EP2230915A2 - Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz - Google Patents

Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz

Info

Publication number
EP2230915A2
EP2230915A2 EP08863023A EP08863023A EP2230915A2 EP 2230915 A2 EP2230915 A2 EP 2230915A2 EP 08863023 A EP08863023 A EP 08863023A EP 08863023 A EP08863023 A EP 08863023A EP 2230915 A2 EP2230915 A2 EP 2230915A2
Authority
EP
European Patent Office
Prior art keywords
methyl
carboxamide
ethyl
phenyl
pyrazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08863023A
Other languages
English (en)
French (fr)
Inventor
Hans-Juergen Rosslenbroich
Arnd Voerste
Martin SCHÖPFER
Hilmar Wolf
Ulrike Wachendorff-Neumann
Peter Dahmen
Dirk Ebbinghaus
Oskar Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKA Tech GmbH
Original Assignee
AKA Tech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKA Tech GmbH filed Critical AKA Tech GmbH
Priority to EP08863023A priority Critical patent/EP2230915A2/de
Publication of EP2230915A2 publication Critical patent/EP2230915A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • A01N47/44Guanidine; Derivatives thereof

Definitions

  • the present invention relates to the use of polymeric guanidium derivatives for the curative and / or preventive treatment of undesired microorganisms such as bacteria and phytopathogenic fungi in crop protection, including the treatment of seed. Furthermore, the concerns
  • Treatment of undesirable microorganisms in plant protection including the treatment of seeds, and not least the treated seed itself.
  • Biocidal polymers based on guanidinium hydrochloride, in particular their activity against Escherichia co / j bacteria, are already known (see WO 01/85676). Furthermore, it is already known that such guamdin derivatives can be used as fungicidal agents (compare WO 2006/047800).
  • the present invention provides a use which solves the task at least in some aspects.
  • drug combinations are provided, which also solve the task at least in some aspects.
  • polymeric guamdm derivatives which are present in the form of their hydroxide (hereinafter guanidum hydroxides), are particularly suitable for the curative and / or preventive treatment of undesirable microorganisms such as bacteria and phytopathogenic fungi in crop protection, including Treatment of seed.
  • guanidinium hydroxides which can be used in accordance with the invention are based on a diamine which contains oxyalkylene chains and / or alkylene groups between two amino groups obtainable by polycondensation of a guanidine acid addition salt with the diamine to give a polycondensation product in salt form, which is subsequently converted into basic compounds by basic anion exchange Hydroxide form is converted.
  • a preferred embodiment of the guanidinium hydroxide which can be used according to the invention consists in that, as representatives of the series of polyoxyalkylene-guanidine salts, those using triethylene glycol diamine (relative molecular mass: 148), polyoxypropylenediamine (relative molecular mass: 230) and polyoxyethylenediamine (relative molecular mass: 600), or also of polyhexamethylenediamine (relative molecular mass).
  • a further preferred embodiment of the guanidinium hydroxide which can be used according to the invention is characterized in that the polymeric guanidine derivative is poly (2- (2-ethoxyethoxyethyl) guanidinium hydroxide) having at least 3 guanidinium radicals ,
  • the diamine used is preferably an alkylenediamine of the general formula H 2 N- (CH 2 ) -NH 2 , in which n is an integer between 2 and 10, in particular 6.
  • oxyalkylenediamine is a compound of the general formula H 2 N- [CH 2 ) 2 O)] n - (CH 2 J 2 -NH 2) in which m is an integer between 2 and 5, in particular 2 ,
  • the average molecular mass of the guanidinium hydroxide which can be used according to the invention is preferably in the range from 500 to 3,000, particularly preferably in the range from 500 to 2,000, very particularly preferably in the range from 500 to 1,500. Further preferred is an average molecular mass of 1000.
  • the salts which can be used as starting materials for the guanidinium hydroxides which can be used according to the invention are known, in particular the hydrochlorides (cf., WO 01/85676).
  • the guamdinium hydroxide poly (2- (2-ethoxyethoxyethyl) guanidumine hydroxide) having an average molecular weight of about 1000 and containing 4.43 mol of guanidinium hydrochloride in 4.03 mol of diethylene glycol diamine is obtained 50 0 C lost.
  • the mixture is then heated to 120 0 C and stirred for 2 hours at this temperature. Thereafter, the temperature is maintained for 2 hours, then applied a vacuum (0.1 bar) and stirred for 2 more hours under vacuum at 170 0 C.
  • the hydroxide form is prepared by treating the previously obtained solution with a strongly alkaline anion exchanger in hydroxide form, conveniently in an exchange column (eg "Ambersep 900 OH" or "Lewatit MP 500").
  • a strongly alkaline anion exchanger in hydroxide form conveniently in an exchange column (eg "Ambersep 900 OH" or "Lewatit MP 500").
  • the mixture is heated with stirring for one hour to a temperature of 17O 0 C and maintained at this temperature for a further hour. Then, a vacuum was carefully applied and stirred for a further hour under reduced pressure, the reaction mass at 170 0 C. The mixture is then vented to atmospheric pressure, allowed to cool to 120 0 C and diluted with de-mineralized water to about 50%. With phosphoric acid is neutralized to a pH of about 6, allowed to cool and diluted to the desired concentration. Subsequently, the hydroxide form is prepared by treating the previously obtained solution with a strongly alkaline anion exchanger in hydroxide form, conveniently in an exchange column (eg "Ambersep 900 OH" or "Lewatit MP 500"). This gives the guanidinium hydroxide which can be used according to the invention.
  • a strongly alkaline anion exchanger in hydroxide form conveniently in an exchange column (eg "Ambersep 900 OH" or "Lewatit MP 500"). This gives the
  • the present invention further relates to active ingredient combinations or compositions containing at least one guanidinium hydroxide and at least one further fungicidal active ingredient. - -
  • the active compound combinations or compositions according to the invention not only show an additive effect of the action of the individual components, but have a synergistic effect.
  • the usual application rate of the individual substances can be reduced.
  • the active compound combinations according to the invention still offer a high degree of action against phytopathogens, even if the individual compounds are used in amounts in which they show no (sufficient) effect themselves. This basically allows a widening of the spectrum of action on the one hand and a higher safety in handling on the other hand.
  • the active compound combinations according to the invention may have further surprising properties which, in the broader sense, may also be termed synergistic, such as: the extension of the spectrum of action, e.g. on resistant pathogens of plant diseases; lower application rates of the active ingredient; sufficient pest control with the aid of the active compound combinations according to the invention even at such application rates at which the individual active ingredients show no or almost no effect; favorable behavior during formulation or during use, e.g. during milling, sieving, emulsifying, dissolving or dispensing; improved storage or light stability; more advantageous formation of residues; improved toxicological or ecotoxicological behavior; improved properties for the plant, e.g.
  • the active compound combinations or agents according to the invention when used, contribute significantly to the health of young cereal stocks, thereby increasing the wintering performance of the treated cereal seed and ensuring the quality and yield formation.
  • the active compound combinations according to the invention can also contribute to an improved systemic effect. Even if the individual active ingredients of the combination do not possess adequate systemic properties, the active ingredient combinations according to the invention can certainly exhibit this property. Similarly, the active compound combinations according to the invention can lead to an increased persistence of the fungicidal action.
  • the guanidinium hydroxide (component A) used is preferably poly [2- (2-ethoxyethoxyethyl) guanidinium hydroxide] having an average molecular weight of about 1000 (AI), an average molecular weight of about 1500 (A-2), an average molecular weight of about 500 (A-3), an average molecular weight of about 2,000 (A-4), an average molecular weight of about 2,500 (A-5), or an average molecular weight of about 3,000 (A 6), and also a polycondensate of poly (hexamethylene-guanidinium hydroxide) and poly [2- (2-ethoxy) -ethoxyethyl) -guanidinium hydroxide] in a molar ratio of 3: 1 (A-7) [ wherein the co-polycondensate (A-7) better by the Starting materials guanidine hydrochloride, triethylene glycol diamine and hexamethylenediamine, which are used in a ratio of 4: 1: 3,
  • the fungicidal mixing partner is selected from
  • (B) inhibitors (or salts thereof) of ergosterol biosynthesis preferably selected from (BI) aldimorph (1704-28-5), (B-2) azaconazole (60207-31-0), (B-3) bi tertanol (55179-31-2), (BA) bromuconazoles (116255-48-2), (B-5) cyproconazoles (113096-99-4), (B-6) diclobutrazoles (75736-33-3), ( B-7) difenoconazole (119446-68-3), (B-8) diniconazole (83657-24-3), (B-9) diniconazole-M (83657-18-5), (B-10) dodemo ⁇ h ( 1593-77-7), (B-11) dodemorph acetic acid (31717-87-0), (B-12) epoxiconazoles (106325-08-0), (B-13) etaconazoles (60207-93-4 ), (B-14) fenarimol (
  • (O respiratory chain inhibitors (or salts thereof ") on the complex I or H preferably selected from (CI) diflumetorim (130339-07-0), (C-2) bixafen [N-O ' ⁇ ' - dichloro-S fluoro, 1-biphenyl-2-yl) -3- (difluoromethyl) -1-methyl-1H-pyrazole-4-carboxamide], (C-3) boscalid (188425-85-6), (C4) Carboxin (5234-68), (C-5) Fenfuram (24691-80-3), (C-6) Fluopyram ⁇ N- ⁇ 2- [3-Chloro-5- (trifluoromethyl) pyridin-2-yl] ethyl ⁇ -2- (trifluoromethyl) benzamide) ⁇ , (C-7) Flutolanil (66332-96-5), (C-8) Furametpyr (123572-88-3), (C-9) Furmecyclox (60568-05 -0
  • (E) inhibitors (or salts thereof) of mitosis and cell division preferably selected from (EI) benomyl (17804-35-2), (E-2) carbendazim (10605-21-7), (E-3) chlorfenazoles (3574-96-7), (E-4) diethofencarb ( 87130-20-9), (E-5) ethaboxam (162650-77-3), (E-6) fluopicolide (239110-15-7), (E-7) fuberidazole (3878-19-1), ( E-8) Pencycuron (66063-05-6), (E-9) Profenofos (41198-08-7), (E-IO) thiabendazole (148-79-8), (EI 1) thiophanate (23564-06 -9), (E-12) thiophanate-methyl (23564-05-8), (E-13) zoxamide (156052-68-5), (E-14) 5-chloro-6- (2,4, 6-trifluorophenyl) -7- (4-
  • (G) the following further fungicides (or salts thereof, preferably selected from (GI) acibenzolar-S-methyl (135158-54-2), (G-2) isotianil (224049-04-1), (G-3) sample azoles (27605-76-1), (G4) Tiadirul (223580-51-6), (G-5) Andopm (23951-85-1), (G-6) Blasticidin-S (2079-00-7), (G-7) cyprodinyl (121552-61-2), (G-8) kasugamycin (6980-18-3), (G-9) mepanipyrene (11023547-7), (G-10) pyropmethanil (53112-28 (GI l) Fentin acetate (900-95-8), (G-12) Fennn-chlo ⁇ d (639-58-7), (G-13) Fentin hydroxide (76-87-9) (G-14) Silthiofam (175217-20-6), (G-15) Benthiavahcarb (177406-68-7
  • Poly (2- (2-ethoxy-ethoxy-ethyl) -guanidinium-hydroxide) having an average molecular weight of about 1500 (A-2) and at least one other active ingredient selected from the series (B-3), (B-5), (B-12), (B-17), (B-18), (B-19), (B-30), (BAI), (B-46), (B-47), (B-51 ), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C-41), (DA), (D-6), (D-8), (D-9), (D-IO ), (DI 1), (DU), (D-13), (D-15), (E-2), (E-6), (E-8), (E-IO), (EI l ), (E-12), (E-13), (E-14), (F-4), (F-IO), (FU), (F-14), (F-15), (F -16), (F-17), (
  • poly [2- (2-ethoxyethoxyethyl) guanidium hydroxide] having an average molecular weight of about 1000 (AI) and at least one further active ingredient selected from the series (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (BAI), (BA6), (BAI), (B-52), (C-2), (C-3), (C -4), (C-6), (C-12), (C-14), (C-41), (D-2) (D ⁇ ), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-IO), (G-15), (G-16), (G -18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-IOI ).
  • Poly (2- (2-ethoxy-ethoxy-ethyl) -guanidinium-hydroxide) having an average molecular weight of about 1500 (A-2) and at least one other active ingredient selected from the series (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (BAI), (B-46), (B-47), (B-52), (C-2 ), (C-3), (C 1), (C-6), (C-12), (C-14), (C-41), (D-2) (OA), (D-8 ), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-IO), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G -86), (G-IOl).
  • the active ingredients in the active compound combinations according to the invention are present in certain weight ratios, the synergistic effect is particularly pronounced.
  • the weight ratios of the active ingredients in the drug combinations can be varied within a relatively wide range.
  • guanidium hydroxide component A 0.01-100, preferably 0.02-50, particularly preferably 0.05-20, very particularly preferably 0.01-10 parts by weight of active substance selected from the groups (B), (C), (D), (E), (F) and (G).
  • guanidium hydroxide component A 0.01 - 95; 0.11-90; 0.012-85; 0.0125 - 80; 0.013 - 75; 0.014 - 70; 0.015 - 65; 0.017-60; 0.018 - 55; 0.022 - 45; 0.025 - 40; 0.03 - 35; 0.033-30; 0.04 - 25; 0.067 - 15; 0.2 - 5; 0.25 - 4; 0.33 - 3; 0.5-2 parts by weight of active ingredient selected from the groups (B), (C), (D), (E), (F) and (G) are used.
  • the term "combination of active ingredients” means various possible combinations of the three abovementioned active ingredients, such as ready mixes, tank mixes (which are understood as application and spray mixtures, which are prepared before use from the formulations of the individual active ingredients by combining and diluting) or combinations (For example, a binary ready-mixed mixture of two of the above-mentioned active ingredients with a formulation of the third individual substance is transferred into a tank mixture.)
  • the individual active substances can also be used sequentially, ie one after the other, with a reasonable time interval of a few hours or days, in the case of seed treatment, for example also by application of several layers which contain different active ingredients, Preferably it does not matter in which order the individual active substances can be used.
  • This invention further relates to agents containing the active compound combinations according to the invention.
  • agents containing the active compound combinations according to the invention are fungicidal agents containing agriculturally acceptable excipients or extenders.
  • the carrier means a natural or synthetic, organic or inorganic see substance, with which the active ingredients for better applicability, especially for application to Plants or plant parts or seeds, mixed or connected.
  • the carrier which may be solid or liquid, is generally inert and should be useful in agriculture.
  • Suitable solid carriers are: e.g. Ammonium salts and ground natural minerals such as kaolin, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water alcohols, especially butanol , organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • Suitable solid carriers for granules are: e.g.
  • Suitable emulsifying and / or foaming agents are: e.g. nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolysates.
  • Suitable dispersants are: e.g. Lignin-sulphite liquors and methylcellulose.
  • Suitable liquefied gaseous diluents or carriers are those liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants, such as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex polymers may be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Other additives may be mineral and vegetable oils.
  • organic solvents can also be used as auxiliary solvents.
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as Butanol or glycol and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzene
  • compositions of the invention may additionally contain other ingredients, such as surfactants.
  • Suitable surface-active substances are emulsifiers, dispersants or wetting agents having ionic or non-ionic properties or mixtures of these surface-active substances. Examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyl taurates), Phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates.
  • the presence of a surfactant is necessary when one of the active ingredients and / or
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additional components may also be included, e.g. protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, stabilizers, sequestrants, complexing agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents according to the invention contain between 0.05 and 99% by weight of the active ingredient combination according to the invention, preferably between 10 and 70% by weight, particularly preferably between 20 and 50% by weight, emphasized 25% by weight.
  • the active compound combinations or compositions according to the invention can be used as such or as a function of their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil dispersible powders, oil miscible, flowable concentrates, oil miscible liquids, foams, pastes, pesticide coated seeds, suspension concentrates, suspension emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders, active
  • the formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active substances or the active substance combinations with at least one additive.
  • Suitable additives are all customary formulation auxiliaries, such as.
  • organic solvents, extenders, solvents or diluents, solid carriers and fillers surface-active substances (such as adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and adhesives), dispersing and / or binding or fixing agents, preservatives, dyes and pigments, defoamers, inorganic and organic thickeners, water repellents, optionally siccatives and UV stabilizers, gibberellins and also water and other processing aids.
  • further process steps such as Wet grinding, dry grinding or granulation necessary.
  • Organic diluents which may be present are all polar and nonpolar organic solvents which can usually be used for such purposes.
  • Preferred ketones such as methyl isobutyl ketone and cyclohexanone, furthermore amides, such as dimethylformamide and alkanecarboxamides such as decanoic acid dimethylamide and octanoic acid dimethylamide, furthermore include cyclic compounds such as N-methylpyrrolidone, N-octyl pyrrolidone, N-dodecylpyrrolidone, N-octylcaprolactam, N-dodecyl-caprolactam and butyrolactone, in addition strongly polar solvents such as dimethylsulfoxide, also aromatic hydrocarbons such as xylene, Solvesso TM, mineral oils such as white spirit, petroleum, alkylbenzenes and spindle oil and also esters, such as propylene glycol monomethyl ether acetate,
  • Suitable solid carriers for granules are: e.g. Cracked and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, coconut shells, corn cobs and tobacco stems.
  • Suitable surface-active substances are customary ionic and nonionic substances. Examples which may be mentioned are ethoxylated nonylphenols, polyalkylene glycol ethers of linear or branched alcohols, reaction products of alkylphenols with ethylene oxide and / or propylene oxide.
  • xid reaction products of fatty amines with ethylene oxide and / or propylene oxide, fatty acid esters, alkyl sulfonates, alkyl sulfates, alkyl ether sulfates, alkyl ether phosphates, aryl sulfates, ethoxylated arylalkylphenols, such as tristyrylphenol ethoxylates, ethoxylated and propoxylated arylalkylphenols and sulfated or phosphated arylalkylphenol ethoxylates or .ethoxy and propoxylates.
  • fatty acid esters alkyl sulfonates, alkyl sulfates, alkyl ether sulfates, alkyl ether phosphates, aryl sulfates, ethoxylated arylalkylphenols, such as tristyrylphenol ethoxylates, eth
  • water-soluble polymers such as lignosulfonates, gelatin, gum arabic, phospholipids, starch, hydrophobically modified starch and cellulose derivatives, in particular cellulose esters and cellulose ethers, furthermore polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid and co-polymers of Meth) acrylic acid and (meth) acrylic acid esters, and also neutralized with alkali metal hydroxide co-polymers of methacrylic acid and methacrylic acid ester and condensation products of optionally substituted Naphthalinsulfonkla with formaldehyde.
  • lignosulfonates such as gelatin, gum arabic, phospholipids, starch, hydrophobically modified starch and cellulose derivatives, in particular cellulose esters and cellulose ethers
  • polyvinyl alcohol polyvinyl acetate, polyvinylpyrrolidone
  • polyacrylic acid polymethacrylic acid
  • Suitable solid fillers and carriers are all substances conventionally used for this purpose in crop protection agents. Preference is given to inorganic particles, such as carbonates, silicates, sulfates and oxides having an average particle size of 0.005 to 20 .mu.m, more preferably from 0.02 to 10 microns. Examples include ammonium sulfate, ammonium phosphate, urea, calcium carbonate, calcium sulfate, magnesium sulfate, magnesium oxide, aluminum oxide, silicon dioxide, so-called highly disperse silica, silica gels, natural and synthetic silicates and aluminosilicates and vegetable products such as cereal flour, wood powder and cellulose powder.
  • inorganic particles such as carbonates, silicates, sulfates and oxides having an average particle size of 0.005 to 20 .mu.m, more preferably from 0.02 to 10 microns. Examples include ammonium sulfate, ammonium phosphate, urea, calcium carbonate, calcium
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, CI. Pigment Red 112 and CI. Solvent Red 1 known dyes. Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds. Preference is given to using alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates.
  • dispersants and / or emulsifiers which may be present in the seed dressing formulations that can be used according to the invention, all are suitable for formulating agrochemical active ingredients.
  • Preferably usable are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and also tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and salts thereof, and organofluorine compounds and mixtures thereof.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides such as xanthan gum or veegum, modified clays, sheet silicates such as attapulgite and bentonite, and finely divided silicic acids.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler “Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the formulations generally contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%. - zo -
  • the active compound combinations according to the invention can be present in commercial formulations as well as in the formulations prepared from these formulations in admixture with other active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances or herbicides.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances or herbicides.
  • a mixture with fertilizer is also possible.
  • the treatment according to the invention of the plants and plant parts with the active ingredient combinations or agents is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, evaporating, atomizing, atomizing, sprinkling, foaming, brushing, spreading, drenching, drip irrigation and propagating material, in particular for seeds by dry pickling, wet pickling, slurry pickling, encrusting, single or multi-layer wrapping, etc.
  • the application is preferably by dipping, spraying, spraying, sprinkling, evaporating, atomizing, atomizing, scattering, foaming , Brushing, spreading, pouring (drenchen) and drip irrigation.
  • the application of the formulations is carried out according to the usual agricultural practice in a manner adapted to the application forms. Common applications are e.g. Dilution in water and spraying of the resulting spray mixture, application after dilution in oil, direct application without dilution, seed dressing or soil application of carrier granules.
  • the active substance content of the application forms prepared from the commercial formulations can vary within wide ranges.
