EP2218674B1 - Llifting vehicle comprising mobile lifting arm and control device - Google Patents
Llifting vehicle comprising mobile lifting arm and control device Download PDFInfo
- Publication number
- EP2218674B1 EP2218674B1 EP20100153251 EP10153251A EP2218674B1 EP 2218674 B1 EP2218674 B1 EP 2218674B1 EP 20100153251 EP20100153251 EP 20100153251 EP 10153251 A EP10153251 A EP 10153251A EP 2218674 B1 EP2218674 B1 EP 2218674B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- arm
- natural frequency
- signal
- vehicle
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 230000010355 oscillation Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 230000000087 stabilizing effect Effects 0.000 description 12
- 238000000605 extraction Methods 0.000 description 7
- 230000000284 resting effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/065—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
- B66F9/0655—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted with a telescopic boom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F17/00—Safety devices, e.g. for limiting or indicating lifting force
- B66F17/003—Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2203—Arrangements for controlling the attitude of actuators, e.g. speed, floating function
- E02F9/2207—Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
Definitions
- the present invention relates to a control method for a vehicle comprising a telescopic lifting arm provided at one end thereof with a piece of working equipment such as a platform, a fork-shaped tool, or a shovel.
- the lifting arm is preferably telescopic and is moved by an operator via a joystick for moving weights carried by the piece of working equipment.
- the movement is executed by an operator via an open-loop control system, which activates a power circuit, for example a hydraulic power circuit, via a control element, for example a joystick.
- a power circuit for example a hydraulic power circuit
- a control element for example a joystick.
- the movement of a lifting arm must be executed by the operator with the maximum care in order not to jeopardize stability of the vehicle within an admissible working space in which the machine can operate safely.
- sudden commands for example sudden arrests of the arm, can cause accelerations and dynamic overloads that are equally dangerous for the stability of the vehicle, which, in the case of particularly sharp manoeuvres, can lose adherence or even turn over.
- US-A-2005177292 discloses a vehicle according to the preamble of claim 1.
- the aim of the present invention is to provide a lifting vehicle comprising a control device for a lifting arm that will be free from the drawbacks referred to above.
- the aim of the present invention is achieved via a vehicle according to Claim 1 and a method according to Claim 10.
- a lifting vehicle comprising a frame, a preferably telescopic arm 3 hinged to the frame, a fork-shaped tool 4 mounted to a free end portion of the arm 3, and a driving cab 5.
- the vehicle 1 is moreover provided with tyred wheels 6 set on two axles and stabilizing arms 7 both front and rear (illustrated in Figure 1 are only the front arms).
- the front and rear stabilizing arms 7 are actuated via respective hydraulic cylinders 8 and are mobile between a raised position and a resting position.
- the stabilizing arms 7 are in the raised position, the tyred wheels 6 rest on the ground and the vehicle 1 can circulate.
- the stabilizing arms 7 are in the resting position, the latter are lowered via the hydraulic cylinders 8 and rest by means of purposely provided plates 9 on the ground.
- the hydraulic cylinders 7 are sized for raising the vehicle 1 also in conditions of maximum load and consequently, at the discretion of the operator sitting in the driving cab 5, for raising the tyred wheels 6 off the ground.
- the arm 3 can consequently be actuated both when the tyred wheels 6 rest on the ground and the stabilizing arms 7 are in the raised position and when the stabilizing arms 7 are in the resting position and the tyred wheels 6 are raised off the ground.
- the arm 3 has an angular degree of freedom, i.e., the angle of lifting with respect to a plane passing through the axes of the tyred wheels 6, and can have a variable length due to the extension of the arm 3.
- the angle of lifting and the extension of the arm 3 are powered via a hydraulic circuit (illustrated schematically in Figure 2 ) comprising a pump 10, a plurality of actuators 11 (only one of which is illustrated), and means for adjusting the capacity 12, for example, one or more servo valves, preferably of the continuous-positioning type, for governing the actuators 11.
- a hydraulic circuit illustrated schematically in Figure 2
- a pump 10 a plurality of actuators 11 (only one of which is illustrated)
- means for adjusting the capacity 12 for example, one or more servo valves, preferably of the continuous-positioning type, for governing the actuators 11.
- the vehicle 1 further comprises a automatic electronic control device 13 connected to the valve 12 and configured for reducing or eliminating the oscillations of the arm 3 due to the movement of lifting.
