EP2229365A1 - Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten - Google Patents

Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten

Info

Publication number
EP2229365A1
EP2229365A1 EP08863060A EP08863060A EP2229365A1 EP 2229365 A1 EP2229365 A1 EP 2229365A1 EP 08863060 A EP08863060 A EP 08863060A EP 08863060 A EP08863060 A EP 08863060A EP 2229365 A1 EP2229365 A1 EP 2229365A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
compounds
methyl
ions
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08863060A
Other languages
English (en)
French (fr)
Inventor
Georg Degen
Veit Stegmann
Klaus Ebel
Klemens Massonne
Laszlo Szarvas
Uwe Vagt
Matthias Maase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08863060A priority Critical patent/EP2229365A1/de
Publication of EP2229365A1 publication Critical patent/EP2229365A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms

Definitions

  • the present invention relates to a process for improving the stability to hydrolysis of ionic liquids (IL), in which at least one tertiary amine or a quaternary ammonium compound other than the ionic liquid (IL) is added to an ionic liquid (IL).
  • IL ionic liquids
  • Ionic liquids are characterized by a number of interesting properties. They are thermally stable, non-flammable, have a very low, barely measurable vapor pressure, are mostly environmentally friendly, have a large liquid range and very good dissolving properties for numerous substances. In addition, due to their purely ionic structure, ionic liquids also have interesting electrochemical properties, such as electrical conductivity, which is often accompanied by high electrochemical stability. By varying the side chains of the cation and by selecting suitable anions, for example, the solubility in water or organic solvents or the melting point can be determined largely freely.
  • the molecular diversity of ionic liquids allows their use in a variety of technical applications. Examples include the extraction (eg extraction and purification of technical gases, isolation and purification of hydrocarbons in petrochemistry and in organic synthesis or the removal of toxic substances from waste water), sorption, drying, purification and storage of Gases (eg in sorption air conditioners), use as a solvent (eg for organic synthesis), immobilization of catalysts, use as a lubricant, hydraulic fluid or antistatic additive, use as an electrolyte (eg.
  • anions are also frequently used in the ionic liquids subject to hydrolysis under storage and / or use conditions.
  • This hydrolysis can already to a small extent substantially influence the chemical and physical properties of the ionic liquids.
  • An example of this is the change in the melting point of the ionic Liquid or the formation of corrosive hydrolysis products called.
  • An exchange of (partially) hydrolyzed ionic liquids is therefore often mandatory.
  • WO 03022812 describes ionic liquids which have as anion a compound of the formula [R-SO 4 ] in which R is a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or unsubstituted alkyl radical having 3 to 36 carbon atoms
  • R is a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or unsubstituted alkyl radical having 3 to 36 carbon atoms
  • the ionic liquids used should be thermally disposable, biodegradable and accessible with little effort without the formation of problematic combustion gases.
  • the present invention therefore provides a process for improving the hydrolytic stability of an ionic liquid (IL), in which at least one tertiary amine and / or a quaternary ammonium compound other than the ionic liquid (IL) are added to the ionic liquid (IL).
  • IL ionic liquid
  • ionic liquids refer to organic salts which are already liquid at temperatures below 180 ° C.
  • the ionic liquids have a melting point of less than 180 0 C.
  • the melting point in a range of -50 0 C to 150 0 C, more preferably in the range of -20 0 C to 120 0 C and most preferably below 100 0 C.
  • Ionic liquids already in liquid state at room temperature are described, for example, by KN Marsh et al., Fluid Phase Equilibria 219 (2004), 93-98 and JG Huddieston et al., Green Chemistry 2001, 3, 156-164.
  • Cations and anions are present in the ionic liquid.
  • a proton or an alkyl radical can be transferred to the anion, resulting in two neutral molecules.
  • alkyl includes straight-chain or branched alkyl. It is preferably straight-chain or branched C 1 -C 30 -alkyl, in particular C 1 -C -alkyl, and very particularly preferably C 1 -C 12 -alkyl.
  • alkyl groups are in particular methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, 1-methyl-butyl, tert-pentyl, neopentyl, n-hexyl, 3-hexyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl,
  • alkyl also encompasses alkyl radicals whose carbon chain is replaced by one or more nonadjacent heteroatoms or heteroatom-containing groups which are preferably selected from -O-, -S-, -NR E -, -PR E -, -SiR E R EE and / or -SO 2 - may be interrupted.
  • R E is preferably H, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • R EE is preferably H, alkyl, cycloalkyl, heterocycloalkyl or aryl.
  • alkyl radicals whose carbon chains may be interrupted by one or two nonadjacent heteroatoms -O- are the following:
  • alkyl radicals whose carbon chains may be interrupted by three or more than three nonadjacent heteroatoms -O- are also oligo- and poly- oxyalkylenes, ie compounds having repeating units, which are preferably selected from (CH 2 CH 2 O) Xi, (CH (CH 3 ) CH 2 O) X 2 and ((CH 2 ) 4 O) ⁇ 3, where x1, x2 and x3 independently represent an integer from 0 to 100, preferably from 0 to 80, with the proviso that the sum of x1, x2 and x3 is at least 3.
  • x1, x2 and x3 independently of one another represent an integer from 3 to 100, preferably from 3 to 80.
  • x1, x2 and x3 preferably stands for an integer from 3 to 300, in particular 3 to 100.
  • polyoxyalkylenes which have two or three different repeating units, the order is arbitrary, ie they may be random, alternating or block repeating units. Examples are 3,6,9-trioxadecyl,
  • alkyl radicals whose carbon chains by one or more, for. B. 1, 2, 3, 4 or more than 4, non-adjacent heteroatoms -S- may be interrupted are the following:
  • alkyl radicals whose carbon chains are interrupted by one or two non-adjacent heteroatom-containing groups -NR E - are the following:
  • alkyl radicals whose carbon chains may be interrupted by three or more than three non-adjacent heteroatom-containing groups -NR E - are also oligo- and polyalkyleneimines.
  • the above for the polyoxyalkylenes applies analogously to polyalkyleneimines, wherein the oxygen atom is replaced in each case by a group NR E , wherein R a is preferably H or CrC 4 -AlkVl.
  • Examples of these are 9-methyl-3,6,9-triazadecyl, 3,6,9-trimethyl-3,6,9-triazadecyl, 3,6,9-triazaundecyl, 3,6,9-trimethyl-3,6,9-triazaundecyl, 12-methyl-3,6,9,12-tetraazatridecyl, 3,6,9,12-tetramethyl-3,6,9,12-tetraazatridecyl and like.
  • alkyl radicals whose carbon chains by one or more, for. B. 1 or 2 non-adjacent groups -SO2- are interrupted, are 2-methylsulfonylethyl, 2-ethylsulfonylethyl, 2-propylsulfonylethyl, 2-isopropylsulfonylethyl, 2-Butylsulfonyl- ethyl, 2-methylsulfonylpropyl, 3-methylsulfonylpropyl, 2-Ethylsulfonylpropyl, 3rd Ethylsulfonylpropyl, 2-propylsulfonylpropyl, 3-propylsulfonylpropyl, 2-butylsulfonylpropyl, 3-butylsulfonylpropyl, 2-methylsulfonylbutyl, 4-methylsulfonylbutyl, 2-ethylsulf
  • alkyl also includes substituted alkyl radicals.
  • Cycloalkyl, cycloalkyloxy, polycycloalkyl, polycycloalkyloxy, heterocycloalkyl, aryl and hetaryl substituents of the alkyl groups may themselves be unsubstituted or substituted; suitable substituents are those mentioned below for these groups.
  • alkyl also apply in principle to the alkyl moieties in alkoxy, alkylamino, dialkylamino, alkylthio (alkylsulfanyl), alkylsulfinyl, alkylsulfonyl, etc.
  • Suitable substituted alkyl radicals are the following:
  • Alkyl substituted by carboxy such as. Carboxymethyl, 2-carboxyethyl,
  • Alkyl which is substituted by SO 3 H such as. Sulfomethyl, 2-sulfoethyl, 3-sulfopropyl, 4-sulfobutyl, 5-sulfopentyl, 6-sulfohexyl, 7-sulfoheptyl, 8-sulfooctyl, 9-sulfononyl, 10-sulfodecyl, 12-sulfododecyl and 14-sulfotetradecyl;
  • Alkyl which is substituted by carboxylate such as.
  • alkoxycarbonylalkyl e.g. Methoxycarbonylmethyl, ethoxycarbonylmethyl, n-butoxycarbonylmethyl, 2-methoxycarbonylethyl, 2-ethoxycarbonylethyl, 2-methoxycarbonylpropyl, 2-ethoxycarbonylpropyl, 2- (n-butoxycarbonyl) propyl, 2- (4-n-butoxycarbonyl) propyl, 3-methoxycarbonylpropyl, 3-ethoxycarbonylpropyl, 3- (n-butoxycarbonyl) propyl, 3- (4-n-butoxycarbonyl) propyl, aminocarbonylalkyl, e.g.
  • Alkyl substituted by hydroxy such as. 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl, 4-hydroxybutyl, 2-hydroxy-2,2-dimethylethyl,
  • Alkyl which is substituted by amino such as. 2-aminoethyl, 2-aminopropyl,
  • Alkyl which is substituted by cyano such as. 2-cyanoethyl, 3-cyanopropyl, 3-cyanobutyl and 4-cyanobutyl;
  • Alkyl which is substituted by nitro such as. 2-nitroethyl, 2- and 3-nitropropyl and 2-, 3- and 4-nitrobutyl and the like;
  • Alkyl which is substituted by amino such as. 2-aminoethyl, 2-aminopropyl, 3-aminopropyl, 4-aminobutyl, 6-aminohexyl and the like;
  • Alkyl which is substituted by S (thioxo), such as. 2-thioxopropyl, 2-thioxobutyl, 3-thioxobutyl, 1-methyl-2-thioxopropyl, 2-thioxopentyl, 3-thioxopentyl, 1-methyl-2-thioxobutyl, 1-methyl-3-thioxobutyl, 2-thioxohexyl, 3-thioxohexyl, 4-thioxohexyl, 2-thioxoheptyl, 3-thioxoheptyl, 4-thioxoheptyl, 4-thioxoheptyl and the like;
  • Alkyl which is substituted by NR E -, preferably those in which R E is H or Ci-C4-alkyl, such as. 2-iminopropyl, 2-iminopropyl, 2-iminopropyl, 2-iminopropyl, 2-iminopropyl, 2-iminopropyl, 2-iminobutyl, 1-methyl-2-iminobutyl, 1-methyl-3-imino-butyl, 2- isohexyl, 3-iminohexyl, 4-iminohexyl, 2-iminoheptyl, 3-iminoheptyl, 4-iminoheptyl, 4-iminoheptyl, 2-methyliminopropyl, 2-methyliminobutyl, 3-methyliminobutyl, 1-methyl-2-methyliminopropyl, 2-methyliminopentyl, 3-methylimino-pentyl, 1-methyl-2-methyliminobutyl, 1-methyl-3-methyli
  • Alkyl substituted by aryl has at least one unsubstituted or substituted aryl group as defined below. Suitable substituents on the aryl group are the following.
  • the alkyl group in "arylalkyl” may carry at least one further substituent as defined above and / or by one or more nonadjacent heteroatoms or heteroatom-containing groups which are selected from -O-, -S-, -NR E -, and / or -SO2- be interrupted.
  • Arylalkyl is preferably phenyl-Ci-Cio-alkyl, particularly preferably phenyl-Ci-C 4 -alkyl, z.
  • benzyl 1-phenethyl, 2-phenethyl, 1-phen-prop-1-yl, 2-phenprop-1-yl, 3-phenprop-1-yl, 1-phenbut-1-yl, 2-phenbut 1-yl, 3-phenbut-1-yl, 4-phenbut-1-yl, 1-phenbut-2-yl, 2-phenbut-2-yl, 3-phenbut-2-yl, 4-phenbut-2 -yl, 1- (phen-meth) -eth-1-yl, 1- (phen-methyl) -1- (methyl) -eth-1-yl or - (phen-methyl) -1- (methyl) -prop-1-yl; preferably for benzyl and 2-phenethyl.
  • Alkoxy is an alkyl group bonded via an oxygen atom.
  • alkoxy are: methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1, 1-dimethylethoxy, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1 , 1-Dimethylpropoxy, 1, 2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1, 2-dimethylbutoxy , 1, 3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1, 1, 2-trimethylpropoxy, 1, 2,2-trimethylpropoxy, 1 -Ethyl-1-methylpropoxy or 1-ethyl-2
  • Alkylthio (alkylsulfanyl) is an alkyl group bonded via a sulfur atom. Examples of alkylthio are methylthio, ethylthio, propylthio, butylthio, pentylthio and hexylthio.
  • alkenyl in the context of the present invention comprises straight-chain and branched alkenyl groups which, depending on the chain length, may carry one or more double bonds (eg 1, 2, 3, 4 or more than 4). Preference is given to C 2 -Cis, particularly preferably C 2 -C 2 -alkenyl groups.
  • alkenyl also includes substituted alkenyl groups which may carry one or more (eg, 1, 2, 3, 4, 5 or more than 5) substituents. Suitable substituents are, for. B.
  • alkenyl also includes alkenyl radicals whose carbon chain may be interrupted by one or more non-adjacent heteroatoms or heteroatom-containing groups, which are preferably selected from -O-, -S-, -NR E - and / or -SO 2 - ,
  • Alkenyl is then for example ethenyl (vinyl), 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, penta-1,3-di-en-1-yl, hexa-1, 4-dien-1-yl, hexa-1, 4-dien-3-yl, hexa-1, 4-dien-6-yl, hexa-1, 5-dien-1-yl, hexa-1, 5-dien-3-yl, hexa-1, 5 dien-4-yl, hepta-1, 4-dien-1-yl, Hepta-1, 4-dien-3-yl, hepta-1, 4-dien-6-
  • cycloalkyl in the context of the present invention comprises unsubstituted as well as substituted monocyclic saturated hydrocarbon groups having generally 3 to 12 carbon ring members, preferably C3-C12-cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentyl , Cyclodecyl, cycloundecyl or cyclododecyl, in particular C5-Ci2-cycloalkyl.
  • C3-C12-cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopentyl , Cyclodecyl, cycloundecyl or cyclododecyl, in particular C5-C
  • Suitable substituents are as a rule selected for alkyl, the substituents mentioned above for the alkyl groups, alkoxy and also alkylthio.
  • Substituted cycloalkyl groups may have one or more (for example 1, 2, 3, 4, 5 or more than 5) substituents, where in the case of halogen the cycloalkyl radical is partially or completely substituted by halogen.
  • cycloalkyl groups are cyclopentyl, 2- and 3-methylcyclopentyl, 2- and 3-ethylcyclopentyl, chloropentyl, dichloropentyl, dimethylcyclopentyl, cyclohexyl, 2-, 3- and 4-methylcyclohexyl, 2-, 3- and 4-ethylcyclohexyl, 3 and 4-propylcyclohexyl, 3- and 4-isopropylcyclohexyl, 3- and 4-butylcyclohexyl, 3- and 4-sec-butylcyclohexyl, 3- and 4-tert-butylcyclohexyl, chlorhexyl, dimethylcyclohexyl, diethylcyclohexyl, methoxycyclohexyl, dimethoxycyclohexyl, Diethoxycyclohexyl, butoxycyclohexyl, methylthio cyclohexyl, chlorocyclohexyl
  • Cycloalkyloxy is an oxygen-bonded cycloalkyl group as defined above.
  • cycloalkenyl includes unsubstituted and substituted, mono- or diunsaturated hydrocarbon groups having from 3 to 5, to 8, to 12, preferably 5 to 12 carbon ring members, such as cyclopent-1-en-1-yl, cyclopent-2-ene 1-yl, cyclopent-3-en-1-yl, cyclohex-1-en-1-yl, cyclohex-2-en-1-yl, cyclohex-3-en-1-yl, Cyclohexa-2,5-dien-1-yl and the like. Suitable substituents are those previously mentioned for cycloalkyl.
  • Cycloalkenyloxy is an oxygen-bonded cycloalkenyl group as defined above.
  • polycyclyl in the context of the present invention broadly includes compounds containing at least two rings, regardless of how these rings are linked. These may be carbocyclic and / or heterocyclic rings.
  • the rings can be saturated or unsaturated.
  • the rings can be linked via single or double bond ("polynuclear compounds"), linked by annulation (“fused ring systems") or bridged (“bridged ring systems", “cage compounds”).
  • Preferred polycyclic compounds are bridged ring systems and fused ring systems.
  • Condensed ring systems may be fused (fused) aromatic, hydroaromatic and cyclic compounds by annulation. Condensed ring systems consist of two, three or more than three rings.
  • Each ring has one or two atoms in common with each neighboring ring, and a peri-annulation in which one carbon atom belongs to more than two rings.
  • Preferred among the fused ring systems are ortho-fused ring systems.
  • Bridged ring systems in the context of the present invention include those which do not belong to the polynuclear ring systems and not to the fused ring systems and in which at least two ring atoms belong to at least two different rings.
  • bicycloalkyl encompasses bicyclic hydrocarbon radicals having preferably 5 to 10 C atoms, such as bicyclo [2.2.1] hept-1-yl, bicyclo [2.2.1] hept-2-yl, bicyclo [2.2.1] heptane 7-yl, bicyclo [2.2.2] oct-1-yl, bicyclo [2.2.2] oct-2-yl, bicyclo [3.3.0] octyl, bicyclo [4.4.0] decyl and the like.
  • bicycloalkenyl includes monounsaturated, bicyclic hydrocarbon radicals preferably having 5 to 10 carbon atoms, such as bicyclo [2.2.1] hept-2-en-1-yl.
  • aryl in the context of the present invention comprises mononuclear or polynuclear aromatic hydrocarbon radicals which may be unsubstituted or substituted.
  • Aryl is usually for hydrocarbon radicals having 6 to 10, to 14, to 18, preferably 6 to 10 carbon ring members.
  • Aryl is preferably unsubstituted or substituted phenyl, naphthyl, anthracenyl, phenanthrenyl, naphthacenyl, chrysenyl, pyrenyl, etc., and particularly preferably phenyl or naphthyl.
  • Substituted aryls may vary depending on the number and size of their ring systems or more (eg, 1, 2, 3, 4, 5, or more than 5) substituents.
  • Aryl is particularly preferably phenyl, which in the case of a substitution can generally carry 1, 2, 3, 4 or 5, preferably 1, 2 or 3, substituents.
  • Aryl which carries one or more radicals is, for example, 2-, 3- and
  • B 2,4,6-trifluorophenyl, tetrafluorophenyl, pentafluorophenyl, 2-, 3- and 4-cyanophenyl; 2-nitrophenyl, 4-nitrophenyl, 2,4-dinitrophenyl, 2,6-dinitrophenyl; 4-dimethylaminophenyl; 4-acetylphenyl; Methoxyethylphenyl, ethoxymethylphenyl; Methylthiophenyl, isopropylthiophenyl or tert-butylthiophenyl; methylnaphthyl; Isopropylnaphthyl or ethoxynaphthyl.
  • substituted aryl wherein two substituents attached to adjacent carbon atoms of the aryl ring form a fused ring or fused ring system are indenyl and fluorenyl.
  • aryloxy in the context of the present invention stands for aryl bound via an oxygen atom.
  • arylthio in the context of the present invention stands for aryl bound via a sulfur atom.
  • heterocycloalkyl in the context of the present invention comprises non-aromatic, unsaturated or fully saturated, cycloaliphatic groups with im Generally 5 to 8 ring atoms, preferably 5 or 6 ring atoms, in which 1, 2 or 3 of the ring carbon atoms are replaced by heteroatoms selected from oxygen, nitrogen, sulfur and a group -NR E - and which is unsubstituted or with one or more , For example, 1, 2, 3, 4, 5 or 6, d-C ⁇ -alkyl groups is substituted.
  • heterocycloaliphatic groups are pyrrolidinyl, piperidinyl, 2,2,6,6-tetramethylpiperidinyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, morpholidinyl, thiazolidinyl, isothiazolidinyl, isoxazolidinyl, piperazinyl, tetrahydrothienyl, dihydrothienyl, tetrahydrofuranyl, dihydrofuranyl, Tetrahydropyranyl, 1, 2-oxazolin-5-yl, 1, 3-oxazolin-2-yl and dioxanyl called.
  • Nitrogen-containing heterocycloalkyl can in principle be bound both via a carbon atom and via a nitrogen atom.
  • heteroaryl in the context of the present invention comprises unsubstituted or substituted, heteroaromatic, mononuclear or polynuclear groups having generally 5 to 14 ring atoms, preferably 5 or 6 ring atoms, in which 1, 2 or 3 of the ring carbon atoms one, two, three or four heteroatoms selected from O, N, -NR E - and S are substituted, such as furyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuranyl, benzthiazolyl, benzimidazolyl, pyridyl, quinolinyl, acridinyl, pyridazinyl , Pyrimidinyl, pyrazinyl, pyrrolyl, imidazolyl, pyrazolyl, indolyl, purinyl, indazolyl, benzotri
  • 5- to 7-membered nitrogen-containing heterocycloalkyl or heteroaryl radicals which optionally contain further heteroatoms are, for example, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, Piperidinyl, piperazinyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, indolyl, quinolinyl, isoquinolinyl or quinaldinyl, which may be unsubstituted or substituted as mentioned above.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • Carboxylate and sulfonate in the context of this invention preferably represent a derivative of a carboxylic acid function or a sulfonic acid function, in particular a metal carboxylate or sulfonate, a carboxylic acid ester or sulfonic acid ester function or a carboxylic acid or sulfonic acid amide function.
  • these include z.
  • esters with Ci-C4-alkanols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and tert-butanol.
  • acyl denotes alkanoyl, hetaroyl or aroyl groups having generally 1 to 11, preferably 2 to 8, carbon atoms.
  • the radicals E 1 and E 2 , E 3 and E 4 , E 5 and E 6 are independently selected from H, alkyl, cycloalkyl and aryl.
  • the groups NE 1 E 2 , NE 3 E 4 and NE 5 E 6 are preferably N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino, N, N-diisopropylamino, N, N-di-n -butylamino, N, N-di-tert-butylamino, N, N-dicyclohexylamino or N, N-diphenylamino.
  • Suitable ionic liquids are selected in the context of the present invention from salts of the general formula (I)
  • [A] + is a quaternary ammonium cation and (1 / n) * [Y] n - is an anion equivalent of an n-charged anion, where n is an integer from 1 to 3.
  • Suitable compounds which are suitable for forming the cation [A] + of ionic liquids are e.g. B. in DE 102 02 838 A1. These compounds preferably contain at least one nitrogen atom, particularly preferably 1 to 10 nitrogen atoms, in particular 1 to 5 nitrogen atoms, very particularly preferably 1 to 3 nitrogen atoms and especially 1 or 2 nitrogen atoms. The latter nitrogen compounds may contain further heteroatoms such as oxygen, sulfur or phosphorus atoms.
  • Nitrogen atoms are, for example, suitable carriers of the positive charge in the cation of the ionic liquids.
  • a cation can first be generated by quaternization on the nitrogen atom of, for example, an amine or nitrogen heterocycle. The quaternization can be carried out by protonation of the nitrogen atom. Depending on the protonation reagent used, salts with different anions are obtained. In cases where it is not possible to form the desired anion already during the quaternization, this can be done in a further synthesis step. Starting from, for example, an ammonium halide, the halide can be reacted with a Lewis acid to form a complex anion from halide and Lewis acid.
  • a halide ion replacement of a halide ion with the desired anion is possible. This can be done by adding a metal salt to precipitate the metal halide formed, via an ion exchanger, or by displacing the halide ion with a strong acid (to release the hydrohalic acid). Suitable methods are, for example, in Angew. Chem. 2000, 1 12, pp. 3926-3945 and the literature cited therein. Preferred cations of the ionic liquids are those compounds which have a molar mass of less than 1000 g / mol, very particularly preferably less than 600 g / mol and in particular less than 400 g / mol.
  • Preferred cations of the ionic liquids are furthermore those compounds which contain at least one five- to six-membered heterocycle, in particular a five-membered heterocycle, which has at least one nitrogen atom and optionally an oxygen or sulfur atom.
  • Particular preference is given to those compounds which have at least one contain five- to six-membered heterocycle having one, two or three nitrogen atoms and a sulfur or an oxygen atom, most preferably those having two nitrogen atoms.
  • aromatic heterocycles are furthermore those compounds which contain at least one five- to six-membered heterocycle, in particular a five-membered heterocycle, which has at least one nitrogen atom and optionally an oxygen or sulfur atom.
  • the hydrolysis stability of an ionic liquid (IL) which has a heterocyclic cation will be increased.
  • heterocyclic cation in the context of the present invention encompasses both “heteroaromatic” cations and “partially or completely saturated heterocyclic cations”.
  • heteroaromatic cation includes cations whose structure can be derived, for example, by quaternization of a ring nitrogen atom of a "hetaryl” compound as defined above.
  • Examples of five- or six-membered heteroaromatic cations are pyrazolium, oxazolium, isoxazolium, thiazolium, isothiazolium, imidazolium, 1, 2,4-oxadiazolium, 1, 2,4-thiadiazolium, 1, 3,4-oxadiazolium, 1, 3, 4-thiadiazolium, pyrrolium, 1, 2,3-triazolium, 1, 2,4-triazolium, pyridinium, pyridazinium, pyrimidinium, 2-pyrazinium, 1, 3,5-triazinium and 1, 2,4-triazinium.
  • heterocyclic cation includes cations whose structure can be deduced, for example, by quaternization of a ring nitrogen atom of a "heterocycloalkyl" compound as defined above.
  • examples of five- or six-membered saturated or partially unsaturated heterocyclic cations are pyrrolidinium, pyrazolidinium, oxazolidinium, isoxazolidinium,
  • the ionic liquid IL used according to the invention preferably has at least one cation which is selected from the compounds of the formulas (IV.a) to (IV.v) shown below,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 attached to a ring carbon independently of one another are H, a sulfo group, COOH, carboxylate, sulfonate, acyl , Alkoxycarbonyl, cyano, halogen, hydroxyl, SH, nitro, NE 1 E 2 , alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkenyl, cycloalkyl, cycloalkyloxy, cycloalkenyl, cycloalkenyloxy, polycyclyl, polycycloxy, heterocycloalkyl, aryl, aryloxy or Heteroaryl, where E 1 and E 2, independently of one another, are H, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 which are bonded to a ring hetero atom, for H, SO 3 H, NE 1 E 2 , alkyl, alkoxy , Alkenyl, cycloalkyl, cycloalkenyl, polycyclyl, heterocycloalkyl, aryl or heteroaryl, where E 1 and E 2 are each independently H, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl, or
  • two adjacent radicals R 1 to R 9 together with the ring atoms to which they are attached may stand for at least one fused, saturated, unsaturated or aromatic ring or a ring system having 1 to 30 carbon atoms, the ring or the ring system 1 to 5 non-adjacent heteroatoms or teroatom restroom groups may have and wherein the ring or the ring system may be unsubstituted or substituted,
  • R 1 and R 3 or R 3 and R 5 may also together be the bond moiety of a double bond between the ring atoms which carry these radicals,
  • radicals carboxylate, sulfonate, acyl, alkoxycarbonyl, halogen, NE 1 E 2 , alkyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkenyl, cycloalkyl, cycloalkyloxy, cycloalkenyl, cycloalkenyloxy, polycyclyl, polycycloxy, heterocycloalkyl , Aryl, aryloxy or heteroaryl is at the beginning made statements to the full extent.
  • Radicals R 1 to R 9 which are bonded to a carbon atom in the abovementioned formulas (IV) and have a heteroatom or a heteroatom-containing group can also be bonded to the carbon atom directly via a heteroatom.
  • Two adjacent radicals R 1 to R 9, together with the ring atoms to which they are attached, form at least one fused, saturated, unsaturated or aromatic ring or a ring system having from 1 to 30 carbon atoms, the ring or the ring system not being adjacent to 1 to 5 Heteroatoms or heteroatom-containing groups may have and wherein the ring or the ring system may be unsubstituted or substituted, these radicals may together as fused building blocks preferably 1, 3-propylene, 1, 4-butylene, 1, 5-pentylene, 2- Oxa-1,3-propylene, 1-oxa-1,3-propylene, 2-oxa-1,3-propylene, 1-oxa-1,3-propenylene, 3-oxa-1, 5-pentylene, 1 - Aza-1, 3-propenylene, 1-Ci-C4-alkyl-1 -aza-1, 3-propenylene, 1, 4-buta-1, 3-dienylene, 1-az-1, 4-buta-1,
  • the radical R in the compounds of the formulas IV.a to IV.v preferably stands for
  • C 1 -C 18 -alkyl such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl ), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2.2- Dimethyl 1-propyl, 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2-methyl-3-pentyl, 3-methyl-3-pentyl, 2,2-dimethyl-1-butyl, 2,3-dimethyl-1 butyl, 3,3-d
  • Ci-Cis-alkyl especially hydroxy-Ci-Cis-alkyl, such as. 2-hydroxyethyl or 6-hydroxyhexyl; Phenyl-Ci-cis-alkyl, such as. Benzyl,
  • Cyano-Ci-Cis-alkyl such as.
  • Ci-C ⁇ -alkoxy-Ci-Cis-alkyl such as.
  • C 1 -C 6 -fluoroalkyl such as trifluoromethyl, difluoromethyl, fluoromethyl, pentafluoroethyl, heptafluoropropyl, heptafluoroisopropyl, nonafluorobutyl, nonafluoroisobutyl, undecylfluoropentyl, undecylfluoroisopentyl
  • Sulfo-Ci-Cis-alkyl such as.
