus auch im Spritzguss in der vorangehend beschriebenen Weise verarbeitet werden.
  • Es ist weiter bevorzugt möglich, dass das Innengehäuse, die Isolationsschicht und/oder das Außengehäuse jeweils aus mehreren Teilen zusammengesetzt ist. So kann das Innengehäuse aus mehreren Teilen zusammengesetzt werden, um die im Inneren gebildeten Hohlräume für die Strömungswege ohne Kerne, insbesondere verlorene Kerne kostengünstig ausbilden zu können. So können zunächst mehrere Einzelteile des Innengehäuses, beispielsweise als Spritzgussteile gefertigt werden und anschließend miteinander verbunden werden. Die Verbindung kann beispielsweise durch Verschweißen oder Verkleben oder in anderer geeigneter Weise, beispielsweise auch kraft- oder formschlüssig erfolgen. Dabei wird bevorzugt eine fluiddichte Verbindung zwischen den Teilen geschaffen, sodass die von den Teilen nach außen begrenzten Innenräume des Innengehäuses nach außen fluiddicht abgedichtet sind.
  • Die Isolationsschicht kann ebenfalls aus mehreren Einzelteilen, insbesondere Formteilen ausgebildet sein, welche von außen an das Innengehäuse angesetzt werden, um dieses zu umschließen. Durch die Ausgestaltung aus mehreren Teilen wird eine einfache Montage vorgefertigter Einzelteile möglich. Das gleiche gilt für das Außengehäuse, welches aus mehreren Teilen oder Schalen gebildet sein kann, welche von außen um das Innengehäuse mit der anliegenden Isolationsschicht aufgesetzt werden, um diese zu umschließen. Dabei können die Einzelteile des Außengehäuses in geeigneter Weise mechanisch miteinander verbunden werden, beispielsweise verschraubt oder auf andere geeignete Weise kraft- und/oder formschlüssig miteinander in Eingriff gebracht werden. Das so angeordnete Außengehäuse kann dann gleichzeitig die mehreren Einzelteile der Isolationsschicht zusammenhalten, sodass diese für sich keiner einzelnen mechanischen Verbindungen bedürfen.
  • Die Isolationsschicht ist vorzugsweise ebenfalls aus Kunststoff, insbesondere in Form eines Schaummaterials gefertigt. Es kann sich dabei um herkömmliche am Markt verfügbare Isolationsstoffe handeln. Insbesondere handelt es sich vorzugsweise um Materialien, aus denen vorgefertigte Formteile hergestellt werden können, welche von außen an das Innengehäuse angesetzt werden können.
  • Gemäß einer besonderen Ausführungsform kann die Isolationsschicht aus einem Material gebildet sein, welches in eine zwischen Innen- und Außengehäuse definierten Freiraum eingespritzt wird. So kann zunächst das Außengehäuse um das Innengehäuse gesetzt werden, wobei Innen- und Außengehäuse so gestaltet sind, dass zwischen beiden ein Freiraum verbleibt. Durch eine oder mehrere geeignete Einspritzöffnungen in dem Außengehäuse kann dann das Material für die Isolationsschicht in den Freiraum eingespritzt werden und sich dort verteilen. So kann der Freiraum beispielsweise ausgeschäumt werden. Auf diese Weise lässt sich die Isolationsschicht sehr kostengünstig ausbilden, da eine separate Formgebung von Einzelteilen für die Isolationsschicht nicht erforderlich ist.
  • Ferner ist es bevorzugt, dass zwischen dem Innengehäuse und dem Außengehäuse zumindest ein Stützelement zur Kraftübertragung von dem Innengehäuse auf das Außengehäuse angeordnet ist. Aufgrund des von dem Fluid im Inneren des Innengehäuses verursachten Druckes ist das Innengehäuse bestrebt, sich nach außen auszudehnen. Dem können Stützelemente zwischen Außen- und Innengehäuse entgegenwirken, indem sie nach außen gerichtete Kräfte vom Innengehäuse auf das Außengehäuse übertragen, wobei das Außengehäuse selbst derart formstabil ausgebildet ist, dass es die übertragenen Kräfte aufnehmen kann. Bevorzugt sind mehrere bzw. eine Vielzahl von Stützelementen vorgesehen, welche über die Außenfläche des Innengehäuses verteilt angeordnet sind, sodass Kräfte in allen Richtungen auf das Außengehäuse übertragen werden können. Auf diese Weise kann das Innengehäuse in allen Bereichen von den durch den Innendruck erzeugten Kräften entlastet werden.
