EP2220144A1 - Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles - Google Patents

Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles

Info

Publication number
EP2220144A1
EP2220144A1 EP08859213A EP08859213A EP2220144A1 EP 2220144 A1 EP2220144 A1 EP 2220144A1 EP 08859213 A EP08859213 A EP 08859213A EP 08859213 A EP08859213 A EP 08859213A EP 2220144 A1 EP2220144 A1 EP 2220144A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
monomer
polymer
mineral
mineral nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08859213A
Other languages
German (de)
French (fr)
Inventor
Anne Christmann
Jean-François HOCHEPIED
Jose-Marie Lopez-Cuesta
Laure Meynie
Alexandra Roos
Nathalie Cornet
Karine Cavalier
Didier Sy
Marc Lacroix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Imerys PCC France SAS
EssilorLuxottica SA
Original Assignee
Solvay SA
Essilor International Compagnie Generale dOptique SA
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA, Essilor International Compagnie Generale dOptique SA, Renault SAS filed Critical Solvay SA
Publication of EP2220144A1 publication Critical patent/EP2220144A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond

Definitions

  • the present invention relates to a process for preparing a transparent polymeric material comprising a thermoplastic polycarbonate and surface-modified inorganic nanoparticles, as well as to a transparent polymeric material obtained by said process.
  • automotive glazing not only transparent outer bodywork such as for example rear windows, custodes, side windows, glazed roofs, headlamps or lights, but also elements transparent interior interiors such as dashboard windows, dials or screens.
  • Opt lens is understood to mean lenses that adapt in particular to a spectacle frame, whose function is to protect the eye and / or to correct vision, these lenses being chosen from among afocal, unifocal, bifocal and trifocal lenses. and progressive.
  • Polycarbonate has advantages that make it particularly interesting for the optics including excellent transparency, excellent impact resistance, a high refractive index and a great lightness. On the other hand, it has the main weaknesses of not being very rigid and being very sensitive to scratches and abrasion.
  • these mineral nanoparticles are incorporated directly into the polymer used in the molten state.
  • the nanometric dimension of the mineral nanoparticles inevitably induces a phenomenon of aggregation of said nanoparticles when they are mixed in a thermoplastic polycarbonate matrix in the molten state.
  • the polymer material obtained from this process exhibits a loss of transparency, as well as a coloration, in particular a yellowing, which makes its use difficult in the fields of optics.
  • the incorporation of mineral nanoparticles can induce a degradation of the mechanical properties of the polymer material, such as, for example, impact resistance.
  • thermoplastic polycarbonate matrix in order to improve the quality of the interface between the nanoparticles and the thermoplastic polycarbonate matrix and thus improve the mechanical and optical properties of the polymeric material, it is known from EP 1 767 562 a process for the preparation of transparent polymeric materials. comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles.
  • This process consists in grafting, on the surface of the mineral nanoparticles, a monomer of the thermoplastic polycarbonate matrix by an aliphatic ether bond, then polymerizing in situ said monomer to form the thermoplastic polycarbonate matrix.
  • the surface modification of said mineral nanoparticles is inseparable from the thermoplastic polycarbonate matrix.
  • this method involves the use of a specific reactor for the polymerization of the thermoplastic polycarbonate matrix, this use being relatively restrictive.
  • the object of the present invention is to overcome the disadvantages of the solutions of the state of the art by offering in particular a method of preparation of a transparent polymer material easily industrializable while preserving, or even improving, the optical and mechanical properties of the polymer material obtained by said process.
  • the solution according to the present invention is to provide a method for preparing a transparent polymeric material comprising the following steps: i. obtaining composite nanoparticles comprising mineral nanoparticles coated with at least one monomer and / or at least one polymer capable of promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, said mineral nanoparticles being modified at the surface by said monomer and / or said polymer:
  • the preparation method according to the present invention makes it possible to significantly improve the cohesion of the mineral nanoparticles thus modified with the thermoplastic polycarbonate matrix, and to disperse said nanoparticles homogeneously in said matrix.
  • the coupling agent advantageously allows the monomer and / or the polymer to be bonded via the surface of the mineral nanoparticles when said monomer and / or said polymer can not in particular be bonded directly to said surface.
  • the surface modifications of the inorganic nanoparticles of the type adsorption or creation of physical or chemical interactions of the hydrogen bonding or van der Waals type, by the monomer and / or the polymer are preferably carried out directly on the surface of said nanoparticles, or in other terms without a coupling agent.
  • the surface modification of the mineral nanoparticles can be advantageously achieved by creating a covalent bond between, on the one hand, the mineral nanoparticles and the coupling agent and d on the other hand, between the coupling agent and the monomer and / or the polymer.
  • the surface modification of the mineral nanoparticles can be achieved by creating a covalent bond directly between the mineral nanoparticles and the monomer and / or the polymer, or by direct adsorption of the monomer and / or the polymer on the surface of said mineral nanoparticles.
  • the said polymer when the surface of the mineral nanoparticles is modified by a polymer, the said polymer can be obtained by polymerization of the monomer which is specific to it (so-called in situ polymerization). , whether or not there is a coupling agent.
  • step i the monomer of step i is grafted onto the surface of the mineral nanoparticles, and then it is polymerized.
  • said polymerization requires the presence of an initiator capable of generating free radicals under the effect of actinic or thermal radiation.
  • a coupling agent according to the invention in particular via the organosilane
  • the latter is first grafted to the surface of the mineral nanoparticles.
  • the monomer is grafted onto the surface of the mineral nanoparticles via said organosilane, or in other words, the monomer is typically grafted to said organosilane.
  • the monomer is polymerized.
  • the surface modification is direct, that is to say without a coupling agent, the monomer is grafted directly onto the surface of the mineral nanoparticles, and then it is polymerized.
  • the surface of the mineral nanoparticles is modified by a monomer according to the invention, said monomer is not necessarily polymerized.
  • the mineral nanoparticles are at least partially coated with said monomer as such.
  • the composite nanoparticles obtained in step i may advantageously comprise at most 60% by weight of organic coating, preferably between 5 and 50% by weight of organic coating.
  • organic coating means the organic layer formed around the mineral nanoparticles, said layer being obtained from the monomer and / or the polymer, and optionally the coupling agent.
  • transparent polymeric material means a material through which an image is observed without significant loss of contrast.
  • molten state refers to a state in which the thermoplastic polycarbonate matrix of step ii is in a malleable state.
  • This malleable state well known to those skilled in the art, can be conventionally achieved when said matrix is heated to a temperature above the glass transition temperature, or softening temperature, of the thermoplastic polycarbonate.
  • the expression "between a value x and a value y" means that the values x and y are included in this range of values.
  • the physicochemical interactions at the interface between the mineral nanoparticles and the thermoplastic polycarbonate matrix can be advantageously favored when the monomer on the surface composite nanoparticles is in particular styrene, methyl methacrylate, butyl acrylate, bisphenol A, phosgene, diphenyl carbonate and / or acrylamide.
  • Bisphenol A such as phosgene or diphenyl carbonate, are well known monomers of polycarbonate.
  • the polymer on the surface of the composite nanoparticles is in particular polystyrene, polycarbonate, polymethyl methacrylate, butyl polyacrylate and / or polyacrylamide, and more particularly a styrene copolymer, of the monomer polycarbonate, methyl methacrylate, butyl acrylate, bisphenol A and / or acrylamide.
  • the functional group of the organosilane is a functional group capable of reacting radically, and thus being able to create a covalent bond by a radical addition mechanism in the presence of an initiator, said initiator being able to generate free radicals under the effect of actinic or thermal radiation.
  • the reactive functional group may be advantageously chosen from an acrylate, methacrylate, vinyl, allylic or alkenyl group, and preferably a vinyl group.
  • the organosilane according to the present invention may further comprise a hydrolysable functional group.
  • This functional group notably makes it possible to form covalent bonds on the surface of the mineral nanoparticles, and more particularly it makes it possible to form covalent bonds with the hydroxyl groups that may be present on the surface of said nanoparticles.
  • the hydrolysable functional group may be linear or branched and selected from a carboxy and alkoxy group, preferably a C 1 -C 6 group . Mention may in particular be made of an ethoxy or methoxy group.
  • an organosilane By way of example of an organosilane according to the present invention, mention may be made of vinyltrimethoxysilane or methacryloxypropyltrimethoxysilane.
  • the inorganic nanoparticles according to the present invention typically have at least one of their nanoscale dimensions (10 9 meters).
  • the term "dimension” is understood to mean the number-average size of all the nanoparticles of a given population, this dimension being conventionally determined by methods that are well known to those skilled in the art. According to these methods for determining the size of the nanoparticles, the size of the nanoparticles according to the present invention refers either to the Stokes diameter (if the method used is that of centrifugation sedimentation and X-ray analysis), or to the diffusion diameter.
  • the method used is that of the light scattering by laser granulometry
  • either to the diffraction diameter if the method used is that of the diffraction of the light by laser granulometry
  • the width (I) of the nanoparticles defined as the smallest dimension of nanoparticles if the method used is that of microscopic analysis, such as SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy)
  • the results obtained must satisfy the nanoscale size condition of the nanoparticles of the invention according to at least one of the four methods mentioned above, preferably at least two of these methods. preferably at least three of these methods, and even more preferably, these four methods.
  • the size of the mineral nanoparticles according to the invention is in particular at most 400 nm, preferably at most 300 nm, and more preferably at most 100 nm.
  • the size of the mineral nanoparticles is between 0.1 and 80 nm, more preferably between 10 and 70 nm, and for example equal to 40 nm.
  • the inorganic nanoparticles according to the present invention may be advantageously chosen from nanoparticles of alkaline earth metal carbonates, alkaline earth metal sulfates, metal oxides, metalloid oxides and / or siloxanes.
  • the nanoparticles of alkaline earth metal carbonates may be calcium carbonate nanoparticles, those of alkaline earth metal sulfates of barium sulphate nanoparticles, or of metal oxides of alumina nanoparticles, zinc oxide, or titanium dioxide, those of metalloid oxides of silicon dioxide nanoparticles and those of siloxanes of silsesquioxane nanoparticles, and more particularly nanoparticles of Trisilanolphenyl Polyhedral SilSesquioxane (TP-POSS).
  • TP-POSS Trisilanolphenyl Polyhedral SilSesquioxane
  • the preferred mineral nanoparticles of this list are nanoparticles of calcium carbonate and alumina.
  • the mixture of step ii may be carried out using an extruder.
  • this mixing process is not limiting and any other method well known to those skilled in the art can be used.
  • Another object of the present invention is a transparent polymeric material obtained by the method of preparation defined above.
  • the transparent polymeric material thus has rigidity with optimized transparency, very good resistance to abrasion as well as impact, and yellowing-like coloration that is substantially non-existent.
