EP2222395A1 - Reactor and method for gaseous phase endothermal reaction on a solid catalyst - Google Patents

Reactor and method for gaseous phase endothermal reaction on a solid catalyst

Info

Publication number
EP2222395A1
EP2222395A1 EP08872450A EP08872450A EP2222395A1 EP 2222395 A1 EP2222395 A1 EP 2222395A1 EP 08872450 A EP08872450 A EP 08872450A EP 08872450 A EP08872450 A EP 08872450A EP 2222395 A1 EP2222395 A1 EP 2222395A1
Authority
EP
European Patent Office
Prior art keywords
reactor
catalytic
zone
exchange
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872450A
Other languages
German (de)
French (fr)
Inventor
Gilles Ferschneider
Béatrice Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2222395A1 publication Critical patent/EP2222395A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00194Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • B01J2208/00814Details of the particulate material the particulate material being provides in prefilled containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/021Processes carried out in the presence of solid particles; Reactors therefor with stationary particles comprising a plurality of beds with flow of reactants in parallel
    • B01J2208/022Plate-type reactors filled with granular catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2455Plates arranged radially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/063Refinery processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas

Definitions

  • the invention relates to a reactor and a process using this reactor for endothermic reactions in the gas phase on a solid catalyst.
  • This reactor is particularly suited to catalytic reforming reactions and hydrocarbon dehydrogenation reactions.
  • the present invention relates to a reactor for recovering the heat of the combustion gas under pressure and to perform the reactions.
  • the process utilizes pressurized combustion gas to heat the reactor by indirect heat exchange within the reactor.
  • catalytic reforming process makes it possible to perform this operation.
  • This process consists in passing the gasoline cut in the presence of hydrogen over a catalyst comprising precious metals at a high temperature (close to 500 ° C.).
  • Catalytic reforming reactions consist mainly of dehydrogenating the naphthenes and paraffins present in the feedstock to transform them into aromatics that have a high octane number, and to isomerize the remaining paraffins to also increase the octane number of gasoline.
  • a first undesirable reaction is cracking which produces light hydrocarbons, such as methane, ethane, propane and butane and which reduces the yield of the operation.
  • a second undesirable reaction is the coking of the catalyst, which decreases the activity of the catalyst and forces its periodic regeneration by burning the coke to restore its activity.
  • the cracking is all the more important as the pressure is high. Thus, the yields are better at low pressure.
  • the coking is even higher than the partial pressure of hydrogen is low.
  • the old units operated at high pressure (about 15 to 30 bar), with a high rate of hydrogen recycle, with poor yields, and allowed to operate for about 11 months before it was necessary to regenerate the catalyst.
  • the units with continuous regeneration of the catalyst make it possible to regenerate the totality of the catalyst in a few days, which allows operation at low pressure (approximately 3 to 5 bars), and therefore higher yields.
  • the catalyst circulates continuously in the reactors, which are then radial type, and is sent to a regeneration section to be regenerated, before being returned to the first reactor.
  • the dehydrogenation reactions are very endothermic, and the reactions stop when the temperature is too low.
  • Current processes generally comprise three or four reactors and as many furnaces in series. Each oven is followed by a reactor. Because of high temperatures, the furnaces have a low yield and it is customary to produce steam to improve the overall efficiency of the furnace. It is also customary to use this steam to drive a turbine driving the recycle compressor and the hydrogen export compressor.
  • the invention relates to a reactor for catalytic reforming or dehydrogenation of hydrocarbons having a cylindrical shape along a vertical axis, an upper bottom and a lower bottom comprising at least two annular zones centered on the vertical axis, these two zones. annular being an area called catalytic zone and a so-called zone exchange area.
  • Vertical hermetic panels divide the reactor into sectors, said sectors each comprising at least one exchange section and at least one catalytic section, all of said exchange sections forming the exchange zone and all of said catalytic sections forming the catalytic zone.
  • the invention also relates to the process using the reactor according to the invention.
  • the present invention generally uses for the heating of the reactor, preferably the reforming reactor, pressurized combustion gases which also make it possible to produce electricity for the catalytic reforming unit, and possibly for other units.
  • a single reactor is generally used, with special internals allowing the alternation of heating sections by exchange with the combustion gas and adiabatic catalytic sections, the catalyst being able to circulate by gravity in the reactor. The overall footprint of the unit, the number of equipment and the cost of the reaction section are thus reduced.
  • each reactor is then generally fed by a dedicated air compressor and a dedicated burner.
  • the invention relates to a reactor for carrying out an endothermic gas phase reaction having a cylindrical shape along a vertical axis and comprising: at least two annular zones centered on the vertical axis: a catalytic zone and an exchange area
  • vertical hermetic panels (65) located along the radii of the cylindrical reactor divide the reactor into sectors, said sectors each comprising at least one exchange section (61) and at least one catalytic section (62), all of said exchange sections forming the exchange zone (204) and all of said catalytic sections forming the catalytic zone (202).
  • the first sector is defined as the sector in which the reaction mixture is fed to the reactor.
  • the other sectors are named second sector, third sector up to the last sector, respecting the circulation order of the reaction mixture in the reactor.
  • the first sector is that in which the reaction mixture feed to the reactor takes place. The reaction mixture then circulates successively in this first sector then in the second sector then in the third sector and then in the last sector before being discharged out of the reactor.
  • the catalytic zone and the exchange zone follow one another from the edge to the center of the reactor.
  • At least four annular zones centered on the vertical axis follow one another from the edge to the center of the reactor, a first zone (201) called a feed zone, a second zone (202) called a catalytic zone. a third zone (203) called the collection zone and a fourth zone (204) called the exchange zone.
  • the vertical hermetic panels (65) dividing the reactor into sectors are fixed along a central cylindrical zone (205).
  • the sectors each comprise an exchange section (61), a catalytic section (62), a feed section (161) and a collection section (162), all of said exchange sections forming the exchange zone (204), all of said catalytic sections forming the catalytic zone (202), all of said feed sections forming the feed zone (201) and all of said collection sectors forming the collection zone (203).
  • the reactor comprises an upper bottom and a lower bottom. At least one tubing (163) per section generally passes through the upper bottom of the reactor to supply catalytic catalyst sections and at least one tubing (263) per section passes through the lower bottom of the reactor to discharge the catalyst from the catalytic sections.
  • a supply pipe (17) passing through the upper bottom of the reactor makes it possible to feed a sector, called the first sector, into a reaction mixture
  • an evacuation pipe (18) passing through the upper bottom of the reactor makes it possible to evacuate the last sector of the reaction mixture reactor.
  • a conduit (67) connecting the collection area of the last sector to the conduit (18) for discharging the reaction mixture is generally present.
  • an inlet duct (6) passing through the lower bottom of the reactor is connected to ducts (70) leading to tubular chambers (71).
  • the tubular chambers distribute flue gas by means of tubular plates (69) through the bottom of the reactor into each exchange section.
  • Tubular chambers (72) make it possible to collect the combustion gas at the top of each exchange section, then ducts (73) provided with expansion bellows (74) make it possible to evacuate the combustion gas towards the outlet duct ( 7) which passes through the upper bottom of the reactor.
  • Each exchange section is generally made of tubular heat exchangers or plate heat exchangers. Each exchange section has either an identical surface or the exchange surface increases from the first to the last exchange section.
  • Each catalytic section is generally formed by two concentric metal grids, preferably of the "Johnson grids" type. All catalytic sections generally have the same size or the size of the catalytic sections increases from the first to the last sector.
  • Vertical hermetic panels (65) generally divide the reactor into 3, 4, 6 or 8 sectors, preferably 4 or 6 sectors.
  • a conduit (64) connects the collection section of each sector, except for the last sector, to the exchange section of the next sector.
  • the invention also relates to the method of carrying out a catalytic reforming or dehydrogenation reaction of hydrocarbons in a reactor according to the invention.
  • the invention also relates to the method for carrying out an endothermic gas-phase reaction of catalytic reforming or dehydrogenation of hydrocarbons on a solid catalyst in a reactor according to the most preferred embodiment in which the reaction mixture enters the reactor. via the conduit (17), flows up and down in the first exchange section (61). Said reaction mixture then passes under the first catalytic section (62) between the catalyst descent pipes (263), then passes radially through the first catalytic section (62), passing from the supply zone (201) to the collection zone. (203) of the reactor, passes to the exchange section of the second sector by the pipe (64). Finally, the reaction mixture circulates successively and alternately in the following exchange sections and the following catalytic sections.
  • the catalyst generally flows up and down at the same rate in all catalytic sections.
  • the catalyst can also flow up and down at a higher and higher rate from the first to the last catalytic section.
  • the invention also relates to the method wherein the pressurized combustion gas provides heating of the reaction mixture by indirect heat exchange.
  • the combustion gas supplying the reactor (60) via the pipe (6) comes from the heating of air under atmospheric pressure flowing via the line (1) to an air compressor ( 2) then via the line (3) to a combustion chamber (4) in which the burning of a fuel gas circulating via (5) can carry the combustion gas to a temperature between 600 0 C and 800 ° C and preferably between 650 0 C and 750 0 C.
  • the combustion gas supplied to the reactor (60) via the pipe (6) comes from the heating of air under atmospheric pressure flowing via line (1) to an air compressor ( 2) then via the line (3) to a combustion chamber (4) in which the burning of a fuel gas circulating via 5 is used to heat the combustion air, which then passes through an expansion turbine (12) which is on the same shaft as the air compressor and which provides the power required for compression, the combustion gas leaving the expansion turbine (12) is at a pressure between 0.2 and 0.45 MPa, and at a temperature between 600 and 800 ° C, and preferably between 650 and 750 ° C.
  • the combustion gas leaving the reactor via the pipe 7 can be heated in a combustion chamber (8) before being sent into an expansion turbine (10) to produce electricity.
  • Figure 1 depicts one of the ways of supplying heat to the reactor.
  • Atmospheric air is supplied via line (1) to the air compressor (2).