  • Das zumindest eine Stützelement liegt bevorzugt an dem Außengehäuse an und/oder ist als Teil des Außengehäuses ausgebildet. Das heißt das Stützelement liegt bevorzugt an der Innenseite des Außengehäuses so an, dass Kräfte von dem Stützelement auf das Außengehäuse übertragen werden können. Es ist möglich, dass das Stützelement oder ein Teil des Stützelementes als Teil des Außengehäuses gefertigt ist, insbesondere einstückig mit diesem ausgebildet ist. Insbesondere, wenn das Außengehäuse als Gussteil gefertigt wird, ist es leicht möglich derartige Stützelemente mit anzugießen.
  • Alternativ oder zusätzlich kann das zumindest eine Stützelement an dem Innengehäuse anliegen und/oder als Teil des Innengehäuses ausgebildet sein. So wird eine sichere Kraftübertragung von dem Innengehäuse auf das Stützelement ermöglicht. Das Stützelement kann einteilig mit dem Innengehäuse ausgebildet oder fest mit diesem verbunden sein. Beispielsweise kann das Stützelement gemeinsam mit dem Innengehäuse als Gussteil, insbesondere als Spritzgussteil aus Kunststoff ausgebildet sein. Die Stützelemente können auch derart ausgebildet sein, dass sie aus zwei Abschnitten gebildet sind, wobei ein Teil fest an dem Innengehäuse und ein Teil fest an dem Außengehäuse ausgebildet ist, wobei beide Teile zur Kraftübertragung miteinander in Anlage sind, wenn das Außengehäuse an dem Innengehäuse montiert ist.
  • Besonders bevorzugt ist das zumindest eine Stützelement als Rippe ausgebildet, welche sich quer, vorzugsweise im Wesentlichen normal zur Außenfläche des Innengehäuses und/oder zur Innenfläche des Außengehäuses erstreckt. Die Rippe erstreckt sich somit von dem Innengehäuse im Wesentlichen in radialer Richtung zu dem Außengehäuse und kann die nach außen gerichteten Druckkräfte, welche vom Innendruck im Innengehäuse verursacht werden, direkt in Wirkungsrichtung der Kräfte auf das Außengehäuse übertragen. Auf diese Weise werden unerwünschte Momente in der Gehäusestruktur vermieden.
  • Weiter bevorzugt sind zumindest zwei als Rippe ausgebildete Stützelemente vorhanden, welche sich in zwei zueinander nicht parallelen Ebenen erstrecken. Dies ermöglicht es, dass Kräfte, welche in Längsrichtung der Rippen übertragen werden, in unterschiedlichen Raumrichtungen von dem Rippengehäuse auf das Außengehäuse übertragen werden können. So können vorzugsweise sämtliche durch den Innendruck im Innengehäuse verursachten Druckkräfte so auf das Außengehäuse abgeleitet werden, dass es nicht zu Verformungen oder Beschädigungen des Innengehäuses kommt.
  • Gemäß einer besonderen bevorzugten Ausführungsform kann zumindest ein Stützelement zumindest einen elastischen Abschnitt aufweisen. Diese Ausgestaltung lässt eine elastische Deformation des Stützelementes zu. So können die Stützelemente geringfügige Verformungen beim Betrieb der Pumpe ohne Beschädigung aufnehmen. Darüber hinaus ermöglichen sie eine spielfreie Montage zwischen Innen- und Außengehäuse.
  • Weiter bevorzugt sind die Stützelemente vorzugsweise aus einem wärmeisolierenden Material ausgebildet, um einen unerwünschten Wärmeübergang von Innengehäuse auf das Außengehäuse zu verhindern. Beispielsweise können die Stützelemente aus einem Kunststoffmaterial, welches schlecht wärmeleitend ist, ausgebildet werden. Dies kann weiter bevorzugt dasselbe Material sein, aus dem das Innengehäuse ausgebildet ist. Das Außengehäuse ist bevorzugt gut wärmeleitend, insbesondere aus Metall ausgebildet. Auf diese Weise kann insbesondere beim Einsatz als Kaltwasserpumpe eine Kondenswasserbildung am Außengehäuse verhindert werden.
  • Gemäß einer weiteren bevorzugten Ausführungsform weist das Innengehäuse zumindest einen austauschbaren Anschlussflansch auf. Das heißt, der Anschluss von dem Flansch ist als separates Bauteil ausgebildet und vorzugsweise lösbar mit dem Innengehäuse verbunden. Dies ermöglicht es, den Anschlussflansch leicht auszutauschen, um die Anbindung des Innengehäuses an unterschiedliche Gegenanschlussflansche sich anschließender Rohrleitungen zu ermöglichen. Auf diese Weise wird vermieden, dass für verschiedene Anschlüsse unterschiedliche Innengehäuse und unterschiedliche Pumpenaggregate vorgesehen werden müssen, vielmehr können lediglich die Anschlussflansche je nach erforderlicher Befestigungsart ausgetauscht werden.