  • the transparent polymer material may comprise at most 15% by weight of mineral nanoparticles.
  • This maximum quantity makes it possible, on the one hand, to limit the problems of rheology during the mixing of the composite nanoparticles in the thermoplastic polycarbonate matrix of step ii, and, on the other hand, to limit the cost of the polymer material, while having satisfactory transparency.
  • the transparent polymer material may comprise at most 10% by weight of mineral nanoparticles, preferably at most 5% by weight of mineral nanoparticles, and more preferably a quantity of the order of
  • Another object of the present invention is the use of said transparent polymer material for the manufacture of optical articles such as in particular automotive glazing, optical sighting instrumentation lens, helmet visor or ophthalmic lens.
  • the thickness of the optical articles may be at most 15 mm, preferably between 0.1 and 5 mm, and more preferably between 0.5 and 4 mm.
  • the optical article can be made from said transparent polymer material by any forming method well known to those skilled in the art, such as thermoforming, extrusion, calendering, spinning, injection molding, injection-compression or blow molding, the optical article retaining all the mechanical and optical properties of said polymeric material. More particularly, since the mixture of step ii can be carried out using an extruder, the rod at the exit of the extruder is granulated and then shaped by extrusion, injection or injection-compression to obtain the optical article. .
  • Another object of the present invention is the use of mineral nanoparticles which have been at least partially coated with at least one monomer and / or at least one polymer capable of promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, said mineral nanoparticles being surface-modified by said monomer and / or said polymer either directly or via a coupling agent chosen from a chlorosilane or an organosilane comprising a functional group capable of radical reaction, for the preparation of transparent polymer materials.
  • the mineral nanoparticles and the polycarbonate used in the examples which follow were steamed under vacuum at 120 ° C. for at least 12 hours.
  • Preparation process P1 modification of the surface of mineral nanoparticles by a monomer or a polymer in the presence of a coupling agent
  • step i is carried out in the presence of a coupling agent (agC).
  • First Variant V1 of Process P1 Grafting Bisphenol A or Polycarbonate on the Surface of Mineral Nanoparticles in the Presence of Chlorosilane
  • 20 g of mineral nanoparticles are mixed in 600 g of chloroform at 60 ° C. under an inert atmosphere.
  • An excess of chlorosilane is added to said mixture and allowed to react for 2 hours until excess chlorosilane has evaporated. Silane-grafted inorganic nanoparticles are thus obtained.
  • the temperature is then raised to 130 0 C in order to evaporate the solvent.
  • the mineral nanoparticles thus modified are washed with chloroform by Soxhlet extraction for 16 hours and then dried at 80 ° C. in an oven for 24 hours.
  • Al-agC-PC composite nanoparticles corresponding to nanoparticles of alumina coated with polycarbonate
  • Al-agC-BPA composite nanoparticles corresponding to alumina nanoparticles coated with Bisphenol A monomer, or in other words Bisphenol A, and CC-agC-PC composite nanoparticles, corresponding to coated calcium carbonate nanoparticles of polycarbonate.
  • Second Variant V2 of Process P1 Grafting a Styrene Monomer on the Surface of Mineral Nanoparticles in the Presence of an Organosilane, and then Polymerization of the Monomer
  • a second variant V2 of step i of P1 the grafting of a styrene monomer is carried out on the surface of the mineral nanoparticles, and then the polymerization of said monomer in the presence of an initiator capable of generating free radicals under effect of heat.
  • 20 g of mineral nanoparticles are mixed in 300 g of ethanol
  • silane-grafted inorganic nanoparticles are washed and recovered by centrifugation in ethanol.
  • the polymerization of the monomer takes place in a non-aqueous medium and is carried out under air in an Erlenmeyer flask equipped with a condenser.
  • the silane-grafted inorganic nanoparticles are first dispersed in tetrahydrofuran (THF), and then the mixture is heated to a temperature of 70 ° C. and stirred.
  • THF tetrahydrofuran
  • benzoyl peroxide is added to said mixture as an initiator and the styrene monomer.
  • the mixture is allowed to react for 9 hours to polymerize the monomer (polymerization in situ).
  • the mineral nanoparticles thus modified are then washed with soxhlet and then dried for 24 hours at 80 ° C.
  • step i of the method P1 After the first or the second variant of step i of the method P1, said step i is followed by a mixing step (step ii) of the composite nanoparticles with a polycarbonate matrix at a temperature of the order of 270-290 0 C. the mixture of step ii is carried out using an extruder of the type
  • the different transparent polymer materials MP obtained according to the first preparation method P1 comprise 1% by mass of mineral nanoparticles.
  • Preparation process P2 modification of the surface of mineral nanoparticles by a monomer or a polymer without the presence of a coupling agent
  • step i is carried out without the presence of a coupling agent.
  • the inorganic nanoparticles are dispersed in chloroform and a solution containing polymethylmethacrylate dissolved in chloroform is added.
  • the mass of polymer used is equal to the mass of mineral nanoparticles to be treated.
  • the mixture is stirred at room temperature for 48 hours to adsorb said polymer directly to the surface of the mineral nanoparticles.
  • the mineral nanoparticles thus modified are recovered by centrifugation and then washed several times with chloroform before being baked at 80 ° C. for 12 hours.
  • the Al-PMMA composite nanoparticles are then obtained according to the first variant V1 of step i of the process P2 corresponding to alumina nanoparticles coated with polymethyl methacrylate.
  • the grafting of a methyl methacrylate monomer is carried out on the surface of the mineral nanoparticles, and then the polymerization of said monomer in the presence of an initiator capable of generating free radicals under the effect of ultraviolet radiation.
  • the lamp used is a Fisher Bioblock UV lamp with a wavelength of 365 nm and a power of 30 W.
  • the crystallizer is placed about 5 cm from the lamp. The mixture is kept under stirring and under an inert atmosphere during the irradiation.
  • the mineral nanoparticles thus modified are washed with ethanol by centrifugation several times.
  • the modified mineral nanoparticles are dispersed in THF, centrifuged several times and baked at 80 ° C. for 12 hours.
  • the composite nanoparticles Al-mPMMA are thus obtained, according to the second variant V2 of step i of the process P2, corresponding to alumina nanoparticles coated with polymethyl methacrylate obtained from the in situ polymerization of the methyl methacrylate monomer.
  • step i of the process P2 After the first or the second variant of step i of the process P2, said step i is followed by a mixing step (step ii) of the composite nanoparticles with a polycarbonate matrix under the same conditions as the method P1.
  • the different transparent polymer materials MP obtained according to the second preparation method P2 comprise 1% by mass of mineral nanoparticles.
  • "reference" polymeric materials MR are also prepared as follows: a first MR1 reference material is prepared solely from polycarbonate as such, a second MR2 reference material is prepared by direct incorporation of nanoparticles alumina-type minerals, in a polycarbonate matrix under the conditions of step ii, and a third MR3 reference material is prepared by direct incorporation of calcium carbonate-type mineral nanoparticles into a polycarbonate matrix under the conditions of the step ii.
  • the MR2 and MR3 polymer materials comprise 1% by weight of mineral nanoparticles.
  • the origin of the various constituents mentioned in the preparation processes P1 and P2 or in the processes for obtaining the polymeric materials MR1 to MR3 is as follows: the polycarbonate of step i is a thermoplastic polycarbonate marketed by Acros-Organics under the reference Polycarbonate resin (CAS No. 24936-68-3), the polycarbonate matrix of step ii and the polycarbonate of the preparation reference polymer materials are a thermoplastic polycarbonate marketed by the company Bayer under the reference Makrolon A12647, Bisphenol A is marketed by the company Acros-Organics, under the reference 4,4'-lsopropylidenediphenol
  • the styrene monomer is marketed by the company Acros-Organics, under the reference Styrene (CAS No. 100-42-5), the methyl methacrylate monomer is marketed by the company Aldrich, under the reference Methyl methacrylate,
  • polymethyl methacrylate is marketed by Arkema, under the reference Altuglas, the alumina nanoparticles have a size of 13 nm, and are marketed by the company Degussa, under the reference Aeroxide AIUC, calcium carbonate nanoparticles are precipitated calcium carbonate particles having a size of 70 nm, marketed by Solvay under the Socal ® reference 31, the chlorosilane is sold by the company Acros- Organics, under the reference Silicon (IV) chloride (CAS No.
  • vinyltrimethoxysilane is marketed by Dow Corning, under the reference Z-6300
  • the benzophenone is marketed by the company Acros-Organics, under the reference Benzophenone (CAS No. 119-61 -9)
  • the benzoyl peroxide is marketed by the company Acros-Organics, under the reference Benzoyl peroxide
  • the size of the Socal ® 31 nanoparticles as that of the Aeroxide AIuC nanoparticles are determined by MET with a magnification of 40000 over twenty photos by first dispersing these nanoparticles in ethanol, then placing them on a copper grid, and finally covering them with a transparent amorphous polymer film.
  • a width I, or number average size equal to 70 nm for Socal ® nanoparticles 31, and equal to 13 nm for Aeroxide AIUC nanoparticles.
  • the mechanical and optical properties studied for the materials obtained are respectively the flexural modulus and the light transmission.
  • the flexural modulus measurements are made on specimens in the form of dumbbell-type test pieces with a thickness of 4 mm, corresponding to the ISO 527-2 type 1 A.
  • dumbbells are obtained from the granules of the polymeric materials MR and MP shaped using an injection molding machine of SANDRETTO SERIE OTTO A.T.
  • the flexural modulus characterizes the stiffness of the polymeric material. The higher the flexural modulus, the better the rigidity of the material. It is determined according to ISO 178, using an ADAMEL LHOMARGY DY 26 universal electromechanical press, driven by TestWorks software.
  • the light transmission measurements are carried out on specimens in the form of a dumbbell-type test piece with a thickness of 4 mm, in accordance with the ISO 527-2 type 1A standard, under the same conditions as for the measurements of the mechanical properties.
  • the light transmission characterizes the transparency of the polymer material. The higher the light transmission, the better the transparency of said material.
  • the transmission spectrum of the sample is determined by the products of the spectral distribution of the illuminant used, and according to the type of observation chosen.
  • the illuminant used is the D65 reproducing daylight and the observation chosen is at 2 °.
  • the transparent polymer materials MP1, MP2 and MP4 on the one hand, and MP5 on the other hand clearly have a flexural modulus together with an optimized light transmission with respect to the respective polymeric materials MR2 and MR3 .
  • the flexural modulus of the transparent polymeric materials MP3 and MP7 has significantly increased for a satisfactory light transmission, compared to the polymeric materials MR2 and MR3.
  • the transparent polymeric material MP6 has a satisfactory light transmission and a flexural modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The present invention relates to a method for preparing a transparent polymer material comprising the following steps: i. obtaining composite nanoparticles comprising mineral nanoparticles at least partially coated with at least one monomer and/or with at least one polymer capable of promoting the physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, wherein said mineral nanoparticles are surface-modified with said monomer and/or said polymer, either directly by grafting or indirectly by adsorption of the monomer and/or of the polymer at the surface of said mineral nanoparticles, or by means of a coupling agent chosen from a chlorosilane or an organosilane comprising a functional group capable of reacting via a radical route, and ii. mixing the composite nanoparticles, obtained in step i, with the thermoplastic polycarbonate matrix in the molten state, so as to obtain said transparent polymer material.