  • the active ingredient concentration of the use forms may be from 0.0000001 to 95% by weight of active ingredient, preferably between 0.0001 and 2% by weight.
  • compositions according to the invention comprise not only agents which are already ready for use and which can be applied to the plant or seed by suitable equipment, but commercial concentrates which must be diluted with water before use.
  • the active compound combinations or compositions according to the invention have a strong microbicidal activity and can be used for controlling unwanted microorganisms, such as fungi and bacteria, in crop protection.
  • Fungicides can be used for the control of Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection for controlling Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • the fungicidal compositions according to the invention can be used culturally or protectively for controlling phytopathogenic fungi.
  • the invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the active compound combinations or agents according to the invention, which is applied to the seed, the plant or plant parts, the fruits or the soil in which the plants grow.
  • the application is on the plant or plant parts, the fruits or the soil in which the plants grow.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant variety rights.
  • Plant parts are to be understood as meaning all the above-ground and underground parts and organs of the plants, such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes become.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds. Preference is given to the treatment of the plants and of the aerial and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples being leaves, needles, stems, stems, flowers, fruits.
  • plants which can be treated according to the invention mention may be made of the following: cotton, flax, grapevine, fruits, vegetables, such as Rosaceae sp. (for example, pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp. , Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp.
  • Rosaceae sp. for example, pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries
  • Rosaceae sp. for example, pome fruits such as apple and pe
  • Rubiaceae sp. for example, coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example, lemons, organs and grapefruit
  • Solanaceae sp. for example tomatoes
  • Liliaceae sp. Aster aceae sp.
  • Umbelliferae sp. for example, Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp. (for example cucumber), Alliaceae sp. leek, onion), Papilionaceae sp.
  • Main crops such as Gramineae sp.
  • corn, turf, cereals such as Wheat, rye, rice, barley, oats, millet and triticale
  • Asteraceae sp. for example sunflower
  • Brassicaceae sp. for example, white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes and rapeseed, mustard, horseradish and cress
  • Fabacae sp. for example, bean, peanuts
  • Papilionaceae sp. for example, soybean
  • Solanaceae sp. for example potatoes
  • Chenopodiaceae sp. for example, sugar beet, fodder beet, Swiss chard, beet
  • crop plants are treated according to the invention.
  • the method of the invention for controlling phytopathogenic fungi may also be used for the treatment of genetically modified organisms, e.g. Plants or seeds.
  • Genetically modified plants are those in whose genome a particular heterologous gene encoding a particular protein has been stably integrated.
  • heterologous gene is meant a gene which confers new agronomic properties to the transformed plant or a gene which improves the agronomic quality of the modified plant.
  • plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion
  • plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “parts of plants” has been explained above, plants according to the invention being treated according to the invention in each case for the commercially available or in use plant varieties.
  • the treatment according to the invention may also give rise to superadditive ("synergistic") effects, for example reduced application rates and / or extensions of the activity spectrum and / or a Enhancement of the effect of the substances and agents that can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to water or soil salt content, increased flowering efficiency, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products possible, which go beyond the actual expected effects.
  • superadditive superadditive
  • the preferred transgenic (genetically engineered) plants or plant species to be treated according to the invention include all plants which have obtained genetic material through the genetic engineering modification which gives these plants particularly advantageous valuable properties ("traits"). increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms salt, increased flowering efficiency, easier harvest, acceleration of ripeness, higher crop yields, higher quality and / or higher harvest value of the harvested products, higher shelf life and / or Further and particularly emphasized examples of such properties are an increased defense of the plants against animal and microbial pollutants, such as against insects, mites, phytopathogenic fungi, bacteria and / or Vir and increased tolerance of the plants to certain herbicidal active substances.
  • transgenic plants include the important crops such as cereals (wheat, rice), corn, soy, potato, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soy, potato, cotton and rapeseed should be highlighted.
  • Traits which are particularly emphasized are the increased defense of the plants against insects by toxins which are formed in the plants, in particular those which are produced by the genetic material from Bacillus thu ⁇ ngiensis (for example by the genes Cry ⁇ A (a), CryIA (b), Cry ⁇ A (c), QyELA, CryEu ⁇ , CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CryEF and their combinations) are produced in the plants (hereinafter, 3t plants ").
  • trast plants are corn, cotton, soy and potato varieties sold under the trade names YEBLD GARD® (eg maize , cotton, soybeans), KnockOut ® (for example maize), StarLink ® (for example maize), Bollgard ® (cotton), NuCOTN ® (cotton) and NewLeaf ® (potato).
  • YEBLD GARD® eg maize , cotton, soybeans
  • KnockOut ® for example maize
  • StarLink ® for example maize
  • Bollgard ® cotton
  • NuCOTN ® cotton
  • NewLeaf ® potato
  • herbicide-tolerant plants are maize varieties, cotton varieties and soybean varieties which are resistant under the trade names Roundup Ready ® (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link ® (tolerance to Phosphinot ⁇ cin, for example oilseed rape), EMI ® (tolerance Lmidazolinone) and STS ® (tolerance to sulfonylureas such as corn) are sold.
  • Herbicide-resistant (conventionally grown on herbicide tolerance) plants are also mentioned under the name Clearfield® varieties (eg corn). Of course, these statements also apply to plant varieties developed or to be marketed in the future with these or future developed genetic traits.
  • the inventive method for controlling unwanted fungi can also be used for the protection of so-called storage goods.
  • Storage Goods are understood natural substances of plant or animal origin or their processing products, which were taken from nature and for long-term protection is desired
  • Storage goods of plant origin such as plants or plant parts, such as stems, leaves, tubers, seeds , Fruits, grains, can be protected in freshly harvested condition or after processing by (pre-) drying, wetting, crushing, grinding, pressing or roasting.
  • Storage goods also includes lumber, whether unprocessed, such as lumber, power poles and barriers, or in the form of finished products, such as furniture, storage goods of animal origin are, for example, skins, leather, furs and hair.
  • the active ingredient combinations according to the invention can prevent adverse effects such as decay, deterioration, disintegration, decolorization or mold.
  • the insecticidal and fungicidal compositions or concentrates used for the protection of wood and wood-based materials contain the active ingredient according to the invention in a concentration of 0.0001 to 95 wt .-%, in particular 0.001 to 60 wt .-%.
  • the active compound combinations according to the invention and agents for protection against fouling of objects in particular hulls, sieves, nets, structures, quays and signal systems, which come into contact with seawater or brackish water, can be used.
  • Blumeria species such as, for example, Blumeria graminis
  • Podosphaera species such as Podosphaera leucotricha
  • Sphaerotheca species such as Sphaerotheca fuliginea
  • Uncinula species such as Uncinula necator
  • Gymnosporangium species such as Gymnosporangium sabinae
  • Hemileia species such as Hemileia vastatrix
  • Phakopsora species such as Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species such as Puccinia recondita or Puccinia triticina
  • Uromyces species such as Uromyces appendiculatus
  • Bremia species such as Bremia lactucae
  • Peronospora species such as Peronospora pisi or P. brassicae
  • Phytophthora species such as Phytophthora infestans
  • Plasmopara species such as Plasmopara viticola
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pythium species such as Pythium ultimum;
  • Phaeosphaeria species such as Phaeosphaeria nodorum
  • Pyrenophora species such as, for example, Pyrenophora teres
  • Ramularia species such as Ramularia collo-cygni
  • Rhynchosporium species such as Rhynchosporium secalis
  • Septoria species such as Septoria apii
  • Typhula species such as Typhula incarnata
  • Venturia species such as, for example, Venturia inaequalis
  • Root and stem diseases caused by e.g. Corticium species such as, for example, Cor- ticium graminearum; Fusarium species such as Fusarium oxysporum; Gaeumannomyces species such as Gaeumannomyces graminis; Rhizoctonia species, such as Rhizoctonia solani; Tapesia species, such as Tapesia acuformis; Thielaviopsis species, such as Thielaviopsis basicola;
  • Ear and panicle diseases caused by e.g. Alternaria species, such as Alternaria spp .; Aspergillus species such as Aspergillus flavus; Celadporium species such as, for example, Cladosporium cladosporioides; Claviceps species, such as Claviceps purpurea; Fusarium species such as Fusarium culmorum; Gibberella species, such as Gibberella zeae; Monographella species, such as Monographella nivalis; Septoria species such as Septoria nodorum;
  • Sphacelotheca species such as Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries, T. controversa
  • Urocystis Species such as Urocystis occulta
  • Ustilago species such as Ustilago nuda, U. nuda tritici
  • Nectria species such as Nectria galligena
  • Deformations of leaves, flowers and fruits caused by e.g. Taphrina species such as, for example, Taphrina deformans;
  • Botrytis species such as Botrytis cinerea
  • Rhizoctonia species such as Rhizoctonia solani
  • Helminthosporium species such as Helminthosporium solani
  • Xanthomonas species such as Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as Erwinia amylovora
  • the following diseases of soybean beans can be controlled: Fungus diseases on leaves, stems, pods and seeds caused by, for example, Alternaria leaf spot (Altemaria spec. Atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var.
  • Phytophthora red (Phytophthora megasperma), Brown Stem red (Phialophora gregata), Pythium red (Pythium aphanidermatum, Pythium irregular , Pythium debaryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Red, Stem Decay, and Damping Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii), Thielaviopsis Root Red (Thielaviopsis basicola) ,
  • the application rate of the active compound combinations according to the invention is • in the treatment of leaves: from 0.1 to 10,000 g / ha, preferably from 10 to 1,000 g / ha, particularly preferably from 50 to 300 g / ha (when applied by pouring or dropping the application rate can even be reduced, especially if inert substrates such as rockwool or perlite are used);
  • seed treatment from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, most preferably from 2.5 to 12, 5 g per 100 kg of seed;
  • the active compound combinations or compositions according to the invention can therefore be used to protect plants against the infestation by the named pathogens within a certain period of time after the treatment.
  • the period within which protection is provided generally extends from 1 to 28 days, preferably 1 to 14 days after the treatment of the plants with the active ingredients or up to 200 days after a seed treatment.
  • Deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2 and HT2 toxin, fumonisins, zearalenone, moniliformin, fusarin, diaceotoxyscirpenol GDAS are particularly, but not exclusively, the following mycotoxins ), Beauvericin, enniatine, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins, which can be caused, for example, by the following fungi: Fusarium spec., Such as Fusarium acuminatum, F.
  • the invention further comprises a method for the treatment of seed, wherein the individual active ingredients are applied simultaneously to the seed.
  • the invention comprises a method for the treatment of seed, wherein the individual active ingredients are each applied successively on the seed.
  • the invention comprises a method of treating seed, wherein first a single active ingredient is applied followed by a binary mixture of the other two active ingredients. Alternatively, a binary mixture followed by the remaining single agent may be applied to the seed first. With separate application of active ingredients and / or single active ingredients and binary mixtures, this is preferably carried out in different layers. These layers may additionally be separated by layers without active ingredient.
  • the invention further relates to seed which has been treated according to one of the methods described in the previous paragraph.
  • the active compound combinations or compositions according to the invention are especially suitable for the treatment of seed.
  • Much of the crop damage caused by harmful organisms is caused by infestation of the seed during storage or after sowing, and during and after germination of the plant. This phase is particularly critical because the roots and shoots of the growing plant are particularly sensitive and may cause only a small damage to the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using suitable means.
  • the present invention therefore more particularly relates to a method of protecting seeds and germinating plants from the infestation of phytopathogenic fungi by treating the seed with an agent according to the invention.
  • the invention also relates to the use of the seed treatment agents of the invention for protecting the seed and the germinating plant from phytopathogenic fungi.
  • the invention relates to seed which has been treated with an agent according to the invention for protection against phytopathogenic fungi.
  • the mixtures according to the invention can also be used in particular for transgenic seed, wherein the plant growing from this seed is capable of expressing a protein which acts against pests.
  • the active compound combinations or agents according to the invention it is possible to combat certain pests by expressing the insecticidal protein, for example.
  • a further synergistic effect can be observed, which additionally increases the effectiveness for protection against pest infestation.
  • compositions according to the invention are suitable for the protection of seed of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture and viticulture.
  • these are maize, peanut, rapeseed, poppy seed, olive, coconut, cocoa, soya, turnip (eg sugarbeet and fodder beet), rice, millet, wheat, barley, rye, triticale, oats, cotton, potatoes, Sunflower, sugar cane, tobacco, bean, coffee, vegetables (such as tomato, cucumber, onions and lettuce), lawn and ornamental plants (see also above).
  • transgenic seed As already described, the treatment of transgenic seed with the active compound combinations or agents according to the invention is of particular importance.
  • This relates to the seed of plants containing at least one heterologous gene which allows expression of a polypeptide or protein having insecticidal properties.
  • the heterologous gene in transgenic seed may e.g. from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavabacter, Glomus or Gliocladium.
  • this heterologous gene is derived from Bacillus sp., Wherein the gene product has an activity against the European corn borer and / or Western Com Rootworm.
  • the heterologous gene is from Bacillus thuringiensis.
  • the active compound combinations or compositions according to the invention are applied to the seed alone or in a suitable formulation.
  • the seed is treated in a condition that is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seeds are used that have been removed by the plant. separated from flasks, peel, stems, hull, wool or flesh.
  • seed may be used which has been harvested, cleaned and dried to a moisture content below 15% by weight.
  • seed can also be used, which after drying, for example, treated with water and then dried again.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the ratio of the three components is preferably chosen such that a synergistic effect is obtained.
  • synergistic effect is understood, for example, as described by Colby in the article “Calculation of the synergistic and antagonistic responses of herbicidal combinations” (in Weeds, 1967, 15, 20-22).
  • X means the efficiency when using the active substance A in an application rate of m g / ha
  • Y means the efficiency when using the active ingredient B in an application rate of ng / ha
  • Z means the efficiency when using the active ingredient C in an application rate of rg / ha
  • E 1 denotes the efficiency when using the active compounds A and B at application rates of m and ng / ha
  • E 2 denotes the efficiency when using the active compounds A and B and C at application rates of m and n and rg / ha
  • the efficiency is determined in%. It means 0% an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example A Alternaria test (tomato) / protective
  • Example B Botiytis test (cucumber) / protective
  • To test for protective activity young cucumber plants are sprayed with the preparation of active compound in aqueous solution in the stated application rate.
  • One day after the treatment the plants are inoculated with a spore suspension of Botryis cinerea and then stand for 48 h at 100% relative humidity and 22 ° C. Subsequently, the plants are at 96% relative humidity and a temperature of 14 ° C. 5-6 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Example D Plasmopara test (vine) / protective
  • Example E Venturia test (apple) / protective
  • Example F Fusarium culmorum estest (wheat) / protective
  • Table F Fusarium culmorum test (wheat) / protective
  • Example G Fusarium graminearum test (barley) / protective
  • young plants are sprayed with the preparation of active compound in aqueous solution in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of Fusarium graminearum. The plants are then placed in the greenhouse under translucent Incubation hoods at about 22 ° C and a relative humidity of about 100%. 5 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • Table G Fusarium graminearum test (barley) / protective
  • Example H Septoria tritici test (wheat) / protective
  • Example I Microdochium nivale test (turf) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Phytophthora infestans. The plants are then placed in an incubation cabin at about 20 0 C and 100% relative humidity. 3 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Table J-2 Phytophthora test (tomato) / protective
  • Example K Plasmopara test (vine) / protective
  • dimethylacetamide emulsifier 1 part by weight of alkyl-aryl-polyglycol ether - -
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Plasmopara viticola and then remain for 1 day in an incubation cabin at about 20 0 C and 100% relative humidity. The plants are then placed in the greenhouse for 4 days at about 21 0 C and about 90% humidity. The plants are then moistened and placed in an incubation booth for 1 day. 6 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Example L Venturia test (apple) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the apple scab pathogen Ventu ⁇ a inaequalis and then remain in an incubation cabin for 1 day at about 20 ° C. and 100% relative atmospheric humidity. The plants are then placed in the greenhouse at about 21 0 C and a relative humidity of about 90%. 10 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Example M Alternaria Test (Tomato) / Protective Solvent: 24.5 parts by weight of acetone
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Alternaria solani. The plants are then placed in an incubation cabin at about 20 0 C and 100% relative humidity. 3 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Example N Botiytis test (bean) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water - - to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried, 2 small pieces of agar covered with Botrytis cinerea are placed on each leaf. The inoculated plants are placed in a darkened chamber at about 20 0 C and 100% relative humidity. 2 days after the inoculation, the size of the infestation spots on the leaves is evaluated. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Example O Blumeria graminis test (barley) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried, the plants are planted with spores of Blumeria graminis f.sp. hordei pollinated. The plants are placed in a greenhouse at a temperature of about 18 ° C and a relative humidity of about 80% to promote the development of mildew pustules. 7 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the found effect of - - The active ingredient combination according to the invention is greater than the calculated, ie that there is a synergistic effect.
  • Example P Blumeria graminis test (barley) / curative
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Example Q Leptosphaeria nodorum estest (wheat) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Leptosphaeria nodo rum. The plants remain 48 hours at 2O 0 C and 100% relative humidity in an incubation cabin. The plants are grown in a greenhouse at a temperature of approx. - -
  • Example R Leptosphaeria nodorum test (wheat) / curative Solvent: 50 parts by weight N, N-dimethylacetamide
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Example S Fusarium graminearum test (barley) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are sprayed with spores with a spore suspension of Fusarium graminea rum.
  • the plants are placed in a greenhouse chamber under a translucent incubation hood at 10 0 C and 100% relative humidity. 5 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.
  • Example T Puccinia triticina test (wheat) / curative Solvent: 50 parts by weight N, N-dimethylacetamide
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether - -
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with a spore suspension of Pyrenophora teres. The plants remain 48 hours at 20 0 C and 100% relative humidity in an incubation and are then sprayed with the active ingredient preparation in the specified rate.
  • the plants are grown in a - - Greenhouse at a temperature of about 20 0 C and a relative humidity of about 80% set up. 8 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. From the table below it is clear that the effect found of the active ingredient combination according to the invention is greater than the calculated, ie that a synergistic effect is present.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von polymeren Guanidin-Derivaten zur kurativen und/oder präventiven Behandlung von unerwünschten Mikroorganismen wie Bakterien und phytopathogene Pilze im Pflanzenschutz einschließlich der Behandlung von Saatgut. Weiterhin betrifft die Erfindung neue Wirkstoffkombinationen enthaltend wenigstens ein polymeres Guanidin-Derivat und wenigstens einen weiteren fungiziden Wirkstoff, deren Verwendung zur kurativen oder präventiven Behandlung von unerwünschten Mikroorganismen im Pflanzenschutz einschließlich der Behandlung von Saatgut, sowie nicht zuletzt das behandelte Saatgut selbst.