  • Weiter bevorzugt weist das Pumpengehäuse zumindest einen dicht mit dem Innengehäuse verbundenen Anschlussflansch auf, welcher mit dem Außengehäuse tragend im Eingriff ist. Der Anschlussflansch ist mit dem Innengehäuse derart dicht verbunden, dass ein nach außen abgedichteter Strömungsweg durch den Anschlussflansch hindurch durch das Innengehäuse geschaffen wird. Gleichzeitig ist der Anschlussflansch so mit dem Außengehäuse in Eingriff bzw. verbunden, dass auf den Anschlussflansch wirkende Kräfte auf das Außengehäuse übertragen werden und so die Belastung des Innengehäuses bei von außen angreifenden Kräften verhindert werden kann. Es wird somit eine tragende Verbindung zwischen Außengehäuse und Anschlussflansch geschaffen. Auch ein Statorgehäuse bzw. Elektromotor ist vorzugsweise tragend mit dem Außengehäuse verbunden, sodass das Außengehäuse das Gewicht des Statorgehäuses bzw. des Elektromotors trägt und somit das Innengehäuse weitgehend frei von äußeren Krafteinflüssen gehalten wird. Das Statorgehäuse oder ein Teil des Statorgehäuses kann auch einstückig mit zumindest einem Teil des Außengehäuses ausgebildet sein.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Fig. 1
    eine schematische Explosionsansicht eines erfindungsgemäßen Kreiselpumpenaggregats,
    Fig. 2
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 1,
    Fig. 3
    eine vollständige Explosionsansicht des Kreiselpumpenaggregates gemäß Fig. 2 und 3,
    Fig. 4
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform,
    Fig. 5
    eine perspektivische Gesamtansicht eines Kreiselpumpenaggregates gemäß einer weiteren Ausführungsform der Erfindung,
    Fig. 6
    eine Schnittansicht eine Kreiselpumpenaggregates gemäß einer weiteren Ausführungsform der Erfindung,
    Fig. 7
    eine teilweise geschnittene perspektivische Ansicht eines Kreiselpumpen gemäß einer weiteren Ausführungsform der Erfindung und
    Fig.8
    eine teilweise geschnittene perspektivische Ansicht eines Kreiselpumpenaggregates gemäß einer weiteren Ausführungsform der Erfindung.
  • Fig. 1 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kreiselpumpenaggregates. Das Kreiselpumpenaggregat weist ein Pumpengehäuse 2 mit axial angesetzten Anschlussflanschen 4 auf. Darüber hinaus ist ein Motor bzw. Statorgehäuse 6 seitlich in das Pumpengehäuse 2 eingesetzt. Die Anschlussflansche 4 sind austauschbar ausgebildet, sodass unterschiedliche Anschlussflansche 4 mit dem Pumpengehäuse 2 verwendet werden können. So kann das Kreiselpumpenaggregat an unterschiedliche Gegenanschlussflansche allein durch Austauschen der Anschlussflansche angepasst werden, ohne das Pumpengehäuse 2 selbst austauschen oder verändern zu müssen.
  • Anhand von Fig. 2 wird der weitere Aufbau des Pumpengehäuses 2 erläutert. Das Pumpengehäuse 2 weist ein Innengehäuse 8 auf, welches Strömungswege 10 für ein von dem Kreiselpumpenaggregat zu förderndes Fluid bzw. Medium aufweist. Insbesondere ist in dem Innengehäuse 8 ein Pumpraum 12 ausgebildet, in welchem ein, hier nicht gezeigtes, Laufrad angeordnet wird. Das Laufrad wird in bekannter Weise von einem in dem Statorgehäuse 6 angeordneten Elektromotor angetrieben. Das Innengehäuse 8 ist fluiddicht als Spritzgussteil aus Kunststoff, vorzugsweise faserverstärktem Kunststoff ausgebildet. Das Pumpengehäuse kann beispielsweise als Spritzgussteil gefertigt werden.
  • Außen ist das Innengehäuse 8 von einem Außengehäuse 14 umgeben. Das Außengehäuse 14 ist bevorzugt aus Metall ausgebildet und gibt dem Pumpengehäuse 2 die mechanische Festigkeit, welche das Innengehäuse aus Kunststoff allein nicht aufweist. Zwischen dem Innengehäuse 8 und dem Außengehäuse 14 ist eine Isolationsschicht in Form eines Isolierkörpers angeordnet. Dieser besteht beispielsweise aus einem geschäumten Kunststoff. In dem Isolierkörper 16 sind Freiräume ausgebildet, in welchem Stützelemente 18 gelegen sind, welche eine Kraftübertragung von dem Innengehäuse 8 auf das Außengehäuse 14 ermöglichen. Die Stützelemente 18 sind im gezeigten Beispiel als parallele Rippen ausgebildet. Dabei sind die Stützelemente 18 im hier gezeigten Beispiel als separater Stützkörper ausgebildet, welcher zwischen Innengehäuse 8 und Außengehäuse 14 eingelegt ist. Es ist jedoch zu verstehen, dass die Stützelemente 18 auch einstückig mit dem Innengehäuse 8 oder dem Außengehäuse 14 ausgebildet werden könnten.