  • Hydroxyethyloxyalkyl radicals of oligo- and polyalkylene glycols such as polyethylene glycols and polypropylene glycols and their oligomers having 2 to 100 units and an H or a d-Cs-alkyl as an end group, such as R A O- (CH R B -CH 2 -O) n -CH R B -CH 2 - with R A and R B preferably H, methyl or ethyl and n preferably 0 to 3, in particular 3-oxa-butyl, 3-oxa-pentyl, 3,6-dioxa-heptyl, 3,6-dioxa-octyl, 3,6,9-trioxa-decyl, 3,6,9-trioxa-undecyl, 3,6,9,12-tetraoxa-tridecyl and 3,6,9,12-tetraoxa tetradecyl; and
  • C2-C6 alkenyl such as vinyl or propenyl.
  • the radical R particularly preferably stands for linear C 1 -C 6 -alkyl, such as, for example, methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, 1-octyl, 1-decyl, 1 Dodecyl, 1-tetradecyl, 1-hexadecyl, 1-octadecyl, most preferably methyl, ethyl, 1-butyl and 1-octyl and CH 3 O- (CH 2 CH 2 O) n -CH 2 CH 2 - and CH 3 CH 2 O- (CH 2 CH 2 O) m -CH 2 CH 2 -, wherein m is O to 3.
  • m is O to 3.
  • a to IV.v are each independently H, halogen, hydroxyl, alkoxy, alkylthio, carboxyl, -COOH, sulfonate, CN, NO 2 , acyl, alkoxycarbonyl, NE 1 E 2 , in which E 1 and E 2 have one of the meanings given above,
  • C 1 -C 6 -alkyl which is unsubstituted or substituted and / or which may be interrupted by at least one heteroatom or a heteroatom-containing group
  • C 2 -C 18 -alkenyl which is unsubstituted or substituted and / or may be interrupted by at least one heteroatom
  • C ⁇ -Cio-aryl which is unsubstituted or substituted
  • Heterocycloalkyl having 5 or 6 ring atoms, wherein the ring next to Kohlenstoffringglie- has 1, 2 or 3 heteroatoms or heteroatom-containing groups which are selected from oxygen, nitrogen, sulfur and NR E , and which is unsubstituted or substituted, or
  • Heteroaryl having 5 to 10 ring atoms, wherein the ring next to carbon ring members 1, 2 or 3 hetero atoms or heteroatom-containing groups which are selected from oxygen, nitrogen, sulfur and NR E , and which is unsubstituted or substituted.
  • R 1 to R 9 in the compounds of the formula IV. A to IV.v are alkoxy, R 1 to R 9 are preferably methoxy or ethoxy or
  • R A O- (CH 2 CH 2 CH 2 CH 2 O) n -CH 2 CH 2 CH 2 CH 2 O-, wherein R A and R B are preferably H, methyl or ethyl and n is preferably 0 to 3 ,
  • a to IV.v are acyl, these are preferably selected from formyl and C 1 -C 4 -alkylcarbonyl, in particular formyl or acetyl.
  • Ci-Cis-alkyl these are preferably selected from unsubstituted Ci-Cis-alkyl, such as methyl, ethyl, 1-propyl, 2-propyl , 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl
  • 2-propyl (tert -butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-9-butyl, 3-methyl-1-butyl, 2-methyl-2-butyl, 3-methyl 2-butyl, 2,2-dimethyl-1-propyl, 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2-methyl-3-pentyl, 3-methyl-3-pentyl, 2,2-dimethyl-1-butyl, 2,3-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, 2,3-dimethyl-2-butyl, 3,3-dimethyl-2-butyl, heptyl, Octyl, 2-ethylhexyl, 2,
  • C 1 -C 6 -alkylamino-C 1 -C 8 -alkyl such as 2-methylaminoethyl, 2-methylaminopropyl, 3-methylaminopropyl, 4-methylaminobutyl, 6-methylaminohexyl;
  • Di- (C 1 -C 6 -alkyl) C 1 -C 8 -alkyl such as 2-dimethylaminoethyl, 2-dimethylaminopropyl, 3-dimethylaminopropyl, 4-dimethylaminobutyl, 6-dimethylaminohexyl;
  • Cyano-Ci-Cis-alkyl such as 2-cyanoethyl, 2-cyanopropyl;
  • C 1 -C 10 -alkoxy-C 1 -C 6 -alkyl such as methoxymethyl, 2-methoxyethyl, 2-methoxypropyl, 3-methoxypropyl, 2-methoxyisopropyl, 4-methoxybutyl, 6-methoxyhexyl, 2-ethoxyethyl, 2-ethoxypropyl, 3-ethoxypropyl , 4-ethoxybutyl, 6-ethoxyhexyl, 2-isopropoxyethyl, 2-butoxyethyl, 2-butoxypropyl, 2-octyloxyethyl, 5-methoxy-3-oxa-pentyl, 8-methoxy-3,6-dioxo-octyl, 7-methoxy 4-oxa-heptyl, 1-methoxy-4,8-dioxa-undecyl, 9-methoxy-5-oxa-nonyl, 9-methoxy
  • a to IV.v are C 2 -C alkenyl, they are preferably selected from C 2 -C 6 alkenyl, such as vinyl, 2-propenyl, 3-butenyl, cis-2-butenyl, trans-2-butenyl or C2-cis-alkenyl which is partially or completely substituted by fluorine.
  • R 1 to R 9 in the compounds of the formula IV. A to IV.v are C ⁇ -Cio-aryl
  • R 1 to R 9 are preferably phenyl or naphthyl, where phenyl or naphthyl is unsubstituted or one or two -, tri- or tetra-substituted, where the substituents independently of one another by halogen, Ci-Cis-alkyl, Ci-C ⁇ -alkoxy, Ci-Ce-alkylsulfanyl, Ci-C 6 -alkoxy-Ci-C 6 -alkyl, Ci -C 6 alkylcarbonyl, amino, Ci-C ⁇ -alkylamino, di- (Ci-C6-dialkyl) amino and nitro are selected, such as phenyl, methylphenyl (ToIyI), dimethylphenyl (XyIyI), such as.
  • 2,6-dimethylphenyl trimethylphenyl
  • B 2,4,6-trimethylphenyl, ethylphenyl, diethylphenyl, iso-propylphenyl, tert-butylphenyl, dodecylphenyl, chlorophenyl, dichlorophenyl, trichlorophenyl, fluorophenyl, Difluorophenyl, trifluorophenyl, tetrafluorophenyl, pentafluorophenyl, 2,6-dichlorophenyl, 4-bromophenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, hexyloxyphenyl, 2,6-dimethoxyphenyl, 2-nitrophenyl, 4-nitrophenyl, 2,4-dinitrophenyl, 2,6- Dinitrophenyl, 4-dimethylaminophenyl, 4-acet
  • a to IV.v are C 5 -C 12 -cycloalkyl
  • R 1 to R 9 are preferably unsubstituted.
  • Cycloalkyl such as cyclopentyl or cyclohexyl;
  • C 5 -C 12 -cycloalkyl which is monosubstituted or disubstituted, wherein the substituents are independently selected from C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -alkylsulfanyl or chlorine, eg. Butylcyclohexyl, methoxycyclohexyl, dimethoxycyclohexyl, diethoxycyclohexyl, butylthiocyclohexyl, chlorocyclohexyl, dichlorocyclohexyl, dichlorocyclopentyl; C5-C12-cycloalkyl which is completely or completely fluorinated.
  • R 1 to R 9 in the compounds of the formula IV. A to IV.v are polycyclyl
  • R 1 to R 9 are preferably C 5 -C 12 -cycloalkyl, such as norbornyl or C 5 -C 12 -cyclo-alkenyl, such as norbornenyl.
  • R 1 to R 9 in the compounds of the formula IV.a to IV.v are C 5 -C 12 -cycloalkenyl
  • R 1 to R 9 are preferably unsubstituted.
  • Cycloalkenyl such as cyclopent-2-en-1 -yl, cyclopent-3-en-i-yl, cyclohex-2-en-1-yl, cyclohex-1-en-1-yl, cyclohexa-2,5-dien-1-yl or partially or completely fluorinated cycloalkenyl.
  • R 1 to R 9 in the compounds of the formula IV.a to IV.v are heterocycloalkyl having 5 or 6 ring atoms
  • R 1 to R 9 are preferably 1,3-dioxolan-2-yl, 1, 3 Dioxan-2-yl, 2-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dioxolan-2-yl.
  • R 1 to R 9 in the compounds of the formula IV.a to IV.v are heteroaryl
  • R 1 to R 9 are preferably furyl, thienyl, pyrryl, pyridyl, indolyl, benzoxazolyl, benzimidazolyl, benzthiazolyl.
  • hetaryl carries 1, 2 or 3 substituents, which are selected independently of one another from C 1 -C 6 -alkyl,
  • C 1 -C 6 -alkoxy and halogen for example dimethylpyridyl, methylquinolyl, dimethylpyrryl, methoxyfuryl, dimethoxypyridyl or difluoropyridyl.
  • the radicals R 1 to R 9 in the compounds of the formula IV.a to IV.v independently of one another are hydrogen; unbranched or branched, unsubstituted or monosubstituted to poly, hydroxyl, halogen, phenyl, cyano, Ci-C ⁇ -alkoxycarbonyl and / or sulfo C 1 -C 18 -alkyl, such as, for example, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert.
  • R A O- (CHR B -CH 2 -O) n -CHR B -CH 2 - OdOR R A O- (CH 2 CH 2 CH 2 CH 2 O) n -CH 2 CH 2 CH 2 CH 2 O-, in which R A and R B are preferably H, methyl or ethyl and n is preferably 0 to 3, in particular 3-oxabutyl, 3-oxapentyl, 3,6-dioxaheptyl, 3,6-dioxaoctyl,
  • N, N-di-C 1 -C 6 -alkylamino such as N, N-dimethylamino and N, N-diethylamino.
  • the radicals R 1 to R 9 are each independently hydrogen; Ci-Ci ⁇ -alkyl, such as methyl, ethyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, 1-octyl; phenyl; 2-hydroxyethyl; 2-cyanoethyl; 2- (alkoxycarbonyl) ethyl such as 2- (methoxycarbonyl) ethyl, 2- (ethoxycarbonyl) ethyl or 2- (n-butoxycarbonyl) ethyl;
  • N, N- (C 1 -C 4 -dialkyl) amino such as N, N-dimethylamino or N, N-diethylamino
  • Chlorine and for radicals of oligoalkylene glycol such as CH 3 O- (CH 2 CH 2 O) n -CH 2 CH 2 - or CH 3 CH 2 O- (CH 2 CH 2 O) n -CH 2 CH 2 -, wherein n stands for 0 to 3
  • Preferred pyridinium ions are compounds of the formula IV.
  • A in which one of the radicals R 1 to R 5 is methyl, ethyl or chlorine and the remaining radicals R 1 to R 5 are H.
  • Further preferred pyridinium ions are compounds of the formula IV.
  • Further preferred pyridinium ions are compounds of the formula IV.
  • pyridinium ions are compounds of the formula IV.
  • A in which R 2 is carboxy or carboxamide and the remaining radicals R 1 , R 2 , R 4 and R 5 are H.
  • pyridinium ions are compounds of the formula IV.a in which R 1 and R 2 or R 2 and R 3 together are 1,4-buta-1,3-dienylene and the remaining radicals R 1 , R 2 , R 4 and R 5 stands for H.
  • pyridinium ions are pyridinium, 2-methylpyridinium, 2-ethylpyridinium, 5-ethyl-2-methylpyridinium and 2-methyl-3-ethylpyridinium, and 1-methylpyridinium, 1-ethylpyridinium, 1- (1-butyl) pyridinium, 1- ( 1-hexyl) pyridinium, 1- (1-octyl) -pyridinium, 1- (1-hexyl) -pyridinium, 1- (1-octyl) -pyridinium,
  • Preferred pyridazinium ions are compounds of the formula IV. B, in which the radicals R 1 to R 4 are H, or in which one of the radicals R 1 to R 4 is methyl or ethyl and the remaining radicals R 1 to R 4 are H.
  • Preferred pyrimidinium ions are compounds of the formula IV.c in which R 1 is H, methyl or ethyl and R 2 to R 4 independently of one another are H or methyl, or in which R 1 is H, methyl or ethyl, R 2 and R 4 is methyl and R 3 is H.
  • Preferred pyrazinium ions are compounds of the formula IV.
  • D in which R 1 is H, methyl or ethyl and R 2 to R 4 are each independently H or methyl, or in which R 1 is H, methyl or ethyl and R 2 and R 4 is methyl and R 3 is H or wherein R 1 to R 4 are methyl or wherein R 1 to R 4 are H.
  • Preferred imidazolium ions are compounds of the formula IV.e, in which R 1 is H, methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-octyl, 2-hydroxyethyl or 2-cyanoethyl and R 2 to R 4 are independently H, methyl or ethyl.
  • imidazolium ions of the formula IV.e are 1-methylimidazolium,
  • Preferred pyrazolium ions are compounds of the formulas IV.f, IV. G or IV. G ', wherein R 1 is H, methyl or ethyl and R 2 to R 4 independently of one another are H or methyl.
  • pyrazolium ions are compounds of the formula IV.h in which R 1 to R 4 independently of one another are H or methyl.
  • Particularly preferred pyrazolium ions are 1,4-dimethylpyrazolium and 1,2,4-trimethylpyrazolium.
  • Preferred 1-pyrazolinium ions are compounds of the formula IV. I, in which R 1 to R 6 independently of one another are H or methyl.
  • Preferred 2-pyrazolinium ions are compounds of the formula IV.j or IV.j ", in which R 1 is H, methyl, ethyl or phenyl and R 2 to R 6 are each independently H or methyl.
  • Preferred 3-pyrazolinium ions are compounds of the formula IV. K. or .IV.k ', wherein R 1 and R 2 are independently H, methyl, ethyl or phenyl and R 3 to R 6 are independently H or methyl.
  • Preferred imidazolinium ions are compounds of the formula (IV.1) in which R 1 and R 2 independently of one another are H, methyl, ethyl, 1-butyl or phenyl, R 3 and R 4 independently of one another are H, methyl or ethyl, and R 5 and R 6 are independently H or methyl.
  • imidazolinium ions are compounds of the formula IV.m or
  • imidazolinium ions are compounds of the formula IV.n or IV. N ', where R 1 to R 3 independently of one another are H, methyl or ethyl and R 4 to R 6 independently of one another are H or methyl.
  • Preferred thiazolium ions are compounds of formula IV. O or IV. O ', wherein R 1 is H, methyl, ethyl or phenyl and R 2 and R 3 are independently H or methyl.
  • Preferred oxazolium ions are compounds of formula IV. P, wherein R 1 is H, methyl, ethyl or phenyl and R 2 and R 3 are independently H or methyl.
  • Preferred 1,2,4-triazolium ions are compounds of the formulas IV. Q, IV. Q 'or IV. Q ", in which R 1 and R 2, independently of one another, are H, methyl, ethyl or phenyl and R 3 is H, Methyl or phenyl.
  • Preferred 1,2,3-triazolium ions are compounds of the formulas IV.
  • Preferred pyrrolidinium ions are compounds of the formula IV.
  • S in which R 1 is H, methyl, ethyl or phenyl and R 2 to R 9 independently of one another are H or methyl.
  • Preferred Imidazolidiniumionen are compounds of formula IV.
  • T wherein R 1 and R 4 are independently H, methyl, ethyl or phenyl and R 2 , R 3 and R 5 to R 8 are independently H or methyl.
  • Preferred diazabicycloalkenium ions of the formulas IV.u and IV.v are selected from cationic derivatives of 1, 5-diazabicyclo [4.3.0] non-5-ene (DBN) and 1,8-diazabicyclo [5.4.0] undec-7 -en (DBU).
  • the hydrolysis stability of an ionic liquid IL which has at least one cation selected from the aforementioned imidazolium ions and the abovementioned pyrazolium ions is improved.
  • the cation of the ionic liquid is selected from the aforementioned imidazolium ions.
  • the anion [Y] n - of the ionic liquids IL is preferably selected from compounds of the formulas (R a O) SO 3 " , (R a ) SO 3 " , (R 3 O) SO 2 -, (R 3 O ) PO 3 2 " , (R a O) (R b O) PO 2 -, (R a O) (R b ) PO 2 -, (R 3 O) PO 2 2" , (R a O) (R b O) PO " ,
  • C 1 -C 30 -alkyls in particular C 1 -C 6 -alkyls, C 6 -C 14 -aryls, in particular C 6 -C 10 -aryls, C 1 -C 12 -cycloalkyls, heterocycloalkyls having 5 or 6 ring atoms and heteroaryls having 5 or 6 Ring atoms is referred to the statements made at the outset.
  • Ci-C 8 alkyl, C 6 -C 2 aryl, C 5 -C 2 cycloalkyl, heterocycloalkyl with 5 or 6 ring atoms and heteroaryl with 5 or 6 ring atoms also referred to the statements made at the outset to substituents.
  • radicals R a to R d is optionally substituted C 1 -C 18 -alkyl, then it is preferably methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, Heptyl, octyl, 2-ethylhexyl, 2,4,4-trimethylpentyl, decyl, dodecyl, tetradecyl, heptadecyl, octadecyl, 1,1-dimethylpropyl, 1,1-dimethylbutyl, 1,1,3,3-tetramethylbutyl, Benzyl, 1-phenylethyl, ⁇ , ⁇ -dimethylbenzyl, benzhydryl, p-tolylmethyl, 1- (p-butylphenyl) ethyl, p-chloro
  • At least one of the radicals R a to R d is interrupted by one or more non-adjacent heteroatoms or heteroatom-containing Ci-Ci8-alkyl, it is preferably 5-hydroxy-3-oxapentyl, 8-hydroxy-3,6-dioxa octyl, 11-hydroxy-3,6,9-trioxa-undecyl, 7-hydroxy-4-oxa-heptyl, 1-hydroxy-4,8-dioxa-undecyl, 15-hydroxy-4,8,12- trioxa-pentadecyl, 9-hydroxy-5-oxa-nonyl, 14-hydroxy-5,10-oxa-tetradecyl, 5-methoxy-3-oxa-pentyl,
  • radicals R a to R d form a ring
  • these radicals can be taken together, for example, as fused building block 1, 3-propylene, 1, 4-butylene, 2-oxa-1,3-propylene, 1-oxa-1, 3 propylene, 2-oxa-1, 3-propenylene, 1-aza-1, 3-propenylene, 1-C 1 -C 4 -alkyl-1-aza-1, 3-propenylene, 1, 4-buta-1, 3 dienylene, 1-aza-1, 4-buta-1, 3-dienylene or 2-aza- 1, 4-buta-1, 3-dienylene mean.
  • the number of non-adjacent heteroatoms or heteroatom-containing groups of the radicals R a to R d is basically not critical and is usually limited only by the size of the respective residue or ring building block. As a rule, it is not more than 5 in the respective radical, preferably not more than 4 or very particularly preferably not more than 3. Furthermore, at least one, preferably at least two, carbon atoms are generally present between two heteroatoms.
  • Substituted and unsubstituted imino groups may be, for example, imino, methylimino, iso-propylimino, n-butylimino or tert-butylimino.
  • Preferred functional groups of the radicals R a to R d are carboxy, carboxamide, hydroxy, di (C 1 -C 4 -alkyl) amino, C 1 -C 4 -alkyloxycarbonyl, cyano or C 1 -C 4 -alkoxy.
  • Alkyl of different radicals R c to R f may also be mono- or polysubstituted by Ci-C 4 -alkyl, preferably methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl or tert-butyl.
  • At least one of the radicals R a to R d is optionally substituted C 6 -C 12 aryl, then it is preferably phenyl, methylphenyl (ToIyI), XyIyI, ⁇ -naphthyl, ⁇ -naphthyl, chlorophenyl, dichlorophenyl, trichlorophenyl, difluorophenyl, Dimethylphenyl, trimethylphenyl, ethylphenyl, diethylphenyl, iso -propylphenyl, tert-butylphenyl, dodecylphenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, hexyloxyphenyl, methylnaphthyl, isopropylnaphthyl, chloronaphthyl, ethoxynaphthyl, 2,6-dimethylpheny
  • At least one of the radicals R a to R e is optionally substituted C 5 -C 12 -cycloalkyl, it preferably represents cyclopentyl, cyclohexyl, cyclooctyl, cyclododecyl, methylcyclopentyl, dimethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, diethylcyclohexyl, butylcyclohexyl, methoxycyclohexyl, dimethoxycyclohexyl , Diethoxycyclohexyl, butylthiocyclohexyl, chlorocyclohexyl, Dichlorcyclohexyl, dichlorocyclopentyl and a saturated or unsaturated bicyclic system such as norbornyl or norbornenyl.
  • radicals R a to R e is an optionally substituted five- or six-membered heterocycle, it preferably represents furyl, thienyl, pyryl, pyridyl, indolyl, benzoxazolyl, dioxolyl, dioxyl, benzimidazolyl, benzothiazolyl, Dimethylpyridyl, methylquinolyl, dimethylpyryl, methoxifuryl, dimethoxypyridyl, difluoropyridyl, methylthiophenyl, isopropylthiophenyl or tert-butylthiophenyl.
  • radicals R a to R e When in anions which have a plurality of radicals R a to R e , in each case two of these radicals together with the part of the anion to which they are attached represent at least one saturated, unsaturated or aromatic ring or a ring system having 1 to 12 carbon atoms where the ring or the ring system may have 1 to 5 non-adjacent heteroatoms or heteroatom-containing groups, which are preferably selected from oxygen, nitrogen, sulfur and NR E , the ring or the ring system is unsubstituted or carries 1, 2, 3, 4, 5 or more than 5 substituents.
  • the substituents are preferably independently selected from alkyl, alkoxy, alkylsulfanyl, cycloalkyl, cycloalkoxy, polycyclyl, heterocycloalkyl, aryl, aryloxy, arylthio and heteroaryl.
  • the abovementioned anions or anion equivalents are generally at least partially subject to hydrolysis in ionic liquids.
  • the anion [Y] n - of the ionic liquid (IL) is selected from compounds of the formulas (R a O) SO 3 " , (R a ) SO 3 " , (R 3 O) PO 3 2 " and (R a O) (R b O) PO 2 " in which R a and R b independently of one another are alkyl, cycloalkyl or aryl, especially unsubstituted C 1 -C 4 -alkyl.
  • the anion [Y] n - the ionic liquid (IL) is selected from compounds of the formula (R a O) SO 3 ", especially mono-C 1 -C 4 -alkyl sulfates, such as, for example, ethyl sulfate.
  • the anions mentioned as being particularly preferred are subject to hydrolysis in ionic liquids to a particular degree.
  • hydrolysis of compounds of formula (R a O) SO 3 "get sulfuric acid may have a damaging effect on chemical compounds, chemical reactions and apparatus by their corrosive properties with which an ionic liquid containing them is brought into contact.
  • tertiary amines or mixtures of tertiary amines are used to increase the hydrolytic stability of the ionic liquid (IL).
  • Suitable tertiary amines are compounds of the formula NR 1 R 2 R 3 , wherein R 1 , R 2 and R 3 have one of the previously given for R 1 to R 9 , different meanings of H.
  • the tertiary amines used according to the invention are selected from compounds of the formula NR 1 R 2 R 3 , where R 1 , R 2 and R 3 independently of one another are each optionally substituted C 1 -C 30 -alkyl, C 5 -C 8 -cycloalkyl or aryl where C 1 -C 30 -alkyl can also be interrupted as defined above by one or more nonadjacent heteroatoms or heteroatom-containing groups.
  • Suitable unsubstituted tertiary amines are triethylamine, diethyl-n-propylamine, diethylisopropylamine, diethyl-n-butylamine, diethyl-tert-butylamine, diethyl-n-pentylamine, diethylhexylamine, diethylcyclohexylamine, diethyloctylamine, diethyl (2-ethylhexyl) amine, diethyldodecylamine Tri-n-propylamine, di-n-propylethylamine, di-n-propylbutylamine, di-n-propyl-n-pentylamine, di-n-propylhexylamine,
  • Suitable substituted tertiary amines are tri (2-hydroxyethyl) amine, di (2-hydroxyethyl) n-propylamine, di (2-hydroxyethyl) isopropylamine, di (2-hydroxyethyl) -n-butylamine, di (2-hydroxyethyl) tert-butylamine, di (2-hydroxyethyl) -n-pentylamine,
  • the abovementioned alkoxylated derivatives of the tertiary amines are present as mixtures and have on average 1 to 50, preferably 1 to 20 and more preferably 2 to 10 alkylene oxide units per 2-hydroxyethyl group.
  • Preferred substituted tertiary amines are di (2-hydroxyethyl) (Ci-Ci2-alkyl) amines and Tri (2-hydroxyethyl) amine and their alkoxylated derivatives.
  • a particularly preferred substituted tertiary amine is tri (2-hydroxyethyl) amine.
  • mixtures of tertiary amines of the formula NR 1 R 2 R 3 in which the meanings of at least one of the radicals R 1 , R 2 or R 3 of a mixture of straight-chain and branched Ci-C3o-alkyl, especially Cs-ds Alkyl, and Ci-C3o-alkenyl, especially Cs-ds-alkenyl, as it is accessible from natural or synthetic fatty acids and fatty alcohols and from oxo alcohols derives.
  • the tertiary amines used according to the invention are selected from compounds of the formula NR 1 R 2 R 3 , in which R 1 together with R 2 and together with the nitrogen atom to which they are bonded represent a five- to six-membered heterocycle R 3 has one of the meanings given above or may stand together with an adjacent substituent of the heterocycle for the single bond moiety of a chemical double bond.
  • Heterocyclic tertiary amines NR 1 R 2 R 3 are preferred in which at least one ring carbon atom adjacent to a ring nitrogen atom has a substituent other than H, in particular a C 1 -C 4 -alkyl substituent.
  • Suitable heterocyclic tertiary amines NR 1 R 2 R 3 are pyridine compounds, pyridazine compounds, pyrimidine compounds, pyrazine compounds, imidazole compounds, pyrazole compounds, 1, 2,4-triazole compounds or 1,2,4-triazole compounds, in particular those which in adjacent position to a ring nitrogen atom have at least one substituent.
  • Suitable pyridine compounds are 2-methylpyridine, 2-ethylpyridine, 2,3-dimethylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine and 2-methyl-3- ethylpyridine.
  • Suitable pyridazine compounds are, for example, 3-methylpyridazine, 3-ethylpyridazine, 3,4-dimethylpyridazine, 3,5-dimethylpyridazine, 3,6-dimethylpyridazine.
  • Suitable pyrimidine compounds are, for example, 2-methylpyrimidine, 4-methylpyrimidine, 2,4-dimethylpyrimidine, 2,5-dimethylpyrimidine, 4,5-dimethylpyrimidine, 4,6-dimethylpyrimidine, 2,4,5-trimethylpyrimidine, 2,4,6- Trimethylpyrimidine, 2-ethyl-pyrimidine, 2-ethyl-4-methylpyrimidine, 2-ethyl-5-methylpyrimidine, 2-ethyl-4,5-dimethylpyrimidine or 2-ethyl-4,6-dimethylpyrimidine.
  • Suitable pyrazine compounds are, for example, 2-methylpyrazine,
  • 2,3-dimethylpyrazine 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, 2,3,5-trimethylpyrazine, 2,3,6-trimethylpyrazine, 2,3,5,6-tetramethylpyrazine, 2-ethylpyrazine, 2- Ethyl 3-methylpyrazine, 2-ethyl-5-methylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 2-ethyl-3,6-dimethylpyrazine or 2,3,5, 6-tetramethylpyrazine.
  • Examples of suitable imidazole compounds are 1, 2-dimethylimidazole, 1-ethyl-2-methylimidazole, 1-n-propyl-2-methylimidazole, 1-isopropyl-2-methylimidazole, 1-n-butyl-2-methylimidazole, 1-sec.
  • Suitable pyrazole compounds are 1, 3-dimethylpyrazole, 1-ethyl-3-methylpyrazole, 1-n-propyl-3-methylpyrazole, 1-isopropyl-3-methylpyrazole, 1-n-butyl-3-methylpyrazole, 1-sec.
  • Suitable 1,2,4-triazole compounds are, for example, 1,3-dimethyl-1, 2,4-triazole, 1-ethyl-3-methyl-1, 2,4-triazole, 1 -n-propyl-3-methyl- 1, 2,4-triazole, 1-isopropyl-3-methyl-1, 2,4-triazole, 1-n-butyl-3-methyl-1, 2,4-triazole, 1-sec-butyl-3 -methyl-1, 2,4-triazole, 1-tert-butyl-3-methyl-1, 2,4-triazole, 1- (2-hydroxyethyl) -3-methyl-1,2,4-triazole, 1 , 5-Dimethyl-1, 2,4-triazole, 1-ethyl-5-methyl-1, 2,4-triazole, 1-n-propyl-5-methyl-1, 2,4-triazole, 1-iso propyl-5-methyl-1, 2,4-triazole, 1-n-butyl-5-methyl-1, 2,4-triazole, 1-sec-but
  • Suitable 1,2,3-triazole compounds are, for example, 1,4-dimethyl-1,3,3-triazole, 1-ethyl-4-methyl-1,3,3-triazole, 1-n-propyl-4-methyl- 1, 2,3-triazole, 1-isopropyl-4-methyl-1,2,3-triazole, 1-n-butyl-4-methyl-1,2,3-triazole, 1-sec-butyl-4 -methyl-1,2,3-triazole, 1-tert-butyl-4-methyl-1,2,3-triazole, 1- (2-hydroxyethyl) -4-methyl-1,2,3-triazole, 1 , 5-Dimethyl-1, 2,3-triazole, 1-ethyl-5-methyl-1,2,3-triazole, 1-n-propyl-5-methyl-1,2,3-triazole, 1-isopropyl 5-methyl-1,2,3-triazole, 1-n-butyl-5-methyl-1,2,3-triazole, 1-sec-butyl-5
  • DBN 1, 5-diazabicyclo [4.3.0] non-5-ene
  • DBU 1, 8-diazabicyclo [5.4.0] undec-7-ene
  • the heterocyclic tertiary amines of the formula NR 1 R 2 R 3 used according to the invention are preferably selected from the abovementioned imidazole and pyrazole compounds. Particularly preferably, the heterocyclic tertiary amine is 1, 2-dimethylimidazole.
  • various quaternary ammonium compounds or mixtures of quaternary ammonium compounds are used to increase the hydrolytic stability of the ionic liquid (IL) from the ionic liquid (IL).
  • Suitable quaternary ammonium compounds for example, by quaternization tion of the aforementioned tertiary amines NR 1 R 2 R 3 be provided, wherein compounds of the formula [NR 1 R 2 R 3 R] + (1 / n) * [Y '] n ⁇ Get in which R has one of the meanings given with respect to the ionic liquids and (1 / n) * [Y '] n - represents an anion equivalent.
  • R in the quaternary ammonium compounds of the formula [NR 1 R 2 R 3 R] + (1 / n) * [Y '] n ⁇ is C 1 -C 4 -alkyl, particularly preferably methyl.
  • Suitable methods for quaternization of tertiary amines are known to the person skilled in the art. Suitable methods include, in particular, the reaction of tertiary amines of the formula NR 1 R 2 R 3 with C 1 -C 4 -alkyl halides, such as methyl iodide, or with di-C 1 -C 4 -alkyl sulfates, such as dimethyl sulfate or diethyl sulfate.
  • Preferred quaternary ammonium compounds are (C 1 -C 4 -alkyl) (C 1 -C 8 -alkyl) -di (2-hydroxyethyl) ammonium compounds and (C 1 -C 4 -alkyl) tri (2-hydroxyethyl) ammonium compounds and their alkoxylated derivatives, in particular those which have as counterion a Ci-C4 Alkylsulfatanion.
  • Particularly preferred quaternary Ammonium compounds are methyltri (2-hydroxyethyl) ammonium compounds, in particular their methyl or ethyl sulfates, and also the alkoxylated derivatives of methyltri (2-hydroxyethyl) ammonium compounds.
  • mixtures are preferred quaternary ammonium compounds in which the meanings of at least one of the radicals R 1, R 2 or R 3 of a mixture of overall radkettigem and branched Ci-C3o-alkyl, especially Cs-ds-alkyl, and Ci-C3o- Alkenyl, especially Cs-C-is-alkenyl, as it is accessible from natural or synthetic fatty acids and fatty alcohols and from oxo alcohols derives.
  • mixtures of quaternary ammonium compounds in which at least one of the radicals R 1 , R 2 or R 3 is a mixture of straight-chain and branched C 1 -C 30 -alkyl and C 1 -C 30 -alkenyl and at least one further, especially two, of the radicals R 1 , R 2 or R 3 is 2-hydroxyethyl or alkoxylated 2-hydroxyethyl.
  • Such mixtures are commercially available, for example, under the trade name Ammoeng TM 100 (Solvent Solution).
  • the tertiary amines and / or quaternary ammonium compounds used according to the invention are preferably used in an amount of from 0.01 to 50% by weight, preferably in an application rate of from 0.05 to 30% by weight and more preferably 0.1 to
  • the ionic liquids IL used according to the invention and the tertiary amines and / or quaternary ammonium compounds used according to the invention are advantageously completely miscible with one another, ie. H. Addition of the tertiary amine and / or the quaternary ammonium compound to an ionic liquid IL produces a homogeneous liquid composition.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Hydrolysestabilität ionischer Flüssigkeit (IL), bei dem man einer ionischen Flüssigkeit (IL) wenigstens ein tertiäres Amin oder eine von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindung zusetzt.