Description

Procédé de préparation d'un matériau polymère transparent comprenant un polycarbonate thermoplastique et des nanoparticules minérales modifiées en surface Process for the preparation of a transparent polymeric material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles
La présente invention se rapporte à un procédé de préparation d'un matériau polymère transparent comprenant un polycarbonate thermoplastique et des nanoparticules minérales modifiées en surface, ainsi qu'à un matériau polymère transparent obtenu par ledit procédé.The present invention relates to a process for preparing a transparent polymeric material comprising a thermoplastic polycarbonate and surface-modified inorganic nanoparticles, as well as to a transparent polymeric material obtained by said process.
Elle s'applique typiquement, mais non exclusivement, aux domaines de l'optique, notamment aux articles optiques du type vitrage automobile et aux articles optiques du type lentille optique d'instrumentation de visée, visière de casque ou lentille ophtalmique.It applies typically, but not exclusively, to the fields of optics, in particular to optical articles of the automotive glazing type and to optical articles of the optical type of sighting instrumentation, helmet visor or ophthalmic lens.
Plus particulièrement, on entend par « vitrage automobile >> non seulement des éléments extérieurs transparents de carrosserie tels que par exemple des lunettes arrières, des custodes, des vitres latérales, des toits vitrés, des glaces de projecteurs ou des feux, mais également des éléments intérieurs transparents d'habitacle tels que par exemple des vitres de tableau de bord, des cadrans ou des écrans.More particularly, the term "automotive glazing" not only transparent outer bodywork such as for example rear windows, custodes, side windows, glazed roofs, headlamps or lights, but also elements transparent interior interiors such as dashboard windows, dials or screens.
On entend par « lentille ophtalmique >> des lentilles s'adaptant notamment à une monture de lunette, ayant pour fonction de protéger l'œil et/ou de corriger la vue, ces lentilles étant choisies parmi les lentilles afocales, unifocales, bifocales, trifocales et progressives."Ophthalmic lens" is understood to mean lenses that adapt in particular to a spectacle frame, whose function is to protect the eye and / or to correct vision, these lenses being chosen from among afocal, unifocal, bifocal and trifocal lenses. and progressive.
Le polycarbonate présente des avantages qui le rendent particulièrement intéressant pour l'optique notamment une excellente transparence, une excellente résistance aux chocs, un indice de réfraction élevé et une grande légèreté. En revanche, il présente pour principaux points faibles de ne pas être très rigide et d'être très sensible aux rayures et à l'abrasion.Polycarbonate has advantages that make it particularly interesting for the optics including excellent transparency, excellent impact resistance, a high refractive index and a great lightness. On the other hand, it has the main weaknesses of not being very rigid and being very sensitive to scratches and abrasion.
Pour améliorer les propriétés mécaniques d'un polymère, notamment la rigidité et la résistance à l'abrasion et aux rayures, il est connu d'ajouter des nanoparticules minérales au polymère.In order to improve the mechanical properties of a polymer, in particular rigidity and resistance to abrasion and scratching, it is known to add mineral nanoparticles to the polymer.
Typiquement, ces nanoparticules minérales sont incorporées directement au polymère mis en œuvre à l'état fondu. Toutefois, la dimension nanométrique des nanoparticules minérales induit inévitablement un phénomène d'agrégation desdites nanoparticules lors de leur mélange dans une matrice de polycarbonate thermoplastique à l'état fondu. De ce fait, le matériau polymère obtenu à partir de ce procédé présente une perte de transparence, ainsi qu'une coloration, notamment un jaunissement, ce qui rend son utilisation difficile dans les domaines de l'optique.Typically, these mineral nanoparticles are incorporated directly into the polymer used in the molten state. However, the nanometric dimension of the mineral nanoparticles inevitably induces a phenomenon of aggregation of said nanoparticles when they are mixed in a thermoplastic polycarbonate matrix in the molten state. As a result, the polymer material obtained from this process exhibits a loss of transparency, as well as a coloration, in particular a yellowing, which makes its use difficult in the fields of optics.
De plus, l'incorporation de nanoparticules minérales peut induire une dégradation des propriétés mécaniques du matériau polymère, telles que par exemple la résistance aux chocs.In addition, the incorporation of mineral nanoparticles can induce a degradation of the mechanical properties of the polymer material, such as, for example, impact resistance.
Ainsi, afin d'améliorer la qualité de l'interface entre les nanoparticules et la matrice de polycarbonate thermoplastique et ainsi améliorer les propriétés mécaniques et optiques du matériau polymère, il est connu du document EP 1 767 562 un procédé de préparation de matériaux polymères transparents comprenant un polycarbonate thermoplastique et des nanoparticules minérales modifiées en surface.Thus, in order to improve the quality of the interface between the nanoparticles and the thermoplastic polycarbonate matrix and thus improve the mechanical and optical properties of the polymeric material, it is known from EP 1 767 562 a process for the preparation of transparent polymeric materials. comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles.
Ce procédé consiste à greffer, à la surface des nanoparticules minérales, un monomère de la matrice de polycarbonate thermoplastique par une liaison éther aliphatique, puis à polymériser in situ ledit monomère pour former la matrice de polycarbonate thermoplastique.This process consists in grafting, on the surface of the mineral nanoparticles, a monomer of the thermoplastic polycarbonate matrix by an aliphatic ether bond, then polymerizing in situ said monomer to form the thermoplastic polycarbonate matrix.
Ainsi, la modification de surface desdites nanoparticules minérales est indissociable de la matrice de polycarbonate thermoplastique.Thus, the surface modification of said mineral nanoparticles is inseparable from the thermoplastic polycarbonate matrix.
Par conséquent, ce procédé de préparation selon l'art antérieur est limité industriellement puisque seul le polycarbonate peut être utilisé pour modifier la surface desdites nanoparticules minérales.Therefore, this preparation method according to the prior art is industrially limited since only the polycarbonate can be used to modify the surface of said mineral nanoparticles.
En outre, ce procédé implique l'utilisation d'un réacteur spécifique pour la polymérisation de la matrice de polycarbonate thermoplastique, cette utilisation étant relativement contraignante. L'objet de la présente invention est de pallier les inconvénients des solutions de l'état de la technique en offrant notamment un procédé de préparation d'un matériau polymère transparent facilement industrialisable tout en préservant, voire améliorant, les propriétés optiques et mécaniques du matériau polymère obtenu par ledit procédé.In addition, this method involves the use of a specific reactor for the polymerization of the thermoplastic polycarbonate matrix, this use being relatively restrictive. The object of the present invention is to overcome the disadvantages of the solutions of the state of the art by offering in particular a method of preparation of a transparent polymer material easily industrializable while preserving, or even improving, the optical and mechanical properties of the polymer material obtained by said process.
La solution selon la présente invention est de proposer un procédé de préparation d'un matériau polymère transparent comprenant les étapes suivantes : i. obtenir des nanoparticules composites comprenant des nanoparticules minérales revêtues d'au moins un monomère et/ou d'au moins un polymère apte à favoriser les interactions physicochimiques à l'interface entre les nanoparticules minérales et une matrice de polycarbonate thermoplastique, lesdites nanoparticules minérales étant modifiées en surface par ledit monomère et/ou ledit polymère :The solution according to the present invention is to provide a method for preparing a transparent polymeric material comprising the following steps: i. obtaining composite nanoparticles comprising mineral nanoparticles coated with at least one monomer and / or at least one polymer capable of promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, said mineral nanoparticles being modified at the surface by said monomer and / or said polymer:
- soit directement par greffage ou directement par adsorption du monomère et/ou du polymère à la surface desdites nanoparticules minérales, - soit par l'intermédiaire d'un agent de couplage choisi parmi un chlorosilane ou un organosilane comprenant un groupement fonctionnel susceptible de réagir par voie radicalaire, et ii. mélanger les nanoparticules composites, obtenues à l'étape i, à une matrice de polycarbonate thermoplastique à l'état fondu, pour obtenir ledit matériau polymère transparent.either directly by grafting or directly by adsorption of the monomer and / or the polymer on the surface of said mineral nanoparticles, or by means of a coupling agent chosen from a chlorosilane or an organosilane comprising a functional group capable of reacting with radical way, and ii. mixing the composite nanoparticles, obtained in step i, with a thermoplastic polycarbonate matrix in the molten state, to obtain said transparent polymer material.
Le procédé de préparation selon la présente invention permet d'améliorer significativement la cohésion des nanoparticules minérales ainsi modifiées avec la matrice de polycarbonate thermoplastique, et de disperser lesdites nanoparticules de façon homogène dans ladite matrice. L'agent de couplage permet avantageusement de lier, par son intermédiaire, le monomère et/ou le polymère à la surface des nanoparticules minérales lorsque ledit monomère et/ou ledit polymère ne peuvent notamment être lié directement à ladite surface.The preparation method according to the present invention makes it possible to significantly improve the cohesion of the mineral nanoparticles thus modified with the thermoplastic polycarbonate matrix, and to disperse said nanoparticles homogeneously in said matrix. The coupling agent advantageously allows the monomer and / or the polymer to be bonded via the surface of the mineral nanoparticles when said monomer and / or said polymer can not in particular be bonded directly to said surface.
Des modes particuliers de greffage ou d'adsorption peuvent être envisagés comme la création d'interactions physiques ou chimiques de type liaison hydrogène ou de Van der Waals entre les nanoparticules minérales d'une part, et le monomère et/ou le polymère conforme à l'invention d'autre part.Particular modes of grafting or adsorption can be envisaged as the creation of physical or chemical interactions of the type hydrogen bond or Van der Waals between the mineral nanoparticles on the one hand, and the monomer and / or the polymer according to the invention on the other hand.
Les modifications en surface des nanoparticules minérales du type adsorption ou création d'interactions physiques ou chimiques de type liaison hydrogène ou de Van der Waals, par le monomère et/ou le polymère sont de préférence réalisées directement à la surface desdites nanoparticules, ou en d'autres termes sans agent de couplage.The surface modifications of the inorganic nanoparticles of the type adsorption or creation of physical or chemical interactions of the hydrogen bonding or van der Waals type, by the monomer and / or the polymer are preferably carried out directly on the surface of said nanoparticles, or in other terms without a coupling agent.
Dans un premier procédé particulier de préparation P1 dit avec agent de couplage, la modification en surface des nanoparticules minérales peut être réalisée avantageusement par la création d'une liaison covalente entre d'une part, les nanoparticules minérales et l'agent de couplage et d'autre part, entre l'agent de couplage et le monomère et/ou le polymère.In a first particular method of preparation P1 said coupling agent, the surface modification of the mineral nanoparticles can be advantageously achieved by creating a covalent bond between, on the one hand, the mineral nanoparticles and the coupling agent and d on the other hand, between the coupling agent and the monomer and / or the polymer.
Dans un deuxième procédé particulier de préparation P2 dit direct ou sans agent de couplage, la modification en surface des nanoparticules minérales peut être réalisée par la création d'une liaison covalente directement entre les nanoparticules minérales et le monomère et/ou le polymère, ou bien par adsorption directe du monomère et/ ou du polymère à la surface desdites nanoparticules minérales.In a second particular method of preparation P2 said direct or without coupling agent, the surface modification of the mineral nanoparticles can be achieved by creating a covalent bond directly between the mineral nanoparticles and the monomer and / or the polymer, or by direct adsorption of the monomer and / or the polymer on the surface of said mineral nanoparticles.
Par ailleurs, et conformément à l'étape i du procédé de préparation de la présente invention, lorsque la surface des nanoparticules minérales est modifiée par un polymère, ledit polymère peut être obtenu par polymérisation du monomère qui lui est propre (polymérisation dite in situ), que ce soit en présence ou non d'un agent de couplage.Furthermore, and in accordance with step i of the preparation method of the present invention, when the surface of the mineral nanoparticles is modified by a polymer, the said polymer can be obtained by polymerization of the monomer which is specific to it (so-called in situ polymerization). , whether or not there is a coupling agent.
Plus particulièrement, le monomère de l'étape i est greffé à la surface des nanoparticules minérales, puis il est polymérisé.More particularly, the monomer of step i is grafted onto the surface of the mineral nanoparticles, and then it is polymerized.
Généralement, ladite polymérisation nécessite la présence d'un amorceur apte à générer des radicaux libres sous l'effet d'un rayonnement actinique ou thermique.Generally, said polymerization requires the presence of an initiator capable of generating free radicals under the effect of actinic or thermal radiation.
Selon une première variante de polymérisation, lorsque la modification de surface est obtenue par l'intermédiaire d'un agent de couplage conforme à l'invention, notamment par l'intermédiaire de l'organosilane, ce dernier est tout d'abord greffé à la surface des nanoparticules minérales. Puis le monomère est greffé à la surface des nanoparticules minérales par l'intermédiaire dudit organosilane, ou en d'autres termes, le monomère est typiquement greffé audit organosilane. Enfin, le monomère est polymérisé. Selon une deuxième variante de polymérisation, lorsque la modification de surface est directe, c'est-à-dire sans agent de couplage, le monomère est greffé directement à la surface des nanoparticules minérales, puis il est polymérisé.According to a first variant of polymerization, when the surface modification is obtained via a coupling agent according to the invention, in particular via the organosilane, the latter is first grafted to the surface of the mineral nanoparticles. Then the monomer is grafted onto the surface of the mineral nanoparticles via said organosilane, or in other words, the monomer is typically grafted to said organosilane. Finally, the monomer is polymerized. According to a second variant of polymerization, when the surface modification is direct, that is to say without a coupling agent, the monomer is grafted directly onto the surface of the mineral nanoparticles, and then it is polymerized.
