EP2217943A1 - Verfahren und vorrichtung zum ortsaufgelösten erfassen und rekonstruieren von objekten mittels mikrowellen - Google Patents

Verfahren und vorrichtung zum ortsaufgelösten erfassen und rekonstruieren von objekten mittels mikrowellen

Info

Publication number
EP2217943A1
EP2217943A1 EP08853084A EP08853084A EP2217943A1 EP 2217943 A1 EP2217943 A1 EP 2217943A1 EP 08853084 A EP08853084 A EP 08853084A EP 08853084 A EP08853084 A EP 08853084A EP 2217943 A1 EP2217943 A1 EP 2217943A1
Authority
EP
European Patent Office
Prior art keywords
microwave
microwave antenna
microwaves
unit
antenna units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08853084A
Other languages
English (en)
French (fr)
Inventor
Michael KRÖNING
Andrey Bulavinov
Roman Pinchuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2217943A1 publication Critical patent/EP2217943A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • G01S7/025Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects involving the transmission of linearly polarised waves

Definitions

  • the invention relates to a method and a device for the spatially resolved detection and reconstruction of objects by means of microwaves.
  • at least one object to be detected is exposed to microwaves, which are emitted by a plurality of microwave antennas and are at least partially reflected by the object.
  • These reflected microwave components are detected by the microwave antenna units and converted into evaluable microwave signals, on the basis of which an evaluation for spatially resolved object detection takes place.
  • Such an examination technique is preferably suitable for security checks, for example on persons at border crossings. So it is possible with the help of microwave technology to check people for hidden objects such as weapons, explosives, etc.
  • An alternative method is to use electromagnetic waves of the so-called microwave range, i. electromagnetic waves in the frequency range from 300 MHz to 200 GHz.
  • microwave fields strike an object to be examined, a substance or a person, i. generally to an object and are object-specifically reflected on this.
  • the resolving power of a conventional microwave method is limited by a relatively large wavelength, but this disadvantage can be overcome by using tomographic measurement and reconstruction principles that allow object reconstruction with spatial resolution, possibly even beyond the wavelength limit.
  • the previously known and available on the market MW systems usually scan the object with rows of sensors that are attached to a moving portal.
  • the scanning realizes a synthetic aperture that allows spatial focusing in the volume.
  • EP 0 703 447 A2 discloses a method and a device for measuring multiphase flows in pipes.
  • the distributions of the permittivity and the conductivity relative to the pipe cross-section are detected by means of microwave antennas arranged around the pipe.
  • the invention is based on the object of a method as well as a device for spatially resolved detection and reconstruction of objects by means of microwaves, in which at least one object to be detected is acted upon by microwaves, which are generated by a plurality of microwave antennas, and detected by the object reflected microwave components and be converted into evaluable microwave signals, on the basis of which an evaluation for spatially resolved object detection takes place, in such a way that an improved analysis accuracy with which an object determination can be made both in the light of a material or objective object determination and in the light of a spatial location is made possible and this with a lower constructive and cost-related effort than is the case with previously known MW method.
  • the solution according to the method for spatially resolved detection and reconstruction of objects by means of microwaves is characterized in that the generation and the detection of the microwaves are carried out in the following manner: First, n microwave antenna units are arranged in a spatial distribution around the object to be detected, for example, on a three-dimensional frame on which the individual microwave antenna units are spatially fixed at a fixed distance from one another. The distance between each two immediately adjacent microwave antenna units should be larger or rather much larger than the wavelength of the microwaves generated by the microwave antenna units.
  • the spatial attachment of the individual microwave antenna units takes place wisely on the directional characteristic of the individual microwave antenna units and should be made such that a body to be examined or an object to be examined is detected in its entirety at least by the synopsis of the directional characteristics of all microwave antenna units. Depending on the size and shape of the objects usually to be examined, the number and the spatial distribution of the microwave antenna units are to be selected.
  • a first microwave antenna unit is selected and activated to emit microwaves.
  • another microwave antenna unit is selected and activated for emitting microwaves.
  • the detection of the microwaves reflected or deflected by the object preferably takes place through the entirety of all existing microwave antenna units and the conversion into microwave signals, which are initially stored for a subsequent evaluation.