Description

Verfahren zur Verbesserung der Hydrolysestabilität ionischer Flüssigkeiten
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Hydrolysestabilität ionischer Flüssigkeit (IL), bei dem man einer ionischen Flüssigkeit (IL) wenigstens ein tertiäres Amin oder eine von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindung zusetzt.
Ionische Flüssigkeiten zeichnen sich durch eine Reihe interessanter Eigenschaften aus. Sie sind thermisch stabil, nicht entzündlich, haben einen äußerst geringen, kaum messbaren Dampfdruck, sind meist umweltfreundlich, verfügen über einen großen Li- quidus-Bereich und über sehr gute Lösungseigenschaften für zahlreiche Substanzen. Darüber hinaus besitzen ionische Flüssigkeiten aufgrund ihres rein ionischen Aufbaus auch interessante elektrochemische Eigenschaften, wie die elektrische Leitfähigkeit, die häufig von einer hohen elektrochemischen Stabilität begleitet wird. Durch Variation der Seitenketten des Kations und durch die Auswahl geeigneter Anionen lässt sich beispielsweise die Löslichkeit in Wasser oder organischen Lösungsmitteln oder der Schmelzpunkt weitgehend frei bestimmen.
Die molekulare Vielfalt ionischer Flüssigkeiten ermöglicht Ihren Einsatz in einer Vielzahl technischer Anwendungsgebiete. Beispiele hierfür sind die Extraktion (z. B. Gewinnung und Reinigung von technischen Gasen, Isolierung und Reinigung von Kohlenwasserstoffen in der Petrochemie und in der organischen Synthese oder die Entfer- nung toxischer Substanzen aus Abwässern), die Sorption, Trocknung, Reinigung und Speicherung von Gasen (z. B. in Sorptionsklimaanlagen), die Verwendung als Lösungsmittel (z. B. für die organische Synthese), die Immobilisierung von Katalysatoren, die Verwendung als Schmiermittel, Hydraulikfluid oder Antistatik-Additiv, die Verwendung als Elektrolyt (z. B. bei galvanische Beschichtungen, in Brennstoffzellen, Konden- satoren, Sensor- und Batterietechnik, Metallveredelung, Photovoltaik oder in elektro- chromen Bauteilen), die Verwendung als elektroelastischer Werkstoff (z. B. in Aktuato- ren), die Verwendung zum Wärmetransport oder zur Wärmespeicherung (z. B. Ther- mofluide oder PCM-Medien) oder die Verwendung als Spezialanalytikum (z. B. Matrix- Materialien, Lösungsmittel für Karl-Fischer-Titration oder Medien für die Proteinkristalli- sation oder Elektrophorese).
Aufgrund des Bedarfs, die Eigenschaften der ionischen Flüssigkeiten an die speziellen Verwendungszwecke anzupassen finden häufig auch Anionen in den ionischen Flüssigkeiten Verwendung, die unter Lagerungs- und/oder Anwendungsbedingungen einer Hydrolyse unterliegen. Diese Hydrolyse kann bereits in geringem Umfang die chemischen und physikalischen Eigenschaften der ionischen Flüssigkeiten substantiell beeinflussen. Beispielhaft hierfür sei die Veränderung des Schmelzpunktes der ionischen Flüssigkeit oder die Bildung korrosiver Hydrolyseprodukte genannt. Ein Austausch (teil-)hydrolisierter ionischer Flüssigkeiten ist daher oftmals zwingend.
WO 03022812 beschreibt ionische Flüssigkeiten, die als Anion eine Verbindungen der Formel [R-SO4]" aufweisen, worin R für einen linearen oder verzweigten, gesättigten oder ungesättigten , aliphatischen oder alicyclischen, funktionalisierten oder unfunktio- nalisierten Alkylrest mit 3 bis 36 Kohlenstoffatomen steht. Diese Anionen sind im Gegensatz zu Methyl- oder Ethylsulfatanionen in neutraler wässriger Lösung hydrolysestabil. Jedoch sind die ionischen Flüssigkeiten, die diese Anionen aufweisen, nur unter erhöhtem Aufwand zugänglich.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren bereitzustellen wodurch die Hydrolyse üblicher, hydrolysierbarer Anionen ionischer Flüssigkeiten deutlich verlangsamt oder verhindert wird. Hierdurch sollen längere Standzeiten von ionischen Flüssigkeiten und/oder für den Fall, dass die Produkte der Hydrolyse des Anions eine erhöhte Korrosivität aufweisen, eine Verringerung der schädigenden Einwirkung auf chemische Verbindungen, chemische Reaktionen und Vorrichtungen, die mit den ionischen Flüssigkeiten in Kontakt gebrachten werden, bewirkt werden. Weiterhin sollen die verwendeten ionischen Flüssigkeiten nach Möglichkeit ohne Bildung problemati- scher Verbrennungsgase thermisch entsorgbar, biologisch abbaubar und unter geringem Aufwand zugänglich sein.
Überraschenderweise wurde nun gefunden, dass bereits der Zusatz geringer Mengen eines tertiären Amins und/oder einer von der ionischen Flüssigkeit verschiedenen quar- tären Ammoniumverbindung zu einer deutlichen Verringerung der Zersetzung des Anions der ionischen Flüssigkeit, speziell von Sulfatanionen, durch Hydrolyse führt.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Verbesserung der Hydrolysestabilität einer ionischen Flüssigkeit (IL), bei dem man der ionischen Flüssig- keit (IL) wenigstens ein tertiäres Amin und/oder eine von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindung zusetzt.
Ionische Flüssigkeiten bezeichnen im Rahmen der vorliegenden Anmeldung organische Salze, die bereits bei Temperaturen unterhalb 180 0C flüssig sind. Vorzugsweise besitzen die ionischen Flüssigkeiten einen Schmelzpunkt von weniger als 180 0C. Weiterhin bevorzugt liegt der Schmelzpunkt in einem Bereich von -50 0C bis 150 0C, besonders bevorzugt im Bereich von -20 0C bis 120 0C und ganz besonders bevorzugt unterhalb 100 0C.
Ionische Flüssigkeiten, die bereits bei Raumtemperatur in flüssigem Aggregatszustand vorliegen, werden beispielsweise von K. N. Marsh et al., Fluid Phase Equilibria 219 (2004), 93 - 98 und J. G. Huddieston et al., Green Chemistry 2001 , 3, 156 - 164 beschrieben.
In der ionischen Flüssigkeit liegen Kationen sowie Anionen vor. Dabei kann innerhalb der ionischen Flüssigkeit vom Kation ein Proton oder ein Alkylrest an das Anion übertragen werden, wodurch zwei neutrale Moleküle resultieren. In der erfindungsgemäß eingesetzten ionischen Flüssigkeit kann also ein Gleichgewicht von Anionen, Kationen sowie daraus gebildeten neutralen Molekülen vorliegen.
Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck "Alkyl" geradkettiges oder verzweigtes Alkyl. Vorzugsweise handelt es sich um geradkettiges oder verzweigtes Ci-C3o-Alkyl, insbesondere um Ci-Cis-Alkyl und ganz besonders bevorzugt Ci-Ci2-Alkyl. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sek.-Butyl, tert.-Butyl, n-Pentyl, Isopentyl, 1-Methyl-butyl, tert.-Pentyl, Neopentyl, n-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl,
4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl- 3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl- 1-butyl, 2-Ethyl-1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, n-Heptyl, n-Octyl, 1-Methylheptyl, 2-Etylhexyl, 2,4,4-Trimethyl-pentyl, 1 ,1 ,3,3-Tetramethylbutyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl und n-Eicosyl.
Der Ausdruck Alkyl umfasst auch Alkylreste, deren Kohlenstoffkette durch eine oder mehrere nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen, die vor- zugsweise ausgewählt sind unter -O-, -S-, -NRE-, -PRE-, -SiREREE und/oder -SO2- unterbrochen sein kann. RE steht vorzugsweise für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl. REE steht vorzugsweise für H, Alkyl, Cycloalkyl, Heterocycloalkyl oder Aryl.
Beispiele für Alkylreste, deren Kohlenstoffketten durch eine oder zwei nicht benachbarte Heteroatome -O- unterbrochen sein können, sind die Folgenden:
Methoxymethyl, Diethoxymethyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, Diethoxyethyl, 2-Butoxyethyl, 2-Octyloxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 3-Ethoxypropyl, 3-Propoxypropyl, 2-lsopropoxyethyl, 2-Butoxypropyl, 3-Butoxypropyl, 4-Methoxybutyl, 4-Ethoxybutyl, 4-Propoxybutyl, 6-Methoxyhexyl, 3,6-Dioxa-heptyl (5-Methoxy-3-oxa-pentyl), 3,6-Dioxa-octyl (7-Methoxy-4-oxa-heptyl), 4,8-Dioxa-nonyl (7-Methoxy-4-oxa-heptyl), 3,7-Dioxa-octyl, 3,7-Dioxa-nonyl, 4,7-Dioxa-octyl, 4,7-Dioxa- nonyl, 2- und 4-Butoxybutyl, 4,8-Dioxadecyl, 9-Ethoxy-5-oxa-nonyl.
Beispiele für Alkylreste, deren Kohlenstoffketten durch drei oder mehr als drei nicht benachbarte Heteroatome -O- unterbrochen sein können, sind auch Oligo- und PoIy- oxyalkylene, d. h. Verbindungen mit Wiederholungseinheiten, die vorzugsweise ausgewählt sind unter (CH2CH2O)Xi, (CH(CH3)CH2O)X2 und ((CH2)4O)χ3, wobei x1 , x2 und x3 unabhängig voneinander für eine ganze Zahl von 0 bis 100, vorzugsweise von 0 bis 80, stehen, mit der Maßgabe, dass die Summe aus x1 , x2 und x3 wenigstens 3 be- trägt. Vorzugsweise stehen x1 , x2 und x3 unabhängig voneinander für eine ganze Zahl von 3 bis 100, vorzugsweise 3 bis 80. Die Summe aus x1 , x2 und x3 steht bevorzugt für eine ganze Zahl von 3 bis 300, insbesondere 3 bis 100. In Polyoxyalkylenen, die zwei oder drei verschiedenartige Wiederholungseinheiten aufweisen, ist die Reihenfolge beliebig, d. h. es kann sich um statistisch verteilte, alternierende oder blockförmige Wiederholungseinheiten handeln. Beispiele hierfür sind 3,6,9-Trioxadecyl,
3,6,9-Trioxaundecyl, 3,6,9-Trioxadodecyl, 4,8,12-Trioxatridecyl (1 1-Methoxy-4,8-dioxa- undecyl), 4,8,12-Trioxatetradecyl, 14-Methoxy-5,10-dioxa-tetradecyl, 5,10,15-Trioxaheptadecyl, 3,6,9, 12-Tetraoxatridecyl, 3,6,9, 12-Tetraoxatetradecyl, 4,8,12,16-Tetraoxaheptadecyl (15-Methoxy-4,8,12-trioxa-pentadecyl), 4,8,12,16-Tetraoxa-octadecyl und dergleichen.
Beispiele für Alkylreste, deren Kohlenstoffketten durch eine oder mehrere, z. B. 1 , 2, 3, 4 oder mehr als 4, nicht benachbarte Heteroatome -S- unterbrochen sein kann, sind die Folgenden:
Butylthiomethyl, 2-Methylthioethyl, 2-Ethylthioethyl, 2-Propylthioethyl, 2-Butylthioethyl, 2-Dodecylthioethyl, 3-Methylthiopropyl, 3-Ethylthiopropyl, 3-Propylthiopropyl, 3-Butylthiopropyl, 4-Methylthiobutyl, 4-Ethylthiobutyl, 4-Propylthiobutyl, 3,6-Dithia- heptyl, 3,6-Dithia-octyl, 4,8-Dithia-nonyl, 3,7-Dithia-octyl, 3,7-Di-thia-nonyl, 2- und 4-Butylthiobutyl, 4,8-Dithia-decyl, 3,6,9-Trithia-decyl, 3,6,9-Trithia-undecyl,
3,6,9-Trithia-dodecyl, 3,6,9,12-Tetrathia-tridecyl und 3,6,9, 12-Tetrathia-tetradecyl.
Beispiele für Alkylreste, deren Kohlenstoffketten durch eine oder zwei nicht benachbarte heteroatomhaltige Gruppen -NRE- unterbrochen sind, sind die Folgenden:
2-Monomethyl- und 2-Monoethylaminoethyl, 2-Dimethylaminoethyl, 3-Methylamino- propyl, 2- und 3-Dimethylaminopropyl, 3-Monoisopropylaminopropyl, 2- und 4-Monopropylaminobutyl, 2- und 4-Dimethylaminobutyl, 6-Methylaminohexyl, 6-Dimethylaminohexyl, 6-Methyl-3,6-diazaheptyl, 3,6-Dimethyl-3,6-diazaheptyl, 3,6-Diazaoctyl und 3,6-Dimethyl-3,6-diazaoctyl.
Beispiele für Alkylreste, deren Kohlenstoffketten durch drei oder mehr als drei nicht benachbarte heteroatomhaltige Gruppen -NRE- unterbrochen sein können, sind auch Oligo- und Polyalkylenimine. Das zuvor für die Polyoxyalkylene Gesagte gilt analog für Polyalkylenimine, wobei das Sauerstoffatom jeweils durch eine Gruppe NRE ersetzt ist, worin Ra vorzugsweise für H oder CrC4-AIkVl steht. Beispiele hierfür sind 9-Methyl-3,6,9-triazadecyl, 3,6,9-Trimethyl-3,6,9-triazadecyl, 3,6,9-Triazaundecyl, 3,6,9-Trimethyl-3,6,9-triazaundecyl, 12-Methyl-3,6,9,12-tetraazatridecyl, 3,6,9,12-Tetramethyl-3,6,9,12-tetraazatridecyl und dergleichen.
Beispiele für Alkylreste, deren Kohlenstoffketten durch eine oder mehrere, z. B. 1 oder 2 nicht benachbarte Gruppen -SO2- unterbrochen sind, sind 2-Methylsulfonylethyl, 2-Ethylsulfonylethyl, 2-Propylsulfonylethyl, 2-lsopropylsulfonylethyl, 2-Buthylsulfonyl- ethyl, 2-Methylsulfonylpropyl, 3-Methylsulfonylpropyl, 2-Ethylsulfonylpropyl, 3-Ethyl- sulfonylpropyl, 2-Propylsulfonylpropyl, 3-Propylsulfonylpropyl, 2-Butylsulfonylpropyl, 3-Butylsulfonylpropyl, 2-Methylsulfonylbutyl, 4-Methylsulfonylbutyl, 2-Ethylsulfonylbutyl, 4-Ethylsulfonylbutyl, 2-Propylsulfonylbutyl, 4-Propylsulfonylbutyl und 4-Butylsulfonyl- butyl.
Der Ausdruck Alkyl umfasst auch substituierte Alkylreste. Substituierte Alkylgruppen können in Abhängigkeit von der Länge der Alkyl kette einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Cycloalkyl, Cycloalkyloxy, Polycyclyl, Polycyclyloxy, Heterocycloalkyl, Aryl, Aryloxy, Arylthio, Hetaryl, Halogen, Hydroxy, SH, =0, =S, =NRE, COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Nitro und Cyano, wobei E1 und E2 unabhängig voneinander für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen. Cycloalkyl-, Cycloalkyloxy, Polycycloalkyl-, Polycycloalkyloxy-, Heterocycloalkyl-, Aryl- und Hetarylsubstituenten der Alkylgruppen können ihrerseits unsubstituiert oder substituiert sein; geeignete Substituenten sind die nachfolgend für diese Gruppen genannten.
Die vorstehenden Ausführungen zu Alkyl gelten prinzipiell auch für die Alkylteile in Al- koxy, Alkylamino, Dialkylamino, Alkylthio (Alkylsulfanyl), Alkylsulfinyl, Alkylsulfonyl, etc.
Geeignete substituierte Alkylreste sind die Folgenden:
Alkyl, das durch Carboxy substituiert ist, wie z. B. Carboxymethyl, 2-Carboxyethyl,
3-Carboxypropyl, 4-Carboxybutyl, 5-Carboxypentyl, 6-Carboxyhexyl, 7-Carboxyheptyl, 8-Carboxyoctyl, 9-Carboxynonyl, 10-Carboxydecyl, 12-Carboxydodecyl und 14-Carboxytetradecyl;
Alkyl, das durch SO3H substituiert ist, wie z. B. Sulfomethyl, 2-Sulfoethyl, 3-Sulfopropyl, 4-Sulfobutyl, 5-Sulfopentyl, 6-Sulfohexyl, 7-Sulfoheptyl, 8-Sulfooctyl, 9-Sulfononyl, 10-Sulfodecyl, 12-Sulfododecyl und 14-Sulfotetradecyl;
Alkyl, das durch Carboxylat substituiert ist, wie z. B. für Alkoxycarbonylalkyl, z. B. Methoxycarbonylmethyl, Ethoxycarbonylmethyl, n-Butoxycarbonylmethyl, 2-Methoxycarbonylethyl, 2-Ethoxycarbonylethyl, 2-Methoxycarbonylpropyl, 2-Ethoxycarbonylpropyl, 2-(n-Butoxycarbonyl)propyl, 2-(4-n-Butoxycarbonyl)propyl, 3-Methoxycarbonylpropyl, 3-Ethoxycarbonylpropyl, 3-(n-Butoxycarbonyl)propyl, 3-(4-n-Butoxycarbonyl)propyl, Aminocarbonylalkyl, z. B. Aminocarbonylmethyl, Amino- carbonylethyl, Aminocarbonylpropyl und dergleichen, Alkylaminocarbonylalkyl, wie Methylaminocarbonylmethyl, Methylaminocarbonylethyl, Ethylcarbonylmethyl, Ethyl- carbonylethyl und dergleichen, oder Dialkylaminocarbonylalkyl, wie Dimethylaminocar- bonylmethyl, Dimethylaminocarbonylethyl, Dimethylcarbonylpropyl, Diethylaminocar- bonylmethyl, Diethylaminocarbonylethyl, Diethylcarbonylpropyl und dergleichen;
Alkyl, das durch Hydroxy substituiert ist, wie z. B. 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 3-Hydroxybutyl, 4-Hydroxybutyl, 2-Hydroxy-2,2-dimethylethyl,
5-Hydroxy-3-oxa-pentyl, 6-Hydroxyhexyl, 7-Hydroxy-4-oxa-heptyl, 8-Hydroxy-4-oxa- octyl, 8-Hydroxy-3,6-dioxa-octyl, 9-Hydroxy-5-oxa-nonyl, 1 1-Hydroxy-4,8-dioxa- undecyl, 11-Hydroxy-3,6,9-trioxa-undecyl, 14-Hydroxy-5,10-dioxa-tetradecyl,
15-Hydroxy-4,8,12-trioxa-pentadecyl und dergleichen;
Alkyl, das durch Amino substituiert ist, wie z. B. 2-Aminoethyl, 2-Aminopropyl,
3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl und dergleichen;
Alkyl, das durch Cyano substituiert ist, wie z. B. 2-Cyanoethyl, 3-Cyanopropyl, 3-Cyanobutyl und 4-Cyanobutyl;
Alkyl, das durch Halogen, wie nachfolgend definiert, substituiert ist, wobei in der Al- kylgruppe die Wasserstoffatome teilweise oder vollständig durch Halogenatome ersetzt sein können, wie Ci-Cis-Fluoralkyl, z. B. Trifluormethyl, Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobu- tyl, Undecylfluorpentyl, Undecylfluorisopentyl und dergleichen, Ci-Cis-Chloralkyl, z. B. Chlormethyl, Dichlormethyl, Trichlormethyl, 2-Chlorethyl, 2- und 3-Chlorpropyl, 2-, 3- und 4-Chlorbutyl, 1 ,1-Dimethyl-2-chlorethyl und dergleichen, Ci-Ci8-Bromalkyl, z. B. Bromethyl, 2-Bromethyl, 2- und 3-Brompropyl und 2-, 3- und 4-Brombutyl und derglei- chen;
Alkyl, das durch Nitro substituiert ist, wie z. B. 2-Nitroethyl, 2- und 3-Nitropropyl und 2-, 3- und 4-Nitrobutyl und dergleichen;
Alkyl, das durch Amino substituiert ist, wie z. B. 2-Aminoethyl, 2-Aminopropyl, 3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl und dergleichen;
Alkyl, das durch Cycloalkyl substituiert ist, wie z. B. Cyclopentylmethyl, 2-Cyclopentylethyl, 3-Cyclopentylpropyl, Cyclohexylmethyl, 2-Cyclohexylethyl, 3-Cyclohexylpropyl und dergleichen; Alkyl, das durch =0 (Oxogruppe) substituiert ist, wie z. B. 2-Oxopropyl, 2-Oxobutyl, 3-Oxobutyl, 1-Methyl-2-oxopropyl, 2-Oxopentyl, 3-Oxopentyl, 1-Methyl-2-oxobutyl, 1-Methyl-3-oxobutyl, 2-Oxohexyl, 3-Oxohexyl, 4-Oxohexyl, 2-Oxoheptyl, 3-Oxoheptyl, 4-Oxoheptyl, 4-Oxoheptyl und dergleichen;
Alkyl, das durch =S (Thioxogruppe) substituiert ist, wie z. B. 2-Thioxopropyl, 2-Thioxobutyl, 3-Thioxobutyl, 1-Methyl-2-thioxopropyl, 2-Thioxopentyl, 3-Thioxopentyl, 1-Methyl-2-thioxobutyl, 1-Methyl-3-thioxobutyl, 2-Thioxohexyl, 3-Thioxohexyl, 4-Thioxohexyl, 2-Thioxoheptyl, 3-Thioxoheptyl, 4-Thioxoheptyl, 4-Thioxoheptyl und dergleichen;
Alkyl, das durch =NRE- substituiert ist, vorzugsweise solches, in denen RE für H oder Ci-C4-Alkyl steht, wie z. B. 2-lminopropyl, 2-lminobutyl, 3-lminobutyl, 1-Methyl- 2-iminopropyl, 2-lminopentyl, 3-lminopentyl, 1-Methyl-2-iminobutyl, 1-Methyl-3-imino- butyl, 2-lminohexyl, 3-lminohexyl, 4-lminohexyl, 2-lminoheptyl, 3-lminoheptyl, 4-lminoheptyl, 4-lminoheptyl, 2-Methyliminopropyl, 2-Methyliminobutyl, 3-Methyliminobutyl, 1-Methyl-2-methyliminopropyl, 2-Methyliminopentyl, 3-Methylimino- pentyl, 1-Methyl-2-methyliminobutyl, 1-Methyl-3-methyliminobutyl, 2-Methyliminohexyl, 3-Methyliminohexyl, 4-Methyliminohexyl, 2-Methyliminoheptyl, 3-Methyliminoheptyl, 4-Methyliminoheptyl, 4-Methyliminoheptyl, 2-Ethyliminopropyl, 2-Ethyliminobutyl,
3-Ethyliminobutyl, 1-Methyl-2-ethyliminopropyl, 2-Ethyliminopentyl, 3-Ethyliminopentyl, 1-Methyl-2-ethyliminobutyl, 1-Methyl-3-ethyliminobutyl, 2-Ethyliminohexyl, 3-Ethyl- iminohexyl, 4-Ethyliminohexyl, 2-Ethyliminoheptyl, 3-Ethyliminoheptyl, 4-Ethylimino- heptyl, 4-Ethyliminoheptyl, 2-Propyliminopropyl, 2-Propyliminobutyl, 3-Propyliminobutyl, 1-Methyl-2-propyliminopropyl, 2-Propyliminopentyl, 3-Propyliminopentyl, 1-Methyl- 2-propyliminobutyl, 1-Methyl-3-propyliminobutyl, 2-Propyliminohexyl, 3-Propylimino- hexyl, 4-Propyliminohexyl, 2-Propyliminoheptyl, 3-Propyliminoheptyl, 4-Propylimino- heptyl, 4-Propyliminoheptyl und dergleichen.