Bien entendu, lorsque la surface des nanoparticules minérales est modifiée par un monomère conforme à l'invention, ledit monomère n'est pas nécessairement polymérisé. Dans ce cas, les nanoparticules minérales sont au moins revêtues partiellement par ledit monomère en tant que tel.Of course, when the surface of the mineral nanoparticles is modified by a monomer according to the invention, said monomer is not necessarily polymerized. In this case, the mineral nanoparticles are at least partially coated with said monomer as such.
Selon la présente invention, les nanoparticules composites obtenues à l'étape i peuvent comprendre avantageusement au plus 60 % en masse de revêtement organique, de préférence une quantité comprise entre 5 et 50 % en masse de revêtement organique.According to the present invention, the composite nanoparticles obtained in step i may advantageously comprise at most 60% by weight of organic coating, preferably between 5 and 50% by weight of organic coating.
On entend par « revêtement organique >> la couche organique formée autour des nanoparticules minérales, ladite couche étant obtenue à partir du monomère et/ou du polymère, et optionnellement de l'agent de couplage. On entend par « matériau polymère transparent >> un matériau à travers lequel une image est observée sans perte significative de contraste.The term "organic coating" means the organic layer formed around the mineral nanoparticles, said layer being obtained from the monomer and / or the polymer, and optionally the coupling agent. The term "transparent polymeric material" means a material through which an image is observed without significant loss of contrast.
En d'autres termes, l'interposition dudit matériau polymère transparent entre une image et un observateur de celle-ci ne réduit pas significativement la qualité de l'image. On entend par « état fondu >> un état dans lequel la matrice de polycarbonate thermoplastique de l'étape ii est dans un état malléable. Cet état malléable, bien connu de l'homme du métier, peut être classiquement atteint lorsque ladite matrice est chauffée à une température supérieure à la température de transition vitreuse, ou température de ramollissement, du polycarbonate thermoplastique. Dans le texte de la présente invention, l'expression « comprise entre une valeur x et une valeur y >> signifie que les valeurs x et y sont incluses dans cet intervalle de valeurs.In other words, the interposition of said transparent polymeric material between an image and an observer thereof does not significantly reduce the quality of the image. The term "molten state" refers to a state in which the thermoplastic polycarbonate matrix of step ii is in a malleable state. This malleable state, well known to those skilled in the art, can be conventionally achieved when said matrix is heated to a temperature above the glass transition temperature, or softening temperature, of the thermoplastic polycarbonate. In the text of the present invention, the expression "between a value x and a value y" means that the values x and y are included in this range of values.
Les interactions physicochimiques à l'interface entre les nanoparticules minérales et la matrice de polycarbonate thermoplastique, plus particulièrement la miscibilité, la compatibilité et/ou l'affinité chimique entre les nanoparticules minérales et ladite matrice, peuvent être avantageusement favorisées lorsque le monomère à la surface des nanoparticules composites est notamment le styrène, le méthacrylate de méthyle, l'acrylate de butyle, le bisphénol A, le phosgène, le diphényle carbonate et/ou l'acrylamide.The physicochemical interactions at the interface between the mineral nanoparticles and the thermoplastic polycarbonate matrix, more particularly the miscibility, the compatibility and / or the chemical affinity between the mineral nanoparticles and said matrix, can be advantageously favored when the monomer on the surface composite nanoparticles is in particular styrene, methyl methacrylate, butyl acrylate, bisphenol A, phosgene, diphenyl carbonate and / or acrylamide.
Le Bisphénol A, comme le phosgène ou le diphényle carbonate, sont des monomères bien connus du polycarbonate.Bisphenol A, such as phosgene or diphenyl carbonate, are well known monomers of polycarbonate.
Lesdites interactions physicochimiques peuvent également être avantageusement favorisées lorsque le polymère à la surface des nanoparticules composites est notamment du polystyrène, du polycarbonate, du polyméthacrylate de méthyle, du polyacrylate de butyle et/ ou du polyacrylamide, et plus particulièrement un copolymère de styrène, du monomère du polycarbonate, du méthacrylate de méthyle, de l'acrylate de butyle, du bisphénol A et/ou de l'acrylamide. Selon la présente invention, le groupement fonctionnel de l'organosilane est un groupement fonctionnel susceptible de réagir par voie radicalaire, et pouvant ainsi créer une liaison covalente par un mécanisme d'addition radicalaire en présence d'un amorceur, ledit amorceur étant apte à générer des radicaux libres sous l'effet d'un rayonnement actinique ou thermique. Le groupement fonctionnel réactif peut être choisi avantageusement parmi un groupement acrylate, méthacrylate, vinylique, allylique ou alcényle, et de préférence un groupement vinylique.Said physicochemical interactions can also be advantageously favored when the polymer on the surface of the composite nanoparticles is in particular polystyrene, polycarbonate, polymethyl methacrylate, butyl polyacrylate and / or polyacrylamide, and more particularly a styrene copolymer, of the monomer polycarbonate, methyl methacrylate, butyl acrylate, bisphenol A and / or acrylamide. According to the present invention, the functional group of the organosilane is a functional group capable of reacting radically, and thus being able to create a covalent bond by a radical addition mechanism in the presence of an initiator, said initiator being able to generate free radicals under the effect of actinic or thermal radiation. The reactive functional group may be advantageously chosen from an acrylate, methacrylate, vinyl, allylic or alkenyl group, and preferably a vinyl group.
L'organosilane selon la présente invention peut comprendre en outre un groupement fonctionnel hydrolysable. Ce groupement fonctionnel permet notamment de former des liaisons covalentes à la surface des nanoparticules minérales, et plus particulièrement il permet de former des liaisons covalentes avec les groupements hydroxyles pouvant être présents à la surface desdites nanoparticules.The organosilane according to the present invention may further comprise a hydrolysable functional group. This functional group notably makes it possible to form covalent bonds on the surface of the mineral nanoparticles, and more particularly it makes it possible to form covalent bonds with the hydroxyl groups that may be present on the surface of said nanoparticles.
Le groupement fonctionnel hydrolysable peut être linéaire ou ramifié et choisi parmi un groupement carboxy et alkoxy, de préférence en CrC6. On peut citer notamment un groupement éthoxy ou méthoxy.The hydrolysable functional group may be linear or branched and selected from a carboxy and alkoxy group, preferably a C 1 -C 6 group . Mention may in particular be made of an ethoxy or methoxy group.
A titre d'exemple d'organosilane conforme à la présente invention, on peut citer le vinyltriméthoxysilane ou le méthacryloxypropyltriméthoxysilane.By way of example of an organosilane according to the present invention, mention may be made of vinyltrimethoxysilane or methacryloxypropyltrimethoxysilane.
Les nanoparticules minérales selon la présente invention ont typiquement au moins l'une de leurs dimensions de taille nanométrique (109 mètre).The inorganic nanoparticles according to the present invention typically have at least one of their nanoscale dimensions (10 9 meters).
On entend par le terme « dimension >>, la dimension moyenne en nombre de l'ensemble des nanoparticules d'une population donnée, cette dimension étant classiquement déterminée par des méthodes bien connues de l'homme du métier. Selon ces méthodes de détermination de la taille des nanoparticules, la dimension des nanoparticules selon la présente invention fait référence soit au diamètre de Stokes (si la méthode utilisée est celle de la sédimentation par centrifugation et analyse par rayons X), soit au diamètre de diffusion (si la méthode utilisée est celle de la diffusion de la lumière par granulométrie laser), soit au diamètre de diffraction (si la méthode utilisée est celle de la diffraction de la lumière par granulométrie laser), soit à la largeur (I) des nanoparticules définie comme la dimension la plus petite des nanoparticules (si la méthode utilisée est celle de l'analyse microscopique, telle que la MEB (Microscopie Electronique à Balayage) ou la MET (Microscopie Electronique en Transmission)), cette dernière méthode étant préférée.The term "dimension" is understood to mean the number-average size of all the nanoparticles of a given population, this dimension being conventionally determined by methods that are well known to those skilled in the art. According to these methods for determining the size of the nanoparticles, the size of the nanoparticles according to the present invention refers either to the Stokes diameter (if the method used is that of centrifugation sedimentation and X-ray analysis), or to the diffusion diameter. (if the method used is that of the light scattering by laser granulometry), either to the diffraction diameter (if the method used is that of the diffraction of the light by laser granulometry), or to the width (I) of the nanoparticles defined as the smallest dimension of nanoparticles (if the method used is that of microscopic analysis, such as SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy)), the latter method being preferred.
Ces quatre méthodes de détermination de la dimension des nanoparticules peuvent conduire à des résultats sensiblement différents. De ce fait, les résultats obtenus doivent satisfaire à la condition de dimension de taille nanométrique des nanoparticules de l'invention selon au moins l'une des quatre méthodes précédemment citées, de préférence au moins deux de ces méthodes, de préférence au moins trois de ces méthodes, et de façon encore plus préférée, ces quatre méthodes.These four methods for determining the size of the nanoparticles can lead to significantly different results. As a result, the results obtained must satisfy the nanoscale size condition of the nanoparticles of the invention according to at least one of the four methods mentioned above, preferably at least two of these methods. preferably at least three of these methods, and even more preferably, these four methods.
La dimension des nanoparticules minérales selon l'invention est notamment d'au plus 400 nm, de préférence d'au plus 300 nm, et plus préférentiellement d'au plus 100 nm.The size of the mineral nanoparticles according to the invention is in particular at most 400 nm, preferably at most 300 nm, and more preferably at most 100 nm.
De façon particulièrement préférée, la dimension des nanoparticules minérales est comprise entre 0,1 et 80 nm, plus préférentiellement comprise entre 10 et 70 nm, et par exemple égale à 40 nm.In a particularly preferred manner, the size of the mineral nanoparticles is between 0.1 and 80 nm, more preferably between 10 and 70 nm, and for example equal to 40 nm.
Les nanoparticules minérales selon la présente invention peuvent être choisies avantageusement parmi les nanoparticules de carbonates de métaux alcalino-terreux, de sulfates de métaux alcalino-terreux, d'oxydes métalliques, d'oxydes de métalloïdes et/ou de siloxanes.The inorganic nanoparticles according to the present invention may be advantageously chosen from nanoparticles of alkaline earth metal carbonates, alkaline earth metal sulfates, metal oxides, metalloid oxides and / or siloxanes.
A titre d'exemple, les nanoparticules de carbonates de métaux alcalino- terreux peuvent être des nanoparticules de carbonate de calcium, celles de sulfates de métaux alcalino-terreux des nanoparticules de sulfate de baryum, celles d'oxydes métalliques des nanoparticules d'alumine, d'oxyde de zinc, ou de dioxyde de titane, celles d'oxydes de métalloïdes des nanoparticules de dioxyde de silicium et celles de siloxanes des nanoparticules de silsesquioxanes, et plus particulièrement des nanoparticules de Trisilanolphényl Polyhedral SilSesquioxane (TP-POSS).By way of example, the nanoparticles of alkaline earth metal carbonates may be calcium carbonate nanoparticles, those of alkaline earth metal sulfates of barium sulphate nanoparticles, or of metal oxides of alumina nanoparticles, zinc oxide, or titanium dioxide, those of metalloid oxides of silicon dioxide nanoparticles and those of siloxanes of silsesquioxane nanoparticles, and more particularly nanoparticles of Trisilanolphenyl Polyhedral SilSesquioxane (TP-POSS).
Les nanoparticules minérales préférées de cette liste sont les nanoparticules de carbonate de calcium et d'alumine.The preferred mineral nanoparticles of this list are nanoparticles of calcium carbonate and alumina.
Selon un mode de réalisation particulier, le mélange de l'étape ii peut être réalisé à l'aide d'une extrudeuse. Toutefois, ce procédé de mélange n'est nullement limitatif et tout autre procédé bien connu de l'homme du métier peut être utilisé.According to a particular embodiment, the mixture of step ii may be carried out using an extruder. However, this mixing process is not limiting and any other method well known to those skilled in the art can be used.
Un autre objet de la présente invention est un matériau polymère transparent obtenu par le procédé de préparation défini ci-avant.Another object of the present invention is a transparent polymeric material obtained by the method of preparation defined above.
Le matériau polymère transparent présente ainsi une rigidité avec une transparence optimisée, une très bonne résistance à l'abrasion ainsi qu'aux chocs, et une coloration du type jaunissement sensiblement inexistante. Le matériau polymère transparent peut comprendre au plus 15 % en masse de nanoparticules minérales.The transparent polymeric material thus has rigidity with optimized transparency, very good resistance to abrasion as well as impact, and yellowing-like coloration that is substantially non-existent. The transparent polymer material may comprise at most 15% by weight of mineral nanoparticles.
Cette quantité maximale permet d'une part, de limiter les problèmes de rhéologie lors du mélange des nanoparticules composites dans la matrice de polycarbonate thermoplastique de l'étape ii, et d'autre part, de limiter le coût du matériau polymère, tout en ayant une transparence satisfaisante.This maximum quantity makes it possible, on the one hand, to limit the problems of rheology during the mixing of the composite nanoparticles in the thermoplastic polycarbonate matrix of step ii, and, on the other hand, to limit the cost of the polymer material, while having satisfactory transparency.