  • each individual microwave antenna unit has two antennas which differ from each other in their polarization properties.
  • Each of the two antennas are capable of both transmitting and receiving microwaves. It has been recognized that a noticeable improvement in information density and, associated with it, reliability of object interpretation can be achieved by detecting an object to be detected by sending each of the two antennas per microwave antenna unit to microwaves each having a different polarization, and both Antennas of all microwave antenna units are received and stored accordingly.
  • the two antennas per microwave antenna unit are horizontally and vertically polarized and thus able to emit vertically or horizontally polarized microwaves as well as to detect microwaves under a vertical or horizontal plane of polarization.
  • a device which is characterized by the following features:
  • a plurality n microwave antenna units arranged in a spatial arrangement about an object to be detected, each of which microwave antenna unit has two transmitting / receiving antennas, each with different polarization
  • a control unit is provided to provide a time sequence for activating the n microwave antenna units, wherein an RF generator unit is in communication with the n microwave antenna units to provide the RF power required to emit microwaves.
  • a data acquisition unit is connected to the n microwave antenna units in which the microwave signals generated per microwave antenna unit are first stored and frames of a reconstruction module are evaluated.
  • the results obtained are displayed on an output unit visually, preferably on a monitor.
  • the spatial arrangement of the n microwave antenna units for example. In a fixed frame is preferably equally spaced to adjacent microwave antenna units, wherein the distance between two adjacent microwave antenna units is greater than the wavelength of the micrometer, preferably greater than 10 cm, in order in this way the number the microwave antenna units and the associated data volume manageable to keep small.
  • FIG. 4 shows a microwave signal in the frequency domain
  • FIG. 6 representation for the use of an object movement during a
  • FIG. 1 shows a possible embodiment for implementing a microwave antenna arrangement, with which improved object detection and detection is possible.
  • the technical solution is based on a new metrological approach of a so-called clocked phased array with distributed aperture in combination with a novel circuit diagram of individual antennas for the purpose of fast and accurate measurement of time signals and a special signal processing and image reconstruction technology.
  • the microwave antenna arrangement basically consists of the following modules:
  • a plurality n individual microwave antenna units 1, each having two transmitter / receiver antennas each having different polarizations, preferably with horizontal and vertical polarization, hereinafter the reference numerals AiH and AiV, with i 1 ... n used.
  • a control unit 2 provides for a time control or switching of the individual antennas AiV, AiH from the transmission to the reception mode. For switching, switches S are provided on each antenna AiH and AiV.
  • An HF generator 3 provides the RF energy required for microwave generation, wherein the transmission signal emitted by the HF generator 3 is frequency-modulated to activate the individual antennas AiV, AiH and amplified by means of a power distributor 4 and to the respective transmitter antenna AiV, AiH is headed.
  • the microwaves detected by the individual antenna units AiV, AiH serving as receiving antennas are converted into analogue microwave signals and mixed by means of a mixer 5 before the digitization with the transmission signal serving as the reference signal. Care must be taken to ensure that the waveguide sections (6 + 8) and (7 + 9 + 10), which are designed for lossless transmission of RF signals, have the same length, which allows for the timing of the mixing of signals of particular importance.
  • a multichannel data acquisition electronics 11 provides for analog-to-digital conversion of the mixed microwave signals and storage of the signals for subsequent data evaluation in the context of a reconstruction module 12, which works on the basis of parallel computer structures and image reconstruction of a detected object under real-time conditions in the context of a 3D Imaging enabled. Finally, the evaluation results are displayed by means of a visualization unit 13.
  • one antenna unit 1 is always used as a transmitter per measuring cycle, all n antenna units 1 receiving the received signals during the entire transmission process.
  • the timing of the transmission processes of different antenna units 1 is carried out by the control unit 2.
  • Each antenna unit 1 is involved per measurement cycle on two transmission clocks as a transmitter, so that electromagnetic waves with different polarizations (horizontal H and vertical V) are emitted.
  • the recorded microwave signals are stored in the form of time signals, total falling after activation of all antenna units 4 x N x N signal data, which are explained in more detail in Figure 2.
  • FIG. 2a illustrates the measuring principle on the basis of a 2-dimensional sectional plane, this example referring to FIGS. dimensional case is expandable.
  • each element of a matrix A has two indices each consisting of a number and a letter V or H.