  • Die Flansche 4, sowie das Statorgehäuse 6 werden mechanisch direkt mit dem Außengehäuse 14 verbunden, sodass eine Kraftübertragung direkt auf das Außengehäuse 14 möglich ist, und das Außengehäuse 14 vorzugsweise alle wesentlichen auftretenden Kräfte aufnimmt. So kann das Innengehäuse 8 entlastet werden. Dies ermöglicht das Innengehäuse 8 dünnwandig auszubilden, sodass das Innengehäuse 8 so geformt werden kann, dass in erster Linie die Strömungswege 10 zur Verbesserung der Strömungsführung optimiert werden können.
  • Wie in der Explosionsansicht in Fig. 3 zu erkennen ist, ist das Außengehäuse 14 aus 2 schalenförmigen Teilen 14a und 14b zusammengesetzt. Diese Schalen können leicht als Gussteile beispielsweise aus Aluminium ausgebildet werden. Es ist bevorzugt, dass das Außengehäuse aus einem gut wärmeleitenden Material, d. h. vorzugsweise Metall gefertigt wird. So kann erreicht werden, dass das Außengehäuse 14 aufgrund des dahinterliegenden Isolierkörpers 16 leicht die Umgebungstemperatur annimmt, sodass bei der Förderung von kalten Medien eine Kondensation von Wasser am Außengehäuse verhindert werden kann. Auch der lsolationskörper 16 ist aus zwei Teilen 16a und 16b, welche halbschalenförmig ausgebildet sind, zusammengesetzt. So können die Teile 16a und 16b das Innengehäuse 8 umschließen. Durch die geteilte Ausgestaltung des Isolierkörpers ist auch dieser kostengünstig zu fertigen und einfach zu montieren. Die Teile 14a und 14b des Außengehäuses 14 werden vorzugsweise durch Schrauben oder Bolzen zusammengehalten, welche sich durch den Isolierkörper 16 hindurch erstrecken, aber nicht mit dem Innengehäuse 8 verbunden sind. Der Isolierkörper 16 wird zwischen Innengehäuse 8 und Außengehäuse 14 fixiert. Das Statorgehäuse 6 kann über Schrauben oder Bolzen mit dem Teil 14a des Außengehäuses 14 verbunden werden. Die Stützelemente 18 erstrecken sich in Spalten in den Teilen 16a und 16b des Isolierkörpers 16. Die Stützelemente 18 können als separates Bauteil in Form eines Stützkörpers, in welchem alle Stützelemente 18 miteinander verbunden sind, oder aber einstückig mit dem Innengehäuse 8 ausgebildet sein. Die Stützelemente 18 sind vorzugsweise ebenfalls aus Kunststoff ausgebildet, sodass sie thermisch isolierend wirken und ein Wärmeübergang zwischen dem Innengehäuse 8 und dem Außengehäuse 14 möglichst vermeiden. Dennoch liegen die Stützelemente 18 sowohl an dem Innengehäuse 8 als auch an der Innenseite des Außengehäuses 14 an, um eine Kraftübertragung zu ermöglichen.
  • Auch das Innengehäuse 8 kann aus zwei Teilen zusammengesetzt sein, um die Fertigung zu vereinfachen. So kann das Innengehäuse 8 entlang der Ebene 20 geteilt sein, sodass die zwei Teile des Innengehäuses 8 vorzugsweise ohne Hinterschneidungen im Spritzguss gefertigt werden können. Anschließend können die beiden Teile miteinander verbunden, beispielsweise entlang der Teilungsebene 20 miteinander verschweißt werden.
  • Fig. 4 zeigt eine weitere Ausführungsform der Erfindung, ähnlich zu der Ausführungsform in Fig. 3. Die Ausführungsform entspricht im Wesentlichen der anhand der Fig. 1 bis 3 beschriebenen Ausführungsform, unterscheidet sich aber in einigen nachfolgend beschriebenen Punkten. So erstrecken sich bei der Ausführungsform gemäß Fig. 4 die rippenförmigen Stützelemente 18' nicht alle parallel zueinander sondern in zueinander gewinkelten Ebenen. Hierdurch wird eine bessere Kraftübertragung von dem Innengehäuse 8 auf das Außengehäuse 14 in allen Richtungen erreicht. Darüber hinaus ist das Innengehäuse 8 hier entlang einer anderen Teilungsebene 20' geteilt. Das heißt das Innengehäuse 8 ist aus zwei Teilen gefertigt, welche entlang der Teilungsebene 20' miteinander verschweißt sind. Ferner ist bei dieser Ausführungsform das Statorgehäuse 6 einteilig mit dem Teil 14a des Außengehäuses 4 ausgebildet.
  • Das Ausführungsbeispiel gemäß Fig. 5 unterscheidet sich von dem vorangehend beschriebenen Ausführungsbeispiel in der Form des Pumpengehäuses 2. Auch bei diesem Ausführungsbeispiel ist das Außengehäuse 14 aus zwei Teilen ausgebildet, wobei bei dieser Ausführungsform die zwei Teile nicht an einer planen Ebene aneinander stoßen, sondern entlang einer gestuften Trennungslinie 22 geteilt sind. Auch die Flansche 4 sind bei der Ausführungsform gemäß Fig. 5 in ihrer Form anders gestaltet. Dabei ist jedoch zu verstehen, dass es bei der Ausführungsform gemäß Fig. 1 bis 4 die Flansche entsprechend gestaltet werden können, oder bei der Ausführungsform gemäß Fig. 5 die Flansche entsprechend der ersten Ausführungsform gestaltet werden könnten.