  • the air is compressed at a pressure of about 4 bars absolute (0.4 MPa) and is then sent via line (3) into a combustion chamber (4).
  • a combustible gas is fed via line (5) to be burned in the combustion chamber (4).
  • the depleted air heated by combustion at a temperature of 700 ° C. is sent via line (6) into the reactor (60).
  • the reaction mixture enters via line (17) and exits via line (18).
  • the combustion gas is cooled by exchange with the reaction mixture undergoing an endothermic catalytic reforming reaction.
  • the cooled gas is sent via the line (7) to a second combustion chamber (8), where it is heated by combustion of the fuel gas supplied via the line (9).
  • the hot gas is sent at a temperature of 75O 0 C in an expansion turbine (10) which drives an alternator (11) to produce electricity.
  • Figure 2 depicts an alternative way of supplying heat to the reactor (60).
  • Atmospheric air is supplied via line (1) to the air compressor (2).
  • the compressed air at a pressure of about 20 bar is then sent via line (3) into the combustion chamber (4).
  • a combustible gas is fed via line (5) to be burned in the combustion chamber (4).
  • the depleted air and heated by combustion at a temperature of 1300 0 C is sent into an expansion turbine (12) which drives the air compressor (2).
  • the gas at the outlet of the turbine is around 3 bars and at a temperature of 700 ° C. It is sent via line (6) into the reactor (60).
  • the reaction mixture enters via line (17) and exits via line (18).
  • the combustion gas is cooled by exchange with the reaction mixture undergoing an endothermic catalytic reforming reaction.
  • the cooled gas is sent via the line (7) to a second combustion chamber (8), where it is heated by combustion of the fuel gas supplied via the line (9).
  • the hot gas is sent at a temperature of 75O 0 C in an expansion turbine (10) which drives an alternator (11) to produce electricity.
  • FIG. 3 describes a variant of FIG. 1 in which heat is recovered from the hot gases flowing via the line (40) at the outlet of the turbine (10).
  • the heat exchanger (41) makes it possible to recover heat either: -by steam production, which can be used in the refinery or to produce electricity,
  • the effluent gas from the exchanger (41) flows via the line (42).
  • FIG. 4 represents the reaction section of a catalytic reforming according to the invention.
  • the combustion gas enters via the line (6) and exits via the line (7) of the reactor (60).
  • the charge arrives via the line (14) to the charge pump (15).
  • the discharge charge of the pump is sent via line (16) to the heat exchanger (19), which is preferably of the Packinox type.
  • the recycling gas circulating via the line (26) is also sent to this exchanger (19), to be mixed with the charge circulating via the line (16) in the exchanger and heated to a temperature of 44O 0 C by exchange with the reaction mixture leaving the reactor (60) via the line (18).
  • the reaction mixture is sent into the reactor (60) via the line (17).
  • the reaction mixture leaving the reactor via the line (18) is around 490 ° C. and is sent to the top of the heat exchanger (19), where it is cooled to around 100 ° C.
  • the effluent is sent via the line (20) to a heat exchanger (21), where it is cooled by heat exchange with air or cooling water.
  • the cooled and partially condensed effluent is sent via line (22) to the separator tank (23).
  • the liquid from the flask is withdrawn via line (28) to a stabilizing section.
  • the gaseous phase of the separator tank (24), consisting mainly of hydrogen, is used in part to constitute a gaseous recycle, compressed by the compressor (25) and then circulating via the line (26), the remainder being sent to a section of purification via the line (27).
  • Figures 5, 6, 7 and 8 show a preferred version of the reactor in different sections.
  • Figure 5 schematically shows the reactor (60) in section and seen from the front.
  • Each sector has an exchange section (61) and a catalytic section (62). All exchange sections form the exchange zone
  • Each sector has a feed section (161) and a pickup section (162).
  • the set of feed sections forms the feed zone (201) and all of the collection sections form the collection zone (203).
  • the flue gas flows up and down the reactor.
  • the combustion gas is fed from the bottom of the reactor via the inlet duct (6) and is distributed in each exchange section via the ducts (70) and via the tubular chambers (71) before being distributed by tubular plates (69) in tubes (99).
  • the combustion gas is collected at the top of the reactor in tubular chambers (72) and then sent via the conduits (73) provided with expansion bellows (74) to the outlet duct (7).
  • the reaction mixture successively traverses all sectors.
  • the reaction mixture enters through the conduit (17) and at the outlet of the collection section of the last sector, it is collected by the conduit (visible in Figure 6 number 67) and then leaves the reactor via the conduit (18).
  • the circulation of the reaction mixture, comprising hydrogen and hydrocarbons, is represented by the arrows.
  • the inlet pressure of the reactor is close to 4 bars.
  • the reaction mixture enters the exchange zone of the first sector through the inlet (66) (see arrow 101).
  • the reaction mixture heats down (arrow 102) against the current of the combustion gas and exits through the outlet (75) of the first exchange section.
  • the gas passes below the catalytic section 62 (arrow 103), between the descent tubes of the catalyst (263), goes up along the ferrule, and passes through the catalytic section (62) (arrows 104).
  • the reaction mixture reacts and cools very quickly on the catalyst because the naphthenes present in the feed react very quickly and very endothermically.
  • the temperature is generally less than 400 ° C. at the outlet of the first catalyst section.
  • the reaction mixture is then removed from the first section at the top of the reactor and sent to the second section via a pipe (visible in FIG. 6, number (64)).
  • the reaction mixture is reheated in the exchange section of the second sector and then cooled by reacting in the catalytic section of the second sector.
  • Figure 6 shows the reactor seen from above and in section. Four annular zones centered on the vertical axis follow each other from the edge to the center of the reactor: the feed zone (201), the catalytic zone (202), the collection zone (203) and the exchange zone (204). ).
  • Vertical hermetic panels (65) are attached to the central cylindrical zone (205) and divide the reactor into 8 sectors.
  • the conduits (64) allow the passage from one sector to another.
  • the reaction mixture enters the first exchange section through the inlet (66). At the outlet of the last sector, the reaction mixture is collected by the conduit (67).
  • FIG. 7 shows a sector of the reactor seen from the center of the reactor, with the exchange section (61) in the foreground, the tube plate (69), and the catalytic section (62) in the background, with the downcomers catalyst (163) and (263) and the closure plates (68).
  • FIG. 8 represents the same sector seen from the ferrule, with the exchange section (61) in the background, the catalytic section (62) in the foreground, the exit of the exchange section (75), the passage ( 64) from one sector to another and a closure plate (68).
  • a catalytic reforming unit treating 60 tons per hour of charge is considered, with 35 tons of catalyst.
  • the filler is a 90-170 ° C. section, with a paraffin content of 60% by volume, 25% naphthenes and 15% volume aromatics.
  • the molar ratio of pure hydrogen to the charge is 2.5
  • the target octane is 102.
  • the entire catalyst is regenerated continuously in 2.5 days.
  • the centrifugal air compressor has a polytropic efficiency of 80% and consumes 16.7 MW.
  • the outlet temperature of the compressor is 192 ° C. 4160 kg / h of natural gas are burned in the first combustion chamber at 15 ° C., with a lower heating value of 46439.8 kJ / kg (1110 kcal / kg). ).
  • the combustion chamber outlet temperature of 700 0 C.
  • the combustion gas passes via line (6) to about 700 0 C.
  • the inlet and outlet temperatures on the catalytic reforming side in the different sectors are as follows:
  • the reaction mixture reaches 450 c C in the reactor, from the exchanger effluent load Packinox. It is heated by exchange with the hot fumes of the first sector and reaches 486 ° C in the catalyst of the first sector, it is then sent to the second sector, where it is heated before being fed to the second sector.
  • 8 sectors are assumed in this example: catalytic section 1: entry into the catalyst at 486 ° C., exit at 396 ° C.
  • catalytic section 2 entry into the catalyst at 441 ° C., exit at 419 ° C.
  • catalytic section 3 46 ° inlet 0 C, output 437 ° C catalytic section 4: inlet 475 0 C, outlet 451 0 C catalytic section 5: inlet 487 ° C, outlet 463 ° C catalytic section 6: inlet 497 0 C, outlet 475 ° C catalytic section 7: inlet 507 0 C, outlet 487 ° C catalytic section 8: inlet 517 ° C, outlet 501 0 C (at 4.8 bar absolute)
  • 1st exchange section 700 ° C input, 471 0 C output 2nd exchange section: 700 0 C input, 422 0 C output 3rd exchange section: 700 0 C input, 442 ° C output
  • 4th exchange section 700 ° C input, 460 ° C output 5th exchange section: 700 0 C input, 472 ° C output 6th exchange section: 700 0 C input, 483 ° C output 7th exchange section : input 700 0 C, output 494 0 C 8th exchange section: input 700 0 C, output 505 0 C
  • the effluent combustion gas is sent to a second combustion chamber where 2560 kg / h of combustible gases are burned to reach 760 ° C. at a pressure of 3.4 bar absolute at the inlet of an expansion turbine.
  • This turbine has a polytropic efficiency of 85% and provides about 26 MW of electrical power that drives the air compressor and provides enough electricity for catalytic reforming and pretreatment units.
  • the gaseous effluent is at a temperature of 526 ° C., which makes it possible either to produce more electricity by generating steam or to heat a heat transfer fluid which makes it possible to reboil the columns of the process (the stripping column of pretreatment and stabilization of reforming).
  • An exchange area of approximately 4000 m 2 is necessary, ie 8 times 500 m 2 . This corresponds to 8 times 350 tubes 30 mm in diameter and 15 m long.
  • tubular exchangers to simplify the calculations, but it is possible, without departing from the scope of the invention, to use other types of exchangers, for example Packinox type welded plate heat exchangers, which should allow a much better compactness.
  • the catalyst is installed in an annular zone of internal diameter 3.2 m and a height of about 14 m.
  • the outer diameter of the annular catalytic zone is therefore 3.85 m.
  • Each sector thus comprises from the outer shell: -an empty section (about 60 cm)
  • the coke produced is very low in the first sector, and increasingly important sector in sector, to be the highest in the last (8% coke if the catalyst circulates in 2.5 days in this sector).
  • One solution is to circulate the catalyst everywhere at the same speed, to mix the catalyst at the outlet of the reactor to send it to the regenerator and to regenerate it as a mixture, the average coke content is then only about 4%, and allows regeneration without risk.
  • the catalyst of the first sectors is regenerated before it is necessary, and it is probably preferable to size the catalyst descent devices so that the catalyst of the first sectors falls more slowly, and the catalyst of the last descends more quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to a reactor for the catalytic reforming or the dehydrogenation of hydrocarbons, having a cylindrical shape along a vertical axis, an upper bottom and a lower bottom including at least two annular areas centred on the vertical axis, said two annular areas consisting of a so-called catalytic area (202) and a so-called exchange area (204). Sealed vertical panels (65) divide the reactor into sectors, said sectors each including at least one exchange section and at least one catalytic section, all exchange sections defining the exchange area and all catalytic sections defining the catalytic area. The invention also relates to a method that uses the reactor of the invention.