Alkyl, das durch Aryl substituiert ist ("Arylalkyl"), weist wenigstens eine, wie nachfolgend definierte, unsubstituierte oder substituierte Arylgruppe auf. Geeignete Substi- tuenten an der Arylgruppe sind die nachfolgend genannten. Dabei kann die Alkylgrup- pe in "Arylalkyl" wenigstens einen weiteren Substituenten, wie vorstehend definiert, tragen und/oder durch eine oder mehrere nicht benachbarte Heteroatome oder hetero- atomhaltige Gruppen, die ausgewählt sind unter -O-, -S-, -NRE-, und/oder -SO2- unterbrochen sein. Arylalkyl steht vorzugsweise für Phenyl-Ci-Cio-alkyl, besonders bevorzugt für Phenyl-Ci-C4-alkyl, z. B. für Benzyl, 1-Phenethyl, 2-Phenethyl, 1-Phen- prop-1-yl, 2-Phenprop-1-yl, 3-Phenprop-1-yl, 1-Phenbut-1-yl, 2-Phenbut-1-yl, 3-Phenbut-1-yl, 4-Phenbut-1-yl, 1-Phenbut-2-yl, 2-Phenbut-2-yl, 3-Phenbut-2-yl, 4-Phenbut-2-yl, 1-(Phenmeth)-eth-1-yl, 1-(Phenmethyl)-1-(methyl)-eth-1-yl oder -(Phenmethyl)-1-(methyl)-prop-1-yl; vorzugsweise für Benzyl und 2-Phenethyl. Alkoxy steht für eine über ein Sauerstoffatom gebundene Alkylgruppe. Beispiele für Alkoxy sind: Methoxy, Ethoxy, n-Propoxy, 1 -Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1 ,1-Dimethylethoxy, n-Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1 ,1-Dimethylpropoxy, 1 ,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1 ,1-Dimethylbutoxy, 1 ,2-Dimethylbutoxy, 1 ,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1 ,1 ,2-Trimethylpropoxy, 1 ,2,2-Trimethylpropoxy, 1-Ethyl-1-methyl- propoxy oder 1-Ethyl-2-methylpropoxy, Hexoxy sowie RAO-(CH2CH2CH2CH2O)n- CH2CH2CH2CH2O- mit RA H oder Ci-C4-Alkyl, bevorzugt H, Methyl oder Ethyl und n 0 bis 10, bevorzugt 0 bis 3.
Alkylthio (Alkylsulfanyl) steht für eine über ein Schwefelatom gebundene Alkylgruppe. Beispiele für Alkylthio sind Methylthio, Ethylthio, Propylthio, Butylthio, Pentylthio und Hexylthio.
Alkylsulfinyl steht für eine über eine S(=O)-Gruppe gebundene Alkylgruppe.
Alkylsulfonyl steht für eine über eine S(=O)2-Gruppe gebundene Alkylgruppe.
Der Ausdruck "Alkenyl" umfasst im Sinne der vorliegenden Erfindung geradkettige und verzweigte Alkenylgruppen, die in Abhängigkeit von der Kettenlänge eine oder mehrere Doppelbindungen (z. B. 1 , 2, 3, 4 oder mehr als 4) tragen können. Bevorzugt sind C2-CiS-, besonders bevorzugt C2-Ci2-Alkenylgruppen. Der Ausdruck "Alkenyl" umfasst auch substituierte Alkenylgruppen, welche einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten tragen können. Geeignete Substituenten sind z. B. ausgewählt unter =0, =S, =NRE, Cycloalkyl, Cycloalkyloxy, Polycyclyl, Polycyclyloxy, Hetero- cycloalkyl, Aryl, Aryloxy, Arylthio, Hetaryl, Halogen, Hydroxy, SH, COOH, Carboxylat, SO3H, Sulfonat, Alkylsulfinyl, Alkylsulfonyl, NE3E4, Nitro und Cyano, wobei E3 und E4 unabhängig voneinander für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
Der Ausdruck "Alkenyl" umfasst auch Alkenylreste, deren Kohlenstoffkette durch eine oder mehrere nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen, die vorzugsweise ausgewählt sind unter -O-, -S-, -NRE- und/oder -SO2-, unterbrochen sein kann.
Alkenyl steht dann beispielsweise für Ethenyl (Vinyl), 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, Penta-1 ,3-di- en-1-yl, Hexa-1 ,4-dien-1-yl, Hexa-1 ,4-dien-3-yl, Hexa-1 ,4-dien-6-yl, Hexa-1 ,5-dien-1-yl, Hexa-1 ,5-dien-3-yl, Hexa-1 ,5-dien-4-yl, Hepta-1 ,4-dien-1-yl, Hepta-1 ,4-dien-3-yl, Hepta-1 ,4-dien-6-yl, Hepta-1 ,4-dien-7-yl, Hepta-1 ,5-dien-1-yl, Hepta-1 ,5-dien-3-yl, Hepta-1 ,5-dien-4-yl, Hepta-1 ,5-dien-7-yl, Hepta-1 ,6-dien-1-yl, Hepta-1 ,6-dien-3-yl, Hepta-1 ,6-dien-4-yl, Hepta-1 ,6-dien-5-yl, Hepta-1 ,6-dien-2-yl, Octa-1 ,4-dien-1-yl, Octa-1 ,4-dien-2-yl, Octa-1 ,4-dien-3-yl, Octa-1 ,4-dien-6-yl, Octa-1 ,4-dien-7-yl, Octa-1 ,5-dien-1 -yl, Octa-1 ,5-dien-3-yl, Octa-1 ,5-dien-4-yl, Octa-1 ,5-dien-7-yl, Octa-1 ,6-dien-1-yl, Octa-1 ,6-dien-3-yl, Octa-1 ,6-dien-4-yl, Octa-1 ,6-dien-5-yl, Octa-1 ,6-dien-2-yl, Deca-1 ,4-dienyl, Deca-1 ,5-dienyl, Deca-1 ,6-dienyl, Deca-1 ,7-dienyl, Deca-1 ,8-dienyl, Deca-2,5-dienyl, Deca-2,6-dienyl, Deca-2,7-dienyl, Deca-2,8-dienyl und dergleichen.
Der Ausdruck "Cycloalkyl" umfasst im Rahmen der vorliegenden Erfindung unsubstitu- ierte als auch substituierte monocyclische gesättigte Kohlenwasserstoffgruppen mit im Allgemeinen 3 bis 12 Kohlenstoffringgliedern, vorzugsweise C3-Ci2-Cycloalkylgruppen wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclo- nonyl, Cyclodecyl, Cycloundecyl oder Cyclododecyl, insbesondere C5-Ci2-Cycloalkyl. Geeignete Substituenten sind in der Regel ausgewählt unter für Alkyl, den zuvor für die Alkylgruppen genannten Substituenten, Alkoxy sowie Alkylthio. Substituierte Cycloal- kylgruppen können einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen, wobei im Falle von Halogen der Cycloalkylrest partiell oder vollständig durch Halogen substituiert ist.
Beispiele für Cycloalkylgruppen sind Cyclopentyl, 2- und 3-Methylcyclopentyl, 2- und 3-Ethylcyclopentyl, Chlorpentyl, Dichlorpentyl, Dimethylcyclopentyl, Cyclohexyl, 2-, 3- und 4-Methylcyclohexyl, 2-, 3- und 4-Ethylcyclohexyl, 3- und 4-Propylcyclohexyl, 3- und 4-lsopropylcyclohexyl, 3- und 4-Butylcyclohexyl, 3- und 4-sec-Butylcyclohexyl, 3- und 4-tert.-Butylcyclohexyl, Chlorhexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Methoxy- cyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butoxycyclohexyl, Methylthio- cyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Cycloheptyl, 2-, 3- und 4-Methylcyclo- heptyl, 2-, 3- und 4-Ethylcycloheptyl, 3- und 4-Propylcycloheptyl, 3- und 4-lsopropyl- cycloheptyl, 3- und 4-Butylcycloheptyl, 3- und 4-sec-Butylcycloheptyl, 3- und 4-tert- Butylcycloheptyl, Cyclooctyl, 2-, 3-, 4- und 5-Methylcyclooctyl, 2-, 3-, 4- und 5-Ethyl- cyclooctyl, 3-, 4- und 5-Propylcyclooctyl, partiell fluoriertes Cycloalkyl und perfluoriertes Cycloalkyl der Formel CnF2(n-a)-(i-b)H2a-b mit n = 5 bis 12, 0 <= a <= n und b = 0 oder 1.
Cycloalkyloxy steht für eine über Sauerstoff gebundene Cycloalkylgruppe, wie vorstehend definiert.
Der Ausdruck "Cycloalkenyl" umfasst unsubstituierte und substituierte, einfach oder zweifach ungesättigte Kohlenwasserstoffgruppen mit 3 bis 5, bis 8, bis 12, vorzugswei- se 5 bis 12 Kohlenstoffringgliedern, wie Cyclopent-1-en-1-yl, Cyclopent-2-en-1-yl, Cyclopent-3-en-1-yl, Cyclohex-1-en-1-yl, Cyclohex-2-en-1-yl, Cyclohex-3-en-1-yl, Cyclohexa-2,5-dien-1-yl und dergleichen. Geeignete Substituenten sind die zuvor für Cycloalkyl genannten.
Cycloalkenyloxy steht für eine über Sauerstoff gebundene Cycloalkenylgruppe, wie vorstehend definiert.
Der Ausdruck "Polycyclyl" umfasst im Rahmen der vorliegenden Erfindung im weitesten Sinne Verbindungen, die wenigstens zwei Ringe enthalten, unabhängig davon, wie diese Ringe verknüpft sind. Hierbei kann es sich um carbocyclische und/oder hetero- cyclische Ringe handeln. Die Ringe können gesättigt oder ungesättigt sein. Die Ringe können über Einfach- oder Doppelbindung verknüpft ("mehrkernige Verbindungen"), durch Anellierung verbunden ("kondensierte Ringsysteme") oder überbrückt ("überbrückte Ringsysteme", "Käfigverbindungen") sein. Bevorzugte polycyclische Verbindungen sind überbrückte Ringsysteme und kondensierte Ringsysteme. Kondensierte Ringsysteme können durch Anellierung verknüpfte (ankondensierte) aromatische, hy- droaromatische und cyclische Verbindungen sein. Kondensierte Ringsysteme bestehen aus zwei, drei oder mehr als drei Ringen. Je nach der Verknüpfungsart unterscheidet man bei kondensierten Ringsystemen zwischen einer ortho-Anellierung, d. h. jeder Ring hat mit jedem Nachbarring jeweils eine Kante bzw. zwei Atome gemeinsam, und einer peri-Anellierung, bei der ein Kohlenstoffatom mehr als zwei Ringen angehört. Bevorzugt unter den kondensierten Ringsystemen sind ortho-kondensierte Ringsysteme. Zu den überbrückten Ringsystemen zählen im Rahmen der vorliegenden Erfindung solche, die nicht zu den mehrkernigen Ringsystemen und nicht zu den kondensierten Ringsystemen zählen und bei denen mindestens zwei Ringatome zumindest zwei verschiedenen Ringen angehören. Bei den überbrückten Ringsystemen unterscheidet man je nach Anzahl der Ringöffnungsreaktionen, die formal erforderlich sind, um zu einer offenkettigen Verbindung zu gelangen, Bi-, Tri-, Tetracyclo- Verbindungen usw., die aus zwei, drei, vier usw. Ringen bestehen. Der Ausdruck "Bicycloalkyl" umfasst dabei bicyclische Kohlenwasserstoffreste mit vorzugsweise 5 bis 10 C-Atomen wie Bicyclo[2.2.1]hept-1-yl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.1]hept-7-yl, Bicyc- lo[2.2.2]oct-1-yl, Bicyclo[2.2.2]oct-2-yl, Bicyclo[3.3.0]octyl, Bicyclo[4.4.0]decyl und dergleichen. Der Ausdruck "Bicycloalkenyl" umfasst einfach ungesättigte, bicyclische Kohlenwasserstoffreste mit vorzugsweise 5 bis 10 C-Atomen, wie Bicyclo[2.2.1 ]hept-2-en-1 -yl.
Der Ausdruck "Aryl" umfasst im Rahmen der vorliegenden Erfindung ein- oder mehrkernige aromatische Kohlenwasserstoffreste, die unsubstituiert oder substituiert sein können. Aryl steht in der Regel für Kohlenwasserstoffreste mit 6 bis 10, bis 14, bis 18, vorzugsweise 6 bis 10 Kohlenstoffringgliedern. Aryl steht vorzugsweise für unsubstitu- iertes oder substituiertes Phenyl, Naphthyl, Anthracenyl, Phenanthrenyl, Naphthacenyl, Chrysenyl, Pyrenyl, etc., und besonders bevorzugt für Phenyl oder Naphthyl. Substituierte Aryle können in Abhängigkeit von der Anzahl und Größe ihrer Ringsysteme einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Alkyl, Alkoxy, Cycloalkyl, Cycloalkyloxy, Heterocycloalkyl, Aryl, Aryloxy, Arylthio, Hetaryl, Halogen, Hydroxy, SH, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, COOH, Carboxylat, SO3H, Sulfonat, NE5E6, Nitro und Cyano, wobei E5 und E6 unabhängig voneinander für H, Alkyl, Cycloalkyl, Cycloalkyloxy, Polycyclylyl, Polycyclyloxy, Heterocycloalkyl, Aryl, Aryloxy oder Hetaryl stehen. Besonders bevorzugt steht Aryl für Phenyl, das im Falle einer Substitution im Allgemeinen 1 , 2, 3, 4 oder 5, vorzugsweise 1 , 2 oder 3 Substituenten tragen kann.
Aryl, das einen oder mehrere Reste trägt, steht beispielsweise für 2-, 3- und
4-Methylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2-, 3- und 4-Ethylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diethylphenyl, 2,4,6-Triethylphenyl, 2-, 3- und 4-Propylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dipropylphenyl, 2,4,6-Tripropylphenyl, 2-, 3- und 4-lsopropylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisopropylphenyl, 2,4,6-Triisopropyl- phenyl, 2-, 3- und 4-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dibutylphenyl, 2,4,6-Tributyl- phenyl, 2-, 3- und 4-lsobutylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisobutylphenyl, 2,4,6- Triisobutylphenyl, 2-, 3- und 4-sec-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-sec-butyl- phenyl, 2,4,6-Tri-sec-butylphenyl, 2-, 3- und 4-tert.-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-tert.-butylphenyl, 2,4,6-Tri-tert.-butylphenyl und 2-, 3-, 4-Dodecylphenyl; 2-, 3- und 4-Methoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dimethoxyphenyl, 2,4,6-Trimethoxy- phenyl, 2-, 3- und 4-Ethoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diethoxyphenyl, 2,4,6-Tri- ethoxyphenyl, 2-, 3- und 4-Propoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dipropoxyphenyl, 2-, 3- und 4-lsopropoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisopropoxyphenyl, 2-, 3- und 4-Butoxyphenyl, 2-, 3-, 4-Hexyloxyphenyl; 2-, 3-, 4-Chlorphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dichlorphenyl, Trichlorphenyl, 2-, 3-, 4-Fluorphenyl, 2,4-, 2,5-, 3,5- und 2,6-Difluor- phenyl, Trifluorphenyl, wie z. B. 2,4,6-Trifluorphenyl, Tetrafluorphenyl, Pentafluorphe- nyl, 2-, 3- und 4-Cyanophenyl; 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl; 4-Dimethylaminophenyl; 4-Acetylphenyl; Methoxyethylphenyl, Ethoxymethylphenyl; Methylthiophenyl, Isopropylthiophenyl oder tert.-Butylthiophenyl; Methylnaphthyl; Isopropylnaphthyl oder Ethoxynaphthyl. Beispiele für substituiertes Aryl, worin zwei Substituenten, die an benachbarte Kohlenstoffatome des Arylrings gebunden sind, einen kondensierten Ring oder kondensiertes Ringsystem bilden, sind Indenyl und Fluorenyl.
Der Ausdruck "Aryloxy" steht im Rahmen der vorliegenden Erfindung für über ein Sauerstoffatom gebundenes Aryl.
Der Ausdruck "Arylthio" steht im Rahmen der vorliegenden Erfindung für über ein Schwefelatom gebundenes Aryl.
Der Ausdruck "Heterocycloalkyl" umfasst im Rahmen der vorliegenden Erfindung nichtaromatische, ungesättigte oder vollständig gesättigte, cycloaliphatische Gruppen mit im Allgemeinen 5 bis 8 Ringatomen, vorzugsweise 5- oder 6 Ringatomen, in denen 1 , 2 oder 3 der Ringkohlenstoffatome durch Heteroatome, ausgewählt unter Sauerstoff, Stickstoff, Schwefel und einer Gruppe -NRE- ersetzt sind und das unsubstituiert ist oder mit einer oder mehreren, beispielsweise 1 , 2, 3, 4, 5 oder 6, d-Cβ-Alkylgruppen substituiert ist. Beispielhaft für solche heterocycloaliphatischen Gruppen seien Pyrroli- dinyl, Piperidinyl, 2,2,6,6-Tetramethylpiperidinyl, Imidazolidinyl, Pyrazolidinyl, Oxazoli- dinyl, Morpholidinyl, Thiazolidinyl, Isothiazolidinyl, Isoxazolidinyl, Piperazinyl, Tetra- hydrothienyl, Dihydrothienyl, Tetrahydrofuranyl, Dihydrofuranyl, Tetrahydropyranyl, 1 ,2-Oxazolin-5-yl, 1 ,3-Oxazolin-2-yl und Dioxanyl genannt. Stickstoffhaltiges Hetero- cycloalkyl kann prinzipiell sowohl über ein Kohlenstoffatom als auch über ein Stickstoffatom gebunden sein.
Der Ausdruck "Heteroaryl (Hetaryl)" umfasst im Rahmen der vorliegenden Erfindung unsubstituierte oder substituierte, heteroaromatische, ein- oder mehrkernige Gruppen, mit im Allgemeine 5 bis 14 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, in denen 1 , 2 oder 3 der Ringkohlenstoffatome durch ein, zwei, drei oder vier Heteroatome, ausgewählt unter O, N, -NRE- und S ersetzt sind, wie Furyl, Thienyl, Oxazolyl, Isoxazolyl, Thiazolyl, Isothiazolyl, Benzofuranyl, Benzthiazolyl, Benzimidazolyl, Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Indolyl, Pu- rinyl, Indazolyl, Benzotriazolyl, 1 ,2,3-Triazolyl, 1 ,3,4-Triazolyl und Carbazolyl, wobei diese heterocycloaromatischen Gruppen im Falle einer Substitution im Allgemeinen 1 , 2 oder 3 Substituenten, tragen können. Die Substituenten sind in der Regel ausgewählt unter Ci-Cβ-Alkyl, Ci-Cβ-Alkoxy, Hydroxy, Carboxy, Halogen und Cyano.
5- bis 7-gliedrige Stickstoff enthaltende Heterocycloalkyl- oder Heteroarylreste, die gegebenenfalls weitere Heteroatome enthalten, stehen beispielsweise für Pyrrolyl, Pyrazolyl, Imidazolyl, Triazolyl, Pyrrolidinyl, Pyrazolinyl, Pyrazolidinyl, Imidazolinyl, Imidazolidinyl, Pyridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Triazinyl, Piperidinyl, Piperazinyl, Oxazolyl, Isooxazolyl, Thiazolyl, Isothiazolyl, Indolyl, Chinolinyl, Isochinolinyl oder Chi- naldinyl, das unsubstituiert oder substituiert, wie vorstehend genannt sein kann.
Halogen steht für Fluor, Chlor, Brom oder lod.
Carboxylat und Sulfonat stehen im Rahmen dieser Erfindung vorzugsweise für ein De- rivat einer Carbonsäurefunktion bzw. einer Sulfonsäurefunktion, insbesondere für ein Metallcarboxylat oder -sulfonat, eine Carbonsäureester- oder Sulfonsäureesterfunkti- on oder eine Carbonsäure- oder Sulfonsäureamidfunktion. Dazu zählen z. B. die Ester mit Ci-C4-Alkanolen, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sek.-Butanol und tert.-Butanol.
Der Ausdruck "Acyl" steht im Sinne der vorliegenden Erfindung für Alkanoyl-, Hetaroyl- oder Aroylgruppen mit im Allgemeinen 1 bis 1 1 , vorzugsweise 2 bis 8 Kohlenstoffato- men, beispielsweise für die Formyl-, Acetyl-, Propanoyl-, Butanoyl-, Pentanoyl-, Hexa- noyl-, Heptanoyl-, 2-Ethylhexanoyl-, 2-Propylheptanoyl-, Benzoyl- oder Naphthoyl- Gruppe.
Die Reste E1 und E2, E3 und E4, E5und E6 sind unabhängig voneinander ausgewählt unter H, Alkyl, Cycloalkyl und Aryl. Die Gruppen NE1E2, NE3E4 und NE5E6 stehen vorzugsweise für N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Diisopropylamino, N,N-Di-n-butylamino, N,N-Di-tert.-butylamino, N,N-Dicyclohexyl- amino oder N,N-Diphenylamino.
Geeignete ionischen Flüssigkeiten sind im Rahmen der vorliegenden Erfindung ausgewählt unter Salzen der allgemeinen Formel (I)
[A]+ (1/n)*[Y]"- (I),
wobei [A]+ für ein quartäres Ammonium-Kation und (1/n)*[Y]n- für ein Anionäquivalent eines n-fach geladenen Anions steht, wobei n für eine ganze Zahl von 1 bis 3 steht.
Geeignete Verbindungen, die sich zur Bildung des Kations [A]+ von ionischen Flüssig- keiten eignen, sind z. B. in der DE 102 02 838 A1 beschrieben. Diese Verbindungen enthalten vorzugsweise wenigstens ein Stickstoffatom, besonders bevorzugt 1 bis 10 Stickstoffatome, insbesondere 1 bis 5 Stickstoffatome, ganz besonders bevorzugt 1 bis 3 Stickstoffatome und speziell 1 oder 2 Stickstoffatome. Die letztgenannten Stickstoffverbindungen können weitere Heteroatome wie Sauerstoff-, Schwefel- oder Phosphor- atome enthalten.
Stickstoffatome sind beispielsweise geeignete Träger der positiven Ladung im Kation der ionischen Flüssigkeiten. Bei der Synthese der ionischen Flüssigkeiten kann zunächst durch Quaternisierung am Stickstoffatom etwa eines Amins oder Stickstoff- Heterocyclus ein Kation erzeugt werden. Die Quaternisierung kann durch Protonierung des Stickstoffatoms erfolgen. Je nach verwendetem Protonierungsreagens werden Salze mit unterschiedlichen Anionen erhalten. In Fällen, in denen es nicht möglich ist, das gewünschte Anion bereits bei der Quaternisierung zu bilden, kann dies in einem weiteren Syntheseschritt erfolgen. Ausgehend beispielsweise von einem Ammonium- halogenid kann das Halogenid mit einer Lewissäure umgesetzt werden, wobei aus Ha- logenid und Lewissäure ein komplexes Anion gebildet wird. Alternativ dazu ist der Austausch eines Halogenidions gegen das gewünschte Anion möglich. Dies kann durch Zugabe eines Metallsalzes unter Ausfällung des gebildeten Metallhalogenids, über einen Ionenaustauscher oder durch Verdrängung des Halogenidions durch eine starke Säure (unter Freisetzung der Halogenwasserstoffsäure) geschehen. Geeignete Verfahren sind beispielsweise in Angew. Chem. 2000, 1 12, S. 3926-3945 und der darin zitierten Literatur beschrieben. Bevorzugte Kationen der ionischen Flüssigkeiten sind solche Verbindungen, die eine molare Masse von weniger als 1000 g/mol aufweisen, ganz besonders bevorzugt von weniger als 600 g/mol und insbesondere von weniger 400 g/mol.