En outre, afin de garantir à la fois de très bonnes propriétés mécaniques et optiques, le matériau polymère transparent peut comprendre au plus 10 % en masse de nanoparticules minérales, de préférence au plus 5 % en masse de nanoparticules minérales, et plus préférentiellement une quantité de l'ordre deIn addition, in order to guarantee both very good mechanical and optical properties, the transparent polymer material may comprise at most 10% by weight of mineral nanoparticles, preferably at most 5% by weight of mineral nanoparticles, and more preferably a quantity of the order of
1 % en masse de nanoparticules minérales.1% by weight of mineral nanoparticles.
Un autre objet de la présente invention est l'utilisation dudit matériau polymère transparent pour la fabrication d'articles optiques tels que notamment vitrage automobile, lentille optique d'instrumentation de visée, visière de casque ou lentille ophtalmique.Another object of the present invention is the use of said transparent polymer material for the manufacture of optical articles such as in particular automotive glazing, optical sighting instrumentation lens, helmet visor or ophthalmic lens.
A titre d'exemple, l'épaisseur des articles optiques peut être d'au plus 15 mm, de préférence comprise entre 0,1 et 5 mm, et plus préférentiellement comprise entre 0,5 et 4 mm.By way of example, the thickness of the optical articles may be at most 15 mm, preferably between 0.1 and 5 mm, and more preferably between 0.5 and 4 mm.
Typiquement, l'article optique peut être fabriqué à partir dudit matériau polymère transparent par tout procédé de formage bien connu de l'homme du métier, tel que le thermoformage, l'extrusion, le calandrage, le filage, l'injection, l'injection-compression ou le moulage par soufflage, l'article optique gardant toutes les propriétés mécaniques et optiques dudit matériau polymère. Plus particulièrement, le mélange de l'étape ii pouvant être effectué à l'aide d'une extrudeuse, le jonc en sortie de l'extrudeuse est granulé puis mis en forme par extrusion, injection ou injection-compression pour obtenir l'article optique.Typically, the optical article can be made from said transparent polymer material by any forming method well known to those skilled in the art, such as thermoforming, extrusion, calendering, spinning, injection molding, injection-compression or blow molding, the optical article retaining all the mechanical and optical properties of said polymeric material. More particularly, since the mixture of step ii can be carried out using an extruder, the rod at the exit of the extruder is granulated and then shaped by extrusion, injection or injection-compression to obtain the optical article. .
Un autre objet de la présente invention est l'utilisation de nanoparticules minérales préalablement revêtues, au moins partiellement, d'au moins un monomère et/ou d'au moins un polymère apte à favoriser les interactions physicochimiques à l'interface entre les nanoparticules minérales et une matrice de polycarbonate thermoplastique, lesdites nanoparticules minérales étant modifiées en surface par ledit monomère et/ou ledit polymère soit directement, soit par l'intermédiaire d'un agent de couplage choisi parmi un chlorosilane ou un organosilane comprenant un groupement fonctionnel susceptible de réagir par voie radicalaire, pour la préparation de matériaux polymères transparents.Another object of the present invention is the use of mineral nanoparticles which have been at least partially coated with at least one monomer and / or at least one polymer capable of promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, said mineral nanoparticles being surface-modified by said monomer and / or said polymer either directly or via a coupling agent chosen from a chlorosilane or an organosilane comprising a functional group capable of radical reaction, for the preparation of transparent polymer materials.
Dans ce cas, les modifications desdites nanoparticules minérales peuvent être telles que décrites précédemment. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière des exemples qui vont suivre, lesdits exemples étant donnés à titre illustratif et nullement limitatif.In this case, the modifications of said mineral nanoparticles may be as previously described. Other features and advantages of the present invention will emerge in the light of the examples which follow, said examples being given by way of illustration and in no way limiting.
Afin de montrer les avantages des matériaux polymères transparents obtenus par le procédé de préparation selon la présente invention, les propriétés mécaniques et optiques desdits matériaux ont été étudiées.In order to show the advantages of the transparent polymeric materials obtained by the preparation method according to the present invention, the mechanical and optical properties of said materials have been studied.
Préalablement à la préparation des matériaux polymères, les nanoparticules minérales et le polycarbonate utilisés dans les exemples qui vont suivre ont été étuvés sous vide à 1200C, pendant au moins 12h.Prior to the preparation of the polymeric materials, the mineral nanoparticles and the polycarbonate used in the examples which follow were steamed under vacuum at 120 ° C. for at least 12 hours.
Les différentes étapes de modifications de la surface des nanoparticules minérales décrites dans les exemples ci-après sont effectuées sous agitation magnétique ou mécanique.The various steps of surface modification of the mineral nanoparticles described in the examples below are carried out with magnetic or mechanical stirring.
Procédé de préparation P1 : modification de la surface de nanoparticules minérales par un monomère ou un polymère en présence d'un agent de couplagePreparation process P1: modification of the surface of mineral nanoparticles by a monomer or a polymer in the presence of a coupling agent
Selon un premier procédé de préparation P1 , conforme à la présente invention, l'étape i est effectuée en présence d'un agent de couplage (agC).According to a first preparation method P1, according to the present invention, step i is carried out in the presence of a coupling agent (agC).
Première variante V1 du procédé P1 : greffage de Bisphénol A ou de polycarbonate à la surface de nanoparticules minérales en présence de chlorosilane Selon une première variante V1 de l'étape i de P1 , on mélange 20 g de nanoparticules minérales dans 600 g de chloroforme à 600C sous atmosphère inerte. Un excès de chlorosilane est ajouté audit mélange et on laisse ce dernier réagir pendant 2 heures jusqu'à ce que l'excès de chlorosilane se soit évaporé. On obtient ainsi des nanoparticules minérales greffées silane.First Variant V1 of Process P1: Grafting Bisphenol A or Polycarbonate on the Surface of Mineral Nanoparticles in the Presence of Chlorosilane According to a first variant V1 of step i of P1, 20 g of mineral nanoparticles are mixed in 600 g of chloroform at 60 ° C. under an inert atmosphere. An excess of chlorosilane is added to said mixture and allowed to react for 2 hours until excess chlorosilane has evaporated. Silane-grafted inorganic nanoparticles are thus obtained.
Parallèlement, on prépare une solution contenant 50 g de Bisphénol A ou de polycarbonate, dissous dans 500 g de chloroforme. On ajoute ladite solution au mélange et on laisse réagir pendantIn parallel, a solution containing 50 g of Bisphenol A or polycarbonate dissolved in 500 g of chloroform is prepared. This solution is added to the mixture and allowed to react for
12 heures pour greffer le Bisphénol A ou le polycarbonate à la surface des nanoparticules minérales greffées silane.12 hours to graft Bisphenol A or polycarbonate to the surface of silane-grafted inorganic nanoparticles.
La température est ensuite élevée à 1300C afin d'évaporer le solvant. Les nanoparticules minérales ainsi modifiées sont lavées au chloroforme par extraction Soxhlet pendant 16 heures, puis séchées à 80° C dans une étuve pendant 24 heures.The temperature is then raised to 130 0 C in order to evaporate the solvent. The mineral nanoparticles thus modified are washed with chloroform by Soxhlet extraction for 16 hours and then dried at 80 ° C. in an oven for 24 hours.
On obtient alors des nanoparticules composites selon la première variante V1 de l'étape i du procédé P1 , à savoir :Composite nanoparticles are thus obtained according to the first variant V1 of step i of the method P1, namely:
Nanoparticules composites Al-agC-PC, correspondant à des nanoparticules d'alumine revêtues de polycarbonate,Al-agC-PC composite nanoparticles, corresponding to nanoparticles of alumina coated with polycarbonate,
Nanoparticules composites Al-agC-BPA, correspondant à des nanoparticules d'alumine revêtues de monomère de Bisphénol A, ou en d'autres termes de Bisphénol A, et Nanoparticules composites CC-agC-PC, correspondant à des nanoparticules de carbonate de calcium revêtues de polycarbonate.Al-agC-BPA composite nanoparticles, corresponding to alumina nanoparticles coated with Bisphenol A monomer, or in other words Bisphenol A, and CC-agC-PC composite nanoparticles, corresponding to coated calcium carbonate nanoparticles of polycarbonate.
Deuxième variante V2 du procédé P1 : greffage d'un monomère de styrène à la surface de nanoparticules minérales en présence d'un organosilane, puis polymérisation dudit monomère Selon une deuxième variante V2 de l'étape i de P1 , on effectue le greffage d'un monomère de styrène à la surface des nanoparticules minérales, puis la polymérisation dudit monomère en présence d'un amorceur apte à générer des radicaux libres sous l'effet de la chaleur. On mélange 20 g de nanoparticules minérales dans 300 g d'éthanol àSecond Variant V2 of Process P1: Grafting a Styrene Monomer on the Surface of Mineral Nanoparticles in the Presence of an Organosilane, and then Polymerization of the Monomer According to a second variant V2 of step i of P1, the grafting of a styrene monomer is carried out on the surface of the mineral nanoparticles, and then the polymerization of said monomer in the presence of an initiator capable of generating free radicals under effect of heat. 20 g of mineral nanoparticles are mixed in 300 g of ethanol
500C, puis on ajoute une solution contenant 20 g de vinyltriméthoxysilane diluée dans 100 g d'éthanol. On maintient le mélange sous agitation à 500C pendant 16 heures.50 ° C., then a solution containing 20 g of vinyltrimethoxysilane diluted in 100 g of ethanol is added. The mixture is stirred at 50 ° C. for 16 hours.
Les nanoparticules minérales greffées silane sont lavées et récupérées par centrifugation dans l'éthanol.The silane-grafted inorganic nanoparticles are washed and recovered by centrifugation in ethanol.
La polymérisation du monomère a lieu en milieu non aqueux et est réalisée sous air dans un erlenmeyer équipé d'un condenseur.The polymerization of the monomer takes place in a non-aqueous medium and is carried out under air in an Erlenmeyer flask equipped with a condenser.
Les nanoparticules minérales greffées silane sont tout d'abord dispersées dans le tétrahydrofuranne (THF), puis le mélange est porté à une température de 70° C et maintenu sous agitation.The silane-grafted inorganic nanoparticles are first dispersed in tetrahydrofuran (THF), and then the mixture is heated to a temperature of 70 ° C. and stirred.
Lorsque le mélange atteint 700C, on ajoute audit mélange du peroxyde de benzoyle comme amorceur et le monomère de styrène.When the mixture reaches 70 ° C., benzoyl peroxide is added to said mixture as an initiator and the styrene monomer.
On laisse le mélange réagir pendant 9 heures pour polymériser le monomère (polymérisation in situ). Les nanoparticules minérales ainsi modifiées sont ensuite lavées au soxhlet puis séchées pendant 24 heures à 80° C.The mixture is allowed to react for 9 hours to polymerize the monomer (polymerization in situ). The mineral nanoparticles thus modified are then washed with soxhlet and then dried for 24 hours at 80 ° C.
On obtient alors des nanoparticules composites selon la deuxième variante V2 de l'étape i du procédé P1 , à savoir :Composite nanoparticles are then obtained according to the second variant V2 of step i of the method P1, namely:
Nanoparticules composites Al-agC-mPS, correspondant à des nanoparticules d'alumine revêtues de polystyrène obtenu à partir de la polymérisation in situ du monomère de styrène, et Nanoparticules composites CC-agC-mPS, correspondant à des nanoparticules de carbonate de calcium revêtues de polystyrène obtenu à partir de la polymérisation in situ du monomère du styrène. Après la première ou la deuxième variante de l'étape i du procédé P1 , ladite étape i est suivie d'une étape de mélange (étape ii) des nanoparticules composites à une matrice de polycarbonate à une température de l'ordre de 270-2900C. Le mélange de l'étape ii est effectué à l'aide d'une extrudeuse du typeAl-agC-mPS composite nanoparticles, corresponding to polystyrene-coated alumina nanoparticles obtained from the in situ polymerization of the styrene monomer, and CC-agC-mPS composite nanoparticles, corresponding to nanoparticles of calcium carbonate coated with polystyrene obtained from the in situ polymerization of the styrene monomer. After the first or the second variant of step i of the method P1, said step i is followed by a mixing step (step ii) of the composite nanoparticles with a polycarbonate matrix at a temperature of the order of 270-290 0 C. the mixture of step ii is carried out using an extruder of the type
BC 21 C900 bis-vis co-rotatives, commercialisée par la société Clextral, avec une vitesse de vis de 300 tours par minute.BC 21 C900 bis-screw co-rotating, marketed by the company Clextral, with a screw speed of 300 rpm.
Les différents matériaux polymères transparents MP obtenus selon le premier procédé de préparation P1 comprennent 1 % en masse de nanoparticules minérales.The different transparent polymer materials MP obtained according to the first preparation method P1 comprise 1% by mass of mineral nanoparticles.
Procédé de préparation P2 : modification de la surface de nanoparticules minérales par un monomère ou un polymère sans la présence d'un agent de couplagePreparation process P2: modification of the surface of mineral nanoparticles by a monomer or a polymer without the presence of a coupling agent
Selon un deuxième procédé de préparation P2 conforme à la présente invention, l'étape i est effectuée sans la présence d'un agent de couplage.According to a second preparation method P2 according to the present invention, step i is carried out without the presence of a coupling agent.
Première variante V1 du procédé P2 : adsorption directe de polyméthacrylate de méthyle à la surface de nanoparticules minéralesFirst variant V1 of process P2: direct adsorption of polymethyl methacrylate on the surface of mineral nanoparticles
Selon une première variante V1 de l'étape i de P2, on disperse les nanoparticules minérales dans du chloroforme et on ajoute une solution contenant du polyméthacrylate de méthyle dissous dans du chloroforme. La masse de polymère utilisée est prise égale à la masse de nanoparticules minérales à traiter.According to a first variant V1 of step i of P2, the inorganic nanoparticles are dispersed in chloroform and a solution containing polymethylmethacrylate dissolved in chloroform is added. The mass of polymer used is equal to the mass of mineral nanoparticles to be treated.
Le mélange est maintenu sous agitation à température ambiante pendant 48 heures afin d'adsorber ledit polymère directement à la surface des nanoparticules minérales. Les nanoparticules minérales ainsi modifiées sont récupérées par centrifugation, puis lavées plusieurs fois au chloroforme avant d'être étuvées à 80 0C pendant 12 heures.The mixture is stirred at room temperature for 48 hours to adsorb said polymer directly to the surface of the mineral nanoparticles. The mineral nanoparticles thus modified are recovered by centrifugation and then washed several times with chloroform before being baked at 80 ° C. for 12 hours.