Description

Réacteur et procédé pour les réactions endothermiques en phase gazeuse sur catalyseur solide Reactor and process for endothermic gas phase reactions on solid catalyst
Domaine de l'invention :Field of the invention
L'invention concerne un réacteur et un procédé mettant en oeuvre ce réacteur pour les réactions endothermiques en phase gazeuse sur catalyseur solide. Ce réacteur s'adapte particulièrement aux réactions de reformage catalytique et aux réactions de déshydrogénation d'hydrocarbures.The invention relates to a reactor and a process using this reactor for endothermic reactions in the gas phase on a solid catalyst. This reactor is particularly suited to catalytic reforming reactions and hydrocarbon dehydrogenation reactions.
La présente invention concerne un réacteur permettant de récupérer la chaleur du gaz de combustion sous pression et d'effectuer les réactions.The present invention relates to a reactor for recovering the heat of the combustion gas under pressure and to perform the reactions.
Le procédé utilise du gaz de combustion sous pression pour assurer la chauffe du réacteur par échange indirect de chaleur à l'intérieur du réacteur.The process utilizes pressurized combustion gas to heat the reactor by indirect heat exchange within the reactor.
Art antérieur :Prior art:
II est habituel de traiter les coupes d'essence lourde (80 - 18O0C) comportant principalement les hydrocarbures entre C6 et C10 provenant de la distillation initiale du pétrole pour amener leur indice d'octane à une valeur élevée pour leur utilisation dans un moteur de voiture automobile. Le procédé de reformage catalytique permet d'effectuer cette opération. Ce procédé consiste à passer la coupe essence en présence d'hydrogène sur un catalyseur comportant des métaux précieux à une température élevée (voisine de 5000C). Les réactions de reformage catalytique consistent principalement à déshydrogéner les naphtènes et les paraffines présentes dans la charge pour les transformer en aromatiques qui ont un indice d'octane élevé, et à isomériser les paraffines restantes pour augmenter également l'indice d'octane de l'essence. Une première réaction indésirable est le craquage qui produit des hydrocarbures légers, tels que du méthane, de l'éthane, du propane et du butane et qui diminue le rendement de l'opération. Une seconde réaction indésirable est le cokage du catalyseur, qui diminue l'activité du catalyseur et oblige à sa régénération périodique par brûlage du coke pour rétablir son activité. Le craquage est d'autant plus important que la pression est élevée. Ainsi, les rendements sont meilleurs à faible pression. Cependant, le cokage est d'autant plus élevé que la pression partielle d'hydrogène est faible.It is usual to treat the cuts of heavy gasoline (80 - 18O 0 C) comprising mainly hydrocarbons between C6 and C10 from the initial distillation of oil to bring their octane number to a high value for use in an engine of car automobile. The catalytic reforming process makes it possible to perform this operation. This process consists in passing the gasoline cut in the presence of hydrogen over a catalyst comprising precious metals at a high temperature (close to 500 ° C.). Catalytic reforming reactions consist mainly of dehydrogenating the naphthenes and paraffins present in the feedstock to transform them into aromatics that have a high octane number, and to isomerize the remaining paraffins to also increase the octane number of gasoline. A first undesirable reaction is cracking which produces light hydrocarbons, such as methane, ethane, propane and butane and which reduces the yield of the operation. A second undesirable reaction is the coking of the catalyst, which decreases the activity of the catalyst and forces its periodic regeneration by burning the coke to restore its activity. The cracking is all the more important as the pressure is high. Thus, the yields are better at low pressure. However, the coking is even higher than the partial pressure of hydrogen is low.
Les unités anciennes opéraient à forte pression (15 à 30 bars environ), avec un fort taux de recyclage d'hydrogène, avec des rendements médiocres, et permettaient d'opérer environ 11 mois avant qu'il ne soit nécessaire de régénérer le catalyseur.The old units operated at high pressure (about 15 to 30 bar), with a high rate of hydrogen recycle, with poor yields, and allowed to operate for about 11 months before it was necessary to regenerate the catalyst.
Les unités à régénération continue du catalyseur permettent de régénérer la totalité du catalyseur en quelques jours, ce qui permet une opération à pression faible (3 à 5 bars environ), donc des rendements plus élevés. Le catalyseur circule continûment dans les réacteurs, qui sont alors de type radial, et est envoyé dans une section de régénération afin d'être régénéré, avant d'être ramené dans Ie premier réacteur. Les réactions de déshydrogénation sont très endothermiques, et les réactions s'arrêtent lorsque Ia température est trop faible. Les procédés actuels comportent généralement trois ou quatre réacteurs et autant de fours en série. Chaque four est suivi d'un réacteur. Du fait des températures élevées, les fours ont un faible rendement et il est habituel de produire de la vapeur pour améliorer le rendement global du four. Il est également habituel d'utiliser cette vapeur pour actionner une turbine entraînant le compresseur de recyclage et le compresseur d'exportation d'hydrogène. Ces dernières années, il est plus courant d'utiliser un moteur électrique à vitesse variable pour les compresseurs, et l'utilisation de vapeur est moindre dans les raffineries modernes, qui privilégient pour des raisons économiques l'utilisation de l'électricité. De ce fait, l'utilisation de fours de taille considérable générant de la vapeur avec les problèmes associés d'opération et de maintenance est de nos jours plutôt un inconvénient pour le procédé.The units with continuous regeneration of the catalyst make it possible to regenerate the totality of the catalyst in a few days, which allows operation at low pressure (approximately 3 to 5 bars), and therefore higher yields. The catalyst circulates continuously in the reactors, which are then radial type, and is sent to a regeneration section to be regenerated, before being returned to the first reactor. The dehydrogenation reactions are very endothermic, and the reactions stop when the temperature is too low. Current processes generally comprise three or four reactors and as many furnaces in series. Each oven is followed by a reactor. Because of high temperatures, the furnaces have a low yield and it is customary to produce steam to improve the overall efficiency of the furnace. It is also customary to use this steam to drive a turbine driving the recycle compressor and the hydrogen export compressor. In recent years, it is more common to use a variable speed electric motor for compressors, and the use of steam is lower in modern refineries, which for economic reasons favor the use of electricity. As a result, the use of large steam generating furnaces with the associated problems of operation and maintenance is nowadays rather a disadvantage for the process.
D'autres procédés de déshydrogénation d'hydrocarbures tel que la déshydrogénation des paraffines longues utilisent un procédé identique au reformage catalytique et sont concernés par la même problématique. Description sommaire de l'inventionOther hydrocarbon dehydrogenation processes such as the dehydrogenation of long paraffins use a process identical to catalytic reforming and are concerned with the same problem. Brief description of the invention
L'invention concerne un réacteur de reformage catalytique ou de déshydrogénation d'hydrocarbures présentant une forme cylindrique le long d'un axe vertical, un fond supérieur et un fond inférieur comprenant au moins deux zones annulaires centrées sur l'axe verticale, ces deux zones annulaires étant une zone dite zone catalytique et une zone dite zone d'échange. Des panneaux hermétiques verticaux divisent le réacteur en secteurs, lesdits secteurs comportant chacun au moins une section d'échange et au moins une section catalytique, l'ensemble desdites sections d'échange formant la zone d'échange et l'ensemble desdites sections catalytiques formant la zone catalytique. L'invention concerne aussi le procédé mettant en oeuvre le réacteur selon l'invention.The invention relates to a reactor for catalytic reforming or dehydrogenation of hydrocarbons having a cylindrical shape along a vertical axis, an upper bottom and a lower bottom comprising at least two annular zones centered on the vertical axis, these two zones. annular being an area called catalytic zone and a so-called zone exchange area. Vertical hermetic panels divide the reactor into sectors, said sectors each comprising at least one exchange section and at least one catalytic section, all of said exchange sections forming the exchange zone and all of said catalytic sections forming the catalytic zone. The invention also relates to the process using the reactor according to the invention.
La présente invention utilise généralement pour le chauffage du réacteur, de préférence du réacteur de reformage, des gaz de combustion sous pression qui permettent également de produire de l'électricité pour l'unité de reformage catalytique, et éventuellement pour d'autres unités. Un seul réacteur est généralement utilisé, avec des internes spéciaux permettant l'alternance de sections de chauffe par échange avec le gaz de combustion et des sections catalytiques adiabatiques, le catalyseur pouvant circuler par gravité dans le réacteur. L'empreinte globale au sol de l'unité, le nombre d'équipement et le coût de la section réactionnelle sont ainsi diminués.The present invention generally uses for the heating of the reactor, preferably the reforming reactor, pressurized combustion gases which also make it possible to produce electricity for the catalytic reforming unit, and possibly for other units. A single reactor is generally used, with special internals allowing the alternation of heating sections by exchange with the combustion gas and adiabatic catalytic sections, the catalyst being able to circulate by gravity in the reactor. The overall footprint of the unit, the number of equipment and the cost of the reaction section are thus reduced.
Si la taille du réacteur est trop importante, dans le cas de très grandes capacités, plusieurs réacteurs de ce type peuvent être présents, préférentiellement en parallèle. Chaque réacteur est alors généralement alimenté par un compresseur d'air dédié et un brûleur dédié.If the size of the reactor is too large, in the case of very large capacities, several reactors of this type may be present, preferably in parallel. Each reactor is then generally fed by a dedicated air compressor and a dedicated burner.
Description détaillée de l'inventionDetailed description of the invention
Dans tout le texte, 1 bar équivaut à 0,1 MPa. L'invention concerne un réacteur permettant la mise en oeuvre d'une réaction endothermique en phase gazeuse présentant une forme cylindrique le long d'un axe vertical et comprenant: -au moins deux zones annulaires centrées sur l'axe verticale: une zone catalytique et une zone d'échangeThroughout the text, 1 bar equals 0.1 MPa. The invention relates to a reactor for carrying out an endothermic gas phase reaction having a cylindrical shape along a vertical axis and comprising: at least two annular zones centered on the vertical axis: a catalytic zone and an exchange area
-des panneaux hermétiques (65) verticaux situés le long des rayons du réacteur cylindrique divisent le réacteur en secteurs, lesdits secteurs comportant chacun au moins une section d'échange (61) et au moins une section catalytique (62), l'ensemble desdites sections d'échange formant la zone d'échange (204) et l'ensemble desdites sections catalytiques formant la zone catalytique (202).vertical hermetic panels (65) located along the radii of the cylindrical reactor divide the reactor into sectors, said sectors each comprising at least one exchange section (61) and at least one catalytic section (62), all of said exchange sections forming the exchange zone (204) and all of said catalytic sections forming the catalytic zone (202).
Dans le cadre de l'invention, on nomme premier secteur, le secteur dans lequel a lieu l'alimentation du réacteur en mélange réactionnel. Les autres secteurs sont nommés deuxième secteur, troisième secteur jusqu'au dernier secteur en respectant l'ordre de circulation du mélange réactionnel dans Ie réacteur. Par exemple dans Ie cas de 4 secteurs, le premier secteur est celui dans lequel a lieu l'alimentation en mélange réactionnel du réacteur. Le mélange réactionnel circule alors successivement dans ce premier secteur puis dans le second secteur puis dans le troisième secteur puis dans le dernier secteur avant d'être évacué hors du réacteur.In the context of the invention, the first sector is defined as the sector in which the reaction mixture is fed to the reactor. The other sectors are named second sector, third sector up to the last sector, respecting the circulation order of the reaction mixture in the reactor. For example, in the case of 4 sectors, the first sector is that in which the reaction mixture feed to the reactor takes place. The reaction mixture then circulates successively in this first sector then in the second sector then in the third sector and then in the last sector before being discharged out of the reactor.
Selon un mode de réalisation préféré, la zone catalytique puis la zone d'échange, se succèdent du bord vers le centre du réacteur.According to a preferred embodiment, the catalytic zone and the exchange zone, follow one another from the edge to the center of the reactor.