Bevorzugte Kationen der ionischen Flüssigkeiten sind weiterhin solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus, insbesondere einen fünf- gliedrigen Heterocyclus, enthalten, der mindestens ein Stickstoffatom sowie gegebenenfalls ein Sauerstoff- oder Schwefelatom aufweist, besonders bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus enthalten, der ein, zwei oder drei Stickstoffatome und ein Schwefel- oder ein Sauerstoffatom aufweist, ganz besonders bevorzugt solche mit zwei Stickstoffatomen. Weiterhin bevorzugt sind aromatische Heterocyclen.
Demzufolge wird man in einer bevorzugten Ausführungsform es erfindungsgemäßen Verfahrens die Hydrolysestabilität einer ionischen Flüssigkeit (IL) erhöhen, die ein he- terocyclisches Kation aufweist.
Der Begriff "heterocyclisches" Kation umfasst im Sinne der vorliegenden Erfindung sowohl "heteroaromatische" Kationen als auch "teilweise oder vollständig gesättigte heterocyclische Kationen".
Der Begriff "heteroaromatisches" Kation umfasst Kationen, deren Struktur sich beispielsweise durch Quaternisierung eines Ringstickstoffatoms einer "Hetaryl"- Verbindung, wie zuvor definiert, herleiten lässt. Beispiele fünf- oder sechsgliedriger heteroaromatischer Kationen sind Pyrazolium, Oxazolium, Isoxazolium, Thiazolium, Isothiazolium, Imidazolium, 1 ,2,4-Oxadiazolium, 1 ,2,4-Thiadiazolium, 1 ,3,4-Oxa- diazolium, 1 ,3,4-Thiadiazolium, Pyrrolium, 1 ,2,3-Triazolium, 1 ,2,4-Triazolium, Pyridini- um, Pyridazinium, Pyrimidinium, 2-Pyrazinium, 1 ,3,5-Triazinium und 1 ,2,4-Triazinium.
Der Begriff "teilweise oder vollständig gesättigtes" heterocyclisches Kation umfasst Kationen, deren Struktur sich beispielsweise durch Quaternisierung eines Ringstickstoffatoms einer "Heterocycloalkyl"-Verbindung, wie zuvor definiert, herleiten lässt. Beispiele fünf- oder sechsgliedriger gesättigter oder partiell ungesättigter heterocycli- scher Kationen sind Pyrrolidinium, Pyrazolidinium, Oxazolidinium, Isoxazolidinium,
Thiazolidinium, Isothiazolidinium, Imidazolidinium, 1 ,2,4-Oxadiazolidinium, 1 ,2,4-Thia- diazolidinium, 1 ,2,4-Triazolidinium, 1 ,3,4-Oxadiazolidinium, 1 ,3,4-Thiadiazolidinium, 1 ,3,4-Triazolidinium, 2-Pyrrolinium, 3-Pyrrolinium, 2-lsoxazolinium, 3-lsoxazolinium, 4-lsoxazolinium, 2-lsothiazolinium, 3-lsothiazolinium, 4-lsothiazolinium, 2,3-Dihydro- pyrazolium, 3,4-Dihydropyrazolium, 4,5-Dihydropyrazolium, 2,3-Dihydrooxazolium,
3,4-Dihydrooxazolium, Piperidinium, Hexahydropyridazinium, Hexahydropyrimidinium, Piperazinium, 1 ,3,5-Hexahydrotriazinium oder 1 ,2,4-Hexahydrotriazinium. Bevorzugt weist die erfindungsgemäß verwendete ionische Flüssigkeit IL wenigstens ein Kation auf, das ausgewählt ist unter den im Folgenden gezeigten Verbindungen der Formeln (IV.a) bis (IV.v),
(IV.d) (IV.e) (IV.f)
(IV.i) (iv.j) (IVj')
(IV.m) (IV.m1) (IV.n)
(IV.n') (IV.o) (IV.o1)
(IV.p) (IV.q) (IV.q')
(IV.q") (IV.r) (IV.r')
(IV.u) (IV.v) sowie Oligomeren, die diese Strukturen enthalten, worin R für H, Alkyl, Alkenyl, Cycloalkyl, Cycloalkenyl, Polycyclyl, Heterocycloalkyl, Aryl oder Heteroaryl stehen;
Reste R1, R2, R3, R4, R5, R6, R7, R8 und R9, die an ein Ringkohlenstoffatom gebunden sind, unabhängig voneinander für H, eine Sulfogruppe, COOH, Carboxylat, Sulfonat, Acyl, Alkoxycarbonyl, Cyano, Halogen, Hydroxyl, SH, Nitro, NE1E2, Alkyl, Alkoxy, Al- kylthio, Alkylsulfinyl, Alkylsulfonyl, Alkenyl, Cycloalkyl, Cycloalkyloxy, Cycloalkenyl, Cycloalkenyloxy, Polycyclyl, Polycyclyloxy, Heterocycloalkyl, Aryl, Aryloxy oder Hete- roaryl stehen, wobei E1 und E2 unabhängig voneinander für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
Reste R1, R2, R3, R4, R5, R6, R7, R8 und R9, die an ein Ringheteroatom gebunden sind, für H, SO3H, NE1E2, Alkyl, Alkoxy, Alkenyl, Cycloalkyl, Cycloalkenyl, Polycyclyl, Hete- rocycloalkyl, Aryl oder Heteroaryl, stehen, wobei E1 und E2 unabhängig voneinander für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, oder
zwei benachbarte Reste R1 bis R9 auch zusammen mit den Ringatomen, an die sie gebunden sind, für wenigstens einen anellierten, gesättigten, ungesättigten oder aro- matischen Ring oder ein Ringsystem mit 1 bis 30 Kohlenstoffatomen stehen können, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder he- teroatomhaltige Gruppen aufweisen kann und wobei der Ring oder das Ringsystem unsubstituiert oder substituiert sein kann,
wobei zwei geminale Reste R1 bis R9 auch gemeinsam für =0, =S oder =NRb stehen können, wobei Rb für H, Alkyl, Cycloalkyl, Aryl oder Heteroaryl steht,
wobei in den Verbindungen der Formel (IV. u) R1 und R3 oder R3 und R5 auch gemeinsam für den Bindungsanteil einer Doppelbindung zwischen den Ringatomen, die diese Reste tragen, stehen können,
B in den Verbindungen der Formeln (IV. u) und (IV.v) zusammen mit der CN-Gruppe, an die es gebunden ist, einen 4- bis 8-gliedrigen, gesättigten oder ungesättigten oder aromatischen Cyclus bildet, der gegebenenfalls substituiert ist und/oder der gegebe- nenfalls weitere Heteroatome oder heteroatomhaltige Gruppen aufweisen kann und/oder der weitere anellierte gesättigte, ungesättigte oder aromatische Carbocyclen oder Heterocyclen umfassen kann.
Bezüglich der allgemeinen Bedeutung der zuvor genannten Reste Carboxylat, Sulfo- nat, Acyl, Alkoxycarbonyl, Halogen, NE1E2, Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkenyl, Cycloalkyl, Cycloalkyloxy, Cycloalkenyl, Cycloalkenyloxy, Polycyclyl, Polycyclyloxy, Heterocycloalkyl, Aryl, Aryloxy oder Heteroaryl wird auf die eingangs gemachten Ausführungen im vollen Umfang Bezug genommen. Reste R1 bis R9, welche in den oben genannten Formeln (IV) an ein Kohlenstoffatom gebunden sind und ein Heteroatom oder eine heteroatomhaltige Gruppe aufweisen, können auch direkt über ein Heteroatom an das Kohlenstoffatom gebunden sein.
Bilden zwei benachbarte Reste R1 bis R9 zusammen mit den Ringatomen, an die sie gebunden sind, wenigstens einen anellierten, gesättigten, ungesättigten oder aromatischen Ring oder ein Ringsystem mit 1 bis 30 Kohlenstoffatomen, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder heteroatomhaltige Grup- pen aufweisen kann und wobei der Ring oder das Ringsystem unsubstituiert oder substituiert sein kann, so können diese Reste gemeinsam als anellierte Bausteine vorzugsweise 1 ,3-Propylen, 1 ,4-Butylen, 1 ,5-Pentylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3-propylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3-propenylen, 3-Oxa-1 ,5-pentylen, 1 -Aza-1 ,3-propenylen, 1 -Ci-C4-Alkyl-1 -aza-1 ,3-propenylen, 1 ,4-Buta-1 ,3-dienylen, 1 -Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta-1 ,3-dienylen bedeuten.
Bevorzugt steht der Rest R in den Verbindungen der Formeln IV.a bis IV.v für
unsubstituiertes Ci-Cis-Alkyl wie Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1-propyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl- 3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl- 1-butyl, 2-Ethyl-1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1-Octyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl und 1-Octadecyl;
ein- bis mehrfach mit Hydroxy, Halogen, Phenyl, Cyano, Ci-Cβ-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Cis-Alkyl, speziell Hydroxy-Ci-Cis-alkyl, wie z. B. 2-Hydroxyethyl oder 6-Hydroxyhexyl; Phenyl-Ci-Cis-alkyl, wie z. B. Benzyl,
3-Phenylpropyl; Cyano-Ci-Cis-alkyl, wie z. B. 2-Cyanoethyl; Ci-Cβ-Alkoxy-Ci-Cis-alkyl, wie z. B. 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)-ethyl oder 2-(n-Butoxy- carbonyl)-ethyl; Ci-Cis-Fluoralkyl, wie Trifluormethyl, Difluormethyl, Fluormethyl, Pen- tafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl; Sulfo-Ci-Cis-alkyl, wie z. B. 3-Sulfopropyl;
Hydroxyethyloxyalkyl, Reste von Oligo- und Polyalkylenglycolen wie Polyethylenglycole und Polypropylenglycolen und deren Oligomere mit 2 bis 100 Einheiten und einem H oder einem d-Cs-Alkyl als Endgruppe, wie beispielsweise RAO-(CH RB-CH2-O)n-CH RB-CH2- mit RA und RB bevorzugt H, Methyl oder Ethyl und n bevorzugt 0 bis 3, insbesondere 3-Oxa-butyl, 3-Oxa-pentyl, 3,6-Dioxa-heptyl, 3,6-Dioxa-octyl, 3,6,9-Trioxa-decyl, 3,6,9-Trioxa-undecyl, 3,6,9,12-Tetraoxa-tridecyl und 3,6,9,12-Tetraoxa-tetradecyl; und
C2-C6-Alkenyl, wie Vinyl oder Propenyl.
Besonders bevorzugt steht der Rest R für lineares Ci-Cis-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, ganz besonders bevorzugt für Methyl, Ethyl, 1-Butyl und 1-Octyl sowie für CH3O-(CH2CH2O)n-CH2CH2- und CH3CH2O-(CH2CH2O)m-CH2CH2-, worin m für O bis 3 steht.
Bevorzugt stehen die Reste R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v unabhängig voneinander für H, Halogen, Hydroxy, Alkoxy, Alkylthio, Carboxyl, -COOH, Sulfonat, CN, NO2, Acyl, Alkoxycarbonyl, NE1E2, worin E1 und E2 eine der zuvor gege- benen Bedeutungen aufweisen,
Ci-Cis-Alkyl, das unsubstituiert oder substituiert ist und/oder durch wenigstens ein He- teroatom oder eine heteroatomhaltige Gruppe unterbrochen sein kann, C2-Ci8-Alkenyl, das unsubstituiert oder substituiert ist und/oder durch wenigstens ein Heteroatom unterbrochen sein kann, Cβ-Cio-Aryl, das unsubstituiert oder substituiert ist,
C5-Ci2-Cycloalkyl, das unsubstituiert oder substituiert ist,
Polycyclyl, das unsubstituiert oder substituiert ist,
C5-Ci2-Cycloalkenyl, das unsubstituiert oder substituiert ist,
Heterocycloalkyl mit 5 oder 6 Ringatomen, wobei der Ring neben Kohlenstoffringglie- dem 1 , 2 oder 3 Heteroatome oder heteroatomhaltige Gruppen aufweist, die ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, und das unsubstituiert oder substituiert ist, oder
Heteroaryl mit 5 bis 10 Ringatomen, wobei der Ring neben Kohlenstoffringgliedern 1 , 2 oder 3 Heteroatome oder heteroatomhaltige Gruppen aufweist, die ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, und das unsubstituiert oder substituiert ist.
Ebenfalls bevorzugt stehen in den Verbindungen der Formeln IV.a bis IV.v zwei benachbarte Reste R1 bis R9 zusammen mit den Ringatomen, an die sie gebunden sind, für wenigstens einen anellierten, gesättigten, ungesättigten oder aromatischen Ring oder für ein Ringsystem mit 1 bis 12 Kohlenstoffatomen, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen aufweisen kann, die vorzugsweise ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, und wobei der Ring oder das Ringsystem unsubstituiert ist oder substitu- iert sein kann, wobei die Substituenten vorzugsweise unabhängig voneinander ausgewählt sind unter Alkoxy, Cycloalkyl, Cycloalkoxy, Polycyclyl, Polycyclyloxy, Heterocycloalkyl, Aryl, Aryloxy, Arylthio, Heteroaryl Halogen, Hydroxy, SH, =0, =S, =NRE, COOH, Carboxylat, -SO3H, Sulfonat, NE1E2, Nitro und Cyano, wobei E1 und E2 unabhängig voneinander für H, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für Alkoxy stehen, so stehen R1 bis R9 vorzugsweise für Methoxy oder Ethoxy oder für
RAO-(CH2CH2CH2CH2O)n-CH2CH2CH2CH2O-, worin RA und RB bevorzugt für H, Methyl oder Ethyl stehen und n bevorzugt für O bis 3 steht.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für Acyl stehen, sind die- se vorzugsweise ausgewählt unter Formyl und Ci-C4-Alkylcarbonyl, insbesondere unter Formyl oder Acetyl.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für Ci-Cis-Alkyl stehen, sind diese vorzugsweise ausgewählt unter unsubstituiertem Ci-Cis-Alkyl, wie Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl (Isobutyl), 2-Methyl-
2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-9-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1-propyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl- 2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, Heptyl, Octyl, 2-Etylhexyl, 2,4,4-Trimethyl-pentyl, 1 ,1 ,3,3-Tetramethylbutyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1-Tridecyl, 1-Tetradecyl, 1-Pentadecyl, 1-Hexadecyl, 1-Heptadecyl, 1-Octadecyl; Ci-Cis-Halogenalkyl, speziell Ci-Cis-Fluoralkyl, beispielsweise Trifluormethyl, Difluor- methyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluor- butyl, Nonofluorisobutyl, Undecylfluorpentyl, Undecylisopentyl, C6F13, CsFi7, CioF2i, Ci2F25, speziell Ci-Cis-Chloralkyl, wie Chlormethyl, 2-Chlorethyl, Trichlormethyl, 1 ,1-Dimethyl-2-chlorethyl; Amino-Ci-Ci8-alkyl, wie 2-Aminoethyl, 2-Aminopropyl, 3-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl;
Ci-C6-Alkylamino-Ci-Ci8-alkyl, wie 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, 4-Methylaminobutyl, 6-Methylaminohexyl; Di-(Ci-C6-alkyl)-Ci-Ci8-alkyl, wie 2-Dimethylaminoethyl, 2-Dimethylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6-Dimethylaminohexyl; Cyano-Ci-Cis-alkyl, wie 2-Cyanoethyl, 2-Cyanopropyl;
Ci-Cio-Alkoxy-Ci-Cis-alkyl, wie Methoxymethyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 2-Methoxyisopropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 4-Ethoxybutyl, 6-Ethoxyhexyl, 2-lsopropoxyethyl, 2-Butoxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, 5-Methoxy-3-oxa-pentyl, 8-Methoxy-3,6-dioxa-octyl, 7-Methoxy-4-oxa-heptyl, 1 1-Methoxy-4,8-dioxa-undecyl, 9-Methoxy-5-oxa-nonyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-dioxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 7-Ethoxy-4-oxa-heptyl, 1 1-Ethoxy-4,8-dioxa-undecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 1 1-Methoxy-3,6,9-trioxa-undecyl, 11-Ethoxy-3,6,9-trioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl; Di-(Ci-Cio-alkoxy-Ci-Ci8-alkyl), wie Diethoxymethyl oder Diethoxyethyl, Ci-C6-Alkoxycarbonyl-Ci-Ci8-alkyl, wie 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxycarbonyl)-ethyl; Di-(Ci-C6-alkoxycarbonyl)-Ci-Ci8-alkyl, wie 1 ,2-Di-(methoxycarbonyl)-ethyl; Hydroxy-Ci-Ci8-alkyl, wie 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Hydroxy-2,2-dimethylethyl, 5-Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl, 11-Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1-Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-dioxa-tetradecyl; Ci-Ci2-Alkylsulfanyl-Ci-Ci8-alkyl, wie Butylthiomethyl, 2-Dodecylthioethyl; C5-Ci2-Cycloalkyl-Ci-Ci8-alkyl, wie Cyclopentylmethyl, 2-Cyclopentylethyl,
3-Cyclopentylpropyl, Cyclohexylmethyl, 2-Cyclohexylethyl, 3-Cyclohexylpropyl, Phenyl-Ci-Ci8-alkyl, wobei der Phenylteil von Phenyl-Ci-Ci8-alkyl unsubstituiert ist oder ein-, zwei-, drei- oder vierfach substituiert ist und die Substituenten unabhängig voneinander unter d-Cε-Alkyl, Halogen, Ci-Cβ-Alkoxy und Nitro ausgewählt sind, wie Ben- zyl (Phenylmethyl), 1-Phenylethyl, 2-Phenylethyl, 3-Phenylpropyl, p-Tolylmethyl, 1-(p-Butylphenyl)-ethyl, p-Chlorbenzyl, 2,4-Dichlorbenzyl, p-Methoxybenzyl, m-Ethoxybenzyl, Phenyl-C(CH3)2-, 2,6-Dimethylphenylmethyl; Diphenyl-Ci-Ci8-alkyl, wie Diphenylmethyl (Benzhydryl); Triphenyl-Ci-Ci8-alkyl, wie Triphenylmethyl; Phenoxy-Ci-Ci8-alkyl, wie 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl; und Phenylthio-Ci-Ci8-alkyl, wie 2-Phenylthioethyl.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für C2-Cis-Alkenyl ste- hen, sind diese vorzugsweise ausgewählt unter C2-C6-Alkenyl, wie Vinyl, 2-Propenyl, 3-Butenyl, cis-2-Butenyl, trans-2-Butenyl oder C2-Cis-Alkenyl, das teilweise oder vollständig durch Fluor substituiert ist.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für Cβ-Cio-Aryl stehen, so stehen R1 bis R9 vorzugsweise für Phenyl oder Naphthyl, wobei Phenyl oder Naphthyl unsubstituiert ist oder ein-, zwei-, drei- oder vierfach substituiert ist, wobei die Substituenten unabhängig voneinander unter Halogen, Ci-Cis-Alkyl, Ci-Cβ-Alkoxy, C-i-Ce-Alkylsulfanyl, Ci-C6-Alkoxy-Ci-C6-alkyl, Ci-C6-Alkylcarbonyl, Amino, Ci-Cβ-Alkylamino, Di-(Ci-C6-Dialkyl)amino und Nitro ausgewählt sind, wie Phenyl, Me- thylphenyl (ToIyI), Dimethylphenyl (XyIyI), wie z. B. 2,6-Dimethylphenyl, Trimethylphe- nyl, wie z. B. 2,4,6-Trimethylphenyl, Ethylphenyl, Diethylphenyl, iso-Propylphenyl, tert- Butylphenyl, Dodecylphenyl, Chlorphenyl, Dichlorphenyl, Trichlorphenyl, Fluorphenyl, Difluorphenyl, Trifluorphenyl, Tetrafluorphenyl, Pentafluorphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, 2,6-Dimethoxyphenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetylphenyl, Methoxyethylphenyl, Etho- xymethylphenyl, Methylthiophenyl, Isopropylthiophenyl, tert.-Butylthiophenyl, α-Naphthyl, ß-Naphthyl, Methylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxy- naphthyl, oder partiell fluoriertes Phenyl oder perfluoriertes Phenyl.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für C5-Ci2-Cycloalkyl stehen, so stehen R1 bis R9 vorzugsweise für unsubstituiert.es Cycloalkyl, wie Cyclo- pentyl oder Cyclohexyl;
C5-Ci2-Cycloalkyl, das ein- oder zweifach substituiert ist, wobei die Substituenten unabhängig voneinander unter Ci-Cβ-Alkyl, Ci-Cβ-Alkoxy, Ci-Cβ-Alkylsulfanyl oder Chlor ausgewählt sind, z. B. Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlor- cyclopentyl; C5-Ci2-Cycloalkyl, das ganz oder vollständig fluoriert ist.
Wenn R1 bis R9 in den Verbindungen der Formel IV. a bis IV.v für Polycyclyl stehen, so stehen R1 bis R9 vorzugsweise für C5-Ci2-Bicycloalkyl wie Norbornyl oder C5-Ci2-Bicycloalkenyl, wie Norbornenyl.
Wenn R1 bis R9 in den Verbindungen der Formel IV.a bis IV.v für C5-Ci2-Cycloalkenyl stehen, so stehen R1 bis R9 vorzugsweise für unsubstituiert.es Cycloalkenyl, wie Cyc- lopent-2-en-1-yl, Cyclopent-3-en-i-yl, Cyclohex-2-en-1-yl, Cyclohex-1-en-1-yl, Cyclo- hexa-2,5-dien-1-yl oder partiell oder vollständig fluoriertes Cycloalkenyl.
Wenn R1 bis R9 in den Verbindungen der Formel IV.a bis IV.v für Heterocycloalkyl mit 5 oder 6 Ringatomen stehen, so stehen R1 bis R9 vorzugsweise für 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl.