- the control device 13 receives at input an electric signal SJ, for example a voltage signal, from an electronic joystick 14 and processes a control signal SV for governing the valve 12.
- an electric signal SJ for example a voltage signal
- the signal SJ governs the speed of lifting of the arm 3 by means of the valve 12.
- control device 13 receives at input the signals coming, respectively, from a load cell 15 mounted on the vehicle 1 for detecting the weight of a load lifted by the arm 3 and from a position sensor 16 mounted on the vehicle 1 for detecting the extend of extraction of the arm 3.
- the load cell 15 is mounted between the head of the hydraulic cylinder 11 and the arm 3, whilst the position sensor 16 is mounted directly on the arm 3.
- control device 13 processes the signal SJ and generates a signal SV defined by the convolution of the signal SJ with a plurality of pulses set apart by a predetermined time interval and having a predetermined amplitude, in which the time interval and the amplitude are defined on the basis of the signals received from the load cell 15 and from the position sensor 16.
- the control device 13 implements an open-loop control, known as "feed-forward control", comprising the steps of:
- the free oscillations generated by the system in response, respectively, to the first and second pulses cancel out by interference at the end of the second pulse.
- the energy content of the two pulses is equivalent to that of the pulse SJ since the sum of the two amplitudes of the signal SV is equal to that of the signal SJ.
- the overall response is once again constituted by the sum of the free response of the system to the first pulse and of the free response of the system to the second pulse.
- the equation of constraint for determining the phase and the amplitude of the pulses is defined by the condition that the overall amplitude of the response of the system to the two pulses is zero at the moment in which the last pulse has terminated.
- the delay to which the second pulse and all the subsequent pulses must be applied corresponds to a half-period of free oscillation of the arm 3. In the case of more than two pulses, the delay is an integer multiple of the ⁇ T given previously.
- the convolution of a pair of pulses with any input signal SJ enables 'forming', i.e., modification, of the signal SJ so as to obtain a compensated signal SV.
- the signal SV given by the convolution of SJ with the two pulses described previously is a broken line having three segments delimited by four singular points of which the first is spaced apart from the second and the third is spaced apart from the fourth by ⁇ T.
- SJ is a step, i.e., a sharp signal
- SV is defined by two consecutive and superimposed steps.
- the signal SV 'formed' is able to reduce or substantially eliminate to zero the oscillations of the arm 3 after the second singular point.
- the form of the signal SV depends upon the first natural frequency of the arm 3.
- the first frequency depends directly upon the weight of the load lifted by the fork-shaped equipment 4.
- the control device 13 stores a matrix within which the natural frequency of the arm 3 is indexed as the weight of the load applied to the arm 3 varies.
- the value of the first natural frequency changes, as illustrated in Figure 3 , also as the extent of extraction of the arm 3 varies.
- the matrix stored in the control device 13 is structured for identifying a single value of the first resonance frequency of the arm 3 for each pair of values of the weight of the load and of the extent of extraction of the arm.
- the natural frequencies of the arm 3 can depend upon numerous other working parameters of the vehicle 1, as, for example, in the case where the vehicle 1 is lifted on the stabilizing arms 7 or else in the case where the stabilizing arms 7 are in the raised position when a command is sent to the arm 3 for lifting a load. For instance, there has been found a substantial decrease of the value of the first natural frequency, given the same weight of the load applied to the fork-shaped equipment 4 and of extent of extraction of the arm 3, when the vehicle 1 rests directly on the tyred wheels 6 as compared to when the tyred wheels 6 are raised off the ground via the stabilizing arms 7.
- the indexing matrix is multidimensional and is structured so as to enable a single value of the first resonance frequency to be obtained also on the basis of whether the vehicle 1 is resting or otherwise on the stabilizing arms 7.
- the control device 13 it is possible to store in the control device 13 a second multidimensional matrix for indexing the variation of the modal damping on the basis of one or more of the working parameters of the vehicle 1.
- the working parameters are one or more of the parameters previously indicated for variation of the first natural frequency.
- the indexing matrix is constructed by performing a purposely devised calibration, for example at the end of the production process or else in the step of definition of the prototype of the vehicle.
- a purposely devised calibration for example at the end of the production process or else in the step of definition of the prototype of the vehicle.
- a plurality of pairs of values of weight and extent of extraction of the arm 3 is identified.