Selon un autre mode de réalisation préféré, au moins quatre zones annulaires centrées sur l'axe verticale se succèdent du bord vers le centre du réacteur, une première zone (201 ) dite zone d'alimentation, une deuxième zone (202) dite zone catalytique, une troisième zone (203) dite zone de collecte et une quatrième zone (204) dite zone d'échange. Selon cette variante, les panneaux hermétiques (65) verticaux divisant le réacteur en secteurs sont fixés le long d'une zone cylindrique centrale (205). Généralement, les secteurs comportent chacun une section d'échange (61 ), une section catalytique (62), une section, d'alimentation (161) et une section de collecte (162), l'ensemble desdites sections d'échanges formant la zone d'échange (204), l'ensemble desdites sections catalytiques formant la zone catalytique (202), l'ensemble desdites sections d'alimentation formant la zone d'alimentation (201) et l'ensemble desdits secteurs de collecte formant la zone de collecte (203). Généralement, le réacteur comprend un fond supérieur et un fond inférieur. Au moins une tubulure (163) par section traverse généralement le fond supérieur du réacteur pour alimenter les sections catalytiques en catalyseur et au moins une tubulure (263) par section traverse le fond inférieur du réacteur pour évacuer le catalyseur des sections catalytiques. Généralement, un conduit d'alimentation (17) traversant le fond supérieur du réacteur permet d'alimenter un secteur, nommé le premier secteur, en mélange réactionnel, un conduit d'évacuation (18) traversant le fond supérieur du réacteur permet d'évacuer le dernier secteur du réacteur en mélange réactionnel. Un conduit (67) qui relie la zone de collecte du dernier secteur au conduit (18) afin d'évacuer le mélange réactionnel est généralement présent. Selon cette même variante, un conduit d'entrée (6) traversant le fond inférieur du réacteur est relié à des conduits (70) amenant à des chambres tubulaires (71). Lesdites chambres tubulaires distribuent du gaz de combustion au moyen de plaques tubulaires (69) par le bas du réacteur dans chaque section d'échange. Des chambres tubulaires (72) permettent de collecter le gaz de combustion en haut de chaque section d'échange, puis des conduits (73) munis de soufflets de dilatation (74) permettent d'évacuer le gaz de combustion vers le conduit de sortie (7) qui traverse le fond supérieur du réacteur.According to another preferred embodiment, at least four annular zones centered on the vertical axis follow one another from the edge to the center of the reactor, a first zone (201) called a feed zone, a second zone (202) called a catalytic zone. a third zone (203) called the collection zone and a fourth zone (204) called the exchange zone. According to this variant, the vertical hermetic panels (65) dividing the reactor into sectors are fixed along a central cylindrical zone (205). Generally, the sectors each comprise an exchange section (61), a catalytic section (62), a feed section (161) and a collection section (162), all of said exchange sections forming the exchange zone (204), all of said catalytic sections forming the catalytic zone (202), all of said feed sections forming the feed zone (201) and all of said collection sectors forming the collection zone (203). Generally, the reactor comprises an upper bottom and a lower bottom. At least one tubing (163) per section generally passes through the upper bottom of the reactor to supply catalytic catalyst sections and at least one tubing (263) per section passes through the lower bottom of the reactor to discharge the catalyst from the catalytic sections. Generally, a supply pipe (17) passing through the upper bottom of the reactor makes it possible to feed a sector, called the first sector, into a reaction mixture, an evacuation pipe (18) passing through the upper bottom of the reactor makes it possible to evacuate the last sector of the reaction mixture reactor. A conduit (67) connecting the collection area of the last sector to the conduit (18) for discharging the reaction mixture is generally present. According to this same variant, an inlet duct (6) passing through the lower bottom of the reactor is connected to ducts (70) leading to tubular chambers (71). The tubular chambers distribute flue gas by means of tubular plates (69) through the bottom of the reactor into each exchange section. Tubular chambers (72) make it possible to collect the combustion gas at the top of each exchange section, then ducts (73) provided with expansion bellows (74) make it possible to evacuate the combustion gas towards the outlet duct ( 7) which passes through the upper bottom of the reactor.
Chaque section d'échange est généralement constituée d'échangeurs tubulaires ou d'échangeurs à plaques. Chaque section d'échange présente soit une surface identique soit la surface d'échange augmente du premier à la dernière section d'échange.Each exchange section is generally made of tubular heat exchangers or plate heat exchangers. Each exchange section has either an identical surface or the exchange surface increases from the first to the last exchange section.
Chaque section catalytique est généralement formée par deux grilles métalliques concentriques, de préférence de type "grilles Johnson". Toutes les sections catalytiques présentent généralement la même dimension ou la dimension des sections catalytiques augmente du premier au dernier secteur. Les panneaux hermétiques (65) verticaux divisent généralement le réacteur en 3, 4, 6 ou 8 secteurs, de préférence en 4 ou 6 secteurs.Each catalytic section is generally formed by two concentric metal grids, preferably of the "Johnson grids" type. All catalytic sections generally have the same size or the size of the catalytic sections increases from the first to the last sector. Vertical hermetic panels (65) generally divide the reactor into 3, 4, 6 or 8 sectors, preferably 4 or 6 sectors.
Selon un mode de réalisation très préféré, un conduit (64) relie la section de collecte de chaque secteur, à l'exception du dernier secteur, à la section d'échange du secteur suivant.According to a very preferred embodiment, a conduit (64) connects the collection section of each sector, except for the last sector, to the exchange section of the next sector.
L'invention concerne aussi le procédé de mise en oeuvre d'une réaction de reformage catalytique ou de déshydrogénation d'hydrocarbures dans un réacteur selon l'invention.The invention also relates to the method of carrying out a catalytic reforming or dehydrogenation reaction of hydrocarbons in a reactor according to the invention.
L'invention concerne aussi le procédé de mise en oeuvre d'une réaction endothermique en phase gazeuse de reformage catalytique ou de déshydrogénation d'hydrocarbures sur catalyseur solide dans un réacteur selon le mode de réalisation très préféré dans lequel le mélange réactionnel entre dans le réacteur via le conduit (17), circule de haut en bas dans la première section d'échange (61 ). Ledit mélange réactionnel passe alors sous la première section catalytique (62) entre les tubulures (263) de descente du catalyseur, traverse ensuite radialement la première section catalytique (62) en passant de la zone d'alimentation (201) à la zone de collecte (203) du réacteur, passe à la section d'échange du deuxième secteur par la conduite (64). Enfin, le mélange réactionnel circule successivement et en alternance dans les sections d'échanges suivantes et les sections catalytiques suivantes.The invention also relates to the method for carrying out an endothermic gas-phase reaction of catalytic reforming or dehydrogenation of hydrocarbons on a solid catalyst in a reactor according to the most preferred embodiment in which the reaction mixture enters the reactor. via the conduit (17), flows up and down in the first exchange section (61). Said reaction mixture then passes under the first catalytic section (62) between the catalyst descent pipes (263), then passes radially through the first catalytic section (62), passing from the supply zone (201) to the collection zone. (203) of the reactor, passes to the exchange section of the second sector by the pipe (64). Finally, the reaction mixture circulates successively and alternately in the following exchange sections and the following catalytic sections.
Le catalyseur circule généralement de haut en bas à la même vitesse dans toutes les sections catalytiques. Le catalyseur peut aussi circuler de haut en bas à une vitesse de plus en plus élevée de la première à la dernière section catalytique.The catalyst generally flows up and down at the same rate in all catalytic sections. The catalyst can also flow up and down at a higher and higher rate from the first to the last catalytic section.
L'invention concerne aussi le procédé dans lequel le gaz de combustion sous pression assure le chauffage du mélange réactionnel par un échange indirect de chaleur. Selon une première variante de production du gaz de combustion, le gaz de combustion alimentant le réacteur (60) via le conduit (6) vient du chauffage d'air sous pression atmosphérique circulant via la ligne (1) vers un compresseur d'air (2) puis via la ligne (3) vers une chambre de combustion (4) dans laquelle le brûlage d'un gaz combustible circulant via (5) permet de porter le gaz de combustion à une température comprise entre 6000C et 800°C et préférentiellement entre 6500C et 7500C.The invention also relates to the method wherein the pressurized combustion gas provides heating of the reaction mixture by indirect heat exchange. According to a first production variant of the combustion gas, the combustion gas supplying the reactor (60) via the pipe (6) comes from the heating of air under atmospheric pressure flowing via the line (1) to an air compressor ( 2) then via the line (3) to a combustion chamber (4) in which the burning of a fuel gas circulating via (5) can carry the combustion gas to a temperature between 600 0 C and 800 ° C and preferably between 650 0 C and 750 0 C.
Selon une seconde variante de production du gaz de combustion, le gaz de combustion alimentant le réacteur (60) via le conduit (6) vient du chauffage d'air sous pression atmosphérique circulant via la ligne (1) vers un compresseur d'air (2) puis via la ligne (3) vers une chambre de combustion (4) dans laquelle le brûlage d'un gaz combustible circulant via 5 permet de chauffer l'air de combustion qui passe alors par une turbine d'expansion (12) qui est sur le même arbre que le compresseur d'air et qui fournit la puissance nécessaire à la compression, le gaz de combustion sortant de la turbine d'expansion (12) est à une pression comprise entre 0,2 et 0,45 MPa, et à une température comprise entre 600 et 800°C, et préférentiellement entre 650 et 750°C.According to a second variant of production of the combustion gas, the combustion gas supplied to the reactor (60) via the pipe (6) comes from the heating of air under atmospheric pressure flowing via line (1) to an air compressor ( 2) then via the line (3) to a combustion chamber (4) in which the burning of a fuel gas circulating via 5 is used to heat the combustion air, which then passes through an expansion turbine (12) which is on the same shaft as the air compressor and which provides the power required for compression, the combustion gas leaving the expansion turbine (12) is at a pressure between 0.2 and 0.45 MPa, and at a temperature between 600 and 800 ° C, and preferably between 650 and 750 ° C.
Selon chacune des deux variantes de production du gaz de combustion, le gaz de combustion sortant du réacteur via le conduit 7 peut être réchauffé dans une chambre de combustion (8) avant d'être envoyé dans une turbine de détente (10) pour produire de l'électricité.According to each of the two variants of production of the combustion gas, the combustion gas leaving the reactor via the pipe 7 can be heated in a combustion chamber (8) before being sent into an expansion turbine (10) to produce electricity.
Description des figures:Description of the figures:
La figure 1 décrit une des manières de fournir de la chaleur au réacteur. De l'air atmosphérique est amené via la ligne (1) au compresseur d'air (2). L'air est comprimé à une pression voisine de 4 bars absolus (0,4 MPa) et est ensuite envoyé via la ligne (3) dans une chambre de combustion (4). Un gaz combustible est amené via la ligne (5) afin d'être brûlé dans la chambre de combustion (4). L'air appauvri et chauffé par la combustion à une température voisine de 7000C est envoyé via la ligne (6) dans le réacteur (60). Le mélange réactionnel entre via la ligne (17) et sort via la ligne (18). Le gaz de combustion se refroidit par échange avec le mélange réactionnel subissant une réaction endothermique de reformage catalytique.Figure 1 depicts one of the ways of supplying heat to the reactor. Atmospheric air is supplied via line (1) to the air compressor (2). The air is compressed at a pressure of about 4 bars absolute (0.4 MPa) and is then sent via line (3) into a combustion chamber (4). A combustible gas is fed via line (5) to be burned in the combustion chamber (4). The depleted air heated by combustion at a temperature of 700 ° C. is sent via line (6) into the reactor (60). The reaction mixture enters via line (17) and exits via line (18). The combustion gas is cooled by exchange with the reaction mixture undergoing an endothermic catalytic reforming reaction.
A la sortie du réacteur, le gaz refroidi est envoyé via la ligne (7) vers une deuxième chambre de combustion (8), où il est réchauffé par combustion du gaz combustible amené via la ligne (9). A la sortie de la chambre de combustion, le gaz chaud est envoyé à une température voisine de 75O0C dans une turbine de détente (10) qui entraîne un alternateur (11 ) pour produire de l'électricité.At the outlet of the reactor, the cooled gas is sent via the line (7) to a second combustion chamber (8), where it is heated by combustion of the fuel gas supplied via the line (9). At the outlet of the combustion chamber, the hot gas is sent at a temperature of 75O 0 C in an expansion turbine (10) which drives an alternator (11) to produce electricity.