  • the first index corresponds to the respective transmitting antenna, the second to the respective receiving antenna.
  • V or H corresponds to the polarization used when transmitting or receiving.
  • the information matrix represents the case where the microwaves were emitted with vertical polarization and the reception was made with the vertically polarized receiving antennas.
  • the matrix content "A12V6V” means a measurement signal resulting from emission from the antenna 12 in the form of vertically polarized microwaves and reception from the antenna 6 under vertical polarization.
  • the information matrix in FIG. 2c shows the case in which the transmission polarization-horizontal and the receiver polarization-are horizontal.
  • the information matrix in FIG. 2d shows the case in which the transmission polarization-horizontal and the receiver polarization-are vertical.
  • the information matrix in FIG. 2e shows the case in which the transmitter polarization-vertical and the receiver polarization-are horizontal.
  • FIG. 3 shows a measurement situation for detecting a person P by means of microwave antenna units 1 arranged spatially about the person.
  • the MW antennas 1 are distributed three-dimensionally in space, for example, permanently installed on or in a chamber. In the image representation, this arrangement is shown schematically for the sake of simplicity only in a 2D sectional image.
  • the directional characteristic of the MW antennas 1 and their spatial orientation are designed so that the area to be reconstructed is completely covered by the directional characteristic of all MW antenna 1 in its synopsis.
  • An emphasized feature of the novel device over known MW systems relates to the distribution of the MW antennas 1 in the space around the object to be examined with the greatest possible distances between the individual MW antennas 1.
  • the number of MW antennas 1 should also be as low as remain possible in order to reduce the amount of data to be processed as much as possible.
  • This distance between two adjacent MW antennas 1 can be significantly greater as the wavelength of the microwaves radiated from the individual MW antennas 1, which intentionally violates the "sampling" theorem, which is possible by appropriate synthetic focusing on each image point or point in space, whereby disturbing diffraction phenomena of a distributed Aperture will be suppressed, and this reconstruction principle will be explained below.
  • the measurement signals are first stored as time signals, ie amplitude values plotted along the time axis.
  • time signals ie amplitude values plotted along the time axis.
  • Frequency-modulated signals in the GHz range ie frequencies depending on the application of 10 to 200 GHz, are emitted. If two objects are located at different distances from the antenna, the emitted wave is at least partially reflected by these objects and received at the location of the antenna.
  • the reference signal ie the transmission signal, a new signal results in the form of a sum signal. If this signal is represented in the frequency domain, the objects located at different distances are represented by different frequency values, as can be seen from the diagram in FIG.
  • frequency values f are shown along the ordinate amplitude values A of a received microwave signal. From this frequency representation it can be seen that the frequency peak at the frequency f1 originates from an object 1 placed closer to the receiving antenna than the object 2 represented by the frequency peak at the frequency f2 with f2> f1.
  • the respective "frequency coordinates" in the stored sum signals are directly proportional to the distance of an object serving as a reflector for the microwaves from the antenna, so that the objects can be located directly. The same applies if the positions of transmitter and receiver are not This allows the reconstruction of 2- and 3-dimensional images. The reconstruction principle will be explained below with reference to FIG. 5 on the basis of a 2D sketch, wherein the 2-D-FaII can easily be extended to a 3D reconstruction.
  • the reconstruction area here a circle area, is divided into small spatial clusters or unit space areas, where the cluster dimensions should typically be selected according to the maximum possible physical resolution, i. depending on the working frequency.
  • a "look-up" table is compiled, which includes the distances from each antenna 1 to each unit space area, also called voxels, 14 within the reconstruction area
  • n values are stored Distance from each of the n antennas 1 to this voxel 14.
  • the reconstruction is now based on the "look-up" tables created in this way:
  • the stored signal values are spatially added up, taking into account pathways according to the tomographic principle, so that the signal maxima of different signals are superposed in corresponding voxels "Tables thus saves a time-consuming, repetitive calculation of trajectories during reconstruction and limits the reconstruction mathematics to simply summing amplitude values. This is especially worthwhile when using reconstruction modules with parallel computer structures, which allow a particularly effective distribution of addition operations.