Wenn R1 bis R9 in den Verbindungen der Formel IV.a bis IV.v für Heteroaryl stehen, so stehen R1 bis R9 vorzugsweise für Furyl, Thienyl, Pyrryl, Pyridyl, Indolyl, Benzoxazolyl, Benzimidazolyl, Benzthiazolyl. Im Falle einer Substitution trägt Hetaryl 1 , 2 oder 3 Sub- stituenten, die unabhängig voneinander ausgewählt sind unter Ci-Cβ-Alkyl,
Ci-Cβ-Alkoxy und Halogen, beispielsweise Dimethylpyridyl, Methylchinolyl, Dimethyl- pyrryl, Methoxyfuryl, Dimethoxypyridyl oder Difluorpyridyl.
Besonders bevorzugt stehen die Reste R1 bis R9 in den Verbindungen der Formel IV.a bis IV.v unabhängig voneinander für Wasserstoff; unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit Hydroxy, Halogen, Phenyl, Cyano, Ci-Cβ-Alkoxycarbonyl und/oder Sulfogruppe substituiertes Ci-Cis-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1-propyl, 1-Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl- 3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl- 1-butyl, 2-Ethyl-1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1-Octyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, 2-Hydroxyethyl, Benzyl, 3-Phenyl-propyl, 2-Cyanoethyl, Methoxycarbonylmethyl, Etho- xycarbonylmethyl, n-Butoxycarbonylmethyl, tert-Butoxycarbonylmethyl,
2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Tri- fluormethyl, Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl oder 6-Hydroxyhexyl und 3-Sulfopropyl; Hydroxyethyloxyalkyl, Reste von Oligo- und Polyalkylenglycolen, wie Polyethylenglyco- Ie und Polypropylenglycolen und deren Oligomere mit 2 bis 100 Einheiten und einem H oder einem Ci -Ce-Al kyl als Endgruppe, wie beispielsweise
RAO-(CHRB-CH2-O)n-CHRB-CH2- OdOr RAO-(CH2CH2CH2CH2O)n-CH2CH2CH2CH2O-, worin RA und RB bevorzugt für H, Methyl oder Ethyl und n bevorzugt für 0 bis 3 steht, insbesondere 3-Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl,
3,6,9-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9, 12-Tetra- oxatetradecyl;
C2-C4-Alkenyl, wie Vinyl und AIIyI; und
N,N-Di-Ci-C6-alkylamino, wie beispielsweise N,N-Dimethylamino und N,N-Diethylamino.
Ganz besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für Wasserstoff; Ci-Ciβ-Alkyl, wie Methyl, Ethyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl; Phenyl; 2-Hydroxyethyl; 2-Cyanoethyl; 2-(Alkoxycarbonyl)ethyl, wie 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl oder 2-(n-Butoxycarbonyl)ethyl;
N,N-(Ci-C4-Dialkyl)amino, wie N,N-Dimethylamino oder N,N-Diethylamino; Chlor sowie für Reste von Oligoalkylenglycol, wie CH3O-(CH2CH2O)n-CH2CH2- oder CH3CH2O-(CH2CH2O)n-CH2CH2-, worin n für 0 bis 3 steht.
Bevorzugte Pyridiniumionen sind Verbindungen der Formel IV. a, worin einer der Reste R1 bis R5 für Methyl, Ethyl oder Chlor steht und die verbleibenden Reste R1 bis R5 für H stehen.
Weitere bevorzugte Pyridiniumionen sind Verbindungen der Formel IV. a, worin R3 für Dimethylamino steht und die verbleibenden Reste R1, R2, R4 und R5 für H stehen. Weitere bevorzugte Pyridiniumionen sind Verbindungen der Formel IV. a, worin die Reste R1 bis R5 für H stehen.
Weitere bevorzugte Pyridiniumionen sind Verbindungen der Formel IV. a, worin R2 für Carboxy oder Carboxamid steht und die verbleibenden Reste R1, R2, R4 und R5 für H stehen.
Weitere bevorzugte Pyridiniumionen sind Verbindungen der Formel IV.a, worin R1 und R2 oder R2 und R3 gemeinsam für 1 ,4-Buta-1 ,3-dienylen stehen und die verbleibenden Reste R1, R2, R4 und R5 für H stehen.
Besonders bevorzugte Pyridiniumionen sind Pyridinium, 2-Methylpyridinium, 2-Ethylpyridinium, 5-Ethyl-2-methylpyridinium und 2-Methyl-3-ethylpyridinium sowie 1-Methylpyridinium, 1-Ethylpyridinium, 1-(1-Butyl)pyridinium, 1-(1-Hexyl)pyridinium, 1-(1-Octyl)-pyridinium, 1-(1-Hexyl)-pyridinium, 1-(1-Octyl)-pyridinium,
1 -(1 -Dodecyl)-pyridinium, 1 -(1 -Tetradecyl)-pyridinium, t-(1 -Hexadecyl)-pyridinium, 1 ,2-Dimethylpyridinium, 1-Ethyl-2-methylpyridinium, 1-(1-Butyl)-2-methylpyridinium, 1 -(1 -Hexyl)-2-methylpyridinium, 1 -(1 -Octyl)-2-methylpyridinium, 1 -(1 -Dodecyl)-2-methylpyridinium, 1 -(1 -Tetradecyl)-2-methylpyridinium, 1-(1-Hexadecyl)-2-methylpyridinium, 1-Methyl-2-ethylpyridinium, 1 ,2-Diethylpyridinium, 1 -(1 -Butyl)-2-ethylpyridinium, 1 -(1 -Hexyl)-2-ethylpyridinium, 1 -(1 -Octyl)-2-ethylpyridinium, 1 -(1 -Dodecyl)-2-ethylpyridinium, 9-(1 -Tetradecyl)-2-ethylpyridinium, 1 -(1 -Hexadecyl)-2-ethylpyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2-methyl-pyridinium, 1-(1-Butyl)-2-methyl-3-ethyl-pyridinium, 1-(1-Hexyl)-2-methyl-3-ethyl-pyridinium und 1 -(1 -Octyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3-ethyl-pyridinium, 1 -(1 -Tetradecyl)-2-methyl-3-ethyl-pyridinium und 1 -(1 -Hexadecyl)-2-methyl-3-ethyl-pyridinium.
Bevorzugte Pyridaziniumionen sind Verbindungen der Formel IV. b, worin die Reste R1 bis R4 für H stehen, oder worin einer der Reste R1 bis R4 für Methyl oder Ethyl steht und die verbleibenden Reste R1 bis R4 für H stehen.
Bevorzugt Pyrimidiniumionen sind Verbindungen der Formel IV.c, worin R1 für H, Me- thyl oder Ethyl steht und R2 bis R4 unabhängig voneinander für H oder Methyl stehen, oder worin R1 für H, Methyl oder Ethyl steht, R2 und R4 für Methyl stehen und R3 für H steht.
Bevorzugte Pyraziniumionen sind Verbindungen der Formel IV. d, worin R1 für H, Me- thyl oder Ethyl steht und R2 bis R4 unabhängig voneinander für H oder Methyl stehen, oder worin R1 für H, Methyl oder Ethyl steht und R2 und R4 für Methyl stehen und R3 für H steht, oder worin R1 bis R4 für Methyl stehen oder worin R1 bis R4 für H stehen. Bevorzugte Imidazoliumionen sind Verbindungen der Formel IV.e, worin R1 für H, Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Octyl, 2-Hydroxyethyl oder 2-Cyano- ethyl steht und R2 bis R4 unabhängig voneinander für H, Methyl oder Ethyl stehen.
Besonders bevorzugte Imidazoliumionen der Formel IV.e sind 1-Methylimidazolium,
1 -Ethylimidazolium, 1 -(1 -Propyl)-imidazolium, 1 -(1 -Allyl)-imidazolium,
1 -(1 -Butyl)-imidazolium, 1 -(1 -Octyl)-imidazolium, 1 -(1 -Dodecyl)-imidazolium,
1 -(1 -Tetradecyl)-imidazolium, 1 -(1 -Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1 ,3-Diethylimidazolium, 1-Ethyl-3-methylimidazolium, 1-(1-Butyl)-3-methylimidazolium, 1 -(1 -Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl-imidazolium, 1 -(1 -Hexyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-butyl-imidazolium, 1 -(1 -Octyl)-3-methylimidazolium, 1 -(1 -Octyl)-3-ethylimidazolium, 1 -(1 -Octyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3-methylimidazolium, 1 -(1 -Dodecyl)-3-ethylimidazolium, 1 -(1 -Dodecyl)-3-butylimidazolium,
1 -(1 -Dodecyl)-3-octylimidazolium, 1 -(1 -Tetradecyl)-3-methylimidazolium, 1 -(1 -Tetradecyl)-3-ethylimidazolium, 1 -(1 -Tetradecyl)-3-butylimidazolium, 1 -(1 -Tetradecyl)-3-octylimidazolium, 1 -(1 -Hexadecyl)-3-methylimidazolium, 1 -(1 -Hexadecyl)-3-ethylimidazolium, 1 -(1 -Hexadecyl)-3-butylimidazolium, 1-(1-Hexadecyl)-3-octylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3-Trimethylimidazolium, 1-Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl-imidazolium, 1 -(1 -Octyl)-2,3-dimethylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4-Trimethylimidazolium, 1 ,4-Dimethyl-3-ethylimidazolium, 3-Methylimidazolium, 3-Ethylimidazolium, 3-n-Propylimidazolium, 3-n-Butylimidazolium, 1 ,4-Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5-Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3-butylimidazolium, 1 ,4,5-Trimethyl-3-octylimidazolium, 1 -Prop-1 -en-3-yl-3-methylimidazolium und 1 -Prop-1 -en-3-yl-3-butylimidazolium.
Bevorzugte Pyrazoliumionen sind Verbindungen der Formeln IV.f, IV. g bzw. IV. g', worin R1 für H, Methyl oder Ethyl steht und R2 bis R4 unabhängig voneinander für H oder Methyl stehen.
Weitere bevorzugte Pyrazoliumionen sind Verbindungen der Formel IV.h, worin R1 bis R4 unabhängig voneinander für H oder Methyl stehen.
Besonders bevorzugte Pyrazoliumionen sind 1 ,4-Dimethylpyrazolium und 1 ,2,4-Trimethylpyrazolium genannt.
Bevorzugte 1-Pyrazoliniumionen sind Verbindungen der Formel IV. i, worin R1 bis R6 unabhängig voneinander für H oder Methyl stehen. Bevorzugte 2-Pyrazoliniumionen sind Verbindungen der Formel IV.j bzw. IV.j", worin R1 für H, Methyl, Ethyl oder Phenyl steht und R2 bis R6 unabhängig voneinander für H oder Methyl stehen.
Bevorzugte 3-Pyrazoliniumionen sind Verbindungen der Formel IV. k. bzw. .IV.k', worin R1 und R2 unabhängig voneinander für H, Methyl, Ethyl oder Phenyl stehen und R3 bis R6 unabhängig voneinander für H oder Methyl stehen.
Bevorzugte Imidazoliniumionen sind Verbindungen der Formel (IV. I), worin R1 und R2 unabhängig voneinander für H, Methyl, Ethyl, 1-Butyl oder Phenyl stehen, R3 und R4 unabhängig voneinander für H, Methyl oder Ethyl stehen und R5 und R6 unabhängig voneinander für H oder Methyl stehen.
Weitere bevorzugte Imidazoliniumionen sind Verbindungen der Formel IV.m bzw.
IV. nϊ, worin R1 und R2 unabhängig voneinander für H, Methyl oder Ethyl stehen und R3 bis R6 unabhängig voneinander für H oder Methyl stehen.
Weitere bevorzugte Imidazoliniumionen sind Verbindungen der Formel IV.n bzw. IV. n', worin R1 bis R3 unabhängig voneinander für H, Methyl oder Ethyl stehen und R4 bis R6 unabhängig voneinander für H oder Methyl stehen.
Bevorzugte Thiazoliumionen sind Verbindungen der Formel IV. o bzw. IV. o', worin R1 für H, Methyl, Ethyl oder Phenyl steht und R2 und R3 unabhängig voneinander für H oder Methyl stehen.
Bevorzugte Oxazoliumionen sind Verbindungen der Formel IV. p, worin R1 für H, Methyl, Ethyl oder Phenyl steht und R2 und R3 unabhängig voneinander für H oder Methyl stehen.
Bevorzugte 1 ,2,4-Triazoliumionen sind Verbindungen der Formeln IV. q, IV. q' bzw. IV. q", worin R1 und R2 unabhängig voneinander für H, Methyl, Ethyl oder Phenyl stehen und R3 für H, Methyl oder Phenyl steht.
Bevorzugte 1 ,2,3-Triazoliumionen sind Verbindungen der Formeln IV. r, IV. r' bzw. IV.r", worin R1 für H, Methyl oder Ethyl steht, R2 und R3 unabhängig voneinander für H oder Methyl stehen, oder R2 und R3 zusammen für 1 ,4-Buta-1 ,3-dienylen stehen.
Bevorzugte Pyrrolidiniumionen sind Verbindungen der Formel IV. s, worin R1 für H, Me- thyl, Ethyl oder Phenyl steht und R2 bis R9 unabhängig voneinander für H oder Methyl stehen. Bevorzugte Imidazolidiniumionen sind Verbindungen der Formel IV. t, worin R1 und R4 unabhängig voneinander für H, Methyl, Ethyl oder Phenyl stehen und R2, R3 und R5 bis R8 unabhängig für H oder Methyl stehen.
Bevorzugte Diazabicycloalkeniumionen der Formeln IV.u und IV.v sind ausgewählt unter kationischen Derivaten von 1 ,5-Diazabicyclo[4.3.0]non-5-en (DBN) und 1 ,8- Diazabicyclo[5.4.0]-undec-7-en (DBU).
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Hydrolysestabilität einer ionischen Flüssigkeit IL verbessert, die wenigstens ein Kation aufweist, das ausgewählt ist unter den zuvor genannten Imidazoliumionen und den zuvor genannten Pyrazoliumionen. Ganz besonders bevorzugt ist das Kation der ionischen Flüssigkeit unter den zuvor genannten Imidazoliumionen ausgewählt. Bezüglich bevorzugter Imidazoliumionen und Pyrazoliumionen wird auf die zuvor ge- machten Ausführungen in vollem Umfang Bezug genommen.
In dem erfindungsgemäßen Verfahren ist das Anion [Y]n- der ionischen Flüssigkeiten IL bevorzugt ausgewählt unter Verbindungen der Formeln (RaO)Sθ3", (Ra)Sθ3", (R3O)SO2-, (R3O)PO3 2", (RaO)(RbO)PO2-, (RaO)(Rb)PO2-, (R3O)PO2 2", (RaO)(RbO)PO",
(RaO)(Rb)PO-, (R3O)BO2 2", (RaO)(RbO)BO-, (RaO)(Rb)BO", (RaO)(RbO)(RcO)(RdO)B-, (RaO)CO2-,(RaO)SiOs3-, (RaO)(RbO)SiO2 2-, (RaO)(Rb)SiO2 2-, (Ra0)(Rb0)(Rd0)Si0-, (Ra0)(Rb0)(Rc)Si0- und (Ra0)(Rb)(Rc)Si0-, worin die Reste Ra, Rb, Rc und Rd unabhängig voneinander für H, Alkyl, vorzugsweise Ci-C3o-Alkyl, besonders bevorzugt Ci-Cis-Alkyl, das unsubstituiert oder substituiert ist, und/oder durch wenigstens ein Heteroatom oder heteroatomhaltige Gruppe unterbrochen sein kann,
Aryl, vorzugsweise C6-Ci4-Aryl, besonders bevorzugt Cβ-Cio-Aryl, das unsubstituiert oder substituiert ist, Cycloalkyl, vorzugsweise C5-Ci2-Cycloalkyl, das unsubstituiert oder substituiert ist, Heterocycloalkyl, vorzugsweise Heterocycloalkyl mit 5 oder 6 Ringatomen, wobei der Ring neben Kohlenstoffringatomen 1 , 2 oder 3 Heteroatome oder heteroatomhaltige Gruppen aufweist, das unsubstituiert oder substituiert ist, Heteroaryl, vorzugsweise Heteroaryl mit 5 bis 10 Ringatomen, wobei der Ring neben Kohlenstoffringatomen 1 , 2 oder 3 Heteroatome oder heteroatomhaltige Gruppen aufweist, die ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, das unsubstituiert oder substituiert ist, wobei in Anionen, die mehrere Reste Ra bis Rd aufweisen, auch jeweils zwei dieser Reste zusammen mit dem Teil des Anions, an das sie gebunden sind, für wenigstens einen gesättigten, ungesättigten oder aromatischen Ring oder ein Ringsystem mit 1 bis 12 Kohlenstoffatomen stehen können, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen aufweisen kann, die vorzugsweise ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, und wobei der Ring oder das Ringsystem unsubstituiert ist oder substituierten sein kann.
Bezüglich geeigneter und bevorzugter Ci-C3o-Alkyle, insbesondere Ci-Cis-Alkyle, C6-Ci4-Aryle, insbesondere Cβ-Cio-Aryle, Cs-C-^-Cycloalkyle, Heterocycloalkyle mit 5 oder 6 Ringatomen und Heteroaryle mit 5 oder 6 Ringatomen wird auf die eingangs gemachten Ausführungen Bezug genommen. Bezüglich geeigneter und bevorzugter Substituenten an d-Cso-Alkyl, speziell Ci-Ci8-Alkyl, C6-Ci 2-Aryl, C5-Ci2-Cycloalkyl, Heterocycloalkyl mit 5 oder 6 Ringatomen und Heteroaryl mit 5 oder 6 Ringatomen wird ebenfalls auf die eingangs gemachten Ausführungen zu Substituenten Bezug genommen.
Wenn wenigstens einer der Reste Ra bis Rd für gegebenenfalls substituiertes Ci-Ci8-Alkyl steht, so steht er vorzugsweise für Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, 2,4,4-Tri- methylpentyl, Decyl, Dodecyl, Tetradecyl, Hetadecyl, Octadecyl, 1 ,1-Dimethylpropyl, 1 ,1-Dimethylbutyl, 1 ,1 ,3,3-Tetramethylbutyl, Benzyl, 1-Phenylethyl, α,α-Dimethyl- benzyl, Benzhydryl, p-Tolylmethyl, 1-(p-Butylphenyl)-ethyl, p-Chlorbenzyl, 2,4-Dichlor- benzyl, p-Methoxybenzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2-Methoxy- carbonylethyl, 2-Ethoxycarbonylethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di-(methoxy- carbonyl)-ethyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Butoxyethyl, Diethoxymethyl, Dietho- xyethyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, 4-Methyl- 1 ,3-dioxolan-2-yl, 2-lsopropoxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, Chlormethyl, Trichlormethyl, Trifluormethyl, 1 ,1-Dimethyl-2-chlorethyl, 2-Methoxyisopropyl, 2-Ethoxy- ethyl, Butylthiomethyl, 2-Dodecylthioethyl, 2-Phenylthioethyl, 2,2,2-Trifluorethyl,
2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 4-Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, 4-Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethylaminoethyl, 2-Dimethylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethyl- aminobutyl, 6-Dimethylaminohexyl, 2-Hydroxy-2,2-dimethylethyl, 2-Phenoxyethyl,
2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 4-Ethoxybutyl oder 6-Ethoxyhexyl.
Wenn wenigstens einer der Reste Ra bis Rd für durch ein oder mehrere nichtbenachbarte Heteroatome oder heteroatomhaltige Gruppen unterbrochenes Ci-Ci8-Alkyl steht, so steht er vorzugsweise für 5-Hydroxy-3-oxapentyl, 8-Hydroxy-3,6-dioxa-octyl, 11-Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 1 1-Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12-trioxa-pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-oxa-tetradecyl, 5-Methoxy-3-oxa-pentyl,
8-Methoxy-3,6-dioxa-octyl, 1 1-Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 1 1-Methoxy-4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-oxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6-dioxa-octyl, 1 1-Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 1 1-Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14-Ethoxy-5,10-oxa-tetradecyl.
Bilden zwei Reste Ra bis Rd einen Ring, so können diese Reste gemeinsam beispielsweise als anellierten Baustein 1 ,3-Propylen, 1 ,4-Butylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3-propylen, 2-Oxa-1 ,3-propenylen, 1-Aza-1 ,3-propenylen, 1-Ci-C4-Alkyl-1-aza- 1 ,3-propenylen, 1 ,4-Buta-1 ,3-dienylen, 1-Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza- 1 ,4-buta-1 ,3-dienylen bedeuten.
Die Anzahl der nicht-benachbarte Heteroatome oder heteroatomhaltige Gruppen der Reste Ra bis Rd ist grundsätzlich nicht kritisch und wird in der Regel nur durch die Größe des jeweiligen Rests oder Ringbausteins beschränkt. In der Regel beträgt sie nicht mehr als 5 in dem jeweiligen Rest, bevorzugt nicht mehr als 4 oder ganz besonders bevorzugt nicht mehr als 3. Weiterhin befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein, bevorzugt mindestens zwei Kohlenstoffatome.
Substituierte und unsubstituierte Iminogruppen können beispielsweise Imino-, Methyl- imino-, iso-Propylimino, n-Butylimino oder tert-Butylimino sein.
Bevorzugte funktionelle Gruppen der Reste Ra bis Rd Carboxy, Carboxamid, Hydroxy, Di-(Ci-C4-Alkyl)-amino, d^-Alkyloxycarbonyl, Cyano oder CrC4-AIkOXy. Von Alkyl verschiedene Reste Rc bis Rf können zudem ein- oder mehrfach durch Ci-C4-AIkVl, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl oder tert-Butyl, substituiert sein.
Wenn wenigstens einer der Reste Ra bis Rd für gegebenenfalls substituiertes C6-Ci2-Aryl steht, so steht er vorzugsweise für Phenyl, Methylphenyl (ToIyI), XyIyI, α-Naphthyl, ß-Naphthyl, Chlorphenyl, Dichlorphenyl, Trichlorphenyl, Difluorphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diethylphenyl, iso-Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl, Isopropylnaphthyl, Chlornaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2,6-Dichlorphenyl, 4-Bromphenyl, 2- oder 4-Nitrophenyl, 2,4- oder 2,6-Dinitrophenyl, 4-Dimethylamino- phenyl, 4-Acetylphenyl, Methoxyethylphenyl oder Ethoxymethylphenyl.
Wenn wenigstens einer der Reste Ra bis Re für gegebenenfalls substituiertes C5-Ci2-Cycloalkyl steht, so steht er vorzugsweise für Cyclopentyl, Cyclohexyl, Cyclo- octyl, Cyclododecyl, Methylcyclopentyl, Dimethylcyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, Butylthiocyclohexyl, Chlorcyclohexyl, Dichlorcyclohexyl, Dichlorcyclopentyl sowie ein gesättigtes oder ungesättigtes bicycli- sches System wie Norbornyl oder Norbornenyl.