La figure 2 décrit une manière alternative de fournir la chaleur au réacteur (60). De l'air atmosphérique est amené via la ligne (1 ) au compresseur d'air (2). L'air comprimé à une pression voisine de 20 bars est ensuite envoyé via la ligne (3) dans Ia chambre de combustion (4). Un gaz combustible est amené via Ia ligne (5) pour être brûlé dans Ia chambre de combustion (4). L'air appauvri et chauffé par la combustion à une température voisine de 13000C est envoyé dans une turbine de détente (12) qui entraîne le compresseur d'air (2). Le gaz à la sortie de la turbine est aux alentours de 3 bars et à une température voisine de 7000C. Il est envoyé via la ligne (6) dans le réacteur (60).Figure 2 depicts an alternative way of supplying heat to the reactor (60). Atmospheric air is supplied via line (1) to the air compressor (2). The compressed air at a pressure of about 20 bar is then sent via line (3) into the combustion chamber (4). A combustible gas is fed via line (5) to be burned in the combustion chamber (4). The depleted air and heated by combustion at a temperature of 1300 0 C is sent into an expansion turbine (12) which drives the air compressor (2). The gas at the outlet of the turbine is around 3 bars and at a temperature of 700 ° C. It is sent via line (6) into the reactor (60).
Le mélange réactionnel entre via la ligne (17) et sort via la ligne (18). Le gaz de combustion se refroidit par échange avec le mélange réactionnel subissant une réaction endothermique de reformage catalytique. A la sortie du réacteur, le gaz refroidi est envoyé via la ligne (7) vers une deuxième chambre de combustion (8), où il est réchauffé par combustion du gaz combustible amené via la ligne (9). A la sortie de la chambre de combustion, le gaz chaud est envoyé à une température voisine de 75O0C dans une turbine de détente (10) qui entraîne un alternateur (11 ) pour produire de l'électricité.The reaction mixture enters via line (17) and exits via line (18). The combustion gas is cooled by exchange with the reaction mixture undergoing an endothermic catalytic reforming reaction. At the outlet of the reactor, the cooled gas is sent via the line (7) to a second combustion chamber (8), where it is heated by combustion of the fuel gas supplied via the line (9). At the outlet of the combustion chamber, the hot gas is sent at a temperature of 75O 0 C in an expansion turbine (10) which drives an alternator (11) to produce electricity.
La figure 3 décrit une variante de la figure 1 dans laquelle on récupère de la chaleur sur les gaz chauds circulant via la ligne (40) en sortie de la turbine (10). L'échangeur (41 ) permet de récupérer la chaleur soit: -par production de vapeur, qui peut être utilisée dans Ia raffinerie ou pour produire de l'électricité,FIG. 3 describes a variant of FIG. 1 in which heat is recovered from the hot gases flowing via the line (40) at the outlet of the turbine (10). The heat exchanger (41) makes it possible to recover heat either: -by steam production, which can be used in the refinery or to produce electricity,
-soit par chauffage d'un fluide caloporteur (huile chaude), qui peut être utilisé par exemple pour permettre de rebouillir les colonnes du procédé. Le gaz effluent de l'échangeur (41 ) circule via la ligne (42).or by heating a heat transfer fluid (hot oil), which can be used, for example, to reboil the columns of the process. The effluent gas from the exchanger (41) flows via the line (42).
Cette variante est bien entendu possible aussi de la même façon dans le cas de la figure 2 (non représenté).This variant is of course also possible in the same way in the case of Figure 2 (not shown).
La figure 4 représente la section réactionnelle d'un reformage catalytique suivant l'invention.FIG. 4 represents the reaction section of a catalytic reforming according to the invention.
Le gaz de combustion entre via la ligne (6) et sort via la ligne (7) du réacteur (60).The combustion gas enters via the line (6) and exits via the line (7) of the reactor (60).
La charge arrive via la ligne (14) à la pompe de charge (15). La charge au refoulement de la pompe est envoyée via la ligne (16) à l'échangeur de chaleur (19), qui est de préférence du type Packinox.The charge arrives via the line (14) to the charge pump (15). The discharge charge of the pump is sent via line (16) to the heat exchanger (19), which is preferably of the Packinox type.
Le gaz de recyclage qui circule via la ligne (26) est envoyé également à cet échangeur (19), pour être mélangé à la charge circulant via la ligne (16) dans l'échangeur et chauffé à une température voisine de 44O0C par échange avec le mélange réactionnelle sortant du réacteur (60) via la ligne (18). A la sortie de l'échangeur de chaleur (19), le mélange réactionnel est envoyé dans le réacteur (60) via la ligne (17). Le mélange réactionnel sortant du réacteur via la ligne (18) est aux alentours de 490°C et est envoyée vers le haut de l'échangeur de chaleur (19), où il est refroidi aux alentours de 1000C. A la sortie de l'échangeur de chaleur (19), l'effluent est envoyé via la ligne (20) vers un échangeur de chaleur (21 ), où il est refroidi par échange de chaleur avec de l'air ou de l'eau de refroidissement. A la sortie de l'échangeur (21), l'effluent refroidi et partiellement condensé est envoyé via la ligne (22) vers le ballon séparateur (23). Le liquide du ballon est soutiré via la ligne (28) vers une section de stabilisation. La phase gazeuse du ballon séparateur (24), constituée principalement d'hydrogène, est utilisée en partie pour constituer un recyclage gazeux, comprimé par le compresseur (25) puis circulant via la ligne (26), le reste étant envoyé vers une section de purification via la ligne (27). Les figures 5, 6, 7 et 8 représentent une version préférée du réacteur sous différentes coupes.The recycling gas circulating via the line (26) is also sent to this exchanger (19), to be mixed with the charge circulating via the line (16) in the exchanger and heated to a temperature of 44O 0 C by exchange with the reaction mixture leaving the reactor (60) via the line (18). At the outlet of the heat exchanger (19), the reaction mixture is sent into the reactor (60) via the line (17). The reaction mixture leaving the reactor via the line (18) is around 490 ° C. and is sent to the top of the heat exchanger (19), where it is cooled to around 100 ° C. At the exit of the heat exchanger (19), the effluent is sent via the line (20) to a heat exchanger (21), where it is cooled by heat exchange with air or cooling water. At the outlet of the exchanger (21), the cooled and partially condensed effluent is sent via line (22) to the separator tank (23). The liquid from the flask is withdrawn via line (28) to a stabilizing section. The gaseous phase of the separator tank (24), consisting mainly of hydrogen, is used in part to constitute a gaseous recycle, compressed by the compressor (25) and then circulating via the line (26), the remainder being sent to a section of purification via the line (27). Figures 5, 6, 7 and 8 show a preferred version of the reactor in different sections.
La figure 5 représente schématiquement le réacteur (60) en coupe et vu de face. Quatre zones annulaires centrées sur l'axe verticale se succèdent du bord vers le centre du réacteur, une première zone (visible sur la figure 6 numéro 201 ) dite zone d'alimentation, une deuxième zone (visible sur la figure 6 numéro 202) dite zone catalytique, une troisième zone (visible sur la figure 6 numéro 203) dite zone de collecte et une quatrième zone (visible sur la figure 6 numéro 204) dite zone d'échange.Figure 5 schematically shows the reactor (60) in section and seen from the front. Four annular zones centered on the vertical axis follow each other from the edge towards the center of the reactor, a first zone (visible in FIG. 6 number 201) called the feed zone, a second zone (visible in FIG. catalytic zone, a third zone (visible in Figure 6 number 203) called collection zone and a fourth zone (visible in Figure 6 number 204) said exchange zone.
Des panneaux hermétiques verticaux (visibles sur la figure 6 numéro (65)) sont fixés sur la zone cylindrique centrale (visible sur la figure 6 numéro 205) et divisent le réacteur en secteurs.Vertical hermetic panels (visible in FIG. 6 number (65)) are fixed on the central cylindrical zone (visible in FIG. 6, number 205) and divide the reactor into sectors.
Chaque secteur comporte une section d'échange (61 ) et une section catalytique (62). L'ensemble des sections d'échange forme la zone d'échangeEach sector has an exchange section (61) and a catalytic section (62). All exchange sections form the exchange zone
(204) et l'ensemble des sections catalytiques forme la zone catalytique (202).(204) and all of the catalytic sections form the catalytic zone (202).
Chaque secteur comporte une section d'alimentation (161 ) et une section de collecte (162). L'ensemble des sections d'alimentation forme la zone d'alimentation (201) et l'ensemble des sections de collecte forme la zone de collecte (203).Each sector has a feed section (161) and a pickup section (162). The set of feed sections forms the feed zone (201) and all of the collection sections form the collection zone (203).
Le gaz de combustion circule de bas en haut dans le réacteur. Le gaz de combustion est alimenté par le bas du réacteur via le conduit d'entrée (6) puis est réparti dans chaque section d'échange via les conduits (70) puis via les chambres tubulaires (71 ) avant d'être distribué par des plaques tubulaires (69) dans des tubes (99). En sortie des tubes, le gaz de combustion est collecté, en haut du réacteur, dans des chambres tubulaires (72), puis envoyé via les conduits (73) munis de soufflets de dilatation (74) vers le conduit de sortie (7).The flue gas flows up and down the reactor. The combustion gas is fed from the bottom of the reactor via the inlet duct (6) and is distributed in each exchange section via the ducts (70) and via the tubular chambers (71) before being distributed by tubular plates (69) in tubes (99). At the outlet of the tubes, the combustion gas is collected at the top of the reactor in tubular chambers (72) and then sent via the conduits (73) provided with expansion bellows (74) to the outlet duct (7).
Le mélange réactionnel parcourt successivement tous les secteurs. Le mélange réactionnel entre par le conduit (17) et à la sortie de la section de collecte du dernier secteur, il est collecté par le conduit (visible sur la figure 6 numéro 67) puis sort du réacteur via le conduit (18). La circulation du mélange réactionnel, comprenant de l'hydrogène et des hydrocarbures, est représentée par les flèches.The reaction mixture successively traverses all sectors. The reaction mixture enters through the conduit (17) and at the outlet of the collection section of the last sector, it is collected by the conduit (visible in Figure 6 number 67) and then leaves the reactor via the conduit (18). The circulation of the reaction mixture, comprising hydrogen and hydrocarbons, is represented by the arrows.
La pression d'entrée du réacteur est voisine de 4 bars. Le mélange réactionnel entre dans la zone d'échange du premier secteur par l'entrée (66) (Voir flèche 101 ). Dans ce premier secteur, le mélange réactionnel se réchauffe en descendant (flèche 102) à contre-courant du gaz de combustion et sort par la sortie (75) de la première section d'échange. Le gaz passe en dessous de la section catalytique 62 (flèche 103), entre les tubulures de descente du catalyseur (263), remonte le long de la virole, et passe au travers de la section catalytique (62) (flèches 104). Le mélange réactionnel réagit et se refroidit très vite sur le catalyseur, car les naphtènes présents dans la charge réagissent très vite et de manière très endothermique.The inlet pressure of the reactor is close to 4 bars. The reaction mixture enters the exchange zone of the first sector through the inlet (66) (see arrow 101). In this first sector, the reaction mixture heats down (arrow 102) against the current of the combustion gas and exits through the outlet (75) of the first exchange section. The gas passes below the catalytic section 62 (arrow 103), between the descent tubes of the catalyst (263), goes up along the ferrule, and passes through the catalytic section (62) (arrows 104). The reaction mixture reacts and cools very quickly on the catalyst because the naphthenes present in the feed react very quickly and very endothermically.
La température est généralement inférieure à 4000C à la sortie de la première section de catalyseur. Le mélange réactionnel est alors évacué de la première section en haut du réacteur et envoyé dans la seconde section via une conduite (visible sur la figure 6, numéro (64)). Le mélange réactionnel est à nouveau réchauffé dans la section d'échange du deuxième secteur, puis refroidi en réagissant dans la section catalytique du deuxième secteur.The temperature is generally less than 400 ° C. at the outlet of the first catalyst section. The reaction mixture is then removed from the first section at the top of the reactor and sent to the second section via a pipe (visible in FIG. 6, number (64)). The reaction mixture is reheated in the exchange section of the second sector and then cooled by reacting in the catalytic section of the second sector.
Au fur et à mesure de l'avancement des réactions, il reste de moins en moins de naphtènes, les paraffines sont plus lentes à réagir, et le craquage exothermique compense en partie l'endothermicité des autres réactions. Le profil de température de sortie donc d'entrée du mélange réactionnel dans les secteurs successifs est donc ascendant, ce qui est considéré comme favorable pour les rendements. A la sortie du dernier secteur, le mélange réactionnel est collecté par le conduit (visible sur la figure 6 numéro 67) puis envoyé vers le conduit de sortie (18).As the reactions progress, there are fewer and fewer naphthenes, the paraffins are slower to react, and the exothermic cracking partly compensates for the endothermicity of the other reactions. The output temperature profile thus input of the reaction mixture in the successive sectors is ascending, which is considered favorable for the yields. At the outlet of the last sector, the reaction mixture is collected by the conduit (visible in Figure 6 number 67) and sent to the outlet duct (18).