  • the reconstruction outlined above takes place in the corresponding reconstruction module according to the image representation in FIG. 1, preferably using parallel computer structures, which permits a real-time calculation of 3-dimensional images, inter alia, of moving objects. These images are finally displayed by a visualization unit, eg monitor unit.
  • a further advantageous development of the method serves to improve the image reconstruction or to increase the information content of the microwave method with distributed apertures and relates to the use of the object movement for the purpose of its scanning according to the image representation in FIG. 6. If an object O moves in one of the antennas 1 Space region, for example, from right to left according to the three sequence image representations shown in Figure 6, the object O is located at fixed intervals by means of microwaves. The reconstruction results of the object image are superimposed at different times, so that the quality of the image is improved with each iteration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Beschrieben wird Verfahren sowie eine Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten (P) mittels Mikrowellen, bei dem wenigstens ein zu erfassendes Objekt mit Mikrowellen beaufschlagt wird, die von einer Vielzahl von Mikrowellenantennen (1) erzeugt werden, und von dem Objekt reflektierte Mikrowellenanteile detektiert und in auswertbare Mikrowellensignale umgewandelt werden, auf deren Grundlage eine Auswertung zur ortsaufgelösten Objekterfassung erfolgt. Die Antennen (1) werden einzeln und nacheinander zum Aussenden von Mikrowellen aktiviert.

Description

Verfahren und Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen
Technisches Gebiet
Die Erfindung bezieht sich auf ein Verfahren sowie eine Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen. Hierbei wird wenigstens ein zu erfassendes Objekt mit Mikrowellen beaufschlagt, die von einer Vielzahl von Mikrowellenantennen ausgesendet werden und von dem Objekt zumindest teilweise reflektiert werden. Diese reflektierten Mikrowellenanteile werden von den Mikrowellenantenneneinheiten detektiert und in auswertbare Mikrowellensignale umgewandelt, auf deren Grundlage eine Auswertung zur ortsaufgelösten Objekterfassung erfolgt. Eine derartige Untersuchungstechnik ist bevorzugt geeignet für Sicherheitsüberprüfungen bspw. an Personen bei Grenzübertritten. So ist es mit Hilfe der Mikrowellentechnik möglich Personen auf versteckte Gegenstände wie Waffen, Sprengstoffe usw. zu überprüfen.
Stand der Technik
In der heutigen globalen Welt gewinnen Sicherheitsaspekte immer mehr an Bedeutung. Die am meisten verbreiteten Sicherheitssysteme zur Überprüfung von Gepäckstücken, Fracht, oder Personen, wie sie z.B. in Flughäfen und Bahnhöfen eingesetzt werden, benutzen Röntgenstrahlung zum Auffinden von gefährlichen Gegenständen und Substanzen. Derartige Untersuchungen basieren in der Regel auf dem einfachen Durchstrahlungsprinzip, bei dem sich Materialien unterschiedlicher Dichte im Röntgen-Projektionsbild kontrastspezifisch unterscheiden.
Ein alternatives Verfahren besteht im Einsatz von elektromagnetischen Wellen des so genannten Mikrowellenbereiches, d.h. elektromagnetische Wellen im Frequenzbereich von 300 MHz bis 200 GHz. Hierbei treffen Mikrowellenfelder auf einen zu untersuchenden Gegenstand, auf eine Substanz oder eine Person, d.h. allgemein auf ein Objekt und werden objektspezifisch an diesem reflektiert. Allerdings ist das Auflösungsvermögen eines konventionellen Mikrowellenverfahrens durch eine relativ große Wellenlänge begrenzt, doch kann dieser Nachteil durch Anwendung tomografischer Mess- und Rekonstruktionsprinzipien überwunden werden, die eine Objektrekonstruktion mit einer räumlichen Auflösung unter Umständen sogar über die Grenze der Wellenlänge hinaus gestatten.
Die Vorteile eines derartigen Mikrowellenverfahrens, kurz MW-Verfahren, liegen gegenüber dem weit verbreiteten Röntgenverfahren auf der Hand. Zum einen kommt keine ionisierende Strahlung zum Einsatz, zum anderen ermöglicht die bildgebende Objektrekonstruktion im Wege tomographischer Auswertetechniken räumliche Informationen über die zu untersuchenden Objekte zu gewinnen.