Wenn wenigstens einer der Reste Ra bis Re für einen gegebenenfalls substituierten fünf- oder sechsgliedrigen Heterocyclus steht, so steht er vorzugsweise für Furyl, Thie- nyl, Pyryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl, Benzthiazo- IyI, Dimethylpyridyl, Methylchinolyl, Dimethylpyryl, Methoxifuryl, Dimethoxipyridyl, Difluorpyridyl, Methylthiophenyl, Isopropylthiophenyl oder tert-Butylthiophenyl.
Wenn in Anionen, die mehrere Reste Ra bis Re aufweisen, auch jeweils zwei dieser Reste zusammen mit dem Teil des Anions, an das sie gebunden sind, für wenigstens einen gesättigten, ungesättigten oder aromatischen Ring oder ein Ringsystem mit 1 bis 12 Kohlenstoffatomen stehen können, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen aufweisen kann, die vorzugsweise ausgewählt sind unter Sauerstoff, Stickstoff, Schwefel und NRE, so ist der Ring oder das Ringsystem unsubstituiert oder trägt 1 , 2, 3, 4, 5 oder mehr als 5 Substituenten. Die Substituenten sind vorzugsweise unabhängig voneinander ausgewählt sind unter Alkyl, Alkoxy, Alkylsulfanyl, Cycloalkyl, Cycloalkoxy, Polycyclyl, Hete- rocycloalkyl, Aryl, Aryloxy, Arylthio und Heteroaryl.
Die zuvor genannten Anionen bzw. Anionenäquivalente unterliegen in ionischen Flüssigkeiten im Allgemeinen wenigstens teilweise der Hydrolyse.
In einer besonders bevorzugten Ausführungsform des Verfahrens ist das Anionen [Y]n- der ionischen Flüssigkeit (IL) ausgewählt unter Verbindungen der Formeln (RaO)Sθ3", (Ra)SO3 ", (R3O)PO3 2" und (RaO)(RbO)PO2 ", worin Ra und Rb unabhängig voneinander für Alkyl, Cycloalkyl oder Aryl, speziell für unsubstituiertes Ci-C4-Alkyl, stehen. Ganz besonders bevorzugt ist das Anionen [Y]n- der ionischen Flüssigkeit (IL) ausgewählt unter Verbindungen der Formel (RaO)Sθ3", speziell Mono-Ci-C4-alkylsulfaten, wie bei- spielsweise Ethylsulfat.
Die als besonders bevorzugt genannten Anionen unterliegen in ionischen Flüssigkeiten in besonderem Maße der Hydrolyse. Insbesondere die durch die Hydrolyse von Verbindungen der Formel (RaO)Sθ3" erhalte Schwefelsäure kann durch ihre korrosiven Eigenschaften eine schädigende Wirkung auf chemische Verbindungen, chemische Reaktionen und Vorrichtungen haben, mit denen eine diese enthaltende ionische Flüssigkeit in Kontakt gebracht wird.
In einer ersten Ausführungsform des erfindungsgemäßen Verfahrens werden zur Er- höhung der Hydrolysestabilität der ionischen Flüssigkeit (IL) tertiäre Amine oder Gemische tertiärer Amine verwendet. Geeignete tertiäre Amine sind Verbindungen der Formel NR1R2R3, worin R1, R2 und R3 eine der zuvor für R1 bis R9 gegebene, von H verschiedene Bedeutungen aufweisen.
In einer speziellen Ausführungsform sind die erfindungsgemäß verwendeten tertiären Amine ausgewählt unter Verbindungen der Formel NR1R2R3, worin R1, R2 und R3 unabhängig voneinander für jeweils gegebenenfalls substituiertes Ci-C3o-Alkyl, Cs-Cs-Cycloalkyl oder Aryl stehen, wobei Ci-C3o-Alkyl auch, wie zuvor definiert, durch eine oder mehrere nicht benachbarte Heteroatome oder heteroatomhaltige Gruppen unterbrochen sein kann.
Beispiele geeigneter unsubstituierter tertiärer Amine sind Triethylamin, Diethyl- n-propylamin, Diethylisopropylamin, Diethyl-n-butylamin, Diethyl-tert-butylamin, Diethyl- n-pentylamin, Diethylhexylamin, Diethylcyclohexylamin, Diethyloctylamin, Diethyl- (2-ethylhexyl)amin, Diethyldodecylamin Tri-n-propylamin, Di-n-propylethylamin, Di-n-propylbutylamin, Di-n-propyl-n-pentylamin, Di-n-propylhexylamin,
Di-n-propylcyclohexylamin, Di-n-propyloctylamin, Di-n-propyl(2-ethylhexyl)amin, Di-n-propyldodecylamin,Triisopropylamin, Diisopropylethylamin, Diisopropyl- n-propylamin, Diisopropylbutylamin, Diisopropylpentylamin, Diisopropylhexylamin, Diisopropylcyclohexylamin, Diisopropyloctylamin, Diisopropyl-(2-ethylhexyl)-amin, Diisopropyldodecylamin, Tri-n-butylamin, Di-n-butylethylamin, Di-n-butyl-n-propylamin, Di-n-butyl-n-pentylamin, Di-n-butylhexylamin, Di-n-butylcyclohexylamin, Di-n-butyloctylamin, Di-n-butyl-(2-ethylhexyl)-amin, Di-n-butyldodecylamin, N-Benzyl- N-ethylanilin, N-Benzyl-N-n-propylanilin, N-Benzyl-N-iso-propylanilin, N-Benzyl- N-n-butylanilin, N,N-Dimethyl-p-toluidin, N,N-Diethyl-p-toluidin, N,N-Di-n-butyl- p-toluidin, Diethylbenzylamin, Di-n-propylbenzylamin, Di-n-butylbenzylamin, Diethylphenylamin, Di-n-Propylphenylamin und Di-n-Butylphenylamin.
Beispiele geeigneter substituierter tertiärer Amine sind Tri(2-hydroxyethyl)amin, Di(2-hydroxyethyl)-n-propylamin, Di(2-hydroxyethyl)isopropylamin, Di(2-hydroxyethyl)- n-butylamin, Di(2-hydroxyethyl)-tert-butylamin, Di(2-hydroxyethyl)-n-pentylamin,
Di(2-hydroxyethyl)hexylamin, Di(2-hydroxyethyl)cyclohexylamin, Di(2-hydroxyethyl)- octylamin, Di(2-hydroxyethyl)(2-ethylhexyl)amin, Di(2-hydroxyethyl)nonylamin, Di(2-hydroxyethyl)decylamin, Di(2-hydroxyethyl)dodecylamin, Di-n-propyl(2-hydroxy- ethyl)amin, Diisopropyl(2-hydroxyethyl)amin, Di-n-butyl(2-hydroxyethyl)amin, N-Benzyl- N-(2-hydroxyethyl)anilin, N,N-Di(2-hydroxyethyl)-p-toluidin, Di(2-hydroxyethyl)- benzylamin, Di(2-hydroxyethyl)phenylamin sowie deren Derivate, die durch Alkoxylie- rung, speziell durch Ethoxylierung, der 2-Hydroxyethylgruppen bereitgestellt werden können. Üblicherweise liegen die zuvor genannten alkoxylierten Derivate der tertiären Amine als Gemische vor und weisen durchschnittlich 1 bis 50, bevorzugt 1 bis 20 und besonders bevorzugt 2 bis 10 Alkylenoxideinheiten je 2-Hydroxyethylgruppe auf. Bevorzugte substituierter tertiärer Amine sind Di(2-hydroxyethyl)(Ci-Ci2-Alkyl)amine und Tri(2-hydroxyethyl)amin sowie deren alkoxylierte Derivate. Ein besonders bevorzugtes substituiertes tertiäres Amin ist Tri(2-hydroxyethyl)amin.
Ebenso geeignet sind Gemische tertiärer Amine der Formel NR1R2R3, worin sich die Bedeutungen wenigstens eines der Reste R1, R2 oder R3 von einem Gemisch aus ge- radkettigem und verzweigtem Ci-C3o-Alkyl, speziell Cs-ds-Alkyl, und Ci-C3o-Alkenyl, speziell Cs-ds-Alkenyl, wie es aus natürlichen oder synthetischen Fettsäuren und Fettalkoholen sowie aus Oxoalkoholen zugänglich ist, ableitet. Dazu zählen beispielsweise Gemische von n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n Dodecyl, n-Tridecyl, My- ristyl, Pentadecyl, Palmityl (= Cetyl), Heptadecyl, Octadecyl, Nonadecyl, Arrachinyl (Arachidyl), Behenyl, Octenyl, Nonenyl, Decenyl, Undecenyl, Dodecenyl, Tridecenyl, Tetradecenyl, Pentadecenyl, Hexadecenyl, Heptadecenyl, Octadecenyl, speziell Oleyl, Nonadecenyl, Linolyl, Linolenyl oder Eleostearyl.
Bevorzugt sind solche Gemische tertiärer Amine der Formel NR1R2R3, worin wenigstens einer der Reste R1, R2 oder R3 für ein Gemisch aus geradkettigem und verzweigtem Ci-C3o-Alkyl und Ci-C3o-Alkenylsteht und wenigstens ein weiterer, speziell zwei, der Reste R1, R2 oder R3 für 2-Hydroxyethyl oder alkoxyliertes 2-Hydroxyethyl steht.
In einer weiteren speziellen Ausführungsform sind die erfindungsgemäß verwendeten tertiären Amine ausgewählt unter Verbindungen der Formel NR1R2R3, worin R1 zusammen mit R2 und zusammen mit dem Stickstoffatom an das diese gebunden sind für einen fünf- bis sechsgliedrigen Heterocyclus stehen, wobei R3 eine der zuvor gegebenen Bedeutungen aufweist oder zusammen mit einem benachbarten Substituenten des Heterocyclus für den Einfachbindunganteil einer chemischen Doppelbindung stehen kann.
Bevorzugt sind heterocyclische tertiäre Amine NR1R2R3, worin wenigstens ein zu einem Ringstickstoffatom benachbartes Ringkohlenstoffatom einen von H verschiedenen Substituenten, insbesondere einen Ci-C4-Alkylsubstituenten, aufweist.
Beispiele geeigneter heterocyclischer tertiärer Amine NR1R2R3 sind Pyridinverbindun- gen, Pyridazinverbindungen, Pyrimidinverbindungen, Pyrazinverbindungen, Imidazol- verbindungen, Pyrazolverbindungen, 1 ,2,4-Triazolverbindungen oder 1 ,2,4-Triazol- Verbindungen, insbesondere solche, die in Nachbarposition zu einem Ringstickstoffatom wenigstens einen Substituenten aufweisen.
Geeignete Pyridinverbindungen sind beispielsweise 2-Methylpyridin, 2-Ethylpyridin, 2,3-Dimethylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin und 2-Methyl-3-ethylpyridin. Geeignete Pyridazinverbindungen sind beispielsweise 3-Methylpyridazin, 3-Ethylpyridazin, 3,4-Dimethylpyridazin, 3,5-Dimethylpyridazin, 3,6-Dimethylpyridazin.
Geeignete Pyrimidinverbindungen sind beispielsweise 2-Methylpyrimidin, 4-Methylpyrimidin, 2,4-Dimethylpyrimidin, 2,5-Dimethylpyrimidin, 4,5-Dimethylpyrimidin, 4,6-Dimethylpyrimidin, 2,4,5-Trimethylpyrimidin, 2,4,6-Trimethylpyrimidin, 2-Ethyl- pyrimidin, 2-Ethyl-4-methylpyrimidin, 2-Ethyl-5-methylpyrimidin, 2-Ethyl-4,5-dimethyl- pyrimidin oder 2-Ethyl-4,6-dimethylpyrimidin.
Geeignete Pyrazinverbindungen sind beispielsweise 2-Methylpyrazin,
2,3-Dimethylpyrazin, 2,5-Dimethylpyrazin, 2,6-Dimethylpyrazin, 2,3,5-Trimethylpyrazin, 2,3,6-Trimethylpyrazin, 2,3,5,6-Tetramethylpyrazin, 2-Ethylpyrazin, 2-Ethyl-3-methyl- pyrazin, 2-Ethyl-5-methylpyrazin, 2-Ethyl-6-methylpyrazin, 2-Ethyl-3,5-dimethylpyrazin, 2-Ethyl-3,6-dimethylpyrazin oder 2,3,5,6-Tetramethylpyrazin.
Geeignete Imidazolverbindungen sind beispielsweise 1 ,2-Dimethylimidazol, 1-Ethyl- 2-methylimidazol, 1 -n-Propyl-2-methylimidazol, 1 -lsopropyl-2-methylimidazol, 1 -n-Butyl-2-methylimidazol, 1 -sec.-Butyl-2-methylimidazol, 1 -tert.-Butyl-2-methyl- imidazol, 1-(2-Hydroxyethyl)-2-methylimidazol, 1 ,4-Dimethylimidazol, 1 -Ethyl-4-methyl- imidazol, 1-n-Propyl-4-methylimidazol, 1-lsopropyl-4-methylimidazol, 1-n-Butyl- 4-methylimidazol, 1-sec.-Butyl-4-methylimidazol, 1-tert.-Butyl-4-methylimidazol, 1 -(2-Hydroxyethyl)-4-methylimidazol, 1 ,2,4-Trimethylimidazol, 1 ,2,5-Trimethylimidazol, 1 ,4,5-Trimethylimidazol oder 1 ,2,4,5-Tetramethylimidazol.
Geeignete Pyrazolverbindungen sind beispielsweise 1 ,3-Dimethylpyrazol, 1-Ethyl- 3-methylpyrazol, 1-n-Propyl-3-methylpyrazol, 1-lsopropyl-3-methylpyrazol, 1-n-Butyl- 3-methylpyrazol, 1 -sec.-Butyl-3-methylpyrazol, 1 -tert.-Butyl-3-methylpyrazol, 1-(2-Hydroxyethyl)-3-methylpyrazol, 1 ,5-Dimethylpyrazol, 1-Ethyl-5-methylpyrazol, 1 -n-Propyl-5-methylpyrazol, 1 -lsopropyl-5-methylpyrazol, 1 -n-Butyl-5-methylpyrazol, 1-sec.-Butyl-5-methylpyrazol, 1-tert.-Butyl-5-methylpyrazol, 1-(2-Hydroxyethyl)-5- methylpyrazol, 1 ,3,4-Trimethylpyrazol, 1 ,3,5-Trimethylpyrazol, 1 ,4,5-Trimethylpyrazol oder 1 ,3,4,5-Tetramethylpyrazol.
Geeignete 1 ,2,4-Triazolverbindungen sind beispielsweise 1 ,3-Dimethyl-1 ,2,4-triazol, 1 -Ethyl-3-methyl-1 ,2,4-triazol, 1 -n-Propyl-3-methyl-1 ,2,4-triazol, 1 -lsopropyl-3-methyl- 1 ,2,4-triazol, 1-n-Butyl-3-methyl-1 ,2,4-triazol, 1-sec.-Butyl-3-methyl-1 ,2,4-triazol, 1-tert- Butyl-3-methyl-1 ,2,4-triazol, 1 -(2-Hydroxyethyl)-3-methyl-1 ,2,4-triazol, 1 ,5-Dimethyl- 1 ,2,4-triazol, 1-Ethyl-5-methyl-1 ,2,4-triazol, 1-n-Propyl-5-methyl-1 ,2,4-triazol, 1-lso- propyl-5-methyl-1 ,2,4-triazol, 1 -n-Butyl-5-methyl-1 ,2,4-triazol, 1 -sec.-Butyl-5-methyl- 1 ,2,4-triazol, 1 -tert.-Butyl-5-methyl-1 ,2,4-triazol, 1 -(2-Hydroxyethyl)-5-methyl-1 ,2,4- triazol oder 1 ,3,5-Trimethyl-1 ,2,4-triazol. Geeignete 1 ,2,3-Triazolverbindungen sind beispielsweise 1 ,4-Dimethyl-1 ,2,3-triazol, 1-Ethyl-4-methyl-1 ,2,3-triazol, 1-n-Propyl-4-methyl-1 ,2,3-triazol, 1-lsopropyl-4-methyl- 1 ,2,3-triazol, 1-n-Butyl-4-methyl-1 ,2,3-triazol, 1-sec.-Butyl-4-methyl-1 ,2,3-triazol, 1-tert- Butyl-4-methyl-1 ,2,3-triazol, 1 -(2-Hydroxyethyl)-4-methyl-1 ,2,3-triazol, 1 ,5-Dimethyl- 1 ,2,3-triazol, 1 -Ethyl-5-methyl-1 ,2,3-triazol, 1 -n-Propyl-5-methyl-1 ,2,3-triazol, 1-lsopropyl-5-methyl-1 ,2,3-triazol, 1-n-Butyl-5-methyl-1 ,2,3-triazol, 1-sec-Butyl- 5-methyl-1 ,2,3-triazol, 1-tert.-Butyl-5-methyl-1 ,2,3-triazol, 1-(2-Hydroxyethyl)-5-methyl- 1 ,2,3-triazol oder 1 ,4,5-Trimethyl-1 ,2,3-triazol.
Weiterhin geeignet sind 1 ,5-Diazabicyclo[4.3.0]non-5-en (DBN) und 1 ,8-Diazabicyclo- [5.4.0]-undec-7-en (DBU).
Bevorzugt sind die erfindungsgemäß verwendeten heterocyclischen tertiären Amine der Formel NR1R2R3 ausgewählt unter den zuvor genannten Imidazol- und Pyrazolver- bindungen. Besonders bevorzugt steht das heterocyclische tertiäre Amin für 1 ,2-Dimethylimidazol.
In einer weiteren Ausführungsform werden zur Erhöhung der Hydrolysestabilität der ionischen Flüssigkeit (IL) von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindungen oder Gemische quartärer Ammoniumverbindungen verwendet.
Geeignete quartäre Ammoniumverbindungen können beispielsweise durch Quaterni- sierung der zuvor genannten tertiären Amine NR1R2R3 bereitgestellt werden, wobei Verbindungen der Formel [NR1R2R3R]+ (1/n)*[Y']n~ erhalten werden, worin R eine der bezüglich der ionischen Flüssigkeiten gegebenen Bedeutungen aufweist und (1/n)*[Y']n~ für ein Anionenäquivalent steht. Bevorzugt steht R in den quartären Ammoniumverbindungen der Formel [NR1R2R3R]+ (1/n)*[Y']n~ für Ci -C4-Al kyl, besonders bevorzugt für Methyl. Die Bedeutung des Anionenäquivalents (1/n)*[Y']n" ergibt sich übli- cherweise aus der gewählten Quarternisierungsmethode, kann jedoch gegebenenfalls durch Anionenaustausch variiert werden. In einer speziellen Ausführungsform weist [Y']n- eine der zuvor für [Y]n- gegebenen Bedeutungen auf.
Geeignete Methoden zur Quaternisierung tertiärer Amine sind dem Fachmann be- kannt. Als geeignete Methoden seien hier insbesondere die Umsetzung tertiärer Amine der Formel NR1R2R3 mit Ci-C4-Alkylhalogeniden, wie Methyliodid, oder mit Di-Ci-C4-Alkylsulfaten, wie Dimethylsulfat oder Diethylsulfat, genannt.
Bevorzugte quartäre Ammoniumverbindungen sind (Ci-C4-Alkyl)(Ci-Ci8-Alkyl)- di(2-hydroxyethyl)ammoniumverbindungen und (Ci-C4-Alkyl)tri(2-hydroxyethyl)- ammoniumverbindungen sowie deren alkoxylierter Derivate, insbesondere solche die als Gegenion ein Ci-C4-Alkylsulfatanion aufweisen. Besonders bevorzugte quartäre Ammoniumverbindungen sind Methyltri(2-hydroxyethyl)ammoniumverbindungen insbesondere deren Methyl- oder Ethylsulfate, sowie die alkoxylierten Derivate von Methyl- tri(2-hydroxyethyl)ammoniumverbindungen.
Weiterhin bevorzugt sind Gemische quartärer Ammoniumverbindungen, worin sich die Bedeutungen wenigstens eines der Reste R1, R2 oder R3 von einem Gemisch aus ge- radkettigem und verzweigtem Ci-C3o-Alkyl, speziell Cs-ds-Alkyl, und Ci-C3o-Alkenyl, speziell Cs-C-is-Alkenyl, wie es aus natürlichen oder synthetischen Fettsäuren und Fettalkoholen sowie aus Oxoalkoholen zugänglich ist, ableitet. Dazu zählen beispiels- weise Gemische von n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n Dodecyl, n-Tridecyl, My- ristyl, Pentadecyl, Palmityl (= Cetyl), Heptadecyl, Octadecyl, Nonadecyl, Arrachinyl (Arachidyl), Behenyl, Octenyl, Nonenyl, Decenyl, Undecenyl, Dodecenyl, Tridecenyl, Tetradecenyl, Pentadecenyl, Hexadecenyl, Heptadecenyl, Octadecenyl, speziell Oleyl, Nonadecenyl, Linolyl, Linolenyl oder Eleostearyl.
Besonders bevorzugt sind solche Gemische quartärer Ammoniumverbindungen, worin wenigstens einer der Reste R1, R2 oder R3 für ein Gemisch aus geradkettigem und verzweigtem Ci-C3o-Alkyl und Ci-C3o-Alkenyl steht und wenigstens ein weiterer, speziell zwei, der Reste R1, R2 oder R3 für 2-Hydroxyethyl oder alkoxyliertes 2-Hydroxyethyl steht. Solche Gemische sind beispielsweise unter dem Handelsnamen Ammoeng™ 100 (Solvent Solution) kommerziell erhältlich.
Bevorzugt werden die erfindungsgemäß verwendeten tertiären Amine und/oder quart- ären Ammoniumverbindungen in einer Menge von 0,01 bis 50 Gew.-%, bevorzugt in einer Aufwandmenge von 0,05 bis 30 Gew.-% und besonders bevorzugt 0,1 bis
20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der ionischen Flüssigkeit IL, zugesetzt.
Die erfindungsgemäß verwendeten ionischen Flüssigkeiten IL und die erfindungsge- maß verwendeten tertiären Amine und/oder quartären Ammoniumverbindungen sind vorteilhafterweise vollständig miteinander mischbar, d. h. durch Zusatz des tertiären Amins und/oder der quartären Ammoniumverbindung zu einer ionischen Flüssigkeit IL entsteht eine homogene flüssige Zusammensetzung.
Die vorliegende Erfindung wird im Folgenden anhand nicht einschränkender Beispiele näher erläutert.
Beispiele
1. Hydrolyse ionischer Flüssigkeiten in Abhängigkeit des Additivs Ein Gemisch aus 1-Ethyl-3-methylimidazolium-Ethylsulfat (EMIM-EtSO4), 2 Gew.-% Wasser und 0,1 bis 16 Gew.-% eines Additivs (jeweils bezogen auf das Gewicht an EMIM-EtSO4) wurde eine Stunde bei 150 0C gerührt. Anschließend wurde eine Probe entnommen und durch 1H-NMR-Spektroskopie untersucht. Anhand dieses Spektrums wurde durch Integrieren das molare Verhältnis von Ethanol (Hydrolyseprodukt) zu EMIM-EtSO4 bestimmt. Aus diesem Verhältnis wurde die prozentuale Hydrolyse der eingesetzten ionischen Flüssigkeit (IL) bestimmt. Der Versuch wurde für jedes Additiv dreimal wiederholt. In Tabelle 1 sind die gemittelten Ergebnisse dieses Versuche wiedergegeben.
Tabelle 1
* : Referenzmessung für Beispiele 1.2 bis 1.4
** : Vergleichsbeispiele (nicht erfindungsgemäß)
*** : Referenzmessung zu Beispiel 1.8
[1]: Siligen APE<™) = Tri(2-hydroxyethyl)methylammoniummethylsulfat
[2]: Golpanol«™) = 2-Butin-1 ,4-diol
2. Stabilisierung ionischer Flüssigkeiten
Ein Gemisch aus 1-Ethyl-3-methylimidazolium-Ethylsulfat (EMIM-EtSO4), 10 Gew.-% Wasser und 16 Gew.-% eines Additivs (jeweils bezogen auf das Gewicht an EMIM- EtSO4) wurde eine Stunde bei 90 0C gerührt. Zu den in Tabelle 2 angegebenen Zeiten wurden Proben entnommen und die Säurezahl sowie der pH-Wert (nach Zugabe von 10 % Wasser zu der entnommenen Probe) bestimmt. Die Ergebnisse sind in Tabelle 2 zusammengestellt. Durch die Zugabe der erfindungsgemäßen quartären Ammoniumverbindungen wird die ionische Flüssigkeit bei einem annähernd neutralen pH-Wert stabilisiert.
* : Referenzmessung für Beispiele 2.1 bis 2.9
[1]: Siligen APE<™) = Tri(2-hydroxyethyl)methylammoniummethylsulfat
[3]: Ammoeng 100<™> = Gemisch von Verbindungen der folgenden Formel
CHQ
N 0-(EO)-H
(Cocoyl)
0-(EO)n-H worin EO für Ethylenoxy steht und die Summe aus m und n im Bereich von 4 bis 14 liegt.