Description

Verwendung von Polymeren Guanidin-Derivaten zum Bekämpfen von unerwünschten Mikroorganismen im Pflanzenschutz
Die vorliegende Erfindung betrifft die Verwendung von polymeren Guanidm-Deπvaten zur kurativen und/oder präventiven Behandlung von unerwünschten Mikroorganismen wie Bakterien und phyto- pathogene Pilze im Pflanzenschutz einschließlich der Behandlung von Saatgut. Weiterhin betrifft die
Erfindung neue Wirkstoffkombinationen enthaltend wenigstens ein polymeres Guanidin-Deπvat und wenigstens einen weiteren fungiziden Wirkstoff, deren Verwendung zur kurativen oder präventiven
Behandlung von unerwünschten Mikroorganismen im Pflanzenschutz einschließlich der Behandlung von Saatgut, sowie nicht zuletzt das behandelte Saatgut selbst.
Biozide Polymere auf der Basis von Guanidinium-Hydrochlond, insbesondere deren Wirkung gegen Escherichia co/j-Bakteπen sind bereits bekannt (vgl. WO 01/85676). Weiterhin ist bereits bekannt, dass solche Guamdin-Deπvate als fungizide Mittel verwendet werden können (vgl. WO 2006/047800). Von besonderer Bedeutung sind die Polymere Akacid®, das Poly-[2-(2-ethoxy)-ethoxyethyl-guanidmium- chloπd], und Akacid plus®, welches zunächst als eine 3:1 -Mischung aus Poly-(hexamethylen- guanidiniumchloπd) und Poly-[2-(2-ethoxy)-ethoxyethyl)-guanidiniumchloπd] beschrieben wurde (vgl Antibiotika Monitor, 22. Jahrgang, Heft 1/2/2006, Online-Ausgabe unter http://www.antibiotikamonitor.at/06_12/06_12_inhalt.htm). In der Tat handelt es sich hierbei aber um ein Co-Polykondensat aus Guanidinhydrochlond und Tπethylenglykoldiamin sowie Hexamethylendia- min, wobei die Komponenten im Verhältnis 4 : 1 : 3 eingesetzt werden (vgl. WO 2006/047800).
Da sich die ökologischen und ökonomischen Anforderungen an moderne Pflanzenschutzmittel laufend erhöhen, beispielsweise was Wirkungsspektrum, Toxizität, Selektivität, Aufwandmenge, Ruck- standsbildung und günstige Herstellbarkeit angeht, und außerdem z.B. Probleme mit Resistenzen auftreten können, besteht die ständige Aufgabe, neue Mittel zu entwickeln, die zumindest in Teilbereichen die genannten Anforderungen zu erfüllen helfen.
Die vorliegende Erfindung stellt eine Verwendung zur Verfügung, welches wenigstens in Teilaspek- ten die gestellte Aufgabe löst. Außerdem werden Wirkstoffkombinationen zur Verfügung gestellt, welche ebenfalls wenigstens in einigen Aspekten die gestellte Aufgabe lösen.
Es wurde nun überraschenderweise gefunden, dass sich polymere Guamdm-Deπvate, welche in Form ihres Hydroxids vorliegen (im Folgenden Guanidimum-Hydroxide), besonders gut zur kurativen und/oder präventiven Behandlung von unerwünschten Mikroorganismen wie Bakterien und phyto- pathogenen Pilzen im Pflanzenschutz einschließlich der Behandlung von Saatgut verwenden lassen. Die erfindungsgemäß verwendbaren Guanidinium-Hydroxide basieren auf einem Diamin, welches Oxyalkylenketten und/oder Alkylengruppen zwischen zwei Aminogruppen enthält, erhältlich durch Polykondensation eines Guanidin-Säureadditionssalzes mit dem Diamin, wobei ein Polykondensati- onsprodukt in Salzform erhalten wird, welches anschließend durch basischen Anionenaustausch in die Hydroxidform übergeführt wird.
Eine bevorzugte Ausführungsform des erfindungsgemäß verwendbaren Guanidinium-Hydroxids besteht darin, dass als Vertreter der Reihe der Polyoxyalkylen-Guanidin-Salze solche unter Einsatz von Triethylenglykoldiamin (relative Molekularmasse: 148), von Polyoxypropylendiamin (relative Molekularmasse: 230) sowie von Polyoxyethylendiamin (relative Molekularmasse: 600), oder auch von Polyhexamethylendiamin (relative Molekularmasse: erhalten werden.
Eine weitere bevorzugte Ausführungsform des erfindungsgemäß verwendbaren Guanidinium-Hydro- xids ist dadurch gekennzeichnet, dass als das polymere Guanidin-Derivat Poly-[2-(2-ethoxy-ethoxy- ethyl)-guanidinium-hydroxid] mit mindestens 3 Guanidinium-Resten enthalten ist.
Weiterhin bevorzugt verwendbar sind Guanidinium-Hydroxide, bei denen das Polykondensationspro- dukt in Salzform zuvor durch Polykondensation eines Guanidin-Säureadditionssalzes mit einem Al- kylendiamin und einem Oxyalkylendiamin im Molverhältnis zwischen 4:1 und 1:4 (Alkylendia- min/Oxyalkylendiamin), bevorzugt zwischen 3 : 1 und 1:3, erhältlich ist.
Bevorzugt ist als Diamin ein Alkylendiamin der allgemeinen Formel H2N-(CH2)- NH2 vorgesehen ist, in welcher n eine ganze Zahl zwischen 2 und 10, insbesondere 6, ist.
Weiterhin bevorzugt ist als Oxyalkylendiamin eine Verbindung der allgemeinen Formel H2N-[CH2)2O)]n— (CH2J2-NH2 vorgesehen ist, in welcher m eine ganze Zahl zwischen 2 und 5, insbesondere 2, ist.
Die mittlere Molekularmasse des erfindungsgemäß verwendbaren Guanidinium-Hydroxids liegt bevorzugt im Bereich 500 bis 3.000, besonders bevorzugt im Bereich 500 bis 2.000, ganz besonders bevorzugt im Bereich 500 bis 1.500. Weiterhin bevorzugt ist eine mittlere Molekularmasse von 1000.
Die als Ausgangsstoffe für die erfindungsgemäß verwendbaren Guanidinium-Hydroxide einsetzbaren Salze, insbesondere die Hydrochloride, sind bekannt (vgl. WO 01/85676). Beispielsweise erhält man das erfindungsgemäß verwendbare Guamdinium-Hydroxid Poly-[2-(2- ethoxy-ethoxyethyl)-guanidimum-hydroxid] mit einer mittleren Molekularmasse von etwa 1000, indem man 4,43 Mol Guanidinium-Hydrochloπd in 4,03 Mol Tπethylenglykoldiamin bei 500C lost. Anschlie- ßend erwärmt man auf 1200C und rührt 2 Stunden bei dieser Temperatur. Danach wird die Temperatur 2 Stunden gehalten, dann ein Vakuum (0,1 bar) angelegt und 2 weitere Stunden unter Vakuum bei 1700C gerührt. Anschließend wird auf Normaldruck belüftet, auf 1200C abkühlen gelassen und mit entminera- hsiertem Wasser auf ca. 50 % verdünnt. Mit Phosphorsäure wird auf einen pH- Wert von ca. 6 neutralisiert, abkühlen gelassen und auf die gewünschte Konzentration verdünnt. Anschließend wird die Hydro- xid-Form hergestellt, indem die zuvor erhaltene Lösung mit einem stark alkalischen Anionenaustauscher in Hydroxid-Form behandelt wird, zweckmäßigerweise in einer Austauschersäule (z.B. „Ambersep 900 OH" oder „Lewatit MP 500"). So erhält man das erfindungsgemäß verwendbare Guamdinium-Hydroxid mit folgenden Charakteristika: Summenformel: C21H51N9O5 bzw. 49,5 % Kohlenstoff, 10 % Wasserstoff, 24,8 % Stickstoff und 15,7 % Sauerstoff.
Analog erhält man ein Polykondensat aus 1 Mol Guanidmhydrochloπd und einem Gemisch aus 0,75 Mol Hexamethylendiamin und 0,25 Mol Tπethylenglyltoldiamin, indem man bei Zimmertemperatur 37 g (0,25 Mol) flüssiges Tπethylenglykoldiamin (relative Molekülmasse 148) und 87 g (0,75 Mol) Hexamethylendiamin (relative Molrnasse 116) mit 96,5 g (1 Mol) pulverförmigem Guanidm- hydrochloπd (relative Molekülmasse 96,5) mischt. Die Reaktionsmasse wird bei ständiger Durchmischung während 1 Stunde auf 1400C erhitzt und anschließend während einer Stunde unter Ruhren gehalten. Danach wird die Mischung unter Rühren während einer Stunde auf eine Temperatur von 17O0C erhitzt und eine weitere Stunde bei dieser Temperatur gehalten. Anschließend wurde vorsichtig ein Vakuum angelegt und eme weitere Stunde unter reduziertem Druck die Reaktionsmasse bei 1700C gerührt. Anschließend wird auf Normaldruck belüftet, auf 1200C abkühlen gelassen und mit ent- mineralisiertem Wasser auf ca. 50 % verdünnt. Mit Phosphorsäure wird auf einen pH-Wert von ca. 6 neutralisiert, abkühlen gelassen und auf die gewünschte Konzentration verdünnt. Anschließend wird die Hydroxid-Form hergestellt, indem die zuvor erhaltene Lösung mit einem stark alkalischen Anionenaustauscher in Hydroxid-Form behandelt wird, zweckmäßigerweise in einer Austauschersäule (z.B. ,,Am- bersep 900 OH" oder „Lewatit MP 500"). So erhält man das erfindungsgemäß verwendbare Guanidini- um-Hydroxid.
Die vorliegende Erfindung betrifft weiterhin Wirkstoffkombinationen bzw. Mittel enthaltend wenigstens ein Guanidinium-Hydroxid und wenigstens einen weiteren fungiziden Wirkstoff. - -
Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel nicht nur einen additiven Effekt der Wirkung der Einzelkomponenten zeigt, sondern einen synergistischen Effekt aufweist. Dadurch kann zum einen die übliche Aufwandmenge der Einzelsubstanzen verringert werden. Zum anderen bieten die erfindungsgemäßen Wirkstoffkombinationen auch dann noch einen hohen Grad an Wirkung gegen Phytopathogene, wenn die Einzelverbindungen in solchen Mengen eingesetzt werden, in denen sie selbst keine (ausreichende) Wirkung mehr zeigen. Dies erlaubt grundsätzlich eine Verbreiterung des Wirkungsspektrums einerseits und eine höhere Sicherheit bei der Handhabung andererseits.
Neben der fungiziden synergistischen Wirkung können die erfindungsgemäßen Wirkstoffkombinationen weitere überraschende Eigenschaften haben, die man im weiteren Sinn ebenfalls als synergistisch bezeichnen kann, wie z.B.: die Erweiterung des Wirkungsspektrums, z.B. auf resistente Erreger von Pflanzenkrankheiten; geringere Aufwandmengen der Wirkstoff; ausreichende Schädlingsbekämpfung mit Hilfe der erfindungsgemäßen Wirkstoffkombinationen auch mit solchen Aufwandmengen, bei denen die Einzelwirkstoffe keine oder fast keine Wirkung zeigen; vorteilhaftes Verhalten beim Formulieren oder während der Anwendung, z.B. während des Mahlens, Siebens, Emulgierens, Lösens oder Ausbringens; verbesserte Lager- bzw. Lichtstabilität; vorteilhaftere Rückstandsbildung; verbessertes toxikologisches oder ökotoxikologisches Verhalten; verbesserte Eigenschaften für die Pflanze, z.B. besseres Wachstum, gesteigerte Ernteerträge, besser ausgebildetes Wurzelsystem, größere Blattfläche, grünere Blätter, stär- kere Schösslinge, geringerer Einsatz von Saatgut, geringere Phytotoxizität, Mobilisierung der pflanzeneigenen Abwehr, gute Pflanzenverträglichkeit. So tragen die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel bei Anwendung deutlich zur Gesunderhaltung junger Getreidebestände bei, wodurch die Überwinterungsleistung des behandelten Getreidesaatgutes gesteigert sowie die Qualitäts- und Ertragsbildung abgesichert wird. Die erfindungsgemäßen Wirkstoffkombinationen können außerdem zu einer verbesserten systemischen Wirkung beitragen. Auch wenn die Einzelwirkstoffe der Kombination keine ausreichenden systemischen Eigenschaften besitzen, können die erfindungsgemäßen Wirkstoffkombinationen diese Eigenschaft durchaus aufweisen. Ähnlich können die erfindungsgemäßen Wirkstoffkombinationen zu einer erhöhten Persistenz der fungiziden Wirkung fuhren.
Bei dem eingesetzten Guanidinium-Hydroxid (Komponente A), handelt es sich bevorzugt um Poly-[2- (2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1000 (A-I), einer mittleren Molekularmasse von etwa 1500 (A-2), einer mittleren Molekularmasse von etwa 500 (A-3), einer mittleren Molekularmasse von etwa 2000 (A-4), einer mittleren Molekularmasse von etwa 2500 (A-5) oder einer mittleren Molekularmasse von etwa 3000 (A-6), sowie außerdem ein PoIy- kondensat aus Poly-(hexamethylen-guanidinium-hydroxid) und Poly-[2-(2-ethoxy)-ethoxyethyl)- guanidinium-hydroxid] im Molverhältnis 3:1 (A-7) [wobei das Co-Polykondensat (A-7) besser durch die Ausgangsstoffe Guanidinhydrochlorid, Triethylenglykoldiamin sowie Hexamethylendiamin, welche im im Verhältnis 4 : 1 : 3 eingesetzt werden, welche nach der Polymerisation in das Hydroxid überführt werden, beschrieben wird].
Der fungizide Mischpartner ist ausgewählt aus
(B) Inhibitoren (oder Salzen davon) der Ergosterol-Biosynthese, bevorzugt ausgewählt aus (B-I) Aldimorph (1704-28-5), (B-2) Azaconazole (60207-31-0), (B-3) Bi- tertanol (55179-31-2), (BA) Bromuconazole (116255-48-2), (B-5) Cyproconazole (113096-99-4), (B-6) Diclobutrazole (75736-33-3), (B-7) Difenoconazole (119446-68-3), (B-8) Diniconazole (83657- 24-3), (B-9) Diniconazole-M (83657-18-5), (B-10) Dodemoφh (1593-77-7), (B-11) Dodemorph ace- tate (31717-87-0), (B-12) Epoxiconazole (106325-08-0), (B-13) Etaconazole (60207-93-4), (B-14) Fenarimol (60168-88-9), (B-15) Fenbuconazole (114369^3-6), (B-16) Fenhexamid (126833-17-8), (B-17) Fenpropidin (67306-00-7), (B-18) Fenpropimorph (67306-03-0), (B-19) Fluquinconazole (136426-54-5), (B-20) Flurprimidol (56425-91-3), (B-21) Flusilazole (85509-19-9), (B-22) Flutriafol (76674-21-0), (B-23) Furconazole (112839-33-5), (B-24) Furconazole-cis (112839-32-4), (B-25) He- xaconazole (79983-71-4), (B-26) Imazalil (60534-80-7), (B-27) Imazalil-sulfate (58594-72-2), (B-28) Imibenconazole (86598-92-7), (B-29) Ipconazole (125225-28-7), (B-30) Metconazole (125116-23-6), (B-31) Myclobutanil (88671-89-0), (B-32) Naftifine (65472-88-0), (B-33) Nuarimol (63284-71-9), (B-34) Oxpoconazole (174212-12-5), (B-35) Paclobutrazol (76738-62-0), (B-36) Pefurazoate (101903-30-4), (B-37) Penconazole (66246-88-6), (B-38) Piperalin (3478-94-2), (B-39) Prochloraz (67747-09-5), (B-40) Propiconazole (60207-90-1), (B^l) Prothioconazole (178928-70-6), (B-42) Py- ributicarb (88678-67-5), (B^3) Pyrifenox (88283-4M), (B^4) Quinconazole (13970-75-8), (B-45) Simeconazole (149508-90-7), (B-46) Spiroxamine (118134-30-8), (B-47) Tebuconazole (107534-96- 3), (B-48) Terbinafine (91161-71-6), (B^9) Tetraconazole (112281-77-3), (B-50) Triadimefon (43121-43-3), (B-51) Triadimenol (89482-17-7), (B-52) Tridemorph (81412^3-3), (B-53) Triflumi- zole (68694-11-1), (B-54) Triforine (26644^6-2), (B-55) Triticonazole (131983-72-7), (B-56) Uni- conazole (83657-22-1), (B-57) Viniconazole (77174-66-4), (B-58) Voriconazole (137234-62-9), (B-59) l-(4-Chloφhenyl)-2-(lH-l,2,4-triazol-l-yl)cycloheptanol (129586-32-9), (B-60) Methyl 1- (2,2-dimethyl-2,3-dihydro-lH-inden-l-yl)-lH-imidazole-5-carboxylate (11323-95-0), (B-61) O-{1- [(4-Methoxyphenoxy)methyl]-2,2-dimethylpropyl} lH-imidazole-1-carbothioate (111226-71-2), besonders bevorzugt ausgewählt aus (B-3) Bitertanol, (B-5) Cyproconazole, (B- 12) Epoxiconazole, (B-17) Fenpropidin, (B-18) Fenpropimorph, (B-19) Fluquinconazole, (B-30) Metconazole, (B-41) Prothioconazole, (B-46) Spiroxamine, (B-47) Tebuconazole, (B-51) Triadimenol; auch besonders bevorzugt ausgewählt aus (B-3) Bitertanol, (B-7) Difenoconazole, (B- 12) Epoxicona- zole, (B- 16) Fenhexamid, (B-26) Imazalil, (B-39) Prochloraz, (B-41) Prothioconazole, (B-46) Spiroxamine, (B-47) Tebuconazole, (B-52) Tridemoφh; - - oder
(O Atmungsketten-Inhibitoren (oder Salzen davon") am Komplex I oder H. bevorzugt ausgewählt aus (C-I) Diflumetorim (130339-07-0), (C-2) Bixafen [N-O'^'-Dichlor-S-fluor- l,l'-biphenyl-2-yl)-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid], (C-3) Boscalid (188425-85- 6), (C4) Carboxin (5234-68^), (C-5) Fenfuram (24691-80-3), (C-6) Fluopyram {N-{2-[3-Chlor-5- (trifluormethyl)pyridin-2-yl]ethyl}-2-(trifluormethyl)benzamid)}, (C-7) Flutolanil (66332-96-5), (C-8) Furametpyr (123572-88-3), (C-9) Furmecyclox (60568-05-0), (C-10) Mepronil (55814-41-0), (C-I l) Oxycarboxin (5259-88-1), (C-12) Penthiopyrad (183675-82-3), (C-13) Thifluzamide (130000-40-7), (C-14) N-[2-(l,3-Dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carboxamid (bekannt aus WO 03/010149), (C-15) N-{2-[l,l1-Bi(cyclopropyl)-2-yl]phenyl}-3-(difluormethyl)-l-methyl-lH- pyrazol-4-carboxamid, (C-16) 3-(Difluormethyl)-N-[(9R)-9-isopropyl-l,2,3,4-tetrahydro-l,4-methano- naphthalen-5-yl]-l-methyl-lH-pyrazol-4-carboxamid, (C-17) 3-(Difluormethyl)-N-[(9S)-9-isopropyl- 1 ,2,3,4-tetrahydro-l ,4-methanonaphthalen-5-yl]-l -methyl-lH-pyrazol-4-carboxamid, (C-18) 1 -Methyl- N-[2-(l,l,2,2-tetrafluoremoxy)phenyl]-3-(trifluoπnethyl)-lH-pyrazol-4-carboxamid, (C-19) 3-(Difluor- methyl)-l-methyl-N-[2-(l,l,2,2-tetrafluorethoxy)phenyl]-lH-pyrazoM-carboxamid, (C-20) l-Methyl-3- (trifluormethyl)-N-[2'-(trifluormethyl)biphenyl-2-yl]-lH-pyrazol-4-carboxamid, (C-21) N-(4'-Chlorbi- phenyl-2-yl)-3-(difluormethyl)-l-methyl-lH-pyrazoM-carboxamid, (C-22) N-(2',4'-Dichlorbiphenyl-2- yl)-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (C-23) 3-(Difluor-methyl)-l-methyl-N-[4'-(tri- fluormethyl)biphenyl-2-yl]-lH-pyrazoM-carboxamid, (C-24) N-(2',5'-Difluorbiphenyl-2-yl)-l-methyl-3- (trifluormethyl)-lH-pyrazoM-carboxamid, (C-25) 3-(Difluormethyl)-N-[4'-(3,3-dimethylbut-l-in-l-yl)- biphenyl-2-yl]-l-methyl-lH-pyrazol-4-carboxamid (bekannt aus WO 04/058723), (C-26) 3-(Difluorme- thyO-l-methyl-N^'-prop-l-in-l-ylbiphenyl^-y^-lH-pyrazoM-carboxamid (bekannt aus WO 04/058723), (C-27) S-Fluor-l^-dimethyl-N^'-prop-l-in-l-ylbiphenyl^-yO-lH-pyrazoM-carboxamid (bekannt aus WO 04/058723), (C-28) 2-Chlor-N-(4l-prop-l-in-l-ylbiphenyl-2-yl)-nicotinamid (bekannt aus WO 04/ 058723), (C-29) N-[4'-(Ethinylbiphenyl-2-yl]-3-(difluormethyl)-l-methyl-lH-pyrazol-4- carboxamid (bekannt aus WO 04/058723), (C-30) N-(4'-Ethinylbiphenyl-2-yl)-5-fluor-l,3-dimethyl-lH- pyrazol-4-carboxamid (bekannt aus WO 04/058723), (C-31) 2-Chlor-N-(4'-ethinylbiphenyl-2-yl)-nico- tinamid (bekannt aus WO 04/058723), (C-32) 3-(Difluormethyl)-N-[4'-(3,3-dimethylbut-l-in-l-yl)- biphenyl-2-yl]-l-methyl-lH-pyrazol-4-carboxamid (bekannt aus WO 04/058723), (C-33) N-[4'-(3,3- Dimethylbut-1-in-l-yl) biphenyl-2-yl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carboxamid (bekannt aus WO 04/058723), (C-34) 2-Chlor-N-[4'-(3,3-dimethylbut-l-in-l-yl)biphenyl-2-yl]-nicotinarrad (bekannt aus WO 04/058723), (C-35) 4<Difluormethyl)-2-methyl-N-[4'-(trifluormethyl)-l,ll-biphenyl-2-yl]-l,3- thiazole-5-carboxamid (bekannt aus WO 04/058723), (C-36) 5-Fluor-Ν-[4'-(3-hydroxy-3-methylbut-l- in-l-yl)biphenyl-2-yl]-l,3-dimethyl-lH-pyrazol-4-carboxamid (bekannt aus WO 04/058723), (C-37) 2- Chlor-N-[4'-(3-hydroxy-3-methylbut-l-in-l-yl)biphenyl-2-yl]-nicotinamid (bekannt aus WO 04/058723), (C-38) 3-Difluormethyl-N-[4'-(3-methoxy-3-methylbut-l-in-l-yl)biphenyl-2-yl]-l-methyl-lH-pyrazol-4- carboxamid (bekannt aus WO 04/058723), (C-39) 5-Fluor-N-[4'-(3-methoxy-3-methylbut-l-in-l- yl)biphenyl-2-yl]-l,3-dimethyl-lH-pyrazol-4-carboxamid (bekannt aus WO 04/058723), (CMO) 2-Chlor- N-[4'-(3-methoxy-3-methylbut-l-in-l-yl)biphenyl-2-yl]-nicotinamid (bekannt aus WO 04/058723), (C-41 ) Isopyrazam {3-(Difluormethyl)-l -methyl-N-[ 1 ,2,3,4-tetrahydro-9-( 1 -methylethyl)- 1 ,4- methanonaphthalen-5-yl]-lH-pyrazol-4-carboxamid Mischung von 2 syn-Isomeren und 2 anti-Isomeren (683777-13-1 und 683777-14-2)}, bevorzugt ausgewählt aus (C-2) Bixafen, (C-3) Boscalid, (C-4) Carboxin, (C-6) Fluopyram, (C-12) Penthiopyrad, (C-14) N-[2-(l,3-Dimethylbutyl)phenyl]-5-fluor-l,3-dirnethyl-lH-pyrazol-4-carboxarnid, (C-15) N-{2-[l,l'-Bi(cyclopropyl)-2-yl]phenyl}-3-(difluormethyl)-l-methyl-lH-pyrazoM-carboxamid, (C-16) 3-(Difluormethyl)-N-[(9R)-9-isopropyl-l,2,3,4-tetrahydro-l,4-methanonaphthalen-5-yl]-l-me- thyl-lH-pyrazol-4-carboxamid, (C-17) 3-(Difluormethyl)-N-[(9S)-9-isopropyl-l,2,3,4-tetrahydro-l,4- methanonaphthalen-5-yl]-l -methyl-lH-pyrazol-4-carboxamid, (C-19) 3-(Difluormethyl)-l -methyl-N-[2- (l,l,2,2-tetrafluorethoxy)phenyl]-lH-pyrazol-4-carboxamid, (C-25) 3-(Difluormethyl)-N-[4'-(3,3-dime- thylbut- 1 -in- 1 -yl)biphenyl-2-yl] - 1 -methyl- 1 H-pyrazol-4-carboxamid, (C-41 ) Isopyrazam; ganz besonders bevorzugt ausgewählt aus (C-2) Bixafen, (C-3) Boscalid, (C-4) Carboxin, (C-6) Fluopyram, (C-12) Penthiopyrad, (C-14) N-[2-(l,3-Dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol- 4-carboxamid, (C-19) 3-(Difluormethyl)-l-methyl-N-[2-(l,l,2,2-tetrafluorethoxy)phenyl]-lH-pyrazoM- carboxamid, (C-41) Isopyrazam; oder (D) Atmungsketten-Inhibitoren (oder Salzen davon) am Komplex IH, bevorzugt ausgewählt aus (D-I) Famoxadone (131807-57-3), (D-2) Fenamidone (161326-34-7), (D-3) Amisulbrom (348635-87-0), (D-4) Azoxystrobin (131860-33-8), (D-5) Cyazofamid (120116-88-3), (D-6) Dimoxystrobin (141600-52-4), (D-7) Enestrobin (238410-11-2), (D-8) Fluoxastrobin (361377-29- 9), (D-9) Kresoxim-methyl (143390-89-0), (D-10) Metominostrobin (133408-50-1), (D-Il) Orysastro- bin (189892-69-1), (D-12) Picoxystrobin (117428-22-5), (D-13) Pyraclostrobin (175013-18-0), (O-U) Pyribencarb (799247-52-2), (D-15) Trifloxystrobin (141517-21-7), (D-16) 5-Methoxy-2-methyM-(2- {[({(lE)-l-[3-(trifluorme%l)phenyl]e%liden}arnino)oxy]methyl}phenyl)-2,4-dihydro-3H-l,2,4-tri- azol-3-on, (D-17) (2E)-2-(2-{[6-(3-Chlor-2-methyl-phenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2- (methoxyimino)-N-methylethanamid, (D-18) 2-Chloro-N-(2,3-dihydro-l,l,3-trimethyl-lH-inden^-yl)-3- pyridincarboxamide (119899-14-8), (D-19) (2E)-2-(Methoxyimino)-N-methyl-2-(2-{[({(lE)-l-[3-(tri- fluormethyl)phenyl]ethyliden}amino)oxy]methyl}-phenyl)ethanamid, (D-20) N-(3-Ethyl-3,5,5-trime- thylcyclohexyl)-3-(formylamino)-2-hydroxy-benzamide (226551-21-9), (D-21) (2E)-2-(Methoxyimino)- N-methyl-2- {2-[(E)-( { 1 -[3-(trifluormethyl)phenyl]ethoxy} imino)methyl]-phenyl} ethanamid, (D-22) (2E)-2-{2-[({[(lE)-l-(3-{[(E)-l-fluoro-2-phenylvinyl]oxy}phenyl)ethylidene]aminooxy)methyl]- phenyl}-2-(methoxyimino)-N-methylacetamide (326896-28-0) - o - besonders bevorzugt ausgewählt aus (D-A) Azoxystrobin, (D-6) Dimoxystrobin, (O-S) Fluoxastrobin, (D-9) Kresoxim-methyl, (D-IO) Metominostrobin, (D-15) Trifloxystrobin, (D-I l) Orysastrobin, (D- 12) Picoxystrobin, (D- 13) Pyraclostrobin; auch besonders bevorzugt ausgewählt aus (D-2) Fenamidone, (D-4) Azoxystrobin, (D-S) Fluoxastro- bin, (D-13) Pyraclostrobin, (D-15) Trifloxystrobin; oder