La figure 6 montre le réacteur vu du dessus et en coupe. Quatre zones annulaires centrées sur l'axe verticale se succèdent du bord vers le centre du réacteur: la zone d'alimentation (201 ), la zone catalytique (202), la zone de collecte (203) et la zone d'échange (204).Figure 6 shows the reactor seen from above and in section. Four annular zones centered on the vertical axis follow each other from the edge to the center of the reactor: the feed zone (201), the catalytic zone (202), the collection zone (203) and the exchange zone (204). ).
Des panneaux hermétiques verticaux (65) sont fixés sur la zone cylindrique centrale (205) et divisent le réacteur en 8 secteurs. Les conduits (64) permettent le passage d'un secteur à l'autre. Le mélange réactionnel entre dans la première section d'échange par l'entrée (66). A la sortie du dernier secteur, le mélange réactionnel est collecté par le conduit (67).Vertical hermetic panels (65) are attached to the central cylindrical zone (205) and divide the reactor into 8 sectors. The conduits (64) allow the passage from one sector to another. The reaction mixture enters the first exchange section through the inlet (66). At the outlet of the last sector, the reaction mixture is collected by the conduit (67).
La figure 7 représente un secteur du réacteur vu du centre du réacteur, avec la section d'échange (61 ) au premier plan, la plaque tubulaire (69), et la section catalytique (62) en arrière plan, avec les tubulures de descente de catalyseur (163) et (263) et les plaques de fermeture (68). La figure 8 représente le même secteur vu depuis la virole, avec la section d'échange (61 ) en arrière plan, Ia section catalytique (62) au premier plan, la sortie de la section d'échange (75), le passage (64) d'un secteur à l'autre et une plaque de fermeture (68).FIG. 7 shows a sector of the reactor seen from the center of the reactor, with the exchange section (61) in the foreground, the tube plate (69), and the catalytic section (62) in the background, with the downcomers catalyst (163) and (263) and the closure plates (68). FIG. 8 represents the same sector seen from the ferrule, with the exchange section (61) in the background, the catalytic section (62) in the foreground, the exit of the exchange section (75), the passage ( 64) from one sector to another and a closure plate (68).
ExempleExample
La configuration du réacteur représentée par les figures 5 à 8 est mise en oeuvre dans cet exemple.The configuration of the reactor shown in FIGS. 5 to 8 is implemented in this example.
On considère une unité de reformage catalytique traitant 60 tonnes par heure de charge, avec 35 tonnes de catalyseur.A catalytic reforming unit treating 60 tons per hour of charge is considered, with 35 tons of catalyst.
La charge est une coupe 90-1700C, avec une teneur en paraffines de 60% volume, en naphtènes de 25% volume et en aromatiques de 15% volume.The filler is a 90-170 ° C. section, with a paraffin content of 60% by volume, 25% naphthenes and 15% volume aromatics.
Le rapport molaire d'hydrogène pur par rapport à la charge est de 2,5The molar ratio of pure hydrogen to the charge is 2.5
L'octane recherche visé est de 102. La totalité du catalyseur est régénéré en continu en 2,5 jours.The target octane is 102. The entire catalyst is regenerated continuously in 2.5 days.
Pour fournir la chaleur de réaction, environ 75,24 millions de kJ/h (18 millions de kcal/h), on comprime 330 tonnes d'air à 4 bars absolu. Le compresseur centrifuge d'air a une efficacité polytropique de 80% et consomme 16,7 MW. La température de sortie du compresseur est de 1920C. On brûle dans la première chambre de combustion 4160 kg/h de gaz naturel à 150C, avec un pouvoir calorifique inférieur de 46439,8 kJ/kg (1 1110 kcal/kg). La température en sortie de chambre de combustion est de 7000C. Le gaz de combustion arrive via la conduite (6) à environ 7000C. Les températures d'entrée et de sortie côté reformage catalytique dans les différents secteurs sont comme suit:To provide the heat of reaction, about 75.24 million kJ / h (18 million kcal / h), we compress 330 tons of air at 4 bar absolute. The centrifugal air compressor has a polytropic efficiency of 80% and consumes 16.7 MW. The outlet temperature of the compressor is 192 ° C. 4160 kg / h of natural gas are burned in the first combustion chamber at 15 ° C., with a lower heating value of 46439.8 kJ / kg (1110 kcal / kg). ). The combustion chamber outlet temperature of 700 0 C. The combustion gas passes via line (6) to about 700 0 C. The inlet and outlet temperatures on the catalytic reforming side in the different sectors are as follows:
Mélange réactionnelReaction mixture
Le mélange réactionnel arrive à 450cC dans le réacteur, venant de l'échangeur charge effluent Packinox. Il est réchauffé par échange avec les fumées chaudes du premier secteur et arrive à 486°C dans le catalyseur du premier secteur, il est envoyé ensuite dans le second secteur, où il est réchauffé avant d'être alimenté au deuxième secteur. On suppose 8 secteurs dans cet exemple: section catalytique 1 : entrée dans le catalyseur à 486°C, sortie à 396°C section catalytique 2: entrée dans le catalyseur à 4410C, sortie à 4190C section catalytique 3: entrée 46O0C, sortie 437°C section catalytique 4: entrée 4750C, sortie 4510C section catalytique 5: entrée 487°C, sortie 463°C section catalytique 6: entrée 4970C, sortie 475°C section catalytique 7: entrée 5070C, sortie 487°C section catalytique 8: entrée 517°C, sortie 5010C (à 4,8 bars absolu)The reaction mixture reaches 450 c C in the reactor, from the exchanger effluent load Packinox. It is heated by exchange with the hot fumes of the first sector and reaches 486 ° C in the catalyst of the first sector, it is then sent to the second sector, where it is heated before being fed to the second sector. 8 sectors are assumed in this example: catalytic section 1: entry into the catalyst at 486 ° C., exit at 396 ° C. catalytic section 2: entry into the catalyst at 441 ° C., exit at 419 ° C. catalytic section 3: 46 ° inlet 0 C, output 437 ° C catalytic section 4: inlet 475 0 C, outlet 451 0 C catalytic section 5: inlet 487 ° C, outlet 463 ° C catalytic section 6: inlet 497 0 C, outlet 475 ° C catalytic section 7: inlet 507 0 C, outlet 487 ° C catalytic section 8: inlet 517 ° C, outlet 501 0 C (at 4.8 bar absolute)
gaz de combustionflue gas
1er section d'échange: entrée 700°C, sortie 4710C 2eme section d'échange: entrée 7000C, sortie 4220C 3eme section d'échange: entrée 7000C, sortie 442°C 1st exchange section: 700 ° C input, 471 0 C output 2nd exchange section: 700 0 C input, 422 0 C output 3rd exchange section: 700 0 C input, 442 ° C output
4eme section d'échange: entrée 700°C, sortie 460°C 5eme section d'échange: entrée 7000C, sortie 472°C 6eme section d'échange: entrée 7000C, sortie 483°C 7eme section d'échange: entrée 7000C, sortie 4940C 8eme section d'échange: entrée 7000C, sortie 5050C4th exchange section: 700 ° C input, 460 ° C output 5th exchange section: 700 0 C input, 472 ° C output 6th exchange section: 700 0 C input, 483 ° C output 7th exchange section : input 700 0 C, output 494 0 C 8th exchange section: input 700 0 C, output 505 0 C
Le gaz de combustion sort du réacteur à 469°C, après avoir cédé 88,198 millions de KJ/h (21 ,1 MM Kcal/h) au mélange réactionnel. Le gaz de combustion effluent est envoyé dans une deuxième chambre de combustion où 2560 kg/h de gaz combustibles sont brûlés, pour atteindre 7600C à une pression de 3,4 bars absolus en entrée d'une turbine d'expansion. Cette turbine a une efficacité polytropique de 85% et fournit environ 26 MW de puissance électrique qui permet d'entraîner le compresseur d'air et permet de fournir suffisamment d'électricité pour les unités de reformage catalytique et de prétraitement.The flue gas exited the reactor at 469 ° C, after yielding 88.198 million KJ / h (21.1 MM Kcal / h) to the reaction mixture. The effluent combustion gas is sent to a second combustion chamber where 2560 kg / h of combustible gases are burned to reach 760 ° C. at a pressure of 3.4 bar absolute at the inlet of an expansion turbine. This turbine has a polytropic efficiency of 85% and provides about 26 MW of electrical power that drives the air compressor and provides enough electricity for catalytic reforming and pretreatment units.
En sortie de turbine, l'effluent gazeux est à une température de 5260C, ce qui permet soit de produire davantage d'électricité en générant de la vapeur, soit de réchauffer un fluide caloporteur qui permet de rebouillir les colonnes du procédé (la colonne de strippage du prétraitement et la stabilisation du reformage).At the turbine outlet, the gaseous effluent is at a temperature of 526 ° C., which makes it possible either to produce more electricity by generating steam or to heat a heat transfer fluid which makes it possible to reboil the columns of the process (the stripping column of pretreatment and stabilization of reforming).
Dans cet exemple, on a 48,07 millions de kJ/h (11 ,5 MM kcal/h) disponible entre 526°C et 4000C, ce qui est plus que suffisant pour les deux colonnes.In this example, there is 48.07 million kJ / h (11.5 MM kcal / h) available between 526 ° C and 400 0 C, which is more than enough for the two columns.
Une surface d'échange de 4000 m2 environ est nécessaire, soit 8 fois 500 m2. Ceci correspond à 8 fois 350 tubes de 30 mm de diamètre et de 15 m de long. L'exemple est donné avec des échangeurs tubulaires pour simplifier les calculs, mais il est possible, sans sortir du cadre de l'invention, d'utiliser d'autres types d'échangeurs, par exemple des échangeurs à plaques soudées type Packinox, qui devraient permettre une bien meilleure compacité.An exchange area of approximately 4000 m 2 is necessary, ie 8 times 500 m 2 . This corresponds to 8 times 350 tubes 30 mm in diameter and 15 m long. The example is given with tubular exchangers to simplify the calculations, but it is possible, without departing from the scope of the invention, to use other types of exchangers, for example Packinox type welded plate heat exchangers, which should allow a much better compactness.
Les tubes sont installés en pas triangulaire de pas P= 38 mm. Avec ce pas, il faut une section de 0,00125 m2 (0.866 x P2 ) pour loger un tube, donc environ 3.5 m2 pour loger les 2800 tubes.The tubes are installed in triangular pitch pitch P = 38 mm. With this step, it takes a section of 0.00125 m2 (0.866 x P 2 ) to accommodate a tube, so about 3.5 m2 to house the 2800 tubes.
En laissant un accès de 0,8 m de diamètre au centre et en majorant la surface de 15 % pour tenir compte du sectionnement, il faut donc une surface de 0,5 + 3.5 x 1 ,15 = 4.5 m2 pour la totalité de la zone d'échange, soit un diamètre de 2.4 m.Leaving an access of 0.8 m diameter in the center and increasing the area by 15% to take into account the sectioning, it requires a surface of 0.5 + 3.5 x 1, 15 = 4.5 m2 for the entire exchange zone, a diameter of 2.4 m.
Le catalyseur est installé dans une zone annulaire de diamètre intérieur 3,2 m et sur une hauteur voisine de 14 m. On a 35 tonnes de catalyseur, soit environ 50 m3, donc 3.6 m2 de zone catalytique (50/14). Le diamètre extérieur de la zone catalytique annulaire est donc de 3.85 m.The catalyst is installed in an annular zone of internal diameter 3.2 m and a height of about 14 m. We have 35 tons of catalyst, about 50 m3, so 3.6 m2 of catalytic zone (50/14). The outer diameter of the annular catalytic zone is therefore 3.85 m.
Chaque secteur comporte donc à partir de la virole extérieure: -une section vide (environ 60 cm)Each sector thus comprises from the outer shell: -an empty section (about 60 cm)
-une section remplie de catalyseur entre deux grilles Johnson ou équivalent (environ 65 cm)a section filled with catalyst between two grids Johnson or equivalent (approximately 65 cm)
-une section libre (environ 40 cm)-a free section (about 40 cm)
-une section d'échange (environ 80 cm) remplie de tubes verticaux de 30 mm de diamètrean exchange section (about 80 cm) filled with vertical tubes 30 mm in diameter
-une section libre centrale (environ 40 cm de rayon)-a central free section (about 40 cm radius)
Pour installer les tubes d'échange et le catalyseur comme expliqué plus haut, il faut donc une virole de 5,7 m de diamètre intérieur et d'environ 16,5 m de hauteur.In order to install the exchange tubes and the catalyst as explained above, a ferrule of 5.7 m inside diameter and about 16.5 m in height is required.
Le coke produit est très faible dans le premier secteur, et de plus en plus important de secteur en secteur, pour être le plus élevé dans le dernier (8 % de coke si Ie catalyseur circule en 2,5 jours dans ce secteur). Une solution est de faire circuler le catalyseur partout à la même vitesse, de mélanger le catalyseur en sortie de réacteur pour l'envoyer au régénérateur et de le régénérer en mélange, la teneur moyenne en coke n'est alors que de 4 % environ, et permet une régénération sans risque.The coke produced is very low in the first sector, and increasingly important sector in sector, to be the highest in the last (8% coke if the catalyst circulates in 2.5 days in this sector). One solution is to circulate the catalyst everywhere at the same speed, to mix the catalyst at the outlet of the reactor to send it to the regenerator and to regenerate it as a mixture, the average coke content is then only about 4%, and allows regeneration without risk.
Cependant le catalyseur des premiers secteurs est régénéré avant que cela ne soit nécessaire, et il est sans doute préférable de dimensionner les dispositifs de descente du catalyseur de manière à ce que le catalyseur des premiers secteurs descende plus lentement, et le catalyseur des derniers descende plus vite. However, the catalyst of the first sectors is regenerated before it is necessary, and it is probably preferable to size the catalyst descent devices so that the catalyst of the first sectors falls more slowly, and the catalyst of the last descends more quickly.