  • Bei dem Ausführungsbeispiel gemäß Fig. 6 ist ein Teil des Statorgehäuses 6 mit dem Teil 14a des Außengehäuses einstückig ausgebildet. Z. B. bei dieser Ausführungsform kann die Isolierschicht 16' in einen Hohlraum zwischen dem Außengehäuse 14 (14a, 14b) und dem Innengehäuse 8 eingespritzt sein. Das Innengehäuse 8 ist auch hier aus mehreren Teilen zusammengesetzt. Die zwei Teile sind entlang der Trennungslinie 24 aneinander gefügt, beispielsweise miteinander dicht verschweißt. Die Flansche 4 sind auch hier mit dem Außengehäuse 14 in Eingriff, sodass eine Kraftübertragung von den Flanschen direkt auf das Außengehäuse möglich ist. Darüber hinaus sind auch bei dieser Ausführungsform zwischen dem Innengehäuse 8 und dem Außengehäuse 14 steg- bzw. rippenförmige Stützelemente 18 vorgesehen, welche abschnittsweise einstückig entweder mit dem Innengehäuse 8 oder dem Außengehäuse 14 ausgebildet sind. Die einzelnen Abschnitte liegen zur Kraftübertragung aneinander an, sodass die Stützelemente 18 sowohl mit dem Innengehäuse 8 als auch mit dem Außengehäuse 14 in Verbindung stehen oder in Anlage sind.
  • Bei den Ausführungsformen gemäß Fig. 7 und Fig. 8 sind die Stützelemente 18" gitter- bzw. wabenförmig ausgebildet. Im Ausführungsbeispiel in Fig. 7 ist die Gitterstruktur der Stützelemente 18" wabenförmig ausgebildet und vorzugsweise als Kompositmaterial als Teil des Innengehäuses 8 ausgebildet. Bei der Ausführungsform gemäß Fig. 8 sind die Stützelemente 18" einstückig mit dem Außengehäuse 14, vorzugsweise als Metallstruktur ausgebildet. Die Hohlräume 25 in der Gitterstruktur des Stützelementes 18" können zusätzlich mit einem Isoliermaterial ausgeschäumt werden. Bei der Ausführungsform gemäß Fig. 8 ist es ferner bevorzugt, dass die Stützelemente 18" nicht in direktem Kontakt mit dem Innengehäuse 8 sind, sondern dass das Innengehäuse 8 zunächst durch eine in Fig. 8 nicht gezeigte Isolierschicht bzw. einen Isolierkörper ummantelt ist, an dessen Außenseite der Stützkörper 18" bzw. die Gitterstruktur des Stützkörpers 18" zur Anlage kommt. Dieser Isolierkörper kann auch einteilig mit der Ausschäumung der Hohlräume 25 erzeugt werden. Darüber hinaus ist es denkbar, zusätzliche Stützelemente am Innengehäuse 8 vorzusehen, welche mit den Stützelementen 18", welche am Außengehäuse 14 ausgebildet sind, zur Anlage kommen. Auf diese Weise wird ein direkter Wärmeübergang zwischen dem Innengehäuse 8 und dem Außengehäuse 14 über die Stützelemente 18" verhindert. Die Stützelemente 18" in Form einer Gitter- bzw. Wabenstruktur sind derart steif, dass Kräfte von dem Innengehäuse 8 auf das Außengehäuse 14 sicher übertragen werden können. Die Wandungen der Waben erstrecken sich dabei vorzugsweise im Wesentlichen senkrecht zu der Innenfläche des Außengehäuses 14 bzw. der Außenfläche des Innengehäuses 8. So erstrecken sich die Wandungen der Wabenstruktur im Wesentlichen in Kraftrichtung der zu übertragenden Kräfte. Bei dem Ausführungsbeispiel gemäß Fig. 8 ist das Außengehäuse 14 geteilt ausgebildet. Die Teilungsline bzw. -ebene 26 verläuft ähnlich der Trennungslinie 22 in Fig. 5.
  • Auch bei dem Ausführungsbeispiel gemäß Fig. 7 und 8 sind die Flansche so ausgebildet, dass sie mit dem Außengehäuse 14 formschlüssig in Eingriff sind, sodass Kräfte von den Flanschen 4 direkt auf das Außengehäuse 4 übertragen werden können. Dazu greift das Außengehäuse 14 mit einem Vorsprung in eine umfängliche Nut 28 des Flansches 4 ein.
  • Darüber hinaus ist bei dem Ausführungsbeispiel gemäß Fig. 7 ein Teil des Statorgehäuses 6 einstückig mit dem Außengehäuse 14 ausgebildet. Die übrigen Merkmale der Ausführungsbeispiele gemäß Fig. 7 und 8 entsprechen den Vorrangehenden Ausführungsbeispielen.
  • Bezugszeichenliste
  • 2 -
    Pumpengehäuse
    4 -
    Anschlussflansch
    6 -
    Statorgehäuse
    8 -
    Innengehäuse
    10 -
    Strömungswege
    12 -
    Pumpenraum
    14, 14,a, 14b -
    Außengehäuse
    16, 16' -
    Isolierkörper
    18, 18', 18" -
    Stützelemente
    20 -
    Teilungsebene
    22, 24 -
    Trennungslinien
    25 -
    Hohlräume
    26 -
    Teilungslinie
    28 -
    Nut