(E) Inhibitoren (oder Salzen davon) der Mitose und Zellteilung. bevorzugt ausgewählt aus (E-I) Benomyl (17804-35-2), (E-2) Carbendazim (10605-21-7), (E-3) Chlorfenazole (3574-96-7), (E-4) Diethofencarb (87130-20-9), (E-5) Ethaboxam (162650-77-3), (E-6) Fluopicolide (239110-15- 7), (E-7) Fuberidazole (3878-19-1), (E-8) Pencycuron (66063-05-6), (E-9) Profenofos (41198-08-7), (E-IO) Thiabendazole (148-79-8), (E-I l) Thiophanate (23564-06-9), (E-12) Thiophanate-methyl (23564-05-8), (E-13) Zoxamide (156052-68-5), (E-14) 5-Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methyl- piperidin-1 -yl)[l ,2,4]triazolo[l ,5-a]pyrimidin (214706-53-3), besonders bevorzugt ausgewählt aus (E-2) Carbendazim, (E-6) Fluopicolide, (E-8) Pencycuron, (E-IO) Thiabendazole, (E-I l) Thiophanate, (E-12) Thiophanate-methyl, (E-13) Zoxamide, (E-14) 5- Chlor-6-(2,4,6-trifluorphenyl)-7-(4-methylpiperidin-l-yl)[l,2,4]triazolo[l,5-a]pyrimidin; ganz besonders bevorzugt (E-6) Fluopicolide; oder (F) Multisite-Wirkstoffen (oder Salzen davon). bevorzugt ausgewählt aus
(F-I) Bordeaux mixture (8011-63-0), (F-2) Captafol (2425-06-1), (F-3) Captan (133-06-2), (F-4) Chlorothalonil (1897-45-6), (F-5) Copper hydroxide (20427-59-2), (F-6) Copper naphthenate (1338- 02-9), (F-7) Copper oxide (1317-39-1), (F-8) Copper oxychlorid (1332^0-7), (F-9) Copper sulphate (7758-98-7), (F-10) Dichlofluanid (1085-98-9), (F-11) Dithianon (3347-22-6), (F-12) Dodine (2439- 10-3), (F-13) Ferbam (14484-64-1), (F-14) Fluorofolpet (719-96-0), (F-15) Folpet (133-07-3), (F-16) Guazatine (108173-90-6), (F-17) Iminoctadine (13516-27-3), (F-18) Iminoctadine triacetate (57520- 17-9), (F-19) Mancopper (53988-93-5), (F-20) Mancozeb (8018-01-7), (F-21) Maneb (12427-38-2), (F-22) Metiram (9006^2-2), (F-23) Oxine-copper (10380-28-6), (F-24) Propineb (12071-83-9), (F- 25) Schwefel und Schwefelzubereitungen einschließlich Calciumpolysulphide, (F-26) Thiram (137- 26-8), (F-27) Tolylfluanid (731-27-1), (F-28) Zineb (12122-67-7), (F-29) Ziram (137-30-4); besonders bevorzugt ausgewählt aus (F-4) Chorothalonil, (F-10) Dichlofluanid, (F-12) Dodine, (F-14) Fluorofolpet, (F-15) Folpet, (F-16) Guazatine, (F-17) Iminoctadine, (F-18) Iminoctadine triacetate, (F-20) Mancozeb, (F-21) Maneb, (F-22) Metiram, (F-24) Propineb, (F-26) Thiram, (F-27) Tolylflua- nid, (F-28) Zineb, (F-29) Ziram; ganz besonders bevorzugt ausgewählt aus (F-4) Chorothalonil, (F-20) Mancozeb, (F-24) Propineb; oder
(G) folgenden weiteren Fungiziden (oder Salzen davon, bevorzugt ausgewählt aus (G-I) Acibenzolar-S-methyl (135158-54-2), (G-2) Isotianil (224049-04-1), (G-3) Probenazole (27605-76-1), (G4) Tiadirul (223580-51-6), (G-5) Andopπm (23951-85-1), (G-6) Blasticidin-S (2079-00-7), (G-7) Cyprodinyl (121552-61-2), (G-8) Kasugamycin (6980-18-3), (G-9) Mepanipyπm (11023547-7), (G-10) Pyπmethanil (53112-28-0), (G-I l) Fentin-acetat (900-95-8), (G-12) Fennn-chloπd (639-58-7), (G-13) Fentin-hydroxid (76-87-9), (G-14) Silthiofam (175217-20-6), (G-15) Benthiavahcarb (177406-68-7), (G-16) Dimethomoφh (110488-70-5), (G-17) Flumorph (211867-47-9), (G-18) Iprovahcarb (140923-17-7), (G-19) Mandipropamid (374726-62-2), (G-20) Va- hphenal (283159-94-4), (G-21) Polyoxins (11113-80-7), (G-22) Polyoxoπm (22976-86-9), (G-23) VaIi- damycin A (3724847-8), (G-24) Biphenyl (92-52-4), (G-25) Chloroneb (2675-77-6), (G-26) Chlozoh- nate (84332-86-5), (G-27) Edifenfos (17109-49-8), (G-28) Etπdiazole (2593-15-9), (G-29) Iodocarb (55406-53-6), (G-30) Iprobenfos (26087-47-8), (G-31) Iprodione (36734-19-7), (G-32) Isoprothiolane (50512-35-1), (G-33) Procymidone (32809-16-8), (G-34) Propamocarb (2560641-1), (G-35) Propamo- carb-hydrochlond (25606-41-1), (G-36) Prothiocarb (19622-08-3), (G-37) Pyrazophos (13457-18-6), (G-38) Tolcofos-methyl (57018-04-9), (G-39) Vinclozolin (5047144-8), (G-40) Carpropamid (104030- 54.8), (G-41) Diclocymet (139920-32-4), (G-42) Fenoxaml (11585248-7), (G43) Phthahde (27355-22- 2), (G44) Pyroquilon (57369-32-1), (G45) Tπcyclazole (41814-78-2), (G46) Benalaxyl (71626-114), (G47) Benalaxyl-M (98243-83-5), (G48) Bupiπmate (4148343-6), (G49) Clozylacon (67932-85-8), (G-50) Dimethiπmol (5221-534), (G-51) Ethinmol (23947-60-6), (G-52) Furalaxyl (57646-30-7), (G-53) Hymexazol (1000444-1), (G-54) Metalaxyl (57837-19-1), (G-55) Metalaxyl-M (Mefenoxam) (70630-17-0), (G-56) Ofurace (5881048-3), (G-57) Oxadixyl (77732-09-3), (G-58) Oxolinic acid (14698-294), (G-59) Fenpicloml (74738-17-3), (G-60) Fludioxoml (131341-86-1), (G-61) Quinoxyfen (124495-18-7), (G-62) Binapacryl (485-314), (G-63) Dinocap (131-72-6), (G-64) Fluazinam (79622- 59-6), (G-65) Meptyldinocap (131-72-6), (G-66) Benthiazole (21564-17-0), (G-67) Bethoxazin (163269- 30-5), (G-68) Capsimycm (70694-08-5), (G-69) Carvone (9949-0), (G-70) Chinomethionat (2439-01- 2), (G-71) Cufraneb (11096-18-7), (G-72) Cyflufenamid (180409-60-3), (G-73) Cymoxanil (57966-95- 7), (G-74) Cyprosulfamide (221-667-31-8), (G-75) Dazomet (533-744), (G-76) Debacarb (62732-91-6), (G-77) Dichlorophen (97-234), (G-78) Diclomezine (62865-36-5), (G-79) Dicloran (99-30-9), (G-80) Difenzoquat (4322248-6), (G-81) Diphenylamine (122-394), (G-82) Feπmzone (89269-64-7), (G-83) Flumetover (154025-044), (G-84) Fluoroimide (41205-214), (G-85) Flusulfamide (106917-52-6), (G-86) Fosetyl-Al (39148-24-8), (G-87) Fosetyl-Calcium, (G-88) Fosetyl-Natπum, (G-89) Hexachloro- benzene (118-74-1), (G-90) frumamycin (81604-73-1), (G-91) Methasulfocarb (6695249-6), (G-92) Methyhsothiocyanate (556-61-6), (G-93) Metrafenone (220899-03-6), (G-94) Mildiomycm (67527-71- 3), (G-95) Natamycin (7681-93-8), (G-96) Nickel dimethyldithiocarbamat, (G-97) Nitrothal-isopropyl (10552-74-6), (G-98) Octhilmone (26530-20-1), (G-99) Oxyfenthnn (34407-87-9), (G-100) Pentach- lorphenol (87-86-5), (G-IOl) Phosphorige Säure (13598-36-2), (G-102) Propamocarb-Fosetyl, (G-103) Propanosin-Natrium (88498-02-6), (G-104) Proquinazid (189278-12-4), (G-105) Pyrrolnitrine (1018-71- 9), (G-106) Quintozene (82-68-8), (G-107) Tecloftalam (76280-91-6), (G-108) Tecnazene (117-18-0), (G-109) Triazoxide (72459-58-6), (G-I lO) Trichlamide (70193-21-4), (G-I I l) Zarilamid (84527-51-5), (G-112) 8-Hydroxyquinolin-sulfat (134-31-6), (G-113) 2,3,5,6-TetrachloM-(methylsulfonyl)pyridin (13108-52-6), (G-114) 3,4,5-Trichloφyridine-2,6-dicarbonitril (17824-85-0), (G-115) 3-[5-(4-Chloφhe- nyl)-2,3-dimethylisoxazolidin-3-yl]pyridin, (G-116) N-(4-Chlor-2-nitrophenyl)-N-ethyl-4-methylben- zenesulfonamid (304911-98-6), (G-117) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on (221451- 58-7), (G-118) 2-Butoxy-6-iod-3-propyl-benzopyran^-on, (G-119) N-(4-Chlorbenzyl)-3-[3-methoxy-4- (prop-2-yn-l-yloxy)phenyl]propanamid, (G-120) N-^-Methoxy-S-pyridinyty-cyclopropancarboxamid (112860-04-5), (G-121) N-[(4-Chloφhenyl)(cyano)methyl]-3-[3-methoxy^-(prop-2-yn-l-yloxy)- phenyljpropanamid, (G-122) N-[(5-Brom-3-chloφyridin-2-yl)methyl]-2,4-dichloφyridin-3-carboxamid, (G-123) N-[l-(5-Brom-3-chloφyridin-2-yl)ethyl]-2,4-dichlθφyridin-3-carboxamid, (G-124) N-[l-(5- Brom-3-chloφyridin-2-yl)ethyl]-2-fluor-4-iodpyridin-3-carboxamid, (G-125) N'-[4-(3-tert-Butyl-4-chlor- phenoxy)-2,5-dimethylphenyl]-N-ethyl-N-methylimidoformamid, (G-126) N"-[4-(3-tert-Butyl-4-chlor- phenoxy)-2-methyl-5-(trifluoirnethyl)phenyl]-N-ethyl-N-methylinτidofoπnamid, (G-127) lSP-[4-(3-tert- Butyl-4-chloφhenoxy)-5-(difluormethyl)-2-methylphenyl]-N-ethyl-N-methylimidoformamid, (G-128) N'-[4-(3-tert-ButyM-fluoφhenoxy)-2,5-dimethylphenyl]-N-ethyl-N-ethylimidoformarnid, (G-129) N'-[4- (3-tert-Bu1yM-fluoφhenoxy)-2-methyl-5-(trifluormethyl)phenyl]-N-ethyl-N-methylimidoformamid, (G-130) N"-[4-(3-tert-Butyl-4-fluoφhenoxy)-5-(difluormethyl)-2-methylphenyl]-N-ethyl-N-methylimi- doformamid, (G-131) N"-[4-(4-Chloro-3-isopropylphenoxy)-2,5-dimethylphenyl]-N-ethyl-N-methylimi- doformamid, (G-132) N'-[4-(4-Chlor-3-isopropylphenoxy)-2-methyl-5-(trifluormethyl)phenyl]-N-ethyl- N-methylimidoformamid, (G-133) N'-[4-(4-Chlor-3-isopropylphenoxy)-5-(difluormethyl)-2-methylphe- nyl]-N-ethyl-N-methylimidoformamid, (G-134) N'-{4-[(3-tert-Butyl-l,2,4-thiadiazol-5-yl)oxy]-2,5-dime- thylphenyl}-N-ethyl-N-methylimidoformamid, (G-135) N1-{4-[(3-teτt-Butyl-l,2,4-thiadiazol-5-yl)oxy]- 2-me%l-5-(trifluormethyl)phenyl}-N-ethyl-N-methylimidoformamid, (G-136) N'-{4-[(4-tert-Butyl-l,3- thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimidoformamid, (G-137) N'-{4-[(4-tert-Butyl- l,3-tMazol-2-yl)oxy]-2-me%l-5-(1rifluorme%l)phenyl}-N-e%l-N-me%limidoformamid, (G-138) N'- {5-(Difluormethyl)-2-methyl-4-[3-(trime1hylsilyl)propoxy]phenyl}-N-e1hyl-N-methylimidoformamid, (G-139) N-Ethyl-N"-[4-(4-fluor-3-isopropylphenoxy)-2,5-dimethylphenyl]-N-ethylimidoformaniid,
(G-140) N-Ethyl-N"-[4-(4-fluor-3-isopropylphenoxy)-2-methyl-5-(trifluormethyl)phenyl]-N-methylimi- doformamid, (G-141) N-Ethyl-N'-[4-(4-fluor-3-isopropylphenoxy)-2-methyl-5-(trifluormethyl)phenyl]- N-methylimidoformamid, (G-142) N-Ethyl-N'-{4-[(3-isopropyl-l,2,4-thiadiazol-5-yl)oxy]-2,5-dime- thylphenyl} -N-methylimidoformamid, (G- 143) N-Ethyl-N1- {4-[(3 -isopropyl- 1 ,2,4-thiadiazol-5 -yl)oxy]- 2-methyl-5 -(trifluormethyl)phenyl } -N-methylimidoformamid, (G- 144) N-Ethyl-N1- {4-[(4-isopropyl- 1,3- thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N-methylimidoformamid, (G-145) N-Ethyl-N'- {4-[(4-isopropyl- l,3-tMazol-2-yl)oxy]-2-me%l-5-(trifluormethyl)phenyl}-N-methylimidoformamid, (G-146) N-Ethyl-N- methyl-N'-{2-methyl-5^trifluormethyl)-4-[3-(ti^ethylsilyl)propoxy]phenyl}imidoformaniid, (G-147) S-Allyl 5 -amino-2-isopropyl-4-(2-methylphenyl)-3-oxo-2,3 -dihydro- 1 H-pyrazole- 1 -carbothioat; besonders bevorzugt ausgewählt aus (G-I) Acibenzolar-S-methyl, (G-46) Benalaxyl, (G^47) Benalaxyl- M, (G-15) Benthiavalicarb, (G-73) Cymoxanil, (G-7) Cyprodinyl, (G-74) Cyprosulfamide, (G-16) Di- methomoφh, (G-59) Fenpiclonil, (G-64) Fluazinam, (G-60) Fludioxonil, (G-86) Fosetyl-Al, (G-52) Fu- ralaxyl, (G-31) Iprodione, (G- 18) Iprovalicarb, (G-2) Isotianil, (G- 19) Mandipropamid, (G-9) Mepanipy- rim, (G-54) Metalaxyl, (G-55) Metalaxyl-M, (G-93) Metrafenone, (G-138) N'-{5-(Difluormethyl)-2- methyl-4-[3-(trimethylsilyl)propoxy]phenyl} -N-ethyl-N-methylimidoformamid, (G- 146) N-Ethyl-N-me- thyl-N'-{2-methyl-5-(trifluormethyl)-4-[3-(trimethylsilyl)propoxy]phenyl}imidoformamid, (G-57) Oxa- dixyl, (G-101) Phosphorige Säure, (G-33) Procymidone, (G-34) Propamocarb, (G-35) Propamocarb- hydrochlorid, (G-10) Pyrimethanil, (G-61) Quinoxyfen, (G-14) Silthiofam, (G-20) Valiphenal, (G-39) Vinclozolin; ganz besonders bevorzugt ausgewählt aus (G-15) Benthiavalicarb, (G-73) Cymoxanil, (G-16) Di- methomorph, (G-64) Fluazinam, (G-60) Fludioxonil, (G-86) Fosetyl-Al, (G-31) Iprodione, (G-18) Iprovalicarb, (G-55) Metalaxyl-M, (G-101) Phosphorige Säure, (G-35) Propamocarb-hydrochlorid, (G-10) Pyrimethanil.
Bevorzugt sind insbesondere die nachfolgend genannten Wirkstoffkombinationen bzw. Mittel, welche diese Wirkstoffkombinationen enthalten:
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1000 (A-I) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-I), (B-2), (B-3), (B-4), (B-S), (B-6), (B-7), (B-8), (B-9), (B-10), (B-I l), (B-12), (B-13), (B-U), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B^2), (B-43), (B-44), (B^5), (B^6), (B-47), (B^8), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C-4), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (DA), (D-5), (D-6), (D-7), (D-8), (D-9), (D-10), (D-I l), (D-12), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E^), (E-5), (E-6), (E-7), (E-8), (E-9), (E-10), (E-I l), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-10), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G^), (G-5), (G-6), (G-7), (G-8), (G-9), (G-10), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G^O), (G-41), (G^2), (G-43), (G-44), (G-45), (G^6), (G-47), (G^8), (G-49), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I I l), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1500 (A-2) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-7), (B-8), (B-9), (B-IO), (B-I l), (B-12), (B-13), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B^2), (B-43), (B-44), (B^5), (B-46), (B-47), (B-48), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C^), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (D-4), (D-5), (D-6), (D-7), (D-S), (D-9), (D-IO), (D-I l), (D-12), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E-4), (E-5), (E-6), (E-7), (E-8), (E-9), (E-IO)5 (E-I l), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-IO), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G-4), (G-5), (G-6), (G-7), (G-8), (G-9), (G-IO), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G-40), (G-41), (G-42), (G-43), (G-44), (G-45), (G-46), (G-47), (G-48), (G-49), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I I l), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Poly-[2-(2-€thoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 500 (A-3) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-7), (B-8), (B-9), (B-IO), (B-I l), (B-12), (B-13), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), OEMl), (B-42), (B-43), (B^4), (B-45), (B-46), (B^7), (B-48), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C-4), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C^O), (D-I), (D-2), (D-3), (OA), (D-5), (D-6), (D-7), (D-8), (D-9), (D-IO), (D-I l), (D-12), (D-U), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E-4), (E-5), (E-6), (E-7), (E-8), (E-9), (E-IO), (E-I l), (E-12), (E-U), (E-14), (F-I), (F-2), (F-3), (F^), (F-5), (F-6), (F-7), (F-8), (F-9), (F-IO), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G^), (G-5), (G-6), (G-7), (G-8), (G-9), (G-IO), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G^O), (G-41), (G^2), (G-43), (G-44), (G-45), (G^6), (G-47), (G-48), (G^9), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I I l), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 2000 (AA) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-7), (B-8), (B-9), (B-10), (B-I l), (B-12), (B-13), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B-42), (B-43), (B^4), (BA5), (B-46), (B^7), (B^8), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C-4), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (DA), (D-5), (D-6), (D-7), (D-8), (D-9), (D-IO), (D-I l), (D-12), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E-4), (E-5), (E-6), (E-7), (E-8), (E-9), (E-IO), (E-I l), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-IO), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G-4), (G-5), (G-6), (G-7), (G-8), (G-9), (G-IO), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G-40), (G^l), (G-42), (G-43), (G-44), (G^5), (G-46), (G^7), (G-48), (G-49), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-IIl), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 2500 (A-5) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-7), (B-8), (B-9), (B-IO), (B-I l), (B-12), (B-13), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B-42), (B-43), (B-44), (B^5), (B-46), (B-47), (B-48), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (CM), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (D-4), (D-5), (D-6), (D-7), (D-8), (D-9), (D-IO), (D-I l), (D-12), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E^), (E-5), (E-6), (E-7), (E-8), (E-9), (E-IO), (E-I l), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-IO), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G-4), (G-5), (G-6), (G-7), (G-8), (G-9), (G-IO), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G-40), (G^l), (G^2), (G-43), (G-44), (G-45), (G^6), (G^7), (G^8), (G^9), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I I l), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 3000 (A-6) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-7), (B-8), (B-9), (B-IO), (B-I l), (E-U), (B-U), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B-42), (B-43), (B^4), (B-45), (B-46), (B-47), (B-48), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C-4), (C-5), (C-6), (C-7), (C-8), (C-9), (C-IO), (C-Il), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (DA), (D-5), (D-6), (D-7), (D-8), (D-9), (D-IO), (D-I l), (D-U), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E^), (E-5), (E-6), (E-7), (E-8), (E-9), (E-IO), (E-Il), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-IO), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G-4), (G-5), (G-6), (G-7), (G-8), (G-9), (G-IO), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G-40), (G^l), (G-42), (G-43), (G-44), (G45), (G-46), (G^7), (G-48), (G^9), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-IOl), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I I l), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Polykondensat aus Poly-(hexamethylen-guanidinium-hydroxid) und Poly-[2-(2-ethoxy)-ethoxyethyl)- guanidinium-hydroxid] im Molverhältnis 3:1 (A-7) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe(B-l), (B-2), (B-3), (B-4), (B-5), (B-6), (B-I), (B-8), (B-9), (B-IO), (B-I l), (B-U), (B-13), (B-14), (B-15), (B-16), (B-17), (B-18), (B-19), (B-20), (B-21), (B-22), (B-23), (B-24), (B-25), (B-26), (B-27), (B-28), (B-29), (B-30), (B-31), (B-32), (B-33), (B-34), (B-35), (B-36), (B-37), (B-38), (B-39), (B-40), (B-41), (B-42), (BA3), (B^4), (B-45), (B-46), (B^7), (B-48), (B-49), (B-50), (B-51), (C-I), (C-2), (C-3), (C-4), (C-5), (C-6), (C-7), (C-8), (C-9), (C-10), (C-I l), (C-12), (C-13), (C-14), (C-15), (C-16), (C-17), (C-18), (C-19), (C-20), (C-21), (C-22), (C-23), (C-24), (C-25), (C-26), (C-27), (C-28), (C-29), (C-30), (C-31), (C-32), (C-33), (C-34), (C-35), (C-36), (C-37), (C-38), (C-39), (C-40), (D-I), (D-2), (D-3), (OA), (OS), (D-6), (D-7), (D-8), (D-9), (D-10), (D-I l), (D-U), (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-21), (D-22), (E-I), (E-2), (E-3), (E-4), (E-5), (E-6), (E-7), (E-8), (E-9), (E-10), (E-11), (E-12), (E-13), (E-14), (F-I), (F-2), (F-3), (F-4), (F-5), (F-6), (F-7), (F-8), (F-9), (F-10), (F-I l), (F-12), (F-13), (F-14), (F-15), (F-16), (F-17), (F-18), (F-19), (F-20), (F-21), (F-22), (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-3), (G-4), (G-5), (G-6), (G-7), (G-8), (G-9), (G-10), (G-I l), (G-12), (G-13), (G-14), (G-15), (G-16), (G-17), (G-18), (G-19), (G-20), (G-21), (G-22), (G-23), (G-24), (G-25), (G-26), (G-27), (G-28), (G-29), (G-30), (G-31), (G-32), (G-33), (G-34), (G-35), (G-36), (G-37), (G-38), (G-39), (G^O), (G-41), (G-42), (G-43), (G-44), (G-45), (G^6), (G-47), (G-48), (G^9), (G-50), (G-51), (G-52), (G-53), (G-54), (G-55), (G-56), (G-57), (G-58), (G-59), (G-60), (G-61), (G-62), (G-63), (G-64), (G-65), (G-66), (G-67), (G-68), (G-69), (G-70), (G-71), (G-72), (G-73), (G-74), (G-75), (G-76), (G-77), (G-78), (G-79), (G-80), (G-81), (G-82), (G-83), (G-84), (G-85), (G-86), (G-87), (G-88), (G-89), (G-90), (G-91), (G-92), (G-93), (G-94), (G-95), (G-96), (G-97), (G-98), (G-99), (G-100), (G-101), (G-102), (G-103), (G-104), (G-105), (G-106), (G-107), (G-108), (G-109), (G-I lO), (G-I Il), (G-112), (G-113), (G-114), (G-115), (G-116), (G-117), (G-118), (G-119), (G-120), (G-121), (G-122), (G-123), (G-124), (G-125), (G-126), (G-127), (G-128), (G-129), (G-130), (G-131), (G-132), (G-133), (G-134), (G-135), (G-136), (G-137), (G-138), (G-139), (G-140), (G-141), (G-142), (G-143), (G-144), (G-145), (G-146), (G-147).