- the value of the first natural frequency of the arm 3 is measured when the vehicle 1 rests both on the stabilizing arms 7 and directly on the tyred wheels 7, and the indexing matrix to be stored in the control device 13 is thus constructed.
- the value of the first natural frequency and of the higher- order frequencies can be detected via an accelerometer 17 mounted on the arm 3 and connected to the control device 13 that enables analysis of the signal both in the time domain and in the frequency domain.
- an automatic control device 13 can comprise a matrix for indexing the damping coefficient for the first mode of vibration in order to store the different values as the load applied on the arm 3 varies and/or the extent of extraction of the arm 3 varies and/or according to whether the lifting vehicle 1 rests or otherwise on the stabilizing arms 7.
- the calibration step further comprises a subsequent compensation stage in order to take into account the delay with which the hydraulic cylinder 11 responds to the variations of capacity governed via the signal SV and the valve 12.
- the pulses can be set apart by a ⁇ T* such that 0.5 ⁇ T ⁇ T* ⁇ 1.5 ⁇ T to obtain a decrease in the oscillations of the arm 3. Even more preferably, 0.75 ⁇ T ⁇ T* ⁇ 1.25 ⁇ T to reduce further the oscillations of the arm 3.
- the arm 3 is governed by a hydraulic circuit that affects the response time of the cylinder 11 with respect to the signal SV that governs the valve 12.
- the hydraulic circuit downstream of the valve 12 tends to respond with a delay that differs according to whether it is the first or second singular point and according to the type of command, i.e., for example according to whether the command is to cause the arm 3 to start to rise or else to cause the arm 3 to start to descend.
- a measurement in the time of the capacity of the hydraulic circuit superimposed on the signal SV in relation to a command for causing the arm 3 to start to rise shows that the delay in the variation of capacity in response to the first singular point of the signal SV is shorter than the delay of the variation of capacity in response to the second singular point of the signal SV.
- the time constant C is characteristic of the hydraulic circuit and is consequently not linked to the period of free oscillation of the arm 3 according to the first natural frequency.
- Figures 4a are the measurements made on the vibrations of the arm 3 respectively in the case of a command compensated with respect to the first natural frequency with two pulses illustrated in Figure 4b ) and in the case of a non-compensated command (illustrated in Figure 4a ).
- the maximum peak is generated in response to a non- compensated step control signal.
- the response of the system in the case of compensated signal presents a considerably lower peak and subsequently the oscillations are considerably lower.
- the control system 13 compensates the dynamic behaviour of the arm 3 and adapts to the variable weight of the load applied in use to the equipment 4. In this way, the dynamic overload of the arm 3 is reduced significantly. Said result is particularly appreciable because the majority of cases of overturning are due to the energy associated to said overload and in this way it is possible to reduce considerably the occurrence of said accident.
- the step of calibration enables compensation of the control device 13 on the basis of the coupled system comprising also the hydraulic circuit.
- the step of calibration can moreover be executed on each lifting vehicle 1 so as to guarantee the maximum precision of operation of the control device 13.
- the natural frequencies may also be measured via an analysis of the signal of the load cell 15 in the case where the latter is, for example, of a strain-gauge type.
- the arm 3 may even not be telescopic.
- a lifting vehicle already in use can be updated via the installation of a control unit 13 and of the corresponding sensors, i.e., at least of the load cell 15 and of the position sensor 16.
- the vehicle may further comprise a platform that can turn about a vertical axis and on which the arm 3 is hinged.
- control device 13 can be programmed for executing the convolution with the plurality of pulses only for portions of signal SJ.
- the convolution, and hence the control proper can be executed only for that part of the signal SJ that is constituted by a step command.
- the step command corresponds to a sharp command, and in this way the control is applied selectively, and in particular only in the conditions deemed critical for stability of the lifting vehicle 1.