On obtient alors les nanoparticules composites Al-PMMA selon la première variante V1 de l'étape i du procédé P2 correspondant à des nanoparticules d'alumine revêtues de polyméthacrylate de méthyle.The Al-PMMA composite nanoparticles are then obtained according to the first variant V1 of step i of the process P2 corresponding to alumina nanoparticles coated with polymethyl methacrylate.
Deuxième variante V2 du procédé P2 : greffage direct d'un monomère de méthacrylate de méthyle à la surface de nanoparticules minérales, puis polymérisation dudit monomèreSecond Variant V2 of Process P2: Direct Grafting of a Methyl Methacrylate Monomer on the Surface of Mineral Nanoparticles, and then Polymerization of said Monomer
Selon une deuxième variante V2 de l'étape i de P2, on effectue le greffage d'un monomère de méthacrylate de méthyle à la surface des nanoparticules minérales, puis la polymérisation dudit monomère en présence d'un amorceur apte à générer des radicaux libres sous l'effet d'un rayonnement ultra-violet.According to a second variant V2 of step i of P2, the grafting of a methyl methacrylate monomer is carried out on the surface of the mineral nanoparticles, and then the polymerization of said monomer in the presence of an initiator capable of generating free radicals under the effect of ultraviolet radiation.
On disperse dans un cristallisoir 10 g de nanoparticules minérales dans 200 g d'éthanol, puis on agite par ultra-sons pendant 3 minutes.10 g of mineral nanoparticles are dispersed in a crystallizer in 200 g of ethanol, and then shaken by ultrasound for 3 minutes.
On ajoute ensuite à ce mélange 0,2 g de benzophénone comme amorceur et on irradie ledit mélange sous une lampe ultra-violet pendant 2 heures.0.2 g of benzophenone is then added to this mixture as an initiator and said mixture is irradiated under an ultraviolet lamp for 2 hours.
La lampe utilisée est une lampe UV Fisher Bioblock, de longueur d'onde 365 nm et de puissance 30 W. Le cristallisoir est placé à environ 5 cm de la lampe. Le mélange est maintenu sous agitation et sous atmosphère inerte pendant l'irradiation.The lamp used is a Fisher Bioblock UV lamp with a wavelength of 365 nm and a power of 30 W. The crystallizer is placed about 5 cm from the lamp. The mixture is kept under stirring and under an inert atmosphere during the irradiation.
A l'issue des deux heures, on ajoute 10 g dudit monomère et l'irradiation est maintenue pendant 1 h30 (polymérisation in situ).At the end of the two hours, 10 g of said monomer are added and the irradiation is maintained for 1 h 30 (in situ polymerization).
Les nanoparticules minérales ainsi modifiées sont lavées à l'éthanol par centrifugation plusieurs fois. Afin de dissoudre le polymère non greffé, les nanoparticules minérales modifiées sont dispersées dans du THF, centrifugées plusieurs fois et étuvées à 80 0C pendant 12 heures.The mineral nanoparticles thus modified are washed with ethanol by centrifugation several times. In order to dissolve the non-grafted polymer, the modified mineral nanoparticles are dispersed in THF, centrifuged several times and baked at 80 ° C. for 12 hours.
On obtient alors les nanoparticules composites Al-mPMMA, selon la deuxième variante V2 de l'étape i du procédé P2, correspondant à des nanoparticules d'alumine revêtues de polyméthacrylate de méthyle obtenu à partir de la polymérisation in situ du monomère de méthacrylate de méthyle,The composite nanoparticles Al-mPMMA are thus obtained, according to the second variant V2 of step i of the process P2, corresponding to alumina nanoparticles coated with polymethyl methacrylate obtained from the in situ polymerization of the methyl methacrylate monomer. ,
Après la première ou la deuxième variante de l'étape i du procédé P2, ladite étape i est suivie d'une étape de mélange (étape ii) des nanoparticules composites à une matrice de polycarbonate dans les mêmes conditions que le procédé P1.After the first or the second variant of step i of the process P2, said step i is followed by a mixing step (step ii) of the composite nanoparticles with a polycarbonate matrix under the same conditions as the method P1.
Les différents matériaux polymères transparents MP obtenus selon le deuxième procédé de préparation P2 comprennent 1 % en masse de nanoparticules minérales. En outre, des matériaux polymères dits « de référence >> MR sont également préparés comme suit : un premier matériau de référence MR1 est préparé uniquement à partir de polycarbonate en tant que tel, un second matériau de référence MR2 est préparé par incorporation directe de nanoparticules minérales du type alumine, dans une matrice de polycarbonate dans les conditions de l'étape ii, et un troisième matériau de référence MR3 est préparé par incorporation directe de nanoparticules minérales du type carbonate de calcium, dans une matrice de polycarbonate dans les conditions de l'étape ii.The different transparent polymer materials MP obtained according to the second preparation method P2 comprise 1% by mass of mineral nanoparticles. In addition, "reference" polymeric materials MR are also prepared as follows: a first MR1 reference material is prepared solely from polycarbonate as such, a second MR2 reference material is prepared by direct incorporation of nanoparticles alumina-type minerals, in a polycarbonate matrix under the conditions of step ii, and a third MR3 reference material is prepared by direct incorporation of calcium carbonate-type mineral nanoparticles into a polycarbonate matrix under the conditions of the step ii.
Les matériaux polymères MR2 et MR3 comprennent 1 % en masse de nanoparticules minérales.The MR2 and MR3 polymer materials comprise 1% by weight of mineral nanoparticles.
L'origine des différents constituants cités dans les procédés de préparation P1 et P2 ou dans les procédés pour obtenir les matériaux polymères MR1 à MR3 est la suivante : le polycarbonate de l'étape i est un polycarbonate thermoplastique commercialisé par la société Acros-Organics sous la référence Polycarbonate resin (n°CAS 24936-68-3), la matrice de polycarbonate de l'étape ii ainsi que le polycarbonate de la préparation des matériaux polymères de référence sont un polycarbonate thermoplastique commercialisé par la société Bayer sous la référence Makrolon A12647, le Bisphénol A est commercialisé par la société Acros- Organics, sous la référence 4,4'-lsopropylidenediphenolThe origin of the various constituents mentioned in the preparation processes P1 and P2 or in the processes for obtaining the polymeric materials MR1 to MR3 is as follows: the polycarbonate of step i is a thermoplastic polycarbonate marketed by Acros-Organics under the reference Polycarbonate resin (CAS No. 24936-68-3), the polycarbonate matrix of step ii and the polycarbonate of the preparation reference polymer materials are a thermoplastic polycarbonate marketed by the company Bayer under the reference Makrolon A12647, Bisphenol A is marketed by the company Acros-Organics, under the reference 4,4'-lsopropylidenediphenol
(n°CAS 80-05-7), le monomère de styrène est commercialisé par la société Acros-Organics, sous la référence Styrène (n°CAS 100-42-5), le monomère de méthacrylate de méthyle est commercialisé par la société Aldrich, sous la référence Methyl méthacrylate,(CAS No. 80-05-7), the styrene monomer is marketed by the company Acros-Organics, under the reference Styrene (CAS No. 100-42-5), the methyl methacrylate monomer is marketed by the company Aldrich, under the reference Methyl methacrylate,
(n° CAS 80-62-6), le polyméthacrylate de méthyle est commercialisé par la société Arkema, sous la référence Altuglas, les nanoparticules d'alumine ont une dimension de 13 nm, et sont commercialisées par la société Degussa, sous la référence Aeroxide AIuC, les nanoparticules de carbonate de calcium sont des particules de carbonate de calcium précipité ayant une dimension de 70 nm, commercialisées par la société Solvay, sous la référence Socal®31 , le chlorosilane est commercialisé par la société Acros- Organics, sous la référence Silicon (IV) chloride (n°CAS 10026- 04-7), le vinyltriméthoxysilane est commercialisé par la société Dow Corning, sous la référence Z-6300, la benzophénone est commercialisée par la société Acros- Organics, sous la référence Benzophénone (n° CAS 119-61 -9), et le peroxyde de benzoyle est commercialisé par la société Acros-Organics, sous la référence Benzoyle peroxide(CAS No. 80-62-6), polymethyl methacrylate is marketed by Arkema, under the reference Altuglas, the alumina nanoparticles have a size of 13 nm, and are marketed by the company Degussa, under the reference Aeroxide AIUC, calcium carbonate nanoparticles are precipitated calcium carbonate particles having a size of 70 nm, marketed by Solvay under the Socal ® reference 31, the chlorosilane is sold by the company Acros- Organics, under the reference Silicon (IV) chloride (CAS No. 10026-04-7), vinyltrimethoxysilane is marketed by Dow Corning, under the reference Z-6300, the benzophenone is marketed by the company Acros-Organics, under the reference Benzophenone (CAS No. 119-61 -9), and the benzoyl peroxide is marketed by the company Acros-Organics, under the reference Benzoyl peroxide
(n° CAS 94-36-0).(CAS No. 94-36-0).
Pour plus de précisions, la dimension des nanoparticules Socal®31 comme celle des nanoparticules Aeroxide AIuC sont déterminées par MET avec un grossissement de 40000 sur une vingtaine de clichés en dispersant tout d'abord ces nanoparticules dans de l'éthanol, puis en les plaçant sur une grille de cuivre, et en les recouvrant enfin d'un film polymère amorphe transparent. On trouve ainsi une largeur I, ou dimension moyenne en nombre, égale à 70 nm pour les nanoparticules Socal®31 , et égale à 13 nm pour les nanoparticules Aeroxide AIuC. Ainsi, pour étudier les propriétés mécaniques et optiques des matériaux polymères MP et MR, on réalise des échantillons par injection de granulés obtenus à partir des matériaux polymères préalablement extrudés sous forme de jonc.For more precise details, the size of the Socal ® 31 nanoparticles as that of the Aeroxide AIuC nanoparticles are determined by MET with a magnification of 40000 over twenty photos by first dispersing these nanoparticles in ethanol, then placing them on a copper grid, and finally covering them with a transparent amorphous polymer film. We thus find a width I, or number average size equal to 70 nm for Socal ® nanoparticles 31, and equal to 13 nm for Aeroxide AIUC nanoparticles. Thus, to study the mechanical and optical properties of polymeric materials MP and MR, samples are produced by injection of granules obtained from previously extruded polymeric materials in the form of rods.
Les propriétés mécanique et optique étudiée pour les matériaux obtenus sont respectivement le module de flexion et la transmission lumineuse.The mechanical and optical properties studied for the materials obtained are respectively the flexural modulus and the light transmission.
Module de flexion :Flexural module:
Les mesures de module de flexion sont réalisées sur des échantillons sous forme d'éprouvette de type haltère avec une épaisseur de 4 mm, répondant à la norme ISO 527-2 type 1 A.The flexural modulus measurements are made on specimens in the form of dumbbell-type test pieces with a thickness of 4 mm, corresponding to the ISO 527-2 type 1 A.
Les haltères sont obtenus à partir des granulés des matériaux polymères MR et MP mis en forme à l'aide d'une presse à injecter de marque SANDRETTO SERIE OTTO A.T.The dumbbells are obtained from the granules of the polymeric materials MR and MP shaped using an injection molding machine of SANDRETTO SERIE OTTO A.T.
Le module de flexion caractérise la rigidité du matériau polymère. Plus le module de flexion est élevé, meilleure est la rigidité dudit matériau. II est déterminé selon la norme ISO 178, à l'aide d'une presse électromécanique universelle ADAMEL LHOMARGY DY 26, pilotée par le logiciel TestWorks.The flexural modulus characterizes the stiffness of the polymeric material. The higher the flexural modulus, the better the rigidity of the material. It is determined according to ISO 178, using an ADAMEL LHOMARGY DY 26 universal electromechanical press, driven by TestWorks software.
Transmission lumineuse :Light transmission:
Les mesures de transmission lumineuse sont réalisées sur des échantillons sous forme d'éprouvette de type haltère avec une épaisseur de 4 mm, répondant à la norme ISO 527-2 type 1A, dans les mêmes conditions que pour les mesures des propriétés mécaniques. La transmission lumineuse caractérise la transparence du matériau polymère. Plus la transmission lumineuse est élevée, meilleure est la transparence dudit matériau.The light transmission measurements are carried out on specimens in the form of a dumbbell-type test piece with a thickness of 4 mm, in accordance with the ISO 527-2 type 1A standard, under the same conditions as for the measurements of the mechanical properties. The light transmission characterizes the transparency of the polymer material. The higher the light transmission, the better the transparency of said material.
Elle est déterminée selon la norme ISO 8980-3 relative aux verres de lunettes, à l'aide un spectrophotomètre de type Cary 50 commercialisé par la société Varian.It is determined according to the ISO 8980-3 standard for spectacle lenses, using a Cary 50 spectrophotometer marketed by Varian.
Selon cette norme, pour obtenir la valeur de la transmission lumineuse, le spectre de transmission de l'échantillon est déterminé par les produits de la distribution spectrale de l'illuminant utilisé, et en fonction du type d'observation choisi. L'illuminant utilisé est le D65 reproduisant la lumière du jour et l'observation choisie est à 2 ° .According to this standard, to obtain the value of the light transmission, the transmission spectrum of the sample is determined by the products of the spectral distribution of the illuminant used, and according to the type of observation chosen. The illuminant used is the D65 reproducing daylight and the observation chosen is at 2 °.
Les résultats de la mesure des propriétés mécaniques et optiques sont rassemblés dans le tableau ci-dessous.The results of the measurement of mechanical and optical properties are summarized in the table below.
Au vu des résultats, il apparaît que les matériaux polymères transparents MP1 , MP2 et MP4 d'une part, et MP5 d'autre part, présentent clairement un module de flexion ensemble avec une transmission lumineuse optimisés par rapport aux matériaux polymères respectifs MR2 et MR3.In view of the results, it appears that the transparent polymer materials MP1, MP2 and MP4 on the one hand, and MP5 on the other hand, clearly have a flexural modulus together with an optimized light transmission with respect to the respective polymeric materials MR2 and MR3 .
Par ailleurs, on observe également que le module de flexion des matériaux polymères transparents MP3 et MP7 a augmenté de façon significative pour une transmission lumineuse satisfaisante, par rapport aux matériaux polymères MR2 et MR3. Enfin, le matériau polymère transparent MP6 présente une transmission lumineuse ainsi qu'un module de flexion satisfaisants. Furthermore, it is also observed that the flexural modulus of the transparent polymeric materials MP3 and MP7 has significantly increased for a satisfactory light transmission, compared to the polymeric materials MR2 and MR3. Finally, the transparent polymeric material MP6 has a satisfactory light transmission and a flexural modulus.