Besonders bevorzugt sind die nachfolgend genannten Wirkstoffkombinationen bzw. Mittel, welche diese Wirkstoffkombinationen enthalten:
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1000 (A-I) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B-12),
(B-17), (B-18), (B-19), (B-30), (B-41), (B-46), (B-47), (B-51), (C-2), (C-3), (C^), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C-41), (OA), (D-6), (D-8), (D-9), (D-IO), (D-I l), (P-U), (D-13), (D-15), (E-2), (E-6), (E-8), (E-IO), (E-Il), (E-U), (E-13), (E-14), (F-4), (F-IO), (F-U), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-IO), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G-46), (G^7), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-IOl), (G-138), (G-146).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1500 (A-2) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B- 12), (B-17), (B-18), (B-19), (B-30), (BAl), (B-46), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C-41), (DA), (D-6), (D-8), (D-9), (D-IO), (D-I l), (D-U), (D-13), (D-15), (E-2), (E-6), (E-8), (E-IO), (E-I l), (E-12), (E-13), (E-14), (F-4), (F-IO), (F-U), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-IO), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G^6), (G^7), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-IOl), (G-138), (G-146).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 500 (A-3) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B-U), (B-17), (B-18), (B-19), (B-30), (B-41), (B-46), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C^l), (DA), (D-6), (D-8), (D-9), (D-10), (D-I l), (D-12), (D-13), (D-15), (E-2), (E-6), (E-8), (E-10), (E-Il), (E-12), (E-13), (E-14), (F-4), (F-10), (F-12), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-10), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G-46), (G-47), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-101), (G-138), (G-146).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 2000 (A-4) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B-U), (B-17), (B-18), (B-19), (B-30), (B-41), (B-46), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (CAl), (DA), (D-6), (D-8), (D-9), (D-10), (D-I l), (D-12), (D-13), (D-15), (E-2), (E-6), (E-8), (E-10), (E-I l), (E-12), (E-13), (E-14), (FA), (F-10), (F-12), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-10), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G-46), (G^7), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-101), (G-138), (G-146). Poly-[2-(2-ethoxy-eihoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa
2500 (A-5) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B- 12),
(B-17), (B-18), (B-19), (B-30), (B-41), (BA6), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (CMl), (OA), (D-6), (D-8), (D-9), (D-IO), (D-I l),
(D-12), (D-13), (D-15), (E-2), (E-6), (E-8), (E-IO), (E-I l), (E-12), (E-13), (E-14), (F-4), (F-IO),
(F-12), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28),
(F-29), (G-I), (G-2), (G-7), (G-9), (G-IO), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31),
(G-33), (G-34), (G-35), (G-39), (G-46), (G^7), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-IOl), (G-138), (G-146).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 3000 (A-6) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B-12), (B-17), (B-18), (B-19), (B-30), (BAl), (BA6), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C-41), (DA), (D-6), (D-8), (D-9), (D-10), (D-I l), (D-12), (D-13), (D-15), (E-2), (E-6), (E-8), (E-10), (E-I l), (E-12), (E-13), (E-14), (F-4), (F-10), (F-12), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-10), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G-46), (G-47), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-101), (G-138), (G-146).
Polykondensat aus Poly-(hexamethylen-guanidinium-hydroxid) und Poly-[2-(2-ethoxy)-ethoxyethyl)- guanidinium-hydroxid] im Molverhältnis 3:1 (A-7) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-5), (B-12), (B-17), (B-18), (B-19), (B-30), (BAl), (BA6), (B-47), (B-51), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-15), (C-16), (C-17), (C-19), (C-25), (C-41), (OA), (D-6), (D-8), (D-9), (D-10), (D-I l), (D-12), (D-13), (D-15), (E-2), (E-6), (E-8), (E-10), (E-I l), (E-12), (E-13), (E-14), (F-4), (F-10), (F-12), (F-14), (F-15), (F-16), (F-17), (F-18), (F-20), (F-21), (F-22), (F-24), (F-26), (F-27), (F-28), (F-29), (G-I), (G-2), (G-7), (G-9), (G-10), (G-14), (G-15), (G-16), (G-18), (G-19), (G-20), (G-31), (G-33), (G-34), (G-35), (G-39), (G^6), (G-47), (G-52), (G-54), (G-55), (G-57), (G-59), (G-60), (G-61), (G-64), (G-73), (G-74), (G-86), (G-93), (G-101), (G-138), (G-146).
Ganz besonders bevorzugt sind die nachfolgend genannten Wirkstoffkombinationen bzw. Mittel, welche diese Wirkstoff kombinationen enthalten: Poly-[2-(2-ethoxy-ethoxyethyl)-guanidmium-hydroxid] mit einer mittleren Molekularmasse von etwa 1000 (A-I) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (BAl), (BA6), (BAl), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-41), (D-2) (D^), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-IO), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-IOl).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 1500 (A-2) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B- 12), (B-16), (B-26), (B-39), (BAl), (B-46), (B-47), (B-52), (C-2), (C-3), (C^), (C-6), (C-12), (C-14), (C-41), (D-2) (OA), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-IO), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-IOl).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 500 (A-3) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (B-41), (BA6), (B-47), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-41), (D- 2) (OA), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-10), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-101).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 2000 (A-4) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (BAl), (B-46), (B-47), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C^l), (D-2) (DA), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-10), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-101).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 2500 (A-5) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (B^l), (B-46), (BAl), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C^l), (D-2) (DA), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-10), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-101).
Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit einer mittleren Molekularmasse von etwa 3000 (A-6) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-12), (B-16), (B-26), (B-39), (BAl), (B-46), (BAl), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-41), (D-2) (DA), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-10), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-101).
Polykondensat aus Poly-(hexamethylen-guanidinium-hydroxid) und Poly-[2-(2-ethoxy)-ethoxyethyl)- guanidinium-hydroxid] im Molverhältnis 3:1 (A-7) und wenigstens ein weiterer Wirkstoff ausgewählt aus der Reihe (B-3), (B-7), (B-U), (B-16), (B-26), (B-39), (B^l), (B-46), (B-47), (B-52), (C-2), (C-3), (C-4), (C-6), (C-12), (C-14), (C-41), (D-2) (D-4), (D-8), (D-13), (D-15), (E-6), (F-4), (F-20), (F-24), (G-IO), (G-15), (G-16), (G-18), (G-31), (G-35), (G-55), (G-60), (G-64), (G-73), (G-86), (G-IOl).
Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden.
Im Allgemeinen entfallen auf 1 Gewichtsteil an Guanidium-Hydroxid (Komponente A) 0,01 - 100, bevorzugt 0,02 — 50, besonders bevorzugt 0,05 - 20, ganz besonders bevorzugt 0,01 - 10 Gewichtsteile an Wirkstoff ausgewählt aus den Gruppen (B), (C), (D), (E), (F) und (G). Außerdem können je Gewichtsteil an Guanidium-Hydroxid (Komponente A) 0,01 - 95; 0,11 - 90; 0,012 - 85; 0,0125 - 80; 0,013 - 75; 0,014 - 70; 0,015 - 65; 0,017 - 60; 0,018 - 55; 0,022 - 45; 0,025 - 40; 0,03 - 35; 0,033 - 30; 0,04 - 25; 0,067 - 15; 0,2 - 5; 0,25 - 4; 0,33 - 3; 0,5 - 2 Gewichtsteile an Wirkstoff ausgewählt aus den Gruppen (B), (C), (D), (E), (F) und (G) eingesetzt werden.
Erfindungsgemäß bedeutet der Ausdruck „Wirkstoffkombination" verschiedene mögliche Kombinatio- nen der drei oben genannten Wirkstoffe, wie beispielsweise Fertigmischungen, Tankmischungen (worunter Applikations- und Spritzmischungen verstanden werden, die vor der Anwendung aus den Formulierungen der Einzelwirkstoffe durch Zusammengeben und Verdünnen hergestellt werden) oder Kombinationen hiervon (z.B. wird eine binäre Fertigmischung aus zwei der oben genannten Wirkstoffen mit einer Formulierung der dritten Einzelsubstanz in eine Tankmischung überführt). Erfindungsgemäß kön- nen die Einzelwirkstoffe auch sequentiell eingesetzt werden, d.h. einer nach dem anderen, und zwar mit einem vernünftigen zeitlichen Abstand von wenigen Stunden oder Tagen, bei Saatgutbehandlung z.B. auch durch Aufbringen mehrerer Schichten, die unterschiedliche Wirkstoffe enthalten. Vorzugsweise spielt es keine Rolle, in welcher Reihenfolge die einzelnen Wirkstoffe eingesetzt werden können.
Diese Erfindung betrifft weiterhin Mittel, welche die erfindungsgemäßen Wirkstoffkombinationen enthalten. Vorzugsweise handelt es sich um fungizide Mittel, enthaltend landwirtschaftlich verwendbare Trägerstoffe oder Streckmittel.
Erfindungsgemäß bedeutet Trägerstoff eine natürliche oder synthetische, organische oder anorgani- sehe Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoli- ne, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktio- nierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier- und/oder Schaum erzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsul- fonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Butan, Propan, Stickstoff und Kohlendioxid.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, PoIy- vinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methyl- ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethyl- formamid und Dimethylsulfoxid, sowie Wasser. Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B. oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgiermittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphon- säure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestem, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende KoI- loide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren, Se- questiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden.
Im Allgemeinen enthalten die erfindungsgemäßen Mittel zwischen 0,05 und 99 Gewichtsprozent von der erfindungsgemäßen Wirkstoffkombination, bevorzugt zwischen 10 und 70 Gewichtsprozent, besonders bevorzugt zwischen 20 und 50 Gewichtsprozent, hervorgehoben 25 Gewichtsprozent.
Die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel können als solche oder in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Konzentrate für die Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgierbare Konzentrate, Öl- in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Makrogranulate, Mikrogranulate, Öl dispergierbare Pulver, Öl mischbare fließfahige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions-Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgutbehandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-KaIt- und Warmnebel-Formulierungen eingesetzt werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe bzw. der Wirkstoffkombinationen mit mindestens einem Zusatzstoff. Als Zusatzstoffe kommen alle üblichen Formulierhilfsmittel infrage, wie z. B. organische Solventien, Streckmittel, Lösungs- bzw. Verdünnungsmittel, feste Trägerstoffe und Füllstoffe, oberflächenaktive Substanzen (wie Adjuvantien, Emulgatoren, Dispergiermittel, Schutzkolloide, Netzmittel und Haft- mittel), Dispergier- und/oder Binde- oder Fixiermittel, Konservierungsmittel, Farbstoffe und Pigmente, Entschäumer, anorganische und organische Verdicker, Wasser-Repellent, gegebenenfalls Sikkati- ve und UV-Stabilisatoren, Gibberelline und auch Wasser sowie weiteren Verarbeitungshilfsmitteln. In Anhängigkeit von dem jeweils herzustellenden Formuliertyp sind weitere Verfahrensschritte wie z.B. Nassmahlung, Trockenmahlung oder Granulation nötig.
Als organische Verdünnungsmittel können alle üblicherweise für derartige Zwecke einsetzbaren polaren und unpolaren organischen Solventien vorhanden sein. Vorzugsweise in Betracht kommen Ke- tone, wie Methyl-isobutyl-keton und Cyclohexanon, ferner Amide, wie Dimethylformamid und Al- kancarbonsäureamide wie Decansäure-dimethylamid und Octansäure-dimethylamid weiterhin cycli- sehe Verbindungen, wie N-Methyl-pyrrolidon, N-Octyl-pyrrolidon, N-Dodecyl-pyrrolidon, N- Octylcaprolactam, N-Dodecyl-caprolactam und Butyrolacton, darüber hinaus stark polare Solventien, wie Dimethylsulfoxid, ferner aromatische Kohlenwasserstoffe, wie Xylol, Solvesso™, Mineralöle, wie Testbenzin, Petroleum, Alkylbenzole und Spindelöl, ausserdem Ester, wie Propylenglykol-mono- methylether-acetat, Adipinsäure-dibutylester, Essigsäurehexylester, Essigsäure-heptylester, Zitronen- säure-tri-n-butylester und Phthalsäure-di-n- butylester, und weiterhin Alkohole, wie z.B. Benzyl- alkohol und l-Methoxy-2-propanol.
Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorgani- sehen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokos- nussschalen, Maiskolben und Tabakstängeln.
Als oberflächenative Substanzen (Adjuvantien, Emulgatoren, Dispergiermittel, Schutzkolloide, Netzmittel und Haftmittel) kommen übliche ionische und nichtionische Substanzen in Frage. Bei- spielhaft genannt seien ethoxylierte Nonylphenole, Polyalkylenglykolether von linearen oder verzweigten Alkoholen, Umsetzungsprodukte von Alkylphenolen mit Ethylenoxid und/oder Propyleno- xid, Umsetzungsprodukte von Fettaminen mit Ethylenoxid und/oder Propylenoxid weiterhin Fettsäureester, Alkylsulfonate, Alkylsulfate, Alkylethersulfate, Alkyletherphosphate, Arylsulfate, ethoxylier- te Arylalkylphenole, wie z.B. Tristyryl-phenol-ethoxylate, weiterhin ethoxylierte und propoxylierte Arylalkylphenole sowie sulfatierte oder phosphatierte Arylalkylphenol-ethoxylate bzw. -ethoxy- und -propoxylate. Weiterhin genannt seien natürliche und synthetische, wasserlösliche Polymere, wie Ligninsulfonate, Gelatine, Gummiarabicum, Phospholipide, Stärke, hydophob modifizierte Stärke und Cellulosederivate, insbesondere Celluloseester und Celluloseether, ferner Polyvinylalkohol, Po- lyvinylacetat, Polyvinylpyrrolidon, Polyacrylsäure, Polymethacrylsäure und Co-Polymerisate aus (Meth)acrylsäure und (Meth)acrylsäureestern, und ausserdem auch mit Alkalimetallhydroxid neutra- lisierte Co-Polymerisate aus Methacrylsäure und Methacrylsäureester und Kondensationsprodukte von gegebenenfalls substituierten Naphthalinsulfonsäuresalzen mit Formaldehyd.
Als feste Füll- und Trägerstoffe kommen alle üblicherweise für diesen Zweck in Pflanzenschutzmitteln eingesetzten Substanzen in Frage. Vorzugsweise genannt seien anorganische Partikel, wie Carbo- nate, Silikate, Sulfate und Oxide mit einer mittleren Teilchengröße von 0,005 bis 20 μm, besonders bevorzugt von 0,02 bis 10 μm. Beispielhaft erwähnt seien Ammoniumsulfat, Ammoniumphosphat, Harnstoff, Calciumcarbonat, Calciumsulfat, Magnesiumsulfat, Magnesiumoxid, Aluminiumoxid, Siliziumdioxid, so genannte hochdisperse Kieselsäure, Kieselgele, natürliche und synthetische Silikate und Alumosilikate und pflanzliche Produkte wie Getreidemehl, Holzpulver und Cellulosepulver.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, CI. Pigment Red 112 und CI. Solvent Red 1 bekannten Farbstoffe. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diiso- propyl- oder Diisobutyl-naphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirk- Stoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphe- nolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat- Formaldehydkondensate .
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer, Magnesiumstearat, Silikonemulsionen, langket- tige Alkohole, Fettsäuren und deren Salze sowie fluororganische Verbindungen und deren Gemische.