- the lifting vehicle 1 may also be provided with tracks.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Transportation (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Vehicle Body Suspensions (AREA)
- Forklifts And Lifting Vehicles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000100A ITTO20090100A1 (it) | 2009-02-11 | 2009-02-11 | Veicolo comprendente un braccio di sollevamento e relativo metodo di controllo dei sovraccarichi dinamici |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2218674A1 EP2218674A1 (en) | 2010-08-18 |
EP2218674B1 true EP2218674B1 (en) | 2013-01-23 |
Family
ID=41396001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20100153251 Active EP2218674B1 (en) | 2009-02-11 | 2010-02-11 | Llifting vehicle comprising mobile lifting arm and control device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2218674B1 (it) |
IT (1) | ITTO20090100A1 (it) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011001112A1 (de) * | 2011-03-04 | 2012-09-06 | Schneider Electric Automation Gmbh | Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems |
KR102187141B1 (ko) * | 2019-07-04 | 2020-12-04 | 건설기계부품연구원 | 전자유압 시스템의 피크압력 저감제어방법 및 장치 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5638267A (en) * | 1994-06-15 | 1997-06-10 | Convolve, Inc. | Method and apparatus for minimizing unwanted dynamics in a physical system |
FI109349B (fi) * | 2000-07-18 | 2002-07-15 | Timberjack Oy | Menetelmä puomin ohjaamiseksi ja puomin ohjausjärjestelmä |
JP4647325B2 (ja) * | 2004-02-10 | 2011-03-09 | 株式会社小松製作所 | 建設機械の作業機の制御装置、建設機械の作業機の制御方法、及びこの方法をコンピュータに実行させるプログラム |
DE102005003065A1 (de) * | 2005-01-22 | 2006-08-03 | Günter Till GmbH & Co. KG | Leistungsstarke Rüttelsteuerung für Land- und Baumaschinen |
US20090312875A1 (en) * | 2006-07-12 | 2009-12-17 | Lasse Lehtonen | Method and an arrangement for dampening vibrations in a mast structure |
-
2009
- 2009-02-11 IT IT000100A patent/ITTO20090100A1/it unknown
-
2010
- 2010-02-11 EP EP20100153251 patent/EP2218674B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
ITTO20090100A1 (it) | 2010-08-12 |
EP2218674A1 (en) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3034455A1 (en) | Method for controlling an aerial apparatus, and aerial apparatus with controller implementing this method | |
KR100737250B1 (ko) | 건설기계의 작업기의 제어장치, 건설기계의 제어방법, 및 이 방법을 컴퓨터에 실행시키는 프로그램이 기록된 기록매체 | |
US7398143B2 (en) | Active vibration absorber and method | |
EP2982639B1 (en) | A lateral stability system | |
US6886650B2 (en) | Active seat suspension control system | |
JP6607229B2 (ja) | 車両姿勢制御装置 | |
EP2500238B1 (en) | Dynamic vibration control systems and methods for industrial lift trucks | |
JP5517481B2 (ja) | 構内運搬車両における振動減衰のための方法 | |
US20030160369A1 (en) | Semi-active shock absorber control system | |
US20090229457A1 (en) | Method to control the vibrations in an articulated arm for pumping concrete, and relative device | |
AU2014200460B2 (en) | Vibration Control Systems and Methods for Industrial Lift Trucks | |
EP2038202A1 (en) | A method and an arrangement for dampening vibrations in a mast structure | |
JP3098425B2 (ja) | 車両のばね上ばね下相対速度算出装置 | |
KR20150119491A (ko) | 모터 구동 장치 | |
EP2218674B1 (en) | Llifting vehicle comprising mobile lifting arm and control device | |
CN114466763B (zh) | 一种车辆控制方法和系统以及车辆 | |
JP5362158B2 (ja) | ターンテーブル梯子装置 | |
JP5234574B2 (ja) | 高所作業車 | |
CN103398043A (zh) | 用于检测油缸内泄的方法、设备、系统及工程机械 | |
EP4124479A1 (en) | Cabin suspension system | |
CN114655092A (zh) | 用于座椅振动消除的系统和方法 | |
JP2015196423A (ja) | サスペンション制御装置 | |
CN117725696A (zh) | 基于独立模态空间法的柔性臂无指令输入整形抑振方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SOMA, AURELIO Inventor name: VIGLIETTI, EZIO |
|
17P | Request for examination filed |
Effective date: 20110218 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 594844 Country of ref document: AT Kind code of ref document: T Effective date: 20130215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010004764 Country of ref document: DE Effective date: 20130321 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 594844 Country of ref document: AT Kind code of ref document: T Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130423 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130523 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130504 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130423 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130523 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20131024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130211 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010004764 Country of ref document: DE Effective date: 20131024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130211 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100211 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010004764 Country of ref document: DE Representative=s name: WUNDERLICH & HEIM PATENTANWAELTE PARTNERSCHAFT, DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230705 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 15 Ref country code: GB Payment date: 20240220 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240205 Year of fee payment: 15 Ref country code: FR Payment date: 20240226 Year of fee payment: 15 |