Claims (15)

  1. Kreiselpumpenaggregat mit einem Pumpengehäuse (2), welches gekennzeichnet ist durch
    ein Innengehäuse (8) aus Kunststoff, welches fluiddicht ausgebildet ist und die Strömungswege (10) für das zu fördernde Fluid definiert,
    eine das Innengehäuse (8) an seiner Außenseite umgebende thermische Isolationsschicht (16, 16'), und
    ein die Isolationsschicht (16, 16') außen umgebendes tragendes Außengehäuse (14).
  2. Kreiselpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass das Außengehäuse (14) zumindest teilweise aus Metall gefertigt ist.
  3. Kreiselpumpenaggregat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Innengehäuse (8) als Spritzgussteil gefertigt ist.
  4. Kreiselpumpenaggregat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Innengehäuse (8) aus einem Kompositmaterial, insbesondere aus einem faserverstärkten Kunststoff gefertigt ist.
  5. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Innengehäuse (8), die Isolationsschicht (16, 16') und/oder das Außengehäuse (14) jeweils aus mehreren Teilen zusammengesetzt sind.
  6. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Isolationsschicht (16, 16') aus Kunststoff, insbesondere in Form eines Schaummaterials, gefertigt ist.
  7. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Isolationsschicht (16, 16') aus einem Material gebildet ist, welches in einen zwischen Innen- (8) und Außengehäuse, (14) definierten Freiraum eingespritzt ist.
  8. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Innengehäuse und dem Außengehäuse (14) zumindest ein Stützelement (18, 18') zur Kraftübertragung von dem Innengehäuse (8) auf das Außengehäuse (14) angeordnet ist.
  9. Kreiselpumpenaggregat nach Anspruch 8, dadurch gekennzeichnet, dass das zumindest eine Stützelement (18, 18', 18") an dem Außengehäuse (14) anliegt und/oder als Teil des Außengehäuses (14) ausgebildet ist.
  10. Kreiselpumpenaggregat nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das zumindest eine Stützelement (18, 18', 18") an dem Innengehäuse (8) anliegt und/oder als Teil des Innengehäuses (8) ausgebildet ist.
  11. Kreiselpumpenaggregat nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das zumindest eine Stützelement (18, 18', 18") als Rippe ausgebildet ist, welche sich quer, vorzugsweise im Wesentlichen normal zur Außenfläche des Innengehäuses (6) und/oder zur Innenfläche des Außengehäuses (14) erstreckt.
  12. Kreiselpumpenaggregat nach Anspruch 11, dadurch gekennzeichnet, dass zumindest zwei als Rippe ausgebildete Stützelemente (18', 18") vorhanden sind, welche sich in zwei zueinander nicht parallelen Ebenen erstrecken.
  13. Kreiselpumpenaggregat nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass das zumindest eine Stützelement (18, 18', 18") zumindest einen elastischen Abschnitt aufweist.
  14. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Innengehäuse (8) zumindest einen austauschbaren Anschlussflansch (4) aufweist.
  15. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Pumpengehäuse (2) zumindest einen dicht mit dem Innengehäuse (8) verbundenen Anschlussflansch (4) aufweist, welcher mit dem Außengehäuse (14) tragend im Eingriff ist.
EP09005021.2A 2009-04-04 2009-04-04 Kreiselpumpenaggregat Not-in-force EP2236839B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09005021.2A EP2236839B1 (de) 2009-04-04 2009-04-04 Kreiselpumpenaggregat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09005021.2A EP2236839B1 (de) 2009-04-04 2009-04-04 Kreiselpumpenaggregat