Als Konservierungsmittel können in den erfϊndungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln ein- setzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäurederivate, Polysaccharide wie Xanthan Gum oder Veegum, modifizierte Tone, Schichtsilikate wie Attapulgit und Bentonit sowie hochdisperse Kieselsäuren genannt.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline Al, A3 (= Gibberellinsäure), A4 und A7 infrage, be- sonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler „Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401-412).
Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugswei- se zwischen 0,5 und 90 %. - zo -
Die erfindungsgemäßen Wirkstofϊkombinationen können in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Auch eine Mischung mit Dünge- mittein ist möglich.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffkombinationen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Bevorzugt ist die Anwendung durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen) und Tröpfchenbewässerung.
Die Anwendung der Formulierungen erfolgt gemäß der üblichen landwirtschaftlichen Praxis in einer den Anwendungsformen angepassten Weise. Übliche Anwendungen sind z.B. Verdünnung in Wasser und Ausspritzen der resultierenden Spritzbrühe, Anwendung nach Verdünnung in Öl, direkte An- wendung ohne Verdünnung, Saatgutbeizung oder Bodenapplikation von Trägergranulaten.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 2 Gew.-% liegen.
Die erfϊndungsgemäßen Mittel umfassen nicht nur Mittel, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen.
Die erfϊndungsgemäßen Wirkstoffkombinationen bzw. Mittel weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Pilzen und Bakterien, im Pflanzenschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen. Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Die erfindungsgemäßen fungiziden Mittel können zur Bekämpfung von phytopathogenen Pilzen ku- rativ oder protektiv eingesetzt werden. Die Erfindung betrifft daher auch kurative und protektive Verfahren zum Bekämpfen von phytopathogenen Pilzen durch die Verwendung der erfindungsgemäßen Wirkstoffkombinationen oder Mittel, welche auf das Saatgut, die Pflanze oder Pflanzenteile, die Früchten oder den Boden, in welcher die Pflanzen wachsen, ausgebracht wird. Bevorzugt ist das Ausbringen auf der Pflanze oder Pflanzenteilen, den Früchten oder dem Boden, in welcher die Pflan- zen wachsen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflan- zen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sorten- schutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle o- berirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen. Bevorzugt ist die Behandlung der Pflanzen und sowie der oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Früchte genannt sind.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende erwähnt: Baumwolle, Flachs, Weinrebe, Obst, Gemüse, wie Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbee- ren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und - plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten), Liliaceae sp., Aster aceae sp. (beispielsweise Salat), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbita- ceae sp. (beispielsweise Gurke), Alliaceae sp. (beispielsweise Lauch, Zwiebel), Papilionaceae sp. (beispielsweise Erbsen); Hauptnutzpflanzen, wie Gramineae sp. (beispielsweise Mais, Rasen, Getreide wie Weizen, Roggen, Reis, Gerste, Hafer, Hirse und Triticale), Asteraceae sp. (beispielsweise Sonnenblume), Brassicaceae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen sowie Raps, Senf, Meerrettich und Kresse), Fabacae sp. (beispielsweise Bohne, Erdnüsse), Papilionaceae sp. (beispielsweise Sojabohne), Solanaceae sp. (beispielsweise Kartoffeln), Chenopodiaceae sp. (beispielsweise Zuckerrübe, Futterrübe, Mangold, Rote Rübe); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen. Bevorzugt werden Getreidepflanzen erfindungsgemäß behandelt.
Das erfϊndungsgemäße Verfahren zum Bekämpfen von phytopathogenen Pilzen kann auch zur Be- handlung von genetisch veränderten Organismen, z.B. Pflanzen oder Samen, verwendet werden. Genetisch veränderte Pflanzen sind solche, in deren Genom ein bestimmtes heterologes Gen, welches für ein bestimmtes Protein codiert, stabil integriert wurde. „Heterologes Gen" meint dabei ein Gen, welches der transformierten Pflanze neue agronomische Eigenschaften verleiht, oder ein Gen, welches die agronomische Qualität der modifizierten Pflanze verbessert.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflan- zen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw. „Teile von Pflanzen" oder „Pflanzenteile" wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß ver- wendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen. Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Mateπal erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte ToIe- ranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Emährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schad- linge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus thuπngiensis (z.B. durch die Gene CryΙA(a), CryIA(b), CryΙA(c), QyELA, CryEuΑ, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryEF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden ,3t Pflanzen"). Als Eigenschaften („Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotπcin (z.B. ,,PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für ,3t Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YEBLD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotπcin, z.B. Raps), EMI® (Toleranz gegen Lmidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid- Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits"). Das erfindungsgemäße Verfahren zum Bekämpfen von unerwünschten Pilzen kann auch zum Schutz von so genannte Storage Goods verwendet werden. Unter „Storage Goods" werden dabei natürliche Substanzen pflanzlichen oder tierischen Ursprungs oder deren Verarbeitungsprodukte, welche der Natur entnommen wurden und für die Langzeitschutz gewünscht ist, verstanden. Storage Goods pflanzlichen Ursprungs, wie z.B. Pflanzen oder Pflanzenteile, wie Stiele, Blätter, Knollen, Samen, Früchte, Kömer, können in frisch geerntetem Zustand oder nach Verarbeitung durch (Vor-)Trocknen, Befeuchten, Zerkleinern, Mahlen, Pressen oder Rösten, geschützt werden. Storage Goods umfasst auch Nutzholz, sei es unverarbeitet, wie Bauholz, Stromleitungsmasten und Schranken, oder in Form fertiger Produkte, wie Möbel. Storage Goods tierischen Ursprungs sind beispielsweise Felle, Leder, Pelze und Haare. Die erfindungsgemäßen Wirkstoffkombinationen können nachteilige Effekte wie Vermodern, Verfall, Ver-, Entfärbung oder Verschimmeln verhindern.
Eine weitere Anwendung der erfindungsgemäßen Wirkstoffkombinationen und Mittel ist der Schutz von Holz und Holzwerkstoffen. Die zum Schutz von Holz und Holzwerkstoffen verwendeten insekti- ziden und fungiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
Zugleich können die erfindungsgemäßen Wirkstoffkombinationen und Mittel zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.
Beispielhaft, aber nicht begrenzend, seien einige Erreger von pilzlichen Erkrankungen, die erfindungsgemäß behandelt werden können, genannt:
Erkrankungen, hervorgerufen durch Erreger des Echten Mehltaus wie z.B. Blumeria- Arten, wie bei- spielsweise Blumeria graminis; Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha; Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea; Uncinula-Arten, wie beispielsweise Uncinula necator;
Erkrankungen, hervorgerufen durch Erreger von Rostkrankheiten wie z.B. Gymnosporangium- Arten, wie beispielsweise Gymnosporangium sabinae; Hemileia-Arten, wie beispielsweise Hemileia vastatrix; Phakopsora-Arten, wie beispielsweise Phakopsora pachyrhizi und Phakopsora meibomiae; Puccinia-Arten, wie beispielsweise Puccinia recondita oder Puccinia triticina; Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Erkrankungen, hervorgerufen durch Erreger der Gruppe der Oomyceten wie z.B. Bremia- Arten, wie beispielsweise Bremia lactucae; Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae; Phytophthora-Arten, wie beispielsweise Phytophthora infestans; Plasmopara-Arten, wie beispielsweise Plasmopara viticola; Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospo- ra humuli oder Pseudoperonospora cubensis; Pythium-Arten, wie beispielsweise Pythium ultimum;
Blattfleckenkrankheiten und Blattwelken, hervorgerufen durch z.B. Alternaria-Arten, wie beispielsweise Alternaria solani; Cercospora-Arten, wie beispielsweise Cercospora beticola; Cladiosporum- Arten, wie beispielsweise Cladiosporium cucumerinum; Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium); Colletotrichum-Arten, wie beispielsweise Colletotrichum lindemuthanium; Cycloconium-Arten, wie beispielsweise Cyclo- conium oleaginum; Diaporthe- Arten, wie beispielsweise Diaporthe citri; Elsinoe-Arten, wie beispielsweise Elsinoe fawcettii; Gloeosporium- Arten, wie beispielsweise Gloeosporium laeticolor; Glomerella-Arten, wie beispielsweise Glomerella cingulata; Guignardia-Arten, wie beispielsweise Guignardia bidwelli; Leptosphaeria-Arten, wie beispielsweise Leptosphaeria maculans; Magna- porthe-Arten, wie beispielsweise Magnaporthe grisea; Microdochium-Arten, wie beispielsweise Mic- rodochium nivale; Mycosphaerella-Arten, wie beispielsweise Mycosphaerella graminicola und M. fijiensis; Phaeosphaeria-Arten, wie beispielsweise Phaeosphaeria nodorum; Pyrenophora-Arten, wie beispielsweise Pyrenophora teres; Ramularia-Arten, wie beispielsweise Ramularia collo-cygni; Rhynchosporium-Arten, wie beispielsweise Rhynchosporium secalis; Septoria-Arten, wie beispielsweise Septoria apii; Typhula-Arten, wie beispielsweise Typhula incarnata; Venturia-Arten, wie bei- spielsweise Venturia inaequalis;
Wurzel- und Stängelkrankheiten, hervorgerufen durch z.B. Corticium-Arten, wie beispielsweise Cor- ticium graminearum; Fusarium-Arten, wie beispielsweise Fusarium oxysporum; Gaeumannomyces- Arten, wie beispielsweise Gaeumannomyces graminis; Rhizoctonia-Arten, wie beispielsweise Rhi- zoctonia solani; Tapesia-Arten, wie beispielsweise Tapesia acuformis; Thielaviopsis-Arten, wie beispielsweise Thielaviopsis basicola;
Ähren- und Rispenerkrankungen (inklusive Maiskolben), hervorgerufen durch z.B. Alternaria-Arten, wie beispielsweise Alternaria spp.; Aspergillus- Arten, wie beispielsweise Aspergillus flavus; CIa- dosporium-Arten, wie beispielsweise Cladosporium cladosporioides; Claviceps-Arten, wie beispielsweise Claviceps purpurea; Fusarium-Arten, wie beispielsweise Fusarium culmorum; Gibberella- Arten, wie beispielsweise Gibberella zeae; Monographella-Arten, wie beispielsweise Monographella nivalis; Septoria-Arten, wie beispielsweise Septoria nodorum;
Erkrankungen, hervorgerufen durch Brandpilze wie z.B. Sphacelotheca-Arten, wie beispielsweise Sphacelotheca reiliana; Tilletia-Arten, wie beispielsweise Tilletia caries, T. controversa; Urocystis- Arten, wie beispielsweise Urocystis occulta; Ustilago-Arten, wie beispielsweise Ustilago nuda, U. nuda tritici;
Fruchtfaule hervorgerufen durch z.B. Aspergillus- Arten, wie beispielsweise Aspergillus flavus; Botrytis-Arten, wie beispielsweise Botrytis cinerea; Penicillium-Arten, wie beispielsweise Penicilli- um expansum und P. purpurogenum; Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum; Verticilium-Arten, wie beispielsweise Verticilium alboatrum;
Samen- und bodenbürtige Fäulen und Welken, sowie Sämlingserkrankungen, hervorgerufen durch z.B. Fusarium- Arten, wie beispielsweise Fusarium culmorum; Phytophthora Arten, wie beispielsweise Phytophthora cactorum; Pythium-Arten, wie beispielsweise Pythium ultimum; Rhizoctonia-Arten, wie beispielsweise Rhizoctonia solani; Sclerotium-Arten, wie beispielsweise Sclerotium rolfsii;
Krebserkrankungen, Gallen und Hexenbesen, hervorgerufen durch z.B. Nectria- Arten, wie beispiels- weise Nectria galligena;
Welkeerkrankungen hervorgerufen durch z.B. Monilinia- Arten, wie beispielsweise Monilinia laxa;
Deformationen von Blättern, Blüten und Früchten, hervorgerufen durch z.B. Taphrina- Arten, wie bei- spielsweise Taphrina deformans;
Degenerationserkrankungen holziger Pflanzen, hervorgerufen durch z.B. Esca-Arten, wie beispielsweise Phaemoniella clamydospora und Phaeoacremonium aleophilum und Fomitiporia mediterranea;
Blüten- und Samenerkrankungen, hervorgerufen durch z.B. Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Erkrankungen von Pflanzenknollen, hervorgerufen durch z.B. Rhizoctonia-Arten, wie beispielsweise Rhizoctonia solani; Helminthosporium-Arten, wie beispielsweise Helminthosporium solani;
Erkrankungen, hervorgerufen durch bakterielle Erreger wie z.B. Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Bevorzugt können die folgenden Krankheiten von Soja-Bohnen bekämpft werden: Pilzkrankheiten an Blättern, Stängeln, Schoten und Samen verursacht durch z.B. Alternaria leaf spot (Altemaria spec. atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var. trunca- tum), Brown spot (Septoria glycines), Cercospora leaf spot and blight (Cercospora kikuchii), Choa- nephora leaf blight (Choanephora infundibulifera trispora (Syn.)), Dactuliophora leaf spot (Dactuliopho- ra glycines), Downy Mildew (Peronospora manshurica), Drechslera blight (Drechslera glycini), Frogeye Leaf spot (Cercospora sojina), Leptosphaerulina Leaf Spot (Leptosphaerulina trifolii), Phyllostica Leaf Spot (Phyllosticta sojaecola), Pod and Stern Blight (Phomopsis sojae), Powdery Mildew (Microsphaera diffusa), Pyrenochaeta Leaf Spot (Pyrenochaeta glycines), Rhizoctonia Aerial, Foliage, and Web Blight (Rhizoctonia solani), Rust (Phakopsora pachyrhizi, Phakopsora meibomiae), Scab (Sphaceloma glyci- nes), Stemphylium Leaf Blight (Stemphylium botryosum), Target Spot (Corynespora cassiicola).
Pilzkrankheiten an Wurzeln und der Stängelbasis verursacht durch z.B. Black Root Rot (Calonectria crotalariae), Charcoal Rot (Macrophomina phaseolina), Fusarium Blight or WiIt, Root Rot, and Pod and Collar Rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), My- coleptodiscus Root Rot (Mycoleptodiscus terrestris), Neocosmospora (Neocosmopspora vasinfecta), Pod and Stem Blight (Diaporthe phaseolorum), Stern Canker (Diaporthe phaseolorum var. caulivora), Phytophthora Rot (Phytophthora megasperma), Brown Stem Rot (Phialophora gregata), Pythium Rot (Pythium aphanidermatum, Pythium irreguläre, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Rot, Stem Decay, and Damping-Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii), Thielaviopsis Root Rot (Thielaviopsis basicola).
Besonders bevorzugt lassen sich folgende pilzliche und bakterielle Pflanzenkrankheiten bekämpfen: Dürrfleckenkrankheit (Alternaria solani), Grauschimmel (Botryis cinerea), Kraut- und Braun- bzw. Knollenfäule (Phytophthora infestans), falscher Mehltau (Plasmopara viticola), Apfelschorf (Venturia inaequalis), Fusariosen (ausgelöst z.B. durch Fusarium culmorum und Fusarium graminearum), Blattdürre (Septoria tritici), Schneeschimmel (Microdochium nivale) und Feuerbrand (Erwinia amylo- vorä) bekämpfen.
Es ist auch möglich, resistente Stämme der vorgenannten Organismen zu bekämpfen.
Die Aufwandmenge der erfindungsgemäßen Wirkstoffkombinationen beträgt • bei der Behandlung von Blättern: von 0,1 bis 10 000 g/ha, bevorzugt von 10 bis 1 000 g/ha, besonders bevorzugt von 50 bis 300g/ha (bei Anwendung durch Gießen oder Tropfen kann die Aufwandmenge sogar verringert werden, vor allem wenn inerte Substrate wie Steinwolle oder Perlit verwendet werden); • bei der Saatgutbehandlung: von 2 bis 200 g pro 100 kg Saatgut, bevorzugt von 3 bis 150 g pro 100 kg Saatgut, besonders bevorzugt von 2,5 bis 25 g pro 100 kg Saatgut, ganz besonders bevorzugt von 2,5 bis 12,5 g pro 100 kg Saatgut;
• bei der Bodenbehandlung: von 0,1 bis 10 000 g/ha, bevorzugt von 1 bis 5 000 g/ha.
Diese Aufwandmengen seien nur beispielhaft und nicht limitierend im Sinne der Erfindung genannt.
Die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die ge- nannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen auf 1 bis 28 Tage, vorzugsweise 1 bis 14 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen bzw. auf bis zu 200 Tage nach einer Saatgutbehandlung.
Darüber hinaus kann durch die erfindungsgemäße Behandlung der Mykotoxingehalt im Erntegut und den daraus hergestellten Nahrungs- und Futtermitteln verringert werden. Besonders, aber nicht ausschließlich sind hierbei folgende Mykotoxine zu nennen: Deoxynivalenol (DON), Nivalenol, 15-Ac- DON, 3-Ac-DON, T2- und HT2- Toxin, Fumonisine, Zearalenon, Moniliformin, Fusarin, Diaceoto- xyscirpenol GDAS), Beauvericin, Enniatin, Fusaroproliferin, Fusarenol, Ochratoxine, Patulin, Mutter- kornalkaloide und Aflatoxine, die beispielsweise von den folgenden Pilzen verursacht werden kön- nen: Fusarium spec, wie Fusarium acuminatum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum (Gibberella zeae), F. equiseti, F. fujikoroi, F. musarum, F. oxysporum, F. proliferatum, F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoi- des, F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides u.a. sowie auch von Aspergillus spec, Penicillium spec, Claviceps purpurea, Stachybotrys spec. u.a.
Die Erfindung umfasst weiterhin ein Verfahren zur Behandlung von Saatgut, wobei die einzelnen Wirkstoffe gleichzeitig auf das Saatgut aufgebracht werden. Außerdem umfasst die Erfindung ein Verfahren zur Behandlung von Saatgut, wobei die einzelnen Wirkstoffe jeweils nacheinander auf dem Saatgut aufgebracht werden. Außerdem umfasst die Erfindung ein Verfahren zur Behandlung von Saatgut, wobei zunächst ein einzelner Wirkstoff gefolgt von einer binären Mischung der beiden anderen Wirkstoffe aufgebracht wird. Alternativ kann auch zuerst eine binäre Mischung gefolgt von dem verbleibenden Einzelwirkstoff auf dem Saatgut aufgebracht werden. Bei separatem Auftragen von Wirkstoffen und/oder Einzelwirkstoffen und binären Mischungen erfolgt dieses vorzugsweise in verschiedenen Schichten. Diese Schichten können zusätzlich durch Schichten ohne Wirkstoff getrennt sein. Die Erfindung betrifft weiterhin Saatgut, welches gemäß einem der im vorherigen Absatz beschriebenen Verfahren behandelt wurde.
Die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel sind speziell geeignet für die Behand- lung von Saatgut. Ein großer Teil des durch Schadorganismen hervorgerufenen Schadens an Kulturpflanzen wird durch den Befall des Saatguts während der Lagerung oder nach der Aussaat sowie während und nach der Keimung der Pflanze ausgelöst. Diese Phase ist besonders kritisch, weil die Wurzeln und Schösslinge der wachsenden Pflanze besonders empfindlich sind und auch nur eine kleine Schädigung zum Tod der Pflanze führen kann. Es besteht daher ein großes Interesse daran, das Saatgut und die keimende Pflanze durch Einsatz geeigneter Mittel zu schützen.