Claims

Ansprüche
1. Verfahren zur Verbesserung der Hydrolysestabilität einer ionischen Flüssigkeit (IL), bei dem man der ionischen Flüssigkeit (IL) wenigstens ein tertiäres Amin und/oder eine von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindung zusetzt.
2. Verfahren gemäß Anspruch 1 , wobei die ionischen Flüssigkeit (IL) ausgewählt ist unter Salzen der allgemeinen Formel (I)
[A]+ (1/n)*[Y]"- (I),
worin [A]+ für ein quartäres Ammonium-Kation und (1/n)*[Y]n- für ein Anionäquiva- lent eines n-fach geladenen Anions steht.
3. Verfahren gemäß Anspruch 2, wobei das Kationen [A]+ der ionischen Flüssigkeiten (IL) ausgewählt ist unter Verbindungen, die eine molare Masse von weniger als 1000 g/mol aufweisen.
4. Verfahren gemäß einem der Ansprüche 2 oder 3, wobei das Kationen [A]+ ausgewählt ist unter Verbindungen, die ein heterocyclisches Kation aufweisen.
5. Verfahren gemäß einem der Ansprüche 2 bis 4, wobei das Kationen [A]+ ausgewählt ist unter Pyridiniumionen, Pyridaziniumionen, Pyrimidiniumionen, Pyrazini- umionen, Imidazoliumionen, Pyrazoliumionen, Thiazoliumionen, Oxazoliumionen,
1 ,2,4-Triazoliumionen, 1 ,2,3-Triazoliumionen, Pyrrolidiniumionen, Imidazolidiniu- mionen und Diazabicycloalkeniumionen.
6. Verfahren gemäß Anspruch 5, wobei das Kation [A]+ ausgewählt ist unter Imida- zoliumionen und Pyrazoliumionen.
7. Verfahren gemäß Anspruch 6, wobei das Kation [A]+ für ein Imidazoliumion steht.
8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Anion [Y]n- der ionischen Flüssigkeiten (IL) ausgewählt ist unter Verbindungen der Formeln
(R3O)SO3-, (Ra)SO3-, (R3O)SO2-, (R3O)PO3 2", (R3O)(R1O)PO2-, (R3O)(Rb)PO2-, (R3O)PO2 2", (R30)(Rb0)P0-, (R30)(Rb)P0-, (R3O)BO2 2", (R30)(Rb0)B0", (R30)(Rb)B0-, (R30)(Rb0)(Rc0)(Rd0)B-, (R3O)CO2-,(R3O)SiO3 3", (R3O)(R1O)SiO2 2-, (R3O)(Rb)SiO2 2-, (R30)(Rb0)(Rd0)Si0-, (R30)(Rb0)(Rc)Si0- und (R3O)(Rb)(Rc)SiO-,
worin Ra, Rb, Rc und Rd unabhängig voneinander für H, Alkyl, Aryl, Cycloalkyl, Hetero- cycloalkyl oder Heteroaryl stehen, oder
jeweils zwei der Reste Ra bis Rd zusammen mit dem Teil des Anions, an das sie gebunden sind, für wenigstens einen gesättigten, ungesättigten oder aromatischen Ring oder ein Ringsystem mit 1 bis 12 Kohlenstoffatomen stehen, wobei der Ring oder das Ringsystem 1 bis 5 nicht benachbarte Heteroatome oder hete- roatomhaltige Gruppen aufweisen kann.
9. Verfahren gemäß Anspruch 8, wobei das Anionen [Y]n" ausgewählt ist unter Verbindungen der Formeln (R3O)SO3-, (Ra)SO3-, (R3O)PO3 2" und (RaO)(RbO)PO2-, worin Ra und Rb unabhängig voneinander für Alkyl, Cycloalkyl oder Aryl stehen.
10. Verfahren gemäß Anspruch 9, wobei das Anionen [Y]n" für eine Verbindung der Formel (R3O)SO3- steht.
1 1. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der ionischen Flüssigkeit (IL) zur Erhöhung der Hydrolysestabilität ein tertiäres Amin oder ein Gemisch tertiärer Amine zugesetzt wird.
12. Verfahren gemäß Anspruch 1 1 , wobei das tertiäre Amin ausgewählt ist unter Di(2-hydroxyethyl)(Ci-Ci6-alkyl)aminen, Tri(2-hydroxyethyl)amin, den alkoxylier- ten Derivaten dieser Verbindungen und Mischungen davon.
13. Verfahren gemäß Anspruch 1 1 , wobei das tertiäre Amin ausgewählt ist unter he- terocyclischen tertiären Aminen.
14. Verfahren gemäß Anspruch 13, wobei wenigstens ein zu einem Ringstickstoff- atom benachbartes Ringkohlenstoffatom des heterocyclischen tertiären Amins einen von H verschiedenen Substituenten aufweist.
15. Verfahren gemäß einem der Ansprüche 13 oder 14, wobei das heterocyclische tertiäre Amin ausgewählt ist unter Imidazolverbindungen, Pyrazolverbindungen und Mischungen davon.
16. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der ionischen Flüssigkeit (IL) zur Erhöhung der Hydrolysestabilität eine von der ionischen Flüssigkeit (IL) verschiedene quartäre Ammoniumverbindungen oder ein Gemisch quartärer Ammoniumverbindungen zugesetzt wird.
17. Verfahren gemäß Anspruch 16, wobei das Kation der quartären Ammoniumverbindungen ausgewählt ist unter (Ci-C4-Alkyl)(Ci-Ci6-alkyl)di(2-hydroxyethyl)- ammoniumionen und (Ci-C4-Alkyl)tri(2-hydroxyethyl)ammoniumionen sowie unter den alkoxylierten Derivaten dieser Verbindungen.
18. Verfahren gemäß einem der Ansprüche 16 oder 17, wobei das Anion der quartären Ammoniumverbindungen ausgewählt ist unter Ci-C4-Alkylsulfatanionen.
19. Verfahren gemäß einem der vorhergehenden Ansprüche, worin die tertiären Amine und/oder quartären Ammoniumverbindungen in einer Menge von 0,01 bis
50 Gew.-%, bezogen auf das Gesamtgewicht der ionischen Flüssigkeit (IL), zugesetzt werden.
20. Verfahren gemäß einem der vorhergehenden Ansprüche, worin die ionischen Flüssigkeiten (IL) und die erfindungsgemäß verwendeten tertiären Amine und/oder quartären Ammoniumverbindungen vollständig miteinander mischbar sind.
EP08863060A 2007-12-14 2008-12-12 Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten Withdrawn EP2229365A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08863060A EP2229365A1 (de) 2007-12-14 2008-12-12 Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07150039 2007-12-14
EP08863060A EP2229365A1 (de) 2007-12-14 2008-12-12 Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten
PCT/EP2008/067428 WO2009077452A1 (de) 2007-12-14 2008-12-12 Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten

Publications (1)

Publication Number Publication Date
EP2229365A1 true EP2229365A1 (de) 2010-09-22

Family

ID=40512367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08863060A Withdrawn EP2229365A1 (de) 2007-12-14 2008-12-12 Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten

Country Status (7)

Country Link
US (1) US20100267596A1 (de)
EP (1) EP2229365A1 (de)
JP (1) JP2011506404A (de)
KR (1) KR20100098440A (de)
CN (1) CN101918368B (de)
WO (1) WO2009077452A1 (de)
ZA (1) ZA201004887B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174129B2 (en) 2007-02-14 2019-01-08 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US7919631B2 (en) 2007-02-14 2011-04-05 Eastman Chemical Company Production of ionic liquids
US9834516B2 (en) 2007-02-14 2017-12-05 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US9777074B2 (en) 2008-02-13 2017-10-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8188267B2 (en) 2008-02-13 2012-05-29 Eastman Chemical Company Treatment of cellulose esters
US8354525B2 (en) 2008-02-13 2013-01-15 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8158777B2 (en) 2008-02-13 2012-04-17 Eastman Chemical Company Cellulose esters and their production in halogenated ionic liquids
WO2010103062A1 (de) 2009-03-12 2010-09-16 Basf Se Verfahren zur herstellung von 1-adamantyltrimethylammoniumhydroxid
US8524887B2 (en) 2009-04-15 2013-09-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom
CN101985413A (zh) * 2009-07-29 2011-03-16 广荣化学工业株式会社 鎓盐组合物
US9796791B2 (en) 2011-04-13 2017-10-24 Eastman Chemical Company Cellulose ester optical films
CN102952098B (zh) * 2011-08-30 2015-08-05 海洋王照明科技股份有限公司 吡嗪类离子液体及其制备方法和应用
US8906135B1 (en) * 2011-09-01 2014-12-09 U.S. Department Of Energy Method of purifying a gas stream using 1,2,3-triazolium ionic liquids
US9233339B2 (en) * 2012-04-23 2016-01-12 Ut-Battelle, Llc Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
US8894956B2 (en) * 2013-03-29 2014-11-25 Korea Institute Of Science And Technology Sulfur dioxide and/or sulfur dioxide hydrate absorbent
CN103396761B (zh) * 2013-08-01 2015-07-29 中国人民大学 一种调节相对湿度的方法
CN109734668B (zh) * 2019-03-08 2020-06-23 杭州华樾新材料有限公司 四氟硼酸盐离子液体的合成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145747A1 (de) * 2001-09-17 2003-04-03 Solvent Innovation Gmbh Ionische Flüssigkeiten
DE10202838A1 (de) * 2002-01-24 2003-08-07 Basf Ag Verfahren zur Abtrennung von Säuren aus chemischen Reaktionsgemischen mit Hilfe von ionischen Flüssigkeiten
GB0500028D0 (en) * 2005-01-04 2005-02-09 Univ Belfast Base stable ionic liquids
DE102005017269A1 (de) * 2005-04-14 2006-10-19 Universität Bremen Ionische Flüssigkeit
DE102005055815A1 (de) * 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von ionischen Flüssigkeiten
EP1966284B1 (de) * 2005-12-23 2013-04-17 Basf Se Lösungssystem auf der basis geschmolzener ionischer flüssigkeiten, dessen herstellung sowie verwendung zur herstellung regenerierter kohlenhydrate
US8044120B2 (en) * 2006-10-13 2011-10-25 Basf Aktiengesellschaft Ionic liquids for solubilizing polymers
AU2008208870B2 (en) * 2007-01-23 2013-05-02 Basf Se Method for producing glucose by enzymatic hydrolysis of cellulose that is obtained from material containing ligno-cellulose using an ionic liquid that comprises a polyatomic anion
US8486669B2 (en) * 2007-01-23 2013-07-16 Basf Se Enzymatic hydrolysis of a cellulose material treated with an ionic liquid
EP2155763A1 (de) * 2007-05-08 2010-02-24 Basf Se Verfahren zur herstellung von cylohexyl-substituierten phosphinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009077452A1 *

Also Published As

Publication number Publication date
CN101918368B (zh) 2013-04-24
KR20100098440A (ko) 2010-09-06
JP2011506404A (ja) 2011-03-03
WO2009077452A1 (de) 2009-06-25
ZA201004887B (en) 2013-12-23
US20100267596A1 (en) 2010-10-21
CN101918368A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2009077452A1 (de) Verfahren zur verbesserung der hydrolysestabilität ionischer flüssigkeiten
US20110253929A1 (en) Mixtures of hydrophobic and hydrophilic ionic liquids and use thereof in liquid ring compressors
EP1893651B1 (de) Löslichkeit von cellulose in ionischen flüssigkeiten unter zugabe von aminbase
JP2010516265A (ja) 多原子アニオンを有するイオン性液体で前処理されたセルロースの酵素的加水分解によりグルコースを製造する方法
EP2242744B1 (de) Verfahren zur Aufarbeitung ionischer Flüssigkeiten
EP1881994B1 (de) Lösungen von cellulose in ionischen flüssigkeiten
WO2007144282A1 (de) Verfahren zur acylierung von cellulose
WO2005019183A1 (de) Verfahren zur herstellung von gereinigten 1,3-substituierten imidazoliumsalzen
JP2010516266A (ja) 多原子アニオンを有するイオン性液体の使用下でリグノセルロース含有材料から得られたセルロースの酵素的加水分解によりグルコースを製造する方法
WO2007101812A1 (de) Verfahren zum abbau von cellulose
WO2014207100A1 (en) A process for coating paper with cellulose using a solution containing cellulose
WO2008119770A1 (de) Verfahren zur modifizierung der struktur eines cellulosematerials durch behandeln mit einer ionischen flüssigkeit
DE102006011075A1 (de) Verfahren zum Abbau von Cellulose in Lösung
WO2007057403A1 (de) Verfahren zur herstellung von ionischen flüssigkeiten
DE102006011077A1 (de) Verfahren zum Abbau von Cellulose mit Nucleophilen
US20140099249A1 (en) Ionic liquids based on oxalic acid mono esters
EP2940010A1 (de) Ionische Flüssigkeiten basierend auf Oxalsäuremonoamiden
WO2014056844A1 (en) Ionic liquids based on oxalic acid mono esters
DE102006011076A1 (de) Verfahren zum Abbau von Cellulose
WO2010000834A1 (de) Verwendung ionischer flüssigkeiten als katalysatoren
DE102009051087A1 (de) Arbeitsmedium für Kälte- und Wärmeprozesse, enthaltend ein Tetraalkylammoniumsalz
DE102006029306A1 (de) Verfahren zur Silylierung von Cellulose
DE102009049696A1 (de) Verbindung mit einer Salzgruppe und einer p-Halbleitergruppe und deren Verwendung in Solarzellen
JP5758198B2 (ja) タイヤ補強コード用のセルロース繊維紡糸用セルロース溶液の製造方法
US20230042328A1 (en) Ionic liquid for stabilizing viscosity of silicate-based coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130711