Claims

Revendications claims
1- Réacteur permettant la mise en oeuvre d'une réaction endothermique en phase gazeuse présentant une forme cylindrique le long d'un axe vertical et comprenant:A reactor for carrying out an endothermic gas phase reaction having a cylindrical shape along a vertical axis and comprising:
-au moins deux zones annulaires centrées sur l'axe verticale: une zone catalytique et une zone d'échange -des panneaux hermétiques (65) verticaux situés le long des rayons du réacteur cylindrique qui divisent le réacteur en secteurs, lesdits secteurs comportant chacun au moins une section d'échange (61) et au moins une section catalytique (62), l'ensemble desdites sections d'échange formant la zone d'échange (204) et l'ensemble desdites sections catalytiques formant la zone catalytique (202).at least two annular zones centered on the vertical axis: a catalytic zone and an exchange zone of the vertical hermetic panels (65) located along the radii of the cylindrical reactor which divide the reactor into sectors, said sectors each comprising at least one at least one exchange section (61) and at least one catalytic section (62), all of said exchange sections forming the exchange zone (204) and all of said catalytic sections forming the catalytic zone (202) .
2- Réacteur selon la revendication 1 dans lequel la zone catalytique puis la zone d'échange se succèdent du bord vers le centre du réacteur.2- reactor according to claim 1 wherein the catalytic zone and the exchange zone follow one another from the edge to the center of the reactor.
3- Réacteur selon l'une des revendications 1 ou 2 dans lequel au moins quatre zones annulaires centrées sur l'axe verticale se succèdent du bord vers le centre du réacteur, une première zone (201) dite zone d'alimentation, une deuxième zone (202) dite zone catalytique, une troisième zone (203) dite zone de collecte et une quatrième zone (204) dite zone d'échange.3- reactor according to one of claims 1 or 2 wherein at least four annular zones centered on the vertical axis follow one another from the edge to the center of the reactor, a first zone (201) said feed zone, a second zone (202) said catalytic zone, a third zone (203) called the collection zone and a fourth zone (204) called the exchange zone.
4- Réacteur selon l'une des revendications 1 à 3 dans lequel les panneaux hermétiques (65) verticaux sont fixés le long d'une zone cylindrique centrale (205), lesdits secteurs comportent chacun une section d'échange (61), une section catalytique (62), une section d'alimentation (161 ) et une section de collecte (162), l'ensemble desdites sections d'échange formant la zone d'échange (204), l'ensemble desdites sections catalytiques formant la zone catalytique (202), l'ensemble desdites sections d'alimentation formant la zone d'alimentation (201 ) et l'ensemble desdites sections de collecte formant la zone de collecte (203). 5- Réacteur selon l'une des revendications 1 à 4 dans lequel au moins une tubulure (163) par secteur traverse le fond supérieur du réacteur pour alimenter les sections catalytiques en catalyseur et au moins une tubulure (263) par secteur traverse le fond inférieur du réacteur pour évacuer le catalyseur des sections catalytiques.4- reactor according to one of claims 1 to 3 wherein the vertical hermetic panels (65) are fixed along a central cylindrical zone (205), said sectors each comprise an exchange section (61), a section catalytic converter (62), a feed section (161) and a collection section (162), all of said exchange sections forming the exchange zone (204), all of said catalytic sections forming the catalytic zone (202), all of said feed sections forming the feed zone (201) and all of said collection sections forming the collection zone (203). 5. Reactor according to one of claims 1 to 4 wherein at least one tubing (163) per sector passes through the upper bottom of the reactor to feed the catalytic catalyst sections and at least one tubing (263) by sector crosses the bottom bottom reactor to remove the catalyst from the catalytic sections.
6- Réacteur selon l'une des revendications 1 à 5 comprenant un fond supérieur et un fond inférieur et dans lequel:Reactor according to one of claims 1 to 5 comprising an upper bottom and a lower bottom and wherein:
-un conduit d'alimentation (17) traversant le fond supérieur du réacteur permet d'alimenter un secteur, nommé premier secteur, en mélange réactionnel -un conduit d'évacuation (18) traversant le fond supérieur du réacteur permet d'évacuer le mélange réactionnel du dernier secteur du réacteura supply duct (17) passing through the upper bottom of the reactor makes it possible to feed a sector, called first sector, into a reaction mixture; an evacuation duct (18) passing through the upper bottom of the reactor makes it possible to evacuate the mixture; reaction of the last sector of the reactor
-un conduit (67) relie la zone de collecte du dernier secteur au conduit (18) permettant d'évacuer le mélange réactionnel.a duct (67) connects the collection zone of the last sector to the duct (18) making it possible to evacuate the reaction mixture.
7- Réacteur selon l'une des revendications 1 à 6 dans lequel:7- Reactor according to one of claims 1 to 6 wherein:
- un conduit d'entrée (6) traversant le fond inférieur du réacteur est relié à des conduits (70) amenant à des chambres tubulaires (71), lesdites chambres tubulaires distribuant du gaz de combustion au moyen de plaques tubulaires (69) par le bas du réacteur et dans chaque section d'échange- an inlet duct (6) passing through the lower bottom of the reactor is connected to ducts (70) leading to tubular chambers (71), said tubular chambers distributing combustion gas by means of tubular plates (69) by means of bottom of the reactor and in each exchange section
- des chambres tubulaires (72) permettent de collecter le gaz de combustion en haut de chaque section d'échange, puis des conduits (73) munis de soufflets de dilatation (74) permettent d'évacuer le gaz de combustion vers le conduit de sortie (7) qui traverse le fond supérieur du réacteur.tubular chambers (72) make it possible to collect the combustion gas at the top of each exchange section, then ducts (73) provided with expansion bellows (74) make it possible to evacuate the combustion gas towards the outlet duct (7) which passes through the upper bottom of the reactor.
8- Réacteur selon l'une des revendications 1 à 7 dans lequel chaque section catalytique est formée par deux grilles métalliques concentriques.8- reactor according to one of claims 1 to 7 wherein each catalytic section is formed by two concentric metal grids.
9- Réacteur selon l'une des revendications 1 à 8 dans lequel chaque section d'échange est constituée d'échangeurs tubulaires.9- reactor according to one of claims 1 to 8 wherein each exchange section consists of tubular exchangers.
10- Réacteur selon l'une des revendications 1 à 8 dans lequel chaque section d'échange est constituée d'échangeurs à plaques. 11- Réacteur selon l'une des revendications 1 à 10 dans lequel chaque section d'échange présente une surface identique.10- reactor according to one of claims 1 to 8 wherein each exchange section consists of plate heat exchangers. 11- Reactor according to one of claims 1 to 10 wherein each exchange section has an identical surface.
12- Réacteur selon l'une des revendications 1 à 10 dans lequel la surface d'échange augmente de la première à la dernière section d'échange.12- reactor according to one of claims 1 to 10 wherein the exchange surface increases from the first to the last exchange section.
13- Réacteur selon l'une des revendications 1 à 12 dans lequel toutes les sections catalytiques présentent la même dimension.13- reactor according to one of claims 1 to 12 wherein all the catalytic sections have the same dimension.
14- Réacteur selon l'une des revendications 1 à 12 dans lequel la dimension des sections catalytiques augmente de la première à la dernière section catalytique.14- Reactor according to one of claims 1 to 12 wherein the dimension of the catalytic sections increases from the first to the last catalytic section.
15- Réacteur selon l'une des revendications 3 à 14 dans lequel un conduit (64) relie Ia section de collecte de chaque secteur, à l'exception du dernier secteur, à la section d'échange du secteur suivant.15- reactor according to one of claims 3 to 14 wherein a conduit (64) connects the collection section of each sector, except the last sector, to the exchange section of the next sector.
16- Réacteur selon l'une des revendications 1 à 15 dans lequel les panneaux hermétiques (65) verticaux divisent le réacteur en 3, 4, 6 ou 8 secteurs.16. Reactor according to one of claims 1 to 15 wherein the vertical hermetic panels (65) divide the reactor into 3, 4, 6 or 8 sectors.
17- Procédé de mise en oeuvre d'une réaction de reformage catalytique ou de déshydrogénation d'hydrocarbures dans un réacteur selon l'une des revendications 1 à 16.17. A process for carrying out a catalytic reforming or dehydrogenation reaction of hydrocarbons in a reactor according to one of claims 1 to 16.
18- Procédé de mise en oeuvre d'une réaction de reformage catalytique ou de déshydrogénation d'hydrocarbures dans un réacteur selon la revendication 15 dans lequel le mélange réactionnel entre dans le réacteur via le conduit (17), circule de haut en bas dans la première section d'échange (61 ), passe sous la première section catalytique (62) entre les tubulures (263) de descente du catalyseur, traverse ensuite radialement la première section catalytique (62) en passant de la zone d'alimentation (201) à la zone de collecte (203) du réacteur, passe à la section d'échange du deuxième secteur par la conduite (64) puis circule successivement et en alternance dans les sections d'échanges suivantes et les sections catalytiques suivantes.18- A method of carrying out a catalytic reforming or dehydrogenation reaction of hydrocarbons in a reactor according to claim 15 wherein the reaction mixture enters the reactor via the conduit (17), flows up and down in the reactor; first exchange section (61) passes under the first catalytic section (62) between the catalyst descent pipes (263), then radially crosses the first catalytic section (62) passing from the supply zone (201) at the collection zone (203) of the reactor, go to the exchange section of the second sector by the pipe (64) and then circulates successively and alternately in the following exchange sections and the following catalytic sections.
19- Procédé selon l'une des revendications 17 à 18 dans lequel le catalyseur circule de haut en bas à la même vitesse dans toutes les sections catalytiques.19- Method according to one of claims 17 to 18 wherein the catalyst flows from top to bottom at the same speed in all the catalytic sections.
20- Procédé selon l'une des revendications 17 à 18 dans lequel le catalyseur circule de haut en bas à une vitesse de plus en plus élevée de la première à la dernière section catalytique.20- Method according to one of claims 17 to 18 wherein the catalyst flows from top to bottom at a higher and higher rate of the first to the last catalytic section.
21- Procédé selon l'une des revendications 17 à 20 dans lequel le gaz de combustion sous pression assure le chauffage du mélange réactionnel par un échange indirect de chaleur.21. A method according to one of claims 17 to 20 wherein the combustion gas under pressure provides heating of the reaction mixture by indirect heat exchange.
22- Procédé selon la revendication 21 dans lequel le gaz de combustion alimentant le réacteur (60) via le conduit (6) vient du chauffage d'air sous pression atmosphérique circulant via une ligne (1 ) vers un compresseur d'air (2) puis via une ligne (3) vers une chambre de combustion (4) dans laquelle le brûlage d'un gaz combustible circulant via une ligne (5) permet de porter le gaz de combustion à une température comprise entre 6000C et 8000C.22- The method of claim 21 wherein the combustion gas supplying the reactor (60) via the conduit (6) comes from heating air under atmospheric pressure flowing via a line (1) to an air compressor (2) then via a line (3) to a combustion chamber (4) in which the burning of a combustible gas circulating via a line (5) makes it possible to bring the combustion gas to a temperature of between 600 ° C. and 800 ° C. .
23- Procédé selon la revendication 21 dans lequel le gaz de combustion alimentant le réacteur (60) via le conduit (6) vient du chauffage d'air sous pression atmosphérique circulant via une ligne (1) vers un compresseur d'air (2) puis via une ligne (3) vers une chambre de combustion (4) dans laquelle le brûlage d'un gaz combustible circulant via une ligne (5) permet de chauffer l'air de combustion qui passe alors par une turbine d'expansion (12) qui est sur le même arbre que le compresseur d'air et qui fournit la puissance nécessaire à la compression, le gaz de combustion sortant de la turbine d'expansion (12) est à une pression comprise entre 0,2 et 0,45 MPa, et à une température comprise entre 600 et 8000C. 24- Procédé suivant l'une des revendications 22 à 23 dans lequel le gaz de combustion sortant du réacteur via le conduit 7 est réchauffé dans une chambre de combustion (8) avant d'être envoyé dans une turbine de détente (10) pour produire de l'électricité. 23- The method of claim 21 wherein the combustion gas supplying the reactor (60) via the conduit (6) comes from heating air under atmospheric pressure flowing via a line (1) to an air compressor (2) then via a line (3) to a combustion chamber (4) in which the burning of a fuel gas circulating via a line (5) is used to heat the combustion air which then passes through an expansion turbine (12). ) which is on the same shaft as the air compressor and provides the power required for compression, the combustion gas exiting the expansion turbine (12) is at a pressure between 0.2 and 0.45 MPa, and at a temperature of between 600 and 800 ° C. 24- A method according to one of claims 22 to 23 wherein the combustion gas exiting the reactor via the conduit 7 is heated in a combustion chamber (8) before being sent into an expansion turbine (10) to produce electricity.
EP08872450A 2007-12-06 2008-12-01 Reactor and method for gaseous phase endothermal reaction on a solid catalyst Withdrawn EP2222395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708560A FR2924624B1 (en) 2007-12-06 2007-12-06 REACTOR AND METHOD FOR GASEOUS ENDOTHERMIC REACTIONS ON SOLID CATALYST
PCT/FR2008/001675 WO2009101280A1 (en) 2007-12-06 2008-12-01 Reactor and method for gaseous phase endothermal reaction on a solid catalyst