Die bisher bekannten und auf dem Markt erhältlichen MW-Systeme tasten in der Regel das Objekt mit Sensorreihen ab, die an einem sich bewegenden Portal befestig sind. Durch die Abtastung wird eine synthetische Apertur realisiertt, die eine räumliche Fokussierung im Volumen gestattet.
Allerdings sind derartige Vorrichtungen mechanisch äußerst anspruchsvoll und kostenaufwendig zu realisieren. Die Untersuchung ist zudem mit einem erheblichen Zeitaufwand verbunden, weswegen die praktische Einsetzbarkeit derartiger Systeme insbesondere an stark frequentierten Überprüfungsbereichen, wie bspw. an Flughafenkontrollschleusen, verbesserungsbedürftig erscheint. Darüber hinaus muss das Objekt bei der Untersuchung bewegungslos bleiben, eine Bedingung, der vor allem bei der Untersuchung von Personen nicht oder nur unter größeren Schwierigkeiten nachgekommen werden kann.
Aus der EP 0 703447 A2 sind ein Verfahren und eine Vorrichtung zur Messung von Multiphasen-Strömungen in Rohren zu entnehmen. Hierbei werden mittels um das Rohr angeordneten Mikrowellenantennen die Verteilungen der Permittivität und der Leitfähigkeit bezogen auf den Rohrquerschnitt erfasst.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde ein Verfahren sowie auch eine Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen, bei dem wenigstens ein zu erfassendes Objekt mit Mikrowellen beaufschlagt wird, die von einer Vielzahl von Mikrowellenantennen erzeugt werden, und von dem Objekt reflektierte Mikrowellenanteile detektiert und in auswertbare Mikrowellensignale umgewandelt werden, auf deren Grundlage eine Auswertung zur ortsaufgelösten Objekterfassung erfolgt, derart weiterzubilden, dass eine verbesserte Analysegenauigkeit, mit der eine Objektbestimmung sowohl im Lichte einer stofflichen oder gegenständlichen Objektbestimmung als auch im Lichte einer räumlichen Ortung vorgenommen werden kann, ermöglicht wird und dies unter einem geringeren konstruktiven sowie auch kostenrelevanten Aufwand als es bei bisher bekannten MW-Verfahren der Fall ist.
Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Gegenstand des Anspruches 16 ist eine lösungsgemäße Vorrichtung. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung, insbesondere unter Bezugnahme auf die Ausführungsbeispiele, zu entnehmen.
Das lösungsgemäße Verfahren zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen zeichnet sich dadurch aus, dass das Erzeugen und das Detektieren der Mikrowellen in der nachfolgenden Weise erfolgen: Zunächst werden n Mikrowellenantenneneinheiten in einer räumlichen Verteilung um das zu erfassende Objekt angeordnet beispielsweise an einem dreidimensionalen Rahmengestell, an dem die einzelnen Mikrowellenantenneneinheiten mit einem festen Abstand zueinander räumlich fixiert sind. Der Abstand zwischen jeweils zwei unmittelbar benachbarten Mikrowellenantenneneinheiten soll größer bzw. recht viel größer als die Wellenlänge der Mikrowellen sein, die von den Mikrowellenantenneneinheiten erzeugt werden. Die räumliche Anbringung der einzelnen Mikrowellenantenneneinheiten erfolgt mit Bedacht auf die Richtcharakteristik der einzelnen Mikrowellenantenneneinheiten und sollte dabei derart vorgenommen werden, dass ein zu untersuchender Körper bzw. ein zu untersuchendes Objekt in seiner Gesamtheit zumindest durch die Zusammenschau der Richtcharakteristiken aller Mikrowellenantenneneinheiten erfasst wird. Je nach Größe und Form der üblicherweise zu untersuchenden Objekte sind die Anzahl und die räumlicher Verteilung der Mikrowellenantenneneinheiten zu wählen.