Publications (2)

Publication Number Publication Date
EP2236839A1 true EP2236839A1 (de) 2010-10-06
EP2236839B1 EP2236839B1 (de) 2013-11-13

Family

ID=41092056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09005021.2A Not-in-force EP2236839B1 (de) 2009-04-04 2009-04-04 Kreiselpumpenaggregat

Country Status (1)

Country Link
EP (1) EP2236839B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813711A1 (de) * 2013-06-13 2014-12-17 Johnson Electric S.A. Umwälzpumpe
WO2015082679A1 (de) * 2013-12-06 2015-06-11 Ksb Aktiengesellschaft Kunststoff-pumpengehäuse, das aus einer innenschale und einer aussenschale besteht, mit füllmaterial dazwischen
WO2022023266A1 (de) * 2020-07-28 2022-02-03 KSB SE & Co. KGaA Gehäuse für strömungsführende bauteile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110043508A (zh) * 2019-04-01 2019-07-23 重庆西泉泵业股份有限公司 一种具有双副叶轮的填充型高温泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976809A (en) 1954-08-11 1961-03-28 Buschhorn Walther Centrifugal pump and method of its production
DE3011888A1 (de) 1980-03-27 1981-10-01 Richard 7066 Baltmannsweiler Halm Kreiselpumpe
DE3109624A1 (de) 1981-03-13 1982-10-14 Wilo-Werk Gmbh & Co Pumpen- Und Apparatebau, 4600 Dortmund Umwaelzpumpe
EP0849473A1 (de) 1996-12-21 1998-06-24 KSB Aktiengesellschaft Kreiselpumpengehäuse
EP1079115A2 (de) 1999-08-24 2001-02-28 WILO GmbH Pumpengehäuse aus Kunststoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976809A (en) 1954-08-11 1961-03-28 Buschhorn Walther Centrifugal pump and method of its production
DE3011888A1 (de) 1980-03-27 1981-10-01 Richard 7066 Baltmannsweiler Halm Kreiselpumpe
DE3109624A1 (de) 1981-03-13 1982-10-14 Wilo-Werk Gmbh & Co Pumpen- Und Apparatebau, 4600 Dortmund Umwaelzpumpe
EP0849473A1 (de) 1996-12-21 1998-06-24 KSB Aktiengesellschaft Kreiselpumpengehäuse
EP1079115A2 (de) 1999-08-24 2001-02-28 WILO GmbH Pumpengehäuse aus Kunststoff