Publications (1)

Publication Number Publication Date
EP2222395A1 true EP2222395A1 (en) 2010-09-01

Family

ID=39587935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872450A Withdrawn EP2222395A1 (en) 2007-12-06 2008-12-01 Reactor and method for gaseous phase endothermal reaction on a solid catalyst

Country Status (7)

Country Link
US (1) US20100252482A1 (en)
EP (1) EP2222395A1 (en)
KR (1) KR20100105572A (en)
FR (1) FR2924624B1 (en)
SA (1) SA108290772B1 (en)
TW (1) TW200940171A (en)
WO (1) WO2009101280A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063440B1 (en) * 2017-03-01 2019-06-07 IFP Energies Nouvelles COMPARTIMIZED REACTOR WITH LOW CAPABILITY.
FR3103714B1 (en) * 2019-11-28 2021-12-03 Commissariat Energie Atomique FIXED BED TUBULAR REACTOR
FR3114520B1 (en) * 2020-09-29 2022-08-26 Commissariat Energie Atomique FIXED BED TUBULAR REACTOR
FR3114519B1 (en) * 2020-09-29 2022-08-26 Commissariat Energie Atomique FIXED BED TUBULAR REACTOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907665A (en) * 1972-10-26 1975-09-23 Universal Oil Prod Co Dehydrogenation process
US4071325A (en) * 1976-08-16 1978-01-31 National Distillers And Chemical Corporation Ethylene polymerization reactor
GB8521608D0 (en) * 1985-08-30 1985-10-02 Shell Int Research Producing synthesis gas
JP2001038195A (en) * 1999-06-28 2001-02-13 Basf Ag Reactor provided with heat-exchanger plate
EP1153653A1 (en) * 2000-05-11 2001-11-14 Methanol Casale S.A. Reactor for exothermic or endothermic heterogeneous reactions
EP1300190A1 (en) * 2001-10-04 2003-04-09 Methanol Casale S.A. Heterogeneous catalytic reactor with modular catalytic cartridge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009101280A1 *

Also Published As

Publication number Publication date
KR20100105572A (en) 2010-09-29
US20100252482A1 (en) 2010-10-07
TW200940171A (en) 2009-10-01
SA108290772B1 (en) 2013-04-30
WO2009101280A1 (en) 2009-08-20
FR2924624B1 (en) 2009-11-20
FR2924624A1 (en) 2009-06-12

Similar Documents

Publication Publication Date Title
EP2225016B1 (en) Improvement to a reactor and to a method for gaseous phase endothermal reactions
EP2447210B1 (en) Process for the production of hydrogen by steam reforming of a petroleum fraction with steam production
EP0032096B1 (en) Process for producing ammonia and corresponding synthesis gas
EP0002171A1 (en) Process for increasing the purity of gaseous recycle hydrogen
EP2222395A1 (en) Reactor and method for gaseous phase endothermal reaction on a solid catalyst
EA023199B1 (en) Gas-to-liquid technology to convert gas into liquid hydrocarbons
KR930011922B1 (en) Process and apparatus for the low pressure reforming of petrol using heating by combustion gases
EP2831208A1 (en) Process for purifying a hydrocarbon feedstock
JPH0260993A (en) Catalytic reforming by circulation of heat transfer fluid in plularity of hollow inner spaces
JP2004256336A (en) System and method for hydrogen generation
FR2824755A1 (en) Modular reactor for an exothermic reaction with reaction and heat-extracting plates alternating in a sandwich, with channels for catalyst and reaction, and for exchange fluid respectively
NO823211L (en) SYNTHESIS gas system.
FR2786409A1 (en) PLASMA DEVICE FOR MOBILE ELECTRIC DISCHARGES AND ITS APPLICATIONS FOR CONVERTING CARBONACEOUS MATERIAL
WO2003031012A1 (en) Modular oil refinery
EP2711334B1 (en) Method of production of pure hydrogen from a denatured hydrocarbon feedstock including a desulfurization stage with temperature control upstream the PSA
FR2596059A1 (en) Equipment layout in a process for catalytic cracking in the fluid state, especially of heavy feedstocks
FR2679243A1 (en) Device for the conversion of hydrocarbons, comprising a gas generator and a heat exchanger-reactor with tubes filled with a catalyst
FR2679244A1 (en) Process for the production of aromatic hydrocarbons in a zone comprising a heat exchanger-reactor
FR3001973A1 (en) Reforming gasoline charge with electricity generation comprises contacting gasoline charge with reforming catalyst in presence of hydrogen, cooling mixture with heat transfer fluid, and expanding vaporized heat transfer fluid in turbine
FR2790764A1 (en) Process for aromatization of hydrocarbon charges uses at least two fixed beds comprising supported platinum/rhenium catalysts, the effluent from the last reactor passing through a thermal exchanger
FR2643894A1 (en) PROCESS AND PLANT FOR PRODUCING CARBON MONOXIDE
JPH05194962A (en) Method and equipment for preparing aromatic hydrocarbon in region provided with reactor-heat exchanger
WO2003084867A1 (en) Method and implementing apparatuses using free radicals for triggering a conversion reaction of hydrocarbon feedstock into synthetic gas
FR2685915A1 (en) Process for dehydrogenation of aliphatic hydrocarbons comprising the use of a heat exchanger-reactor
FR3120076A1 (en) Process for the production of aromatic compounds and/or gasolines from a naphtha-type hydrocarbon feedstock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130603

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131030

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140311