In einem ersten Messtakt wird eine erste Mikrowellenantenneneinheit ausgewählt und zum Aussenden von Mikrowellen aktiviert. Die auf das zu untersuchende Objekt auftreffenden Mirkowellen werden an diesem zumindest teilweise reflektiert und von m Mikrowellenantenneneinheiten empfangen, mit m ≤ n, wobei vorzugsweise m=n ist, d.h. sämtliche vorhandene Mikrowellenantenneneinheiten vermögen die am Objekt reflektierten oder durch das Objekt abgelenkten Mikrowellen, die von der ersten Mikrowellenantenneneinheit ausgesendet worden sind, zu empfangen und in entsprechende Mikrowellensignale umzuwandeln, die im weiteren zunächst ab- oder zwischengespeichert werden. Im Weiteren wird eine andere Mikrowellenantenneneinheit ausgewählt und zum Aussenden von Mikrowellen aktiviert. Gleichfalls erfolgt auch in diesem Fall die Detektion der an dem Objekt reflektierten oder durch das Objekt abgelenkten Mikrowellen vorzugsweise durch die Gesamtheit aller vorhandener Mikrowellenantenneneinheiten sowie die Umwandlung in Mikrowellensignale, die für eine nachfolgende Auswertung zunächst abgespeichert werden. Der vorstehende Vorgang bezüglich des Aussendens von Mikrowellen von einer einzigen ausgewählten Mikrowellenantenneneinheit und Empfangens von am Objekt reflektierten Mikrowellen von allen Mikrowellenantenneneinheiten sowie des Abspeicherns der generierten Mikrowellensignale wird Taktweise für sämtliche Mikrowellenantenneneinheiten als Sendequelle wiederholt und auf der Grundlage von allen auf diese Weise gewonnenen und abgespeicherten Mikrowellensignalen wird letztlich unter Verwendung eines geeigneten Rekonstruktionsalgorithmus das Objekt rekonstruiert.
Die vorstehende Verfahrensweise setzt voraus, dass die eingesetzten Mikrowellenantenneneinheiten sowohl in der Lage sind Mikrowellen auszusenden sowie auch zu empfangen. In besonders vorteilhafter Weise weist jede einzelne Mikrowellenantenneneinheit zwei Antennen auf, die sich in ihren Polarisationseigenschaften voneinander unterscheiden. Jede der beiden Antennen vermögen Mikrowellen sowohl auszusenden als auch zu empfangen. Es ist erkannt worden, dass eine merkliche Verbesserung in der Informationsdichte und damit verbunden in der Zuverlässigkeit Objektinterpretationen vornehmen zu können, über ein zu erfassendes Objekt dadurch erreicht werden kann, wenn pro Messtakt beide Antennen pro Mikrowellenantenneneinheit Mikrowellen mit jeweils unterschiedlicher Polarisation ausgesendet werden und von beiden Antennen sämtlicher Mikrowellenantenneneinheiten empfangen und entsprechend abgespeichert werden.
In einer bevorzugten Ausführungsform sind die beiden Antennen pro Mikrowellenantenneneinheit horizontal und vertikal polarisiert und vermögen somit vertikal bzw. horizontal polarisierte Mikrowellen auszusenden sowie auch unter vertikaler oder horizontaler Polarisationsebene Mirkowellen zu detektieren. Für einen Messtakt bedeutet dies, dass beispielsweise in zeitlicher Abfolge zuerst vertikal polarisierte Mikrowellen ausgesendet werden, die von sämtlichen Mikrowellenantenneneinheiten jeweils vermittels der vertikal polarisierten Antenne und der horizontal polarisierten Antenne empfangen werden. Im Anschluss daran erfolgt das Aussenden horizontal polarisierter Mikrowellen, die gleichfalls von allen Antennen aller Mikrowellenantenneneinheiten empfangen werden. Dabei spielt es grundsätzlich keine Rolle, ob das Aussenden von vertikal und horizontal polarisierter Mikrowellen von einer ausgewählten Mikrowellenantenneneinheit in zeitlicher Abfolge oder gleichzeitig, d.h. simultan erfolgt.
Durch den Einsatz von unterschiedlichen Polarisationen ergibt sich somit ein vierfacher Informationsinhalt, da sich folgende Polarisationskombinationen für jede Mikrowellenantenneneinheit ergeben: HxH, HxV, VxH, VxV, hierbei steht „H" für horizontal polarisiert und „V" für vertikal polarisiert. Dies gestattet, die Qualität von Objektrekonstruktionen bspw. in Form von Mikrowellenbildern wesentlich zu erhöhen.
Eine eingehende Beschreibung der Mikrowellensignalauswertung erfolgt unter Bezugnahme auf die in den Figuren dargestellten Diagrammen und Skizzen.