Die Bekämpfung von phytopathogenen Pilzen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufrieden stellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen oder zumindest deutlich verringern. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch phytopathogene Pilze bestmöglich geschützt wird, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen fungiziden Eigenschaften transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen.
Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von phytopathogenen Pilzen, indem das Saatgut mit einem erfindungsgemäßen Mittel behandelt wird. Die Erfindung bezieht sich ebenfalls auf die Verwendung der erfindungsgemäßen Mittel zur Behandlung von Saatgut zum Schutz des Saatguts und der keimenden Pflanze vor phytopathogenen Pilzen. Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor phytopathogenen Pilzen mit einem erfindungsgemäßen Mittel behandelt wurde.
Die Bekämpfung von phytopathogenen Pilzen, die Pflanzen nach dem Auflaufen schädigen, erfolgt in erster Linie durch die Behandlung des Bodens und der oberirdischen Pflanzenteile mit Pflanzenschutzmitteln. Aufgrund der Bedenken hinsichtlich eines möglichen Einflusses der Pflanzenschutz- mittel auf die Umwelt und die Gesundheit von Menschen und Tieren gibt es Anstrengungen, die Menge der ausgebrachten Wirkstoffe zu vermindern. Einer der Vorteile der vorliegenden Erfindung ist es, dass aufgrund der besonderen systemischen Eigenschaften der erfindungsgemäßen Mittel die Behandlung des Saatguts mit diesen Mitteln nicht nur das Saatgut selbst, sondern auch die daraus hervorgehenden Pflanzen nach dem Auflaufen vor phyto- pathogenen Pilzen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen.
Ebenso ist es als vorteilhaft anzusehen, dass die erfindungsgemäßen Mischungen insbesondere auch bei transgenem Saatgut eingesetzt werden können, wobei die aus diesem Saatgut wachsende Pflanze in der Lage ist, ein Protein zu exprimieren, welches gegen Schädlinge wirkt. Durch die Behandlung solchen Saatguts mit den erfindungsgemäßen Wirkstoffkombinationen bzw. Mitteln können bereits durch die Expression des beispielsweise insektiziden Proteins bestimmte Schädlinge bekämpft werden. Überraschenderweise kann dabei ein weitere synergistischer Effekt beobachtet werden, welcher zusätzlich die Effektivität zum Schutz gegen den Schädlingsbefall vergrößert.
Die erfindungsgemäßen Mittel eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Garten- und Weinbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Mais, Erdnuss, Raps, Mohn, Olive, Kokosnuss, Kakao, Soja, Rübe (z.B. Zuckerrübe und Futterrübe), Reis, Hirse, Weizen, Gerste, Roggen, Triticale, Hafer, Baumwolle, Kartoffeln, Sonnenblume, Zuckerrohr, Tabak, Bohne, Kaffee, Gemüse (wie Tomate, Gurke, Zwiebeln und Salat), Rasen und Zierpflanzen (siehe auch oben).
Wie schon beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungsgemäßen Wirkstoffkombinationen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, CIa- vibacter, Glomus or Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European com borer) und/oder Western Com Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis.
Im Rahmen der vorliegenden Erfindung werden die erfindungsgemäßen Wirkstoffkombinationen bzw. Mittel alleine oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Be- handlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze ge- trennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfϊndungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwand- mengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird in den erfindungsgemäßen Wirk- Stoffkombinationen bzw. Mitteln das Verhältnis der drei Komponenten vorzugsweise so gewählt, dass ein synergistischer Effekt erhalten wird. Hierbei wird „synergistischer Effekt" beispielsweise so verstanden wie von Colby in dem Artikel „Calculation of the synergistic and antagonistic responses of herbicide combinations" (in Weeds, 1967, 15, 20-22) beschrieben wurde.
Nach Colby liegt ein synergistischer (überadditiver) Effekt vor, wenn die tatsächliche fungizide Wirkung größer als berechnet ist. In diesem Fall muss der tatsächlich beobachtete Wirkungsgrad größer sein als der aus der im Folgenden angeführten Formel errechnete Wert für den erwarteten Wirkungsgrad (E).
Wenn
X den Wirkungsgrad beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha bedeutet,
Y den Wirkungsgrad beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha bedeutet, Z den Wirkungsgrad beim Einsatz des Wirkstoffes C in einer Aufwandmenge von r g/ha bedeutet, E1 den Wirkungsgrad beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha bedeutet und E2 den Wirkungsgrad beim Einsatz der Wirkstoffe A und B und C in Aufwandmengen von m und n und r g/ha bedeutet,
dann ist für eine Kombination aus 2 Wirkstoffen:
X Y
E, = X + Y -
100
und für eine Kombination aus 3 Wirkstoffen:
100 ) 10000
Dabei wird der Wirkungsgrad in % ermittelt. Es bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Eine weitere Möglichkeit, einen synergistischen Effekt zu belegen, stellt die Methode von Tammes dar (vgl. „Isoboles, a graphic representation of synergism in pesticides" in Neth. J. Plant Path., 1964, 70, 73-80).
Die Erfindung wird durch die folgenden Beispiele veranschaulicht. Die Erfindung ist jedoch nicht auf die Beispiele limitiert.
- -
Anwendungsbeispiele
Beispiel A: Alternaria-Test (Tomate) / protektiv
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Alternaria solani inokuliert und stehen dann 24 h bei 100 % relativer Feuchte und 200C. Anschließend stehen die Pflanzen bei 96 % relativer Luftfeuchtigkeit und einer Temperatur von 200C. 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle A: Alternaria-Test (Tomate) / protektiv
Beispiel B: Botiytis-Test (Gurke) / protektiv Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Botryis cinerea inokuliert und stehen dann 48 h bei 100 % relativer Feuchte und 22°C. Anschließend stehen die Pflanzen bei 96 % relativer Luftfeuchtigkeit und einer Temperatur von 14°C. 5-6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle B: Botrytis-Test (Gurke) / protektiv
Beispiel C: Phytophthora-Test (Tomate) / protektiv
Zur Prüfung auf protektive Wirksamkeit werden junge Tomatenpflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Phytophthora infestans inokuliert und stehen dann 24 h bei 100 % relativer Feuchte und 20°C. Anschließend werden die Pflanzen in einer Klimazelle bei ca. 96 % relativer Luftfeuchtigkeit und einer Temperatur von ca. 200C aufgestellt. 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. - -
Tabelle C: Phytophthora-Test (Tomate) / protektiv
Wirkstoff Aufwandmenge an Wirkstoff in ppm Wirkungsgrad in %
(A-7) 2000 90
Beispiel D: Plasmopara-Test (Rebe) / protektiv
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 200C und 100 % relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 4 Tage im Gewächshaus bei ca. 210C und ca. 90 % Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt. 6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle D: Plasmopara-Test (Rebe) / protektiv
Beispiel E: Venturia-Test (Apfel) / protektiv
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inae- qualis inokuliert und verbleiben dann 1 Tag bei ca. 200C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Die Pflanzen werden dann im Gewächshaus bei ca. 210C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt. 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle E: Venturia-Test (Apfel) / protektiv
Wirkstoff Aufwandmenge an Wirkstoff in ppm Wirkungsgrad in %
(A-7) 2000 98
Beispiel F: Fusarium culmorum-Υest (Weizen) / protektiv
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages - - werden die Pflanzen mit einer wässrigen Konidiensuspension von Fusarium culmorum inokuliert. Die Pflanzen werden dann im Gewächshaus unter lichtdurchlässigen Inkubationshauben bei ca. 22°C und einer relativen Luftfeuchtigkeit von ca. 100% aufgestellt. 6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle F: Fusarium culmorum-Test (Weizen) / protektiv
Beispiel G: Fusarium graminearum-Test (Gerste) / protektiv Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension von Fusarium graminearum inokuliert. Die Pflanzen werden dann im Gewächshaus unter lichtdurchlässigen Inkubationshauben bei ca. 22°C und einer relativen Luftfeuchtigkeit von ca. 100 % aufgestellt. 5 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle G: Fusarium graminearum-Test (Gerste) / protektiv
Beispiel H: Septoria tritici-Test (Weizen) / protektiv
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in wässeriger Lösung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Septoria tritici inokuliert. Die Pflanzen verbleiben 48 Stunden bei ca. 200C und einer relativen Luftfeuchtigkeit von ca. 100 % in einer Inkubationskabine. Danach werden die Pflanzen für 60 Stunden bei ca. 15°C und einer relativen Luftfeuchtigkeit von ca. 100 % unter eine lichtdurchlässige Inkubationshaube gestellt. Anschließend stehen die Pflanzen in einem Gewächshaus bei einer Temperatur von ca. 150C und einer relativen Luftfeuchtigkeit von ca. 80 %. 21 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. - -
Tabelle H: Septoria tritici-Test (Weizen) / protektiv
Beispiel I: Microdochium nivale-Test (Rasen) / protektiv
Rasensamen (100 % Agrostis stolonifera) wurde in Schalen der Größe 38 cm x 15 cm x 9 cm ausgesät. 7 Tage nach der Aussaat wurde der Rasen geschnitten, noch bevor eine Guanidinium-Hydroxid Applikation in Aufwandmengen von 2000, 1000, 500 und 100 g/ha präventiv erfolgte. Die Wasseraufrnengen betrugen umgerechnet 1000 L/ha. 24 Stunden nach der präventiven Applikation des Wirkstoffes erfolgte die Inokulation des Rasens, indem mit Microdochium mvα/e-befallene Weizenkörner ausgelegt werden. Jeweils 3 Weizenkömer wurden in eine einzelne Schale gelegt. Eine Bonitierung des anschließenden Pilz-Wachstums in den Rasenschalen erfolgte nach 5, 7, 14 und 21 Tagen. In den mit Guanidinium- Hydroxid behandelten Schalen konnte eine Wachstumshemmung von Microdochium nivale von bis zu 30 % (Abbott) festgestellt werden.
Tabelle I: Microdochium nivale-Test (Rasen) / protektiv
Beispiel J: Phytophthora-Test (Tomate) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Phytophthora infestans inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 200C und 100 % relativer Luftfeuchtigkeit aufgestellt. 3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt. - -
Tabelle J-I: Phvtophthora-Υest rTomatel / protektiv
Aufwandmenge an
Wirkstoff/ Wirkstoffkombination Wirkungsgrad in % Wirkstoff in ppm gef.* ber.**
200 41
(A-7) 50 13
(G-15) Benthiavalicarb 0,5 23
(E-6) Fluopicolide 2 9
(G-18) Iprovalicarb 2 30
(G-55) Metalaxyl-M 2,5 10
(A-7) + (G- 15) Benthiavalicarb 1 : 0,01 50 + 0,5 52 33
(A-7) + (E-6) Fluopicolide 1 : 0,01 200 + 2 68 46
(A-7) + (G- 18) Iprovalicarb 1 : 0,01 200 + 2 75 59
(A-7) + (G-55) Metalaxyl-M 1 : 0,05 50 + 2,5 46 22 gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Tabelle J-2: Phytophthora-Test (Tomate) / protektiv
* gef. = gefundene Wirkung ** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel K: Plasmopara-Test (Rebe) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether - -
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Plasmopara viticola inokuliert und verbleiben dann 1 Tag in einer Inkubationskabine bei ca. 200C und 100 % relativer Luftfeuchtigkeit. Anschließend werden die Pflanzen 4 Tage im Gewächshaus bei ca. 210C und ca. 90 % Luftfeuchtigkeit aufgestellt. Die Pflanzen werden dann angefeuchtet und 1 Tag in eine Inkubationskabine gestellt. 6 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle K: Plasmopara-Test (Reb e) / protektiv
Aufwandmenge an
Wirkstoff/ Wirkstoffkombination Wirkungsgrad in % Wirkstoff in ppm gef.* ber.**
200 51
(A-7) 100 46 50 25
(G-73) Cymoxanil 50 0
(G- 16) Dimethomorph 1 0
(D-2) Fenamidone 1 19
(G-64) Fluazinam 5 0
(G-86) Fosetyl-Al 200 0
(G- 18) Iprovalicarb 0,5 0
(F-20) Mancozeb 100 5
(G-101) Phosphorige Säure 400 30
(G-35) Propamocarb-hydrochlorid 400 0
(F-24) Propineb 100 51
(A-7) + (G-73) Cymoxanil 1 : 0,5 100 + 50 65 46
(A-7) + (G-16) Dimethomorph 1 : 0,01 100 + 1 62 46
(A-7) + (D-2) Fenamidone 1 : 0,01 100 + 1 73 56
(A-7) + (G-64) Fluazinam 1 : 0,05 100 + 5 70 46
(A-7) + (G-86) Fosetyl-Al 1 : 2 100 + 200 78 46
(A-7) + (G- 18) Iprovalicarb 1 : 0,01 50 + 0,5 45 25 - - gef. = gefundene Wirkung ber. = nach der Colby-Formel berechnete Wirkung
Beispiel L: Venturia-Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Ventuήa inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Die Pflanzen werden dann im Gewächshaus bei ca. 210C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt. 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle L: Venturia-Υest (Apfel) / protektiv
- -
gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel M: Alternaria-Test (Tomate) / protektiv Lösungsmittel : 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Alternaria solani inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 200C und 100 % relativer Luftfeuchtigkeit aufgestellt. 3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle M-I: Alternaria-Test (Tomate) / protektiv
- - gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Tabelle M-2: Alternaria-Υest (Tomate) / protektiv
gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel N: Botiytis-Test (Bohne) / protektiv
Lösungsmittel : 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser - - auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 200C und 100 % relativer Luftfeuchtigkeit aufgestellt. 2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle N: Botrytis-Test (Bohne) / protektiv
gef. = gefundene Wirkung ber. = nach der Colby-Formel berechnete Wirkung
Beispiel O: Blumeria graminis-Test (Gerste) / protektiv
Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von Blumeria graminis f.sp. hordei bestäubt. Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 18°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen. 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der - - erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle O: Blumeria graminis-T est (Gerste) / protektiv
* gef. = gefundene Wirkung ** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel P: Blumeria graminis-Test (Gerste) / kurativ
Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit Sporen von Blumeria graminis f.sp. hordei bestäubt. 48 Stunden nach der Inokulation werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 18°C und einer relativen Luftfeuchtig- keit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen. 7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Ef- fekt vorliegt.
Tabelle P: Blumeria graminis-Test (Gerste) / kurativ
- -
gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel Q: Leptosphaeria nodorum-Υest (Weizen) / protektiv
Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen mit einer Sporensuspension von Leptosphaeria nodo- rum besprüht. Die Pflanzen verbleiben 48 Stunden bei 2O0C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. - -
220C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt. 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfϊndungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle O: Leptosphaeria nodorum-Test (Weizen) / protektiv
gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel R: Leptosphaeria nodorum-Test (Weizen) / kurativ Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Sporensuspension von Leptosphaeria nodorum besprüht. Die Pflanzen verbleiben 48 Stunden bei 2O0C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine und werden dann mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 22°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt. 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungs- grad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfϊndungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle R: Leptosphaeria nodorum -Test (Weizen) / kurativ
- - gef. = gefundene Wirkung
*♦ ber. = nach der Colby-Formel berechnete Wirkung
Beispiel S: Fusarium graminearum-Test (Gerste) / protektiv
Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen mit einer Sporensuspension von Fusarium graminea- rum besprüht. Die Pflanzen werden in einer Gewächshauskammer unter eine lichtdurchlässige Inkubationshaube bei 100C und 100 % relativer Luftfeuchtigkeit gestellt. 5 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle S: Fusarium graminearum-Test (Gerste) / protektiv
gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel T: Puccinia triticina-Test (Weizen) / kurativ Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether - -
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Sporensuspension von Puccinia triticina besprüht. Die Pflanzen verbleiben 48 Stunden bei 2O0C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine und werden dann mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 200C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt. 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle T: Puccinia triticina-Υest (Weizen) / kurativ
Aufwandmenge an
Wirkstoff/ Wirkstoffkombination Wirkungsgrad in % Wirkstoff in ppm gef.* ber.**
1000 0
(A-7) 500 0
(D-15) Trifloxystrobin 500 83
(B-26) Imazalil 500 83
(B-46) Spiroxamine 1000 40
(A-7) + (D- 15) Trifloxystrobin 1 : 0,5 1000 + 500 100 83
(A-7) + (B-26) Imazalil 1 : 1 500 + 500 100 83
(A-7) + (B^6) Spiroxamine 1 : 1 1000 + 1000 60 40
* gef. = gefundene Wirkung ** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel U: Pyrenophora teres-Test (Gerste) / kurativ
Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration. Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Sporensuspension von Pyrenophora teres besprüht. Die Pflanzen verbleiben 48 Stunden bei 200C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine und werden dann mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Die Pflanzen werden in einem Ge- - - wächshaus bei einer Temperatur von ca. 200C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt. 8 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird. Aus der nachfolgenden Tabelle geht eindeutig hervor, dass die gefundene Wirkung der erfindungsgemäßen Wirkstoffkombination größer ist als die berechnete, d.h. dass ein synergistischer Effekt vorliegt.
Tabelle U: Pyrenophora teres-Test (Gerste) / kurativ
Aufwandmenge an
Wirkstoff/ Wirkstoffkombination Wirkungsgrad in % Wirkstoff in ppm gef* ber.**
1000 11
(A-7) 1000 10 250 11
(FA) Chlorothalonil 1000 30
(B-47) Tebuconazole 250 60
(G-60) Fludioxonil 250 78
(B- 12) Epoxiconazole 500 78
(B-41) Prothioconazole 125 78
(A-7) + (F-4) Chlorothalonil 1 : 1 1000 + 1000 60 37
(A-7) + (B-47) Tebuconazole 4 : 1 1000 + 250 70 64
(A-7) + (G-60) Fludioxonil 1 : 1 250 + 250 100 80
(A-7) + (B-12) Epoxiconazole 2 : 1 1000 + 500 94 80
(A-7) + (B-41) Prothioconazole 2 : 1 250 + 125 100 80 gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung

Claims

Patentansprüche
1. Verwendung von polymeren Guanidinium-Hydroxiden auf Basis eines Diamins, welches Oxyalkylenketten und/oder Alkylengruppen zwischen zwei Aminogruppen enthält, erhältlich durch Polykondensation eines Guanidin-Säureadditionssalzes mit dem Diamin, wobei ein Po- lykondensationsprodukt in Salzform erhalten wird, welches anschließend durch basischen Anionenaustausch in die Hydroxidform überführt wird, zur Bekämpfung unerwünschter Mikroorganismen im Pflanzenschutz.
2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass das polymere Guanidinium- Hydroxid Poly-[2-(2-ethoxy-ethoxyethyl)-guanidinium-hydroxid] mit mindestens 3 Guanidi- niumresten ist.
3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polykondensationsprodukt in Salzform erhältlich ist durch Polykondensation eines Guanidin-Säureadditionssalzes mit einem Alkylendiamin und einem Oxyalkylendiamin im Molverhältnis zwischen 4: 1 und 1 :4 (Alkylendiamin/Oxyalkylendiamin).
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Diamin ein Alkylendiamin der allgemeinen Formel
H2N-(CH2)- NH2 vorgesehen ist, in welcher n eine ganze Zahl zwischen 2 und 10, insbesondere 6, ist.
5. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Oxyalkylen- diamin eine Verbindung der allgemeinen Formel
H2N-[CH2J2O)]- (CH2J2- NH2 vorgesehen ist, in welcher m eine ganze Zahl zwischen 2 und 5, insbesondere 2, ist.
6. Verwendung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mittlere Molekularmasse des polymeren Guanidinium-Hydroxids im Bereich 500 bis 3.000 liegt.
7. Verfahren zur Bekämpfung von phytopathogenen Pilzen im Pflanzenschutz, dadurch gekennzeichnet, dass man das in den Ansprüchen 1 bis 6 verwendete polymere Guanidinium- Hydroxid auf das Saatgut, die Pflanze oder Früchte von Pflanzen ausbringt. - JO -
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man bei der Behandlung von Blättern von 0,1 bis 10 000 g/ha, bei der Saatgutbehandlung von 2 bis 200 g pro 100 kg Saatgut einsetzt.
9. Wirkstoffkombinationen enthaltend wenigstens ein polymeres Guanidinium-Hydroxid gemäß einem der Ansprüche 1 bis 6 und wenigstens einen weiteren fungiziden Wirkstoff.
10. Wirkstoffkombinationen gemäß Anspruch 9, welche fungizid wirksam sind.
11. Wirkstoffkombinationen gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass der weitere fungizide Wirkstoff ausgewählt ist aus
(B) Inhibitoren (oder Salzen davon) der Ergosterol-Biosynthese, wie (B-I) Aldimorph, (B-2) Azaconazole, (B-3) Bitertanol, (B-4) Bromuconazole, (B-5) Cyproconazole, (B-6) Diclo- butrazole, (B-7) Difenoconazole, (B-8) Diniconazole, (B-9) Diniconazole-M (B-10) Dode- morph, (B-I l) Dodemorph acetate, (B-12) Epoxiconazole, (B-13) Etaconazole (B-14) Fena- rimol, (B-15) Fenbuconazole, (B-16) Fenhexamid, (B-17) Fenpropidin, (B-18) Fenpropi- moφh, (B- 19) Fluquinconazole, (B-20) Flurprimidol, (B-21) Flusilazole, (B-22) Flutriafol, (B-23) Furconazole, (B-24) Furconazole-cis, (B-25) Hexaconazole, (B-26) Imazalil, (B-27) Imazalil-sulfate, (B-28) Imibenconazole, (B-29) Ipconazole, (B-30) Metconazole, (B-31) Myclobutanil, (B-32) Naftifine, (B-33) Nuarimol, (B-34) Oxpoconazole, (B-35) Paclobutra- zol, (B-36) Pefurazoate, (B-37) Penconazole, (B-38) Piperalin, (B-39) Prochloraz, (B-40) Propiconazole, (B-41) Prothioconazole, (B-42) Pyributicarb, (B-43) Pyrifenox, (B-44) Quin- conazole, (B-45) Simeconazole, (B-46) Spiroxamine, (B-47) Tebuconazole, (B-48) Terbina- fine, (B-49) Tetraconazole, (B-50) Triadimefon, (B-51) Triadimenol, (B-52) Tridemorph, (B-53) Triflumizole, (B-54) Triforine, (B-55) Triticonazole, (B-56) Uniconazole, (B-57) Vi- niconazole, (B-58) Voriconazole (B-59) l-(4-Chlorphenyl)-2-(lH-l,2,4-triazol-l-yl)cyclo- heptanol, (B-60) Methyl l-(2,2-dimethyl-2,3-dihydro-lH-inden-l-yl)-lH-imidazole-5- carboxylate (B-61) O-{l-[(4-Methoxyphenoxy)methyl]-2,2-dimethylpropyl} lH-imidazole-1- carbothioate oder
(C) Atmungsketten-Inhibitoren (oder Salzen davon) am Komplex I oder E, wie (C-I) Diflu- metorim, (C-2) Bixafen [N-(3l,4t-Dichlor-5-fluor-l,l'-biphenyl-2-yl)-3-(difluormethyl)-l- methyl-lH-pyrazol-4-carboxamid], (C-3) Boscalid, (C-4) Carboxin, (C-5) Fenfuram, (C-6) Fluopyram, (C-7) Flutolanil, (C-8) Furametpyr, (C-9) Furmecyclox, (C-10) Mepronil, (C-I l) Oxycarboxin, (C-12) Penthiopyrad, (C-13) Thifluzamide, (C-14) N-[2-(l,3-Dimethylbutyl)- phenyl]-5-fluor-l,3-dimethyl-lH-pyrazoM-carboxamid, (C-15) N-{2-[l,l'-Bi(cyclopropyl)-2- yl]phenyl}-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (C-16) 3-(Difluormethyl)- N-[(9R)-9-isopropyl- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5 -yl] - 1 -methyl- 1 H-pyrazol-4- carboxamid, (C-17) 3-(Difluormethyl)-N-[(9S)-9-isopropyl-l,2,3,4-tetrahydro-l,4-methano- naphthalen-5-yl] - 1 -methyl- 1 H-pyrazol-4-carboxamid, (C- 18) 1 -Methyl-N-[2-( 1 , 1 ,2,2-tetraflu- orethoxy)phenyl]-3-(trifluormethyl)-lH-pyrazol-4-carboxamid, (C-19) 3-(Difluormethyl)-l- methyl-N-[2-( 1 , 1 ,2,2-tetrafluorethoxy)phenyl] - 1 H-pyrazol-4-carboxamid, (C-20) 1 -Methyl-3 - (trifluormethyl)-N-[2'-(trifluormethyl)biphenyl-2-yl]- 1 H-pyrazol-4-carboxamid, (C-21 ) N-(4'- Chlorbiphenyl-2-yl)-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (C-22) N-(2',4'- Dichlorbiphenyl-2-yl)-3-(difluormethyl)-l -methyl- 1 H-pyrazol-4-carboxamid, (C-23) 3-(Di- fluor-methyl)- 1 -methyl-N-[4'-(trifluormethyl)biphenyl-2-yl]- 1 H-pyrazol-4-carboxamid,
(C-24) N^'^'-Difluorbiphenyl^-yO-l-methyl-S-^fluormethyO-lH-pyrazoM-carboxamid, (C-25) 3-(Difluormethyl)-N-[4'-(3,3-dimethylbut-l-in-l-yl)biphenyl-2-yl]-l-methyl-lH-pyra- zol-4-carboxamid, (C-26) 3-(Difluormethyl)-l-methyl-N-(4'-prop-l-in-l-ylbiphenyl-2-yl)-lH- pyrazol-4-carboxamid, (C-27) 5-Fluor-l,3-dimethyl-N-(4'-prop-l-in-l-ylbiphenyl-2-yl)-lH- pyrazol-4-carboxamid, (C-28) 2-Chlor-N-(4'-prop-l-in-l-ylbiphenyl-2-yl)-nicotinamid,
(C-29) N-[4'-(Ethinylbiphenyl-2-yl]-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (C-30) N-(4'-Ethinylbiphenyl-2-yl)-5-fluor-l,3-dimethyl-lH-pyrazoM-carboxamid, (C-31) 2- Chlor-N-(4'-ethinylbiphenyl-2-yl)-nicotinamid, (C-32) 3-(Difluormethyl)-N-[4'-(3,3-dimethyl- but-l-in-l-yl)biphenyl-2-yl]-l-methyl-lH-pyrazol-4-carboxamid, (C-33) N-[4'-(3,3-Dimethyl- but-1-in-l-yl) biphenyl-2-yl]-5-fluor-l,3-dimethyl-lH-pyrazoM-carboxamid, (C-34) 2-Chlor-
N-[4'-(3,3-dimethylbut-l-in-l-yl)biphenyl-2-yl]-nicotinamid, (C-35) 4-(Difluormethyl)-2- methyl-N-[4'-(trifluormethyl)-l , 1 '-biphenyl-2-yl]-l ,3-thiazole-5-carboxamid, (C-36) 5-Fluor- Ν-[4'-(3 -hydroxy-3-methylbut- 1 -in- 1 -yl)biphenyl-2-yl] -1,3 -dimethyl- 1 H-pyrazol-4-carbox- amid, (C-37) 2-Chlor-N-[4l-(3-hydroxy-3-methylbut-l-in-l-yl)biphenyl-2-yl]-nicotinamid, (C-38) 3-Difluormethyl-N-[4'-(3-methoxy-3-methylbut-l-in-l-yl)biphenyl-2-yl]-l-methyl-lH- pyrazol-4-carboxamid, (C-39) 5 -Fluor-N-[4'-(3 -methoxy-3 -methylbut- 1 -in- 1 -yl)biphenyl-2- yl]-l,3-dimethyl-lH-pyrazoM-carboxamid, (C^lO) 2-Chlor-N-[4'-(3 -methoxy-3 -methylbut- 1- in-l-yl)biphenyl-2-yl]-nicotinamid, (C-41) Isopyrazam, oder (D) Atmungsketten-Inhibitoren (oder Salzen davon) am Komplex HI, wie (D-I) Famoxadone,
(D-2) Fenamidone, (D-3) Amisulbrom, (D-4) Azoxystrobin, (D-5) Cyazofamid, (D-6) Dimo- xystrobin, (D-7) Enestrobin, (D-8) Fluoxastrobin, (D-9) Kresoxim-methyl, (D- 10) Metomino- strobin, (D-I l) Orysastrobin, (D-12) Picoxystrobin, (D-13) Pyraclostrobin, (D-14) Pyriben- carb, (D-15) Trifloxystrobin, (D-16) 5-Methoxy-2-methyl-4-(2-{[({(lE)-l-[3-(trifluorme- thyl)phenyl]ethyliden}amino)oxy]methyl}phenyl)-2,4-dihydro-3H-l,2,4-triazol-3-on, (D-17)
(2E)-2-(2-{[6-(3-Chlor-2-methyl-phenoxy)-5-fluor-4-pyrimidinyl]oxy}phenyl)-2-(methoxy- - Jo - imino)-N-methylethanamid, (D-18) 2-Chloro-N-(2,3-dihydro-l , 1 ,3-trimethyl-lH-inden-4-yl)- 3-pyridincarboxamide, (D- 19) (2E)-2-(Methoxyimino)-N-methyl-2-(2- { [( {( 1 E)- 1 -[3-(trifluor- methyl)phenyl]ethyliden } amino)oxy]methyl } -phenyl)ethanamid, (D-20) N-(3 -Ethyl-3 ,5 ,5 - trimethylcyclohexyl)-3-(formylamino)-2-hydroxy-benzamide, (D-21) (2E)-2-(Methoxyimi- no)-N-methyl-2-{2-[(E)-({l-[3-(trifluormethyl)phenyl]ethoxy}imino)methyl]-phenyl}ethan- amid, (D-22) (2E)-2-{2-[({[(lE)-l-(3-{[(E)-l-fluoro-2-phenylvinyl]oxy}phenyl)ethylidene]- aminooxy)methyl]-phenyl}-2-(methoxyimino)-N-methylacetamide; oder (E) Inhibitoren (oder Salzen davon) der Mitose und Zellteilung, wie (E-I) Benomyl, (E-2) Carbendazim, (E-3) Chlorfenazole, (E-4) Diethofencarb, (E-5) Ethaboxam, (E-6) Fluopicoli- de, (E-7) Fuberidazole, (E-8) Pencycuron, (E-9) Profenofos, (E-IO) Thiabendazole, (E-I l) Thiophanate, (E-12) Thiophanate-methyl, (E-13) Zoxamide, (E-14) 5-Chlor-6-(2,4,6- trifluoφhenyl)-7-(4-methylpiperidin- 1 -yl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyrimidin; oder (F) Multisite- Wirkstoffen (oder Salzen davon), wie (F-I) Bordeaux mixture, (F-2) Captafol,
(F-3) Captan, (F-4) Chlorothalonil, (F-5) Copper hydroxide, (F-6) Copper naphthenate, (F-7) Copper oxide, (F-8) Copper oxychlorid, (F-9) Copper sulphate, (F- 10) Dichlofluanid, (F-I l) Dithianon, (F-12) Dodine, (F-13) Ferbam, (F-14) Fluorofolpet, (F-15) Folpet, (F-16) Guaza- tine, (F-17) Iminoctadine, (F-18) Iminoctadine triacetate, (F- 19) Mancopper, (F-20) Manco- zeb, (F-21) Maneb, (F-22) Metiram, (F-23) Oxine-copper, (F-24) Propineb, (F-25) Schwefel und Schwefelzubereitungen einschließlich Calciumpolysulphide, (F-26) Thiram, (F-27) To- lylfluanid, (F-28) Zineb, (F-29) Ziram; oder (G) folgenden weiteren Fungiziden (oder Salzen davon), wie (G-I) Acibenzolar-S-methyl, (G-2) Isotianil, (G-3) Probenazole, (G-4) Tiadinil, (G-5) Andoprim, (G-6) Blasticidin-S,
(G-7) Cyprodinyl, (G-8) Kasugamycin, (G-9) Mepanipyrim, (G-IO) Pyrimethanil, (G-I l) Fentin-acetat, (G-12) Fentin-chlorid, (G-13) Fentin-hydroxid, (G-14) Silthiofam, (G-15) Benthiavalicarb, (G-16) Dimethomoφh, (G-17) Flumorph, (G-18) Iprovalicarb, (G-19) Man- dipropamid, (G-20) Valiphenal, (G-21) Polyoxins, (G-22) Polyoxorim, (G-23) Validamycin A, (G-24) Biphenyl, (G-25) Chloroneb, (G-26) Chlozolinate, (G-27) Edifenfos, (G-28) Etri- diazole, (G-29) Iodocarb, (G-30) Iprobenfos, (G-31) Iprodione, (G-32) Isoprothiolane, (G-33) Procymidone, (G-34) Propamocarb, (G-35) Propamocarb-hydrochlorid, (G-36) Prothiocarb, (G-37) Pyrazophos, (G-38) Tolcofos-methyl, (G-39) Vinclozolin, (G-40) Carpropamid, (G-41) Diclocymet, (G-42) Fenoxanil, (G-43) Phthalide, (G-44) Pyroquilon, (G^5) Tricycla- zole, (G-46) Benalaxyl, (G-47) Benalaxyl-M, (G-48) Bupirimate, (G-49) Clozylacon, (G-50)
Dimethirimol, (G-51) Ethirimol, (G-52) Furalaxyl, (G-53) Hymexazol, (G-54) Metalaxyl, (G-55) Metalaxyl-M (Mefenoxam), (G-56) Ofurace, (G-57) Oxadixyl, (G-58) Oxolinic acid, (G-59) Fenpiclonil, (G-60) Fludioxonil, (G-61) Quinoxyfen, (G-62) Binapacryl, (G-63) Di- nocap, (G-64) Fluazinam, (G-65) Meptyldinocap, (G-66) Benthiazole, (G-67) Bethoxazin, (G-68) Capsimycin, (G-69) Carvone, (G-70) Chinomethionat, (G-71) Cufraneb, (G-72) Cyflufenamid, (G-73) Cymoxanil, (G-74) Cyprosulfamide (221-667, (G-75) Dazomet, (G-76)
Debacarb, (G-77) Dichlorophen, (G-78) Diclomezine, (G-79) Dicloran, (G-80) Difenzoquat, (G-81) Diphenylamine, (G-82) Ferimzone, (G-83) Flumetover, (G-84) Fluoroimide, (G-85) Flusulfamide, (G-86) Fosetyl-Al, (G-87) Fosetyl-Calcium, (G-88) Fosetyl-Natrium, (G-89) Hexachlorobenzene, (G-90) Irumamycin, (G-91) Methasulfocarb, (G-92) Methylisothiocya- nate, (G-93) Metrafenone, (G-94) Mildiomycin, (G-95) Natamycin, (G-96) Nickel dimethyl- dithiocarbamat, (G-97) Nitrothal-isopropyl, (G-98) Octhilinone, (G-99) Oxyfenthiin, (G- 100) Pentachloφhenol, (G-101) Phosphorige Säure, (G-102) Propamocarb-Fosetyl, (G-103) Pro- panosin-Natrium, (G-104) Proquinazid, (G-105) Pyrrolnitrine, (G-106) Quintozene, (G-107) Tecloftalam, (G-108) Tecnazene, (G-109) Triazoxide, (G-I lO) Trichlamide, (G-I I l) Zarila- mid, (G-112) 8-Hydroxyquinolin-sulfat, (G-113) 2,3,5,6-Tetrachlor-4-(methylsulfonyl)py- ridin, (G-114) 3,4,5-Trichlorpyridine-2,6-dicarbonitril, (G-115) 3-[5-(4-Chlθφhenyl)-2,3-di- methylisoxazolidin-3-yl]pyridin, (G-116) N-(4-Chlor-2-nitrophenyl)-N-ethyl-4-methylben- zenesulfonamid, (G-117) 2,3-Dibutyl-6-chlor-thieno[2,3-d]pyrimidin-4(3H)on, (G-118) 2- Butoxy-6-iod-3-propyl-benzopyran-4-on, (G-119) N-(4-Chlorbenzyl)-3-[3-methoxy-4-(prop- 2-yn-l-yloxy)phenyl]propanamid, (G-120) N-(6-Methoxy-3-pyridinyl)-cyclopropancarbox- amid, (G- 121) N-[(4-Chloφhenyl)(cyano)methyl]-3 -[3 -methoxy-4-(prop-2-yn- 1 -yloxy)phe- nyljpropanamid, (G- 122) N-[(5 -Brom-3 -chlorpyridin-2-yl)methyl] -2,4-dichloφyridin-3 -carb- oxamid, (G- 123) N-[ 1 -(5 -Brom-3 -chloφyridin-2-yl)ethyl] -2,4-dichloφyridin-3 -carboxamid, (G- 124) N-[ 1 -(5-Brom-3 -chloφyridin-2-yl)ethyl] -2-fluor-4-iodpyridin-3 -carboxamid, (G-125) N'-[4-(3-tert-ButyM-chloφhenoxy)-2,5-dimethylphenyl]-N-ethyl-N-methylimido- formamid, (G-126) N'-[4-(3-tert-Butyl-4-chlθφhenoxy)-2-methyl-5-(trifluormethyl)phenyl]- N-ethyl-N-methylimidoformamid, (G-127) N'-[4-(3-tert-Butyl-4-chlθφhenoxy)-5-(difluorme- thyl)-2-methylphenyl]-N-ethyl-N-methylimidoformamid, (G-128) N'-[4-(3-tert-ButyM-fluor- phenoxy)-2,5-dimethylphenyl]-N-ethyl-N-ethylimidoformamid, (G-129) N'-[4-(3-tert-Butyl- 4-fluoφhenoxy)-2-methyl-5-(trifluormethyl)phenyl]-N-ethyl-N-methylimidoformamid,
(G-130) N'-[4-(3-tert-Butyl-4-fluoφhenoxy)-5-(difluormethyl)-2-methylphenyl]-N-ethyl-N- methylimidoformamid, (G-131) N'-[4-(4-Chloro-3-isopropylphenoxy)-2,5-dimethylphenyl]- N-ethyl-N-methylimidoformamid, (G-132) N'-[4-(4-Chlor-3-isopropylphenoxy)-2-methyl-5- (trifluormethyl)phenyl]-N-ethyl-N-methylimidoformamid, (G-133) N'-[4-(4-Chlor-3-isopro- pylphenoxy)-5 -(difluormethyl)-2-methylphenyl] -N-ethyl-N-methylimidoformamid, (G- 134)
N'-{4-[(3-tert-Butyl-l,2,4-thiadiazol-5-yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimido- - o - formamid, (G-135) N'-{4-[(3-tert-Butyl-l,2,4-thiadiazol-5-yl)oxy]-2-methyl-5-(trifluorme- thyl)phenyl}-N-ethyl-N-methylimidoformamid, (G-136) N'-{4-[(4-tert-Butyl-l,3-thiazol-2- yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimidoformamid, (G-137) N'-{4-[(4-tert-Butyl- 1 ,3 -thiazol-2-yl)oxy] -2-methyl-5 -(trifluormethyl)phenyl } -N-ethyl-N-methylimidoformamid, (G-138) N1-{5-(Difluormethyl)-2-methyM-[3-(trimethylsilyl)propoxy]phenyl}-N-ethyl-N- methylimidoformamid, (G-139) N-Ethyl-N'-[4-(4-fluor-3-isopropylphenoxy)-2,5-dimethyl- phenyl]-N-ethylimidoformamid, (G-140) N-Ethyl-N'-[4-(4-fluor-3-isopropylphenoxy)-2-me- thyl-5-(trifluormethyl)phenyl]-N-methylimidoformamid, (G-141) N-Ethyl-N'-[4-(4-fluor-3- isopropylphenoxy)-2-methyl-5 -(trifluormethyl)phenyl] -N-methylimidoformamid, (G- 142) N- Ethyl-N'- {4-[(3-isopropyl-l ,2,4-thiadiazol-5-yl)oxy]-2,5-dimethylphenyl} -N-methylimidoformamid, (G-143) N-Ethyl-N'-{4-[(3-isopropyl-l,2,4-thiadiazol-5-yl)oxy]-2-methyl-5-(tri- fluormethyl)phenyl} -N-methylimidoformamid, (G-144) N-Ethyl-N'-{4-[(4-isopropyl-l ,3-thi- azol-2-yl)oxy]-2,5-dimethylphenyl}-N-methylimidoformamid, (G-145) N-Ethyl-N'-{4-[(4- isopropyl-l,3-thiazol-2-yl)oxy]-2-methyl-5-(trifluormethyl)phenyl}-N-methylimidoform- amid, (G-146) N-Ethyl-N-methyl-N'-{2-methyl-5-(trifluormethyl)-4-[3-(trimethylsilyl)prop- oxy]phenyl}imidoformamid, (G-147) S-Allyl 5-amino-2-isopropyl-4-(2-methylphenyl)-3- oxo-2,3-dihydro-lH-pyrazole-l-carbothioat.
12. Mittel enthaltend Wirkstoffkombinationen gemäß Anspruch 9.
13. Mittel gemäß Anspruch 12 enthaltend weitere Hilfsmittel, Solventien, Trägerstoffe, oberflächenaktive Stoffe oder Streckmittel.
14. Verfahren zur Bekämpfung von phytopathogenen Pilzen im Pflanzenschutz, dadurch gekenn- zeichnet, dass man Wirkstoffkombinationen gemäß Anspruch 9 oder 10 oder Mittel gemäß
Anspruch 12 oder 13 auf das Saatgut, die Pflanze, Früchte von Pflanzen oder den Boden, auf dem die Pflanze wächst oder wachsen soll, ausbringt.
15. Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, dass man die Pflanze, Früchte von Pflanzen oder den Boden, auf dem die Pflanze wächst oder wachsen soll, behandelt.
16. Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, dass man bei der Behandlung von Blättern von 0,1 bis 10 000 g/ha und bei der Saatgutbehandlung von 2 bis 200 g pro 100 kg Saatgut einsetzt. - -
17. Verwendung von Wirkstofßcombinationen gemäß Anspruch 9 oder 10 oder von Mitteln gemäß Anspruch 12 oder 13 zur Bekämpfung von unerwünschten phytopathogenen Pilzen im Pflanzenschutz.
18. Verwendung von Wirkstoffkombinationen gemäß Anspruch 9 oder 10 oder von Mitteln gemäß Anspruch 12 oder 13 zur Behandlung von Saatgut, von Saatgut transgener Pflanzen sowie von transgenen Pflanzen.
19. Saatgut, welches mit Wirkstoffkombinationen gemäß Anspruch 9 oder 10 oder mit Mitteln gemäß Anspruch 12 oder 13 behandelt wurde.
20. Saatgut, welches mit polymeren Guanidinium-Hydroxiden gemäß Anspruch 1 behandelt wurde.
EP08863023A 2007-12-19 2008-12-06 Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz Withdrawn EP2230915A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08863023A EP2230915A2 (de) 2007-12-19 2008-12-06 Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07150147A EP2071954A1 (de) 2007-12-19 2007-12-19 Verwendung von polymeren Guanidin-Derivaten zum Bekämpfen von unerwünschten Mikro-organismen im Pflanzenschutz
EP08863023A EP2230915A2 (de) 2007-12-19 2008-12-06 Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz
PCT/EP2008/010370 WO2009077098A2 (de) 2007-12-19 2008-12-06 Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz

Publications (1)

Publication Number Publication Date
EP2230915A2 true EP2230915A2 (de) 2010-09-29

Family

ID=39764911

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07150147A Ceased EP2071954A1 (de) 2006-12-29 2007-12-19 Verwendung von polymeren Guanidin-Derivaten zum Bekämpfen von unerwünschten Mikro-organismen im Pflanzenschutz
EP08863023A Withdrawn EP2230915A2 (de) 2007-12-19 2008-12-06 Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07150147A Ceased EP2071954A1 (de) 2006-12-29 2007-12-19 Verwendung von polymeren Guanidin-Derivaten zum Bekämpfen von unerwünschten Mikro-organismen im Pflanzenschutz

Country Status (11)

Country Link
US (1) US20110003689A1 (de)
EP (2) EP2071954A1 (de)
CN (1) CN101969778A (de)
AR (1) AR069651A1 (de)
AU (1) AU2008337970A1 (de)
CA (1) CA2715512A1 (de)
CL (1) CL2008003632A1 (de)
CR (1) CR11528A (de)
MX (1) MX2010006964A (de)
TW (1) TW200939965A (de)
WO (1) WO2009077098A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052721A1 (de) 2009-11-12 2011-05-26 B. Braun Melsungen Ag Verwendung polymerer oder oligomerer Wirkstoffe für medizinische Artikel
US9403944B2 (en) * 2012-01-12 2016-08-02 John L. Lombardi Antipathogenic guanidinium copolymer
CN103210948A (zh) * 2013-05-07 2013-07-24 江苏辉丰农化股份有限公司 一种防治果树病害的杀菌剂
CN104365649B (zh) * 2013-05-07 2016-08-24 江苏辉丰农化股份有限公司 具有增效作用的杀菌组合物
CN103229779B (zh) * 2013-05-07 2014-09-17 江苏辉丰农化股份有限公司 具有增效作用的杀菌组合物
CN103636655A (zh) * 2013-12-20 2014-03-19 北京燕化永乐生物科技股份有限公司 一种复配杀菌剂
EP3524055A1 (de) * 2018-02-08 2019-08-14 BCSK Biocid GmbH Antibakterielles und spermizides gleitmittel
AT521125A1 (de) * 2018-03-23 2019-10-15 Bcsk Biocid Gmbh Flüssige Zusammensetzung
BR112020020553A2 (pt) * 2018-04-07 2023-11-21 Ucar Health Gmbh Proteção de alimentos de fruta, cereal e vegetal e derivados
AU2018419495A1 (en) * 2018-04-19 2020-11-12 Ucar Health Gmbh Surface, air, textile, paint, plastic, silicone and wood, polyethylene; metal and derivatives antimicrobial properties
KR20210114398A (ko) * 2018-11-30 2021-09-23 유카 헬스 게엠베하 항미생물 특성을 갖는 직포, 부직포, 면, 부직포-면 혼방 폴리에틸렌 및 폴리프로필렌 및 폴리스티렌 마스크, 상처 드레싱, 팬티, 브래지어, 손수건, 패드, 수세미, 일회용 외과용 드레스, 일회용 시트

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475375A (en) * 1967-06-23 1969-10-28 Du Pont Novel amorphous guanidine silicates,and compositions thereof with synthetic resins
US3591360A (en) * 1968-08-08 1971-07-06 Vahlsing Inc Method of controlling weeds in sugar beet fields
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
DE3234624A1 (de) * 1982-09-18 1984-03-22 Bayer Ag, 5090 Leverkusen Fungizide mittel
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
DE4026473A1 (de) * 1990-08-22 1992-02-27 Basf Ag Bis-guanidine und diese enthaltende fungizide
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
EA005462B1 (ru) 2000-05-11 2005-02-24 П.О.Ц. Ойл Индастри Текнолоджи Бератунгсгез.М.Б.Х. Биоцидные полимеры на основе солей гуанидина
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
DE10136065A1 (de) 2001-07-25 2003-02-13 Bayer Cropscience Ag Pyrazolylcarboxanilide
GB0230155D0 (en) 2002-12-24 2003-02-05 Syngenta Participations Ag Chemical compounds
AT505102B1 (de) 2004-11-05 2010-05-15 Schmidt Oskar Biozid, insbesondere fungizid wirkendes mittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009077098A2 *

Also Published As

Publication number Publication date
CA2715512A1 (en) 2009-06-25
WO2009077098A3 (de) 2009-10-08
MX2010006964A (es) 2010-10-25
EP2071954A1 (de) 2009-06-24
US20110003689A1 (en) 2011-01-06
AR069651A1 (es) 2010-02-10
WO2009077098A2 (de) 2009-06-25
CL2008003632A1 (es) 2009-12-18
AU2008337970A1 (en) 2009-06-25
TW200939965A (en) 2009-10-01
CR11528A (es) 2010-10-05
CN101969778A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
US9018132B2 (en) Active compound combinations
US9144238B2 (en) Active compound combinations
US20110124501A1 (en) Active compound combinations
EP2230915A2 (de) Verwendung von polymeren guanidin-derivaten zum bekämpfen von unerwünschten mikro-organismen im pflanzenschutz
BR122019010640B1 (pt) combinação, método para controle de fungos fitopatogênicos prejudiciais e uso da referida combinação
BR112015004968B1 (pt) Combinações fungicidas sinérgicas compreendendo um composto amidina e um inibidor da biossíntese do ergosterol, suas utilizações e métodos para o controle de fungos fitopatogênicos
BR112015004938B1 (pt) combinações fungicidas sinérgicas compreendendo um composto amidina e um inibidor da biossíntese do ergosterol, suas utilizações e métodos para o controle de fungos fitopatogênicos
EP2014167A1 (de) Wirkstoffkombinationen
WO2015140071A1 (en) Active compound combinations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100702

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701