Claims

REVENDICATIONS
1. Procédé de préparation d'un matériau polymère transparent comprenant les étapes suivantes :A process for preparing a transparent polymeric material comprising the steps of:
i. obtenir des nanoparticules composites comprenant des nanoparticules minérales au moins partiellement revêtues d'au moins un monomère et/ou d'au moins un polymère apte à favoriser les interactions physicochimiques à l'interface entre les nanoparticules minérales et une matrice de polycarbonate thermoplastique, lesdites nanoparticules minérales étant modifiées en surface par ledit monomère et/ou ledit polymère :i. obtaining composite nanoparticles comprising inorganic nanoparticles at least partially coated with at least one monomer and / or at least one polymer capable of promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, said nanoparticles minerals being surface-modified by said monomer and / or said polymer:
o soit directement par greffage ou directement par adsorption du monomère et/ou du polymère à la surface desdites nanoparticules minérales,o either directly by grafting or directly by adsorption of the monomer and / or the polymer on the surface of said mineral nanoparticles,
o soit par l'intermédiaire d'un agent de couplage choisi parmi un chlorosilane ou un organosilane comprenant un groupement fonctionnel susceptible de réagir par voie radicalaire, eto either via a coupling agent chosen from a chlorosilane or an organosilane comprising a radical-reactive functional group, and
ii. mélanger les nanoparticules composites, obtenues à l'étape i, à la matrice de polycarbonate thermoplastique à l'état fondu, pour obtenir ledit matériau polymère transparent.ii. mixing the composite nanoparticles, obtained in step i, with the thermoplastic polycarbonate matrix in the molten state, to obtain said transparent polymeric material.
2. Procédé selon la revendication 1 , caractérisé en ce que le monomère est le styrène, le méthacrylate de méthyle, l'acrylate de butyle, le bisphénol A, le phosgène, le diphényle carbonate et/ou l'acrylamide.2. Method according to claim 1, characterized in that the monomer is styrene, methyl methacrylate, butyl acrylate, bisphenol A, phosgene, diphenyl carbonate and / or acrylamide.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le polymère est du polystyrène, du polycarbonate, du polyméthacrylate de méthyle, du polyacrylate de butyle et/ou du polyacrylamide. 3. Method according to claim 1 or 2, characterized in that the polymer is polystyrene, polycarbonate, polymethyl methacrylate, butyl polyacrylate and / or polyacrylamide.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère est un copolymère de styrène, du monomère du polycarbonate, du méthacrylate de méthyle, de l'acrylate de butyle, du bisphénol A et/ou de l'acrylamide.4. Method according to any one of the preceding claims, characterized in that the polymer is a styrene copolymer, the monomer of polycarbonate, methyl methacrylate, butyl acrylate, bisphenol A and / or acrylamide.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le groupement fonctionnel de l'organosilane est choisi parmi un groupement acrylate, méthacrylate, vinylique, allylique ou alcényle, de préférence un groupement vinylique.5. Process according to any one of the preceding claims, characterized in that the functional group of the organosilane is chosen from an acrylate, methacrylate, vinylic, allyl or alkenyl group, preferably a vinyl group.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organosilane comprend en outre un groupement fonctionnel hydrolysable, de préférence choisi parmi un groupement alkoxy ou carboxy.6. Method according to any one of the preceding claims, characterized in that the organosilane further comprises a hydrolysable functional group, preferably selected from an alkoxy or carboxy group.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organosilane est le vinyltriméthoxysilane ou le méthacryloxypropyltriméthoxysilane.7. Process according to any one of the preceding claims, characterized in that the organosilane is vinyltrimethoxysilane or methacryloxypropyltrimethoxysilane.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la dimension des nanoparticules minérales est d'au plus 300 nm, de préférence d'au plus 100 nm, et plus préférentiellement comprise entre 10 et 70 nm.8. Process according to any one of the preceding claims, characterized in that the dimension of the mineral nanoparticles is at most 300 nm, preferably at most 100 nm, and more preferably between 10 and 70 nm.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanoparticules minérales sont choisies parmi les nanoparticules de carbonates de métaux alcalino-terreux, de sulfates de métaux alcalino-terreux, d'oxydes métalliques, d'oxydes de métalloïdes et/ou de siloxanes.9. Process according to any one of the preceding claims, characterized in that the mineral nanoparticles are chosen from nanoparticles of alkaline earth metal carbonates, alkaline earth metal sulphates, metal oxides and metalloid oxides. and / or siloxanes.
10. Procédé selon la revendication 9, caractérisé en ce que les nanoparticules minérales sont choisies parmi des nanoparticules de carbonate de calcium, de sulfate de baryum, d'alumine, de Trisilanolphényl Polyhedral SHSesquioxane (TP-POSS), d'oxyde de zinc, de dioxyde de silicium et/ou de dioxyde de titane.10. Method according to claim 9, characterized in that the mineral nanoparticles are chosen from nanoparticles of calcium carbonate, barium sulfate, alumina, Trisilanolphényl Polyhedral SHSesquioxane (TP-POSS), zinc oxide, silicon dioxide and / or titanium dioxide.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le monomère de l'étape i est greffé à la surface desdits nanoparticules, puis il est polymérisé.11. Method according to any one of the preceding claims, characterized in that the monomer of step i is grafted onto the surface of said nanoparticles, then it is polymerized.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélange de l'étape ii est réalisé à l'aide d'une extrudeuse.12. Method according to any one of the preceding claims, characterized in that the mixture of step ii is carried out using an extruder.
13. Matériau polymère transparent obtenu par le procédé défini aux revendications 1 à 12.13. Transparent polymeric material obtained by the process defined in claims 1 to 12.
14. Matériau polymère selon la revendication 13, caractérisé en ce qu'il comprend au plus 10 % en masse de nanoparticules minérales, de préférence au plus 5 % en masse de nanoparticules minérales, et plus préférentiellement une quantité de l'ordre de 1 % en masse de nanoparticules minérales.14. Polymer material according to claim 13, characterized in that it comprises at most 10% by weight of mineral nanoparticles, preferably at most 5% by weight of mineral nanoparticles, and more preferably a quantity of the order of 1%. mass of mineral nanoparticles.
15. Utilisation du matériau polymère transparent selon la revendication 13 ou 14 pour la fabrication d'articles optiques du type vitrage automobile.15. Use of the transparent polymeric material according to claim 13 or 14 for the manufacture of optical articles of the automotive glazing type.
16. Utilisation du matériau polymère transparent selon la revendication 13 ou 14 pour la fabrication d'articles optiques du type lentille optique d'instrumentation de visée, visière de casque ou lentille ophtalmique.16. Use of the transparent polymeric material according to claim 13 or 14 for the manufacture of optical articles such as optical sighting instrument lens, helmet visor or ophthalmic lens.
17. Utilisation du matériau polymère transparent selon la revendication 13 ou 14 pour la fabrication d'articles optiques d'épaisseur d'au plus 15 mm, de préférence comprise entre 0,1 et 5 mm, et plus préférentiellement comprise entre 0,5 et 4 mm. 17. Use of the transparent polymeric material according to claim 13 or 14 for the manufacture of optical articles with a thickness of at most 15 mm, preferably between 0.1 and 5 mm, and more preferably between 0.5 and 4 mm.
EP08859213A 2007-12-13 2008-12-09 Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles Withdrawn EP2220144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759810A FR2925059B1 (en) 2007-12-13 2007-12-13 PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND SURFACE - MODIFIED MINERAL NANOPARTICLES.
PCT/EP2008/067076 WO2009074554A1 (en) 2007-12-13 2008-12-09 Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles

Publications (1)

Publication Number Publication Date
EP2220144A1 true EP2220144A1 (en) 2010-08-25

Family

ID=39276272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08859213A Withdrawn EP2220144A1 (en) 2007-12-13 2008-12-09 Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles

Country Status (8)

Country Link
US (1) US9163125B2 (en)
EP (1) EP2220144A1 (en)
JP (1) JP5734667B2 (en)
KR (1) KR101623865B1 (en)
CN (1) CN101896538B (en)
BR (1) BRPI0820889B1 (en)
FR (1) FR2925059B1 (en)
WO (1) WO2009074554A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2891546B1 (en) * 2005-10-04 2010-09-03 Solvay USE OF CALCIUM CARBONATE PARTICLES IN TRANSPARENT POLYMERIC COMPOSITIONS, TRANSPARENT POLYMERIC COMPOSITIONS AND PROCESS FOR THE PRODUCTION THEREOF
FR2925060B1 (en) * 2007-12-13 2012-12-21 Essilor Int PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND MINERAL NANOPARTICLES
CN102656221B (en) * 2009-12-17 2015-03-25 3M创新有限公司 High magnesium surface concentration nanocalcite composites
DK2563843T3 (en) 2010-04-28 2018-03-12 Univ Georgia PHOTOCHEMICAL CROSS-POLYMERS, PROCEDURES FOR MARKING PHOTOCHEMIC CROSS-POLYMERS, PROCEDURES FOR USING PHOTOCHEMIC CROSS-POLYMERS, AND ...
WO2012039901A1 (en) * 2010-09-20 2012-03-29 3M Innovative Properties Company Nanoparticle processing aid for extrusion and injection molding
KR101824647B1 (en) 2010-10-12 2018-02-02 삼성전자주식회사 Method for synchronizing between devices, user device, and computer readable storage medium thereof
KR101268883B1 (en) * 2010-12-06 2013-05-29 한국세라믹기술원 High strength organic-inorganic composite having mineral bridge structure and preparation method thereof
CA2852999A1 (en) * 2011-10-14 2013-04-18 University Of Georgia Research Foundation, Inc. Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
CN102504512A (en) * 2011-10-24 2012-06-20 梅州紫晶光电科技有限公司 High-stability data storage polycarbonate disk base material and preparation method thereof
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
CN105683303B (en) 2013-09-03 2018-01-19 埃西勒国际通用光学公司 Compound transparent polymeric compositions are reviewed one's lessons by oneself containing conductive rubber
CN105492546B (en) * 2013-09-03 2019-05-10 依视路国际公司 The improvement of selfreparing hard conating
TWI678377B (en) * 2014-08-29 2019-12-01 日商三菱化學股份有限公司 (Meth) acrylic resin material, surface hardness improver, polycarbonate resin composition, and formed body
CN104650569A (en) * 2015-02-26 2015-05-27 江苏视客光电新材料有限公司 Composite polycarbonate nano zinc oxide material
KR101784235B1 (en) 2016-05-31 2017-11-07 한국생산기술연구원 Manufacturing method of extrudable high thermal resistance polymer composite using surface treated titanium dioxide nano-sized particle, and extrudable high thermal resistance polymer composite using the same
US20180327614A1 (en) * 2017-05-09 2018-11-15 Imam Abdulrahman Bin Faisal University Method of repairing an acrylic denture base and zirconia autopolymerizable resins therof
CN109943048A (en) * 2017-12-20 2019-06-28 杨运海 A kind of fine definition eyeglass and preparation method thereof
CN108359231A (en) * 2018-02-09 2018-08-03 天津德迈特汽车零部件有限公司 Plastic lens and preparation method thereof
CN108384167A (en) * 2018-02-09 2018-08-10 天津德迈特汽车零部件有限公司 A kind of wear-resistant plastic lens and preparation method thereof
CN109293856A (en) * 2018-09-11 2019-02-01 铨盛聚碳科技股份有限公司 A kind of the organosilicon toughener and its synthetic method of polymer overmold nano-inorganic substance
CN111748189B (en) * 2019-03-29 2021-06-18 比亚迪股份有限公司 Modified polycarbonate composition, electronic equipment shell and preparation method thereof
CN110160993A (en) * 2019-05-21 2019-08-23 广州星坛电子产品有限公司 A kind of local surface plasmon resonance sensor and its preparation method and application

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966596B2 (en) * 1991-09-05 1999-10-25 信越化学工業株式会社 Polyorganosiloxane coated fine particles
DE4233396A1 (en) * 1992-10-05 1994-04-07 Merck Patent Gmbh Surface modified oxide particles and their application as fillers and modifiers in polymer materials
US5831963A (en) * 1994-11-16 1998-11-03 Mitsubishi Chemical Corporation Optical recording medium having zones wherein the number of sectors per track is constant and method of injection-molding the same
US7226966B2 (en) * 2001-08-03 2007-06-05 Nanogram Corporation Structures incorporating polymer-inorganic particle blends
EP1167313B1 (en) * 1999-12-13 2015-09-23 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
AU785282B2 (en) * 2001-06-20 2006-12-21 Rohm And Haas Company Coating with improved hiding, compositions prepared therewith, and processes for the preparation thereof
JP4857496B2 (en) * 2001-08-01 2012-01-18 大日本印刷株式会社 Composite, coating composition, coating film thereof, antireflection film, antireflection film, and image display device
JP5136815B2 (en) * 2001-08-27 2013-02-06 日本アエロジル株式会社 Superabsorbent inorganic oxide powder and method for producing the same
JP2003286306A (en) * 2002-03-28 2003-10-10 Tama Tlo Kk Manufacturing method of nano composite resin composition
JP2006016538A (en) * 2004-07-02 2006-01-19 Nissan Motor Co Ltd Resin composition, method for producing resin composition and resin composition intermediate
WO2006019008A1 (en) * 2004-08-20 2006-02-23 Kaneka Corporation Polymer-modified nanoparticle
JP2006299126A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Method for modifying surface of nano-filler, polymer nano-composite and method for producing polymer nano-composite
EP1728822A1 (en) * 2005-05-30 2006-12-06 Nanocyl S.A. Nanocomposite and process for producing the same
JP2007002049A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Method for producing polymer composite and polymer nanocomposite
WO2007043496A1 (en) * 2005-10-03 2007-04-19 Kaneka Corporation Transparent polymer nanocomposites containing nanoparticles and method of making same
DE102005056621A1 (en) 2005-11-25 2007-05-31 Merck Patent Gmbh Modified zinc oxide nano-particles with a specific average particle size, obtained by converting nano-particle precursor to nano-particles and terminating the growth of nano-particles, useful for UV-stabilization of polymer
US20070190314A1 (en) * 2006-01-13 2007-08-16 Fujifilm Corporation Transparent article and method for producing it, and lens substrate
US20080118729A1 (en) * 2006-11-16 2008-05-22 General Electric Company Thermoplastic composition, method of making, and articles formed therefrom
US20080193731A1 (en) * 2007-02-12 2008-08-14 Eastman Kodak Company Optical device with self-supporting film assembly
JP2009074046A (en) * 2007-08-28 2009-04-09 Nippon Shokubai Co Ltd Organic-inorganic composite material and composition thereof
FR2925060B1 (en) * 2007-12-13 2012-12-21 Essilor Int PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND MINERAL NANOPARTICLES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Adsorption - Wikipédia", 9 October 2017 (2017-10-09), XP055418802, Retrieved from the Internet <URL:https://fr.wikipedia.org/wiki/Adsorption> [retrieved on 20171025] *

Also Published As

Publication number Publication date
FR2925059B1 (en) 2012-08-17
JP2011510163A (en) 2011-03-31
CN101896538A (en) 2010-11-24
BRPI0820889A2 (en) 2015-06-16
BRPI0820889B1 (en) 2018-10-30
WO2009074554A1 (en) 2009-06-18
FR2925059A1 (en) 2009-06-19
CN101896538B (en) 2012-12-12
JP5734667B2 (en) 2015-06-17
US20110034585A1 (en) 2011-02-10
BRPI0820889A8 (en) 2018-08-14
KR101623865B1 (en) 2016-05-24
US9163125B2 (en) 2015-10-20
KR20100099289A (en) 2010-09-10

Similar Documents

Publication Publication Date Title
EP2220144A1 (en) Method for preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles
JP5551080B2 (en) Method for producing transparent polymer material containing thermoplastic polycarbonate and inorganic nanoparticles
US6759452B2 (en) Polycarbonate nanocomposite optical plastic article and method of making same
EP1217393A2 (en) Reduced temperature sensitive polymeric optical article and method of making same
EP1217034A2 (en) Polymethylmethacrylate nanocomposite optical plastic article and method of making same
US20020120048A1 (en) Polystyrene nanocomposite optical plastic article and method of making same
EP1217031A2 (en) Polysulfone nanocomposite optical plastic article and method of making same
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
EP1217033A2 (en) Cyclic olefin polymeric nanocomposite optical plastic article and method of making same
EP2335096A1 (en) Antireflection coatings including scattered objects having two separate ranges with separate refraction indices
EP2364333B1 (en) Method for preparing a transparent polymer material including mineral nanoparticles with a shape factor strictly higher than 1.0
JP2007093893A (en) Optical component
JP2009235325A (en) Production method for optical resin material, optical resin material, and optical element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20110124

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY SA

Owner name: RENAULT S.A.S.

Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ESSILOR INTERNATIONAL

Owner name: SOLVAY SA

Owner name: RENAULT S.A.S.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ESSILOR INTERNATIONAL

Owner name: RENAULT S.A.S.

Owner name: IMERYS PCC FRANCE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C08J 5/00 20060101ALI20201124BHEP

Ipc: C08K 3/26 20060101ALI20201124BHEP

Ipc: C08K 5/5425 20060101ALI20201124BHEP

Ipc: C08K 3/22 20060101ALI20201124BHEP

Ipc: B82Y 30/00 20110101AFI20201124BHEP

INTG Intention to grant announced

Effective date: 20201221

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOPEZ-CUESTA, JOSE-MARIE

Inventor name: CORNET, NATHALIE

Inventor name: ROOS, ALEXANDRA

Inventor name: CAVALIER, KARINE

Inventor name: SY, DIDIER

Inventor name: CHRISTMANN, ANNE

Inventor name: LACROIX, MARC

Inventor name: HOCHEPIED, JEAN-FRANCOIS

Inventor name: MEYNIE, LAURE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210501