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813711A1 (de) * 2013-06-13 2014-12-17 Johnson Electric S.A. Umwälzpumpe
JP2015007423A (ja) * 2013-06-13 2015-01-15 ジョンソン エレクトリック ソシエテ アノニム 循環ポンプ
US9624945B2 (en) 2013-06-13 2017-04-18 Johnson Electric S.A. Circulation pump
WO2015082679A1 (de) * 2013-12-06 2015-06-11 Ksb Aktiengesellschaft Kunststoff-pumpengehäuse, das aus einer innenschale und einer aussenschale besteht, mit füllmaterial dazwischen
CN105814318A (zh) * 2013-12-06 2016-07-27 Ksb 股份公司 由内壳、外壳和其间的填充材料构成的塑料泵壳体
US20160312794A1 (en) * 2013-12-06 2016-10-27 Ksb Aktiengesellschaft Plastic Pump Housing Consisting of an Inner Casing, an Outer Casing and Filling Material Therebetween
JP2016540158A (ja) * 2013-12-06 2016-12-22 カーエスベー・アクチエンゲゼルシャフトKsb Aktiengesellschaft 内側ケーシング、外側ケーシング、およびそれらの間の充填材料からなるプラスチックポンプハウジング
CN105814318B (zh) * 2013-12-06 2018-12-14 Ksb 股份公司 由内壳、外壳和其间的填充材料构成的塑料泵壳体
US10415589B2 (en) 2013-12-06 2019-09-17 Ksb Aktiengesellschaft Plastic pump housing consisting of an inner casing, an outer casing and filling material therebetween
WO2022023266A1 (de) * 2020-07-28 2022-02-03 KSB SE & Co. KGaA Gehäuse für strömungsführende bauteile

Also Published As

Publication number Publication date
EP2236839B1 (de) 2013-11-13

Similar Documents

Publication Publication Date Title
DE102012107600B4 (de) Elektrische Heizvorrichtung zum Beheizen von Fluiden
EP1731762B1 (de) Pumpenaggregat
EP2413080A2 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
EP2236839B1 (de) Kreiselpumpenaggregat
WO2006037737A1 (de) Gehäuse für eine elektrische maschine
DE102011076904A1 (de) Gekühlter Stator für Elektromotor
WO1995000998A1 (de) Wärmegeschütztes motorgehäuse mit metallmantel und kunststoffschild
EP2856477B1 (de) Kessel für flüssigkeitsgefüllte transformatoren oder drosseln
DE102008001660A1 (de) Leichtbau Strömungswärmetauscher
WO2017071970A1 (de) Kühlgehäuse für eine elektrische maschine und herstellungsverfahren für ein solches
DE3319521A1 (de) Waermeaustauscher fuer fluessige medien
WO2008148442A1 (de) Kraftstoffbehälter für kraftfahrzeuge
DE102019109751A1 (de) Temperiervorrichtung für ein Elektromodul und Elektromodul mit einer solchen
EP2479875B1 (de) Flüssigkeitsgekühltes Gehäuse mit Lagerschild für elektrische Maschine
EP2241753B1 (de) Motorpumpenaggregat
EP3928417A1 (de) Mehrteiliges segmentiertes e-maschinengehäuse
WO2011066981A2 (de) Doppelwandiger gusskörper für eine flüssigkeitsgekühlte elektrische maschine
DE10305812A1 (de) Fördervorrichtung zum Fördern eines Fluids
EP1571404A1 (de) Schichtenspeicher mit einem Gehäuse und einer Isolierung
DE102010021334A1 (de) Verfahren zur Herstellung eines Wärmetauschers und Wärmetauscher
DE2504544A1 (de) Flexibles leitungselement fuer abgasleitungen von kraftfahrzeugen
DE102018203939B4 (de) Stator für eine elektrische Maschine sowie Verfahren zum Herstellen eines Stators für eine elektrische Maschine
EP2551624B1 (de) Wärmespeicher
EP3286824B1 (de) Kühlkörper für eine elektrische maschine und verfahren zum fertigen desselben
DE3109624A1 (de) Umwaelzpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110330

17Q First examination report despatched

Effective date: 20110516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 640695

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009008317

Country of ref document: DE

Effective date: 20140109

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

26N No opposition filed

Effective date: 20140814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008317

Country of ref document: DE

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 640695

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090404

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210421

Year of fee payment: 13

Ref country code: IT

Payment date: 20210430

Year of fee payment: 13

Ref country code: DE

Payment date: 20210422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009008317

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404