Für eine lösungsgemäße Umsetzung des vorstehend erläuterten Mikrowellenmessverfahrens bedarf es einer Vorrichtung, die sich durch folgende Merkmale auszeichnet: So ist ein Vielzahl n Mikrowellenantenneneinheiten in räumlicher Anordnung um ein zu erfassendes Objekt angeordnet, von denen jede Mikrowellenantenneneinheit zwei Sende-/Empfangsantennen mit jeweils unterschiedlicher Polarisation aufweist. Eine Steuereinheit ist vorgesehen, um eine zeitliche Abfolge zur Aktivierung der n Mikrowellenantenneneinheiten vorzunehmen, wobei eine HF-Generatoreinheit mit den n Mikrowellenantenneneinheiten in Verbindung steht, um die zum Aussenden von Mikrowellen erforderliche HF-Leistung bereitzustellen. Zur Mikrowellensignalauswertung ist eine Datenaufnahmeeinheit mit den n Mikrowellenantenneneinheiten verbunden, in der die pro Mikrowellenantenneneinheit generierten Mikrowellensignale zunächst abgespeichert und Rahmen eines Rekonstruktionsmodul ausgewertet werden. Letztlich werden die ermittelten Ergebnisse auf einer Ausgabeeinheit visuell, vorzugsweise auf einem Monitor, dargestellt. Die räumliche Anordnung der n Mikrowellenantenneneinheiten, bspw. in einem feststehenden Rahmen erfolgt vorzugsweise mit gleich verteilten Abständen zu jeweils benachbarten Mikrowellenantenneneinheiten, wobei der Abstand zwischen zwei benachbarten Mikrowellenantenneneinheiten größer als die Wellenlänge der Mikrometerwelle ist, vorzugsweise größer 10 cm, um auf diese Weise die Anzahl der Mikrowellenantenneneinheiten und den damit verbundenen Datenumfang überschaubar klein zu halten. Weitere die lösungsgemäße Vorrichtung vorteilhaft ausgestaltende Merkmale werden unter Bezugnahme auf die nachstehenden Figuren näher erläutert.
Kurze Beschreibung der Erfindung
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
Fig. 1 Schematisierte Darstellung der lösungsgemäßen Vorrichtung,
Fig. 2 Darstellung von gewonnenen Mikrowellensignalen an Hand von
I nformationsmatrizen , Fig. 3 Illustration einer räumlichen Anordnung von
Mikrowellenantenneneinheiten zur Personenüberprüfung, Fig. 4 Darstellung eines Mikrowellensignals in der Frequenzdomäne,
Fig. 5 Darstellung des Berechnungsprinzips für eine „Look-Up"-Tabelle und
Fig. 6 Darstellung zur Nutzung einer Objektbewegung während einer
Objektuntersuchung. Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
In Figur 1 ist eine mögliche Ausführungsform zur Realisierung einer Mikrowellenantennenanordnung gezeigt, mit der eine verbesserte Objekterfassung und -erkennung möglich ist. Die technische Lösung beruht auf einem neuen messtechnischen Ansatz eines so genannten getakteten Gruppenstrahlers mit verteilter Apertur in Kombination mit neuartigem Schaltschema von einzelnen Antennen zwecks schneller und exakter Vermessung von Zeitsignalen sowie einer speziellen Signalverarbeitung und Bildrekonstruktionstechnik.
Die Mikrowellenantennenanordnung besteht grundsätzlich aus folgenden Modulen:
Eine Vielzahl n einzelner Mikrowellenantenneneinheiten 1 , die jeweils zwei Sender/Empfänger-Antennen mit jeweils unterschiedlichen Polarisationen aufweisen, vorzugsweise mit horizontaler und vertikaler Polarisation, im Weiteren werden hierfür die Bezugszeichen AiH und AiV, mit i= 1...n verwendet. Eine Steuereinheit 2 sorgt für eine zeitliche Steuerung bzw. Umschaltung der einzelnen Antennen AiV, AiH vom Sende in den Empfangsmode. Zum Umschalten sind hierzu eigens Schalter S an jeder Antenne AiH und AiV vorgesehen. Ein HF-Generator 3 stellt die für die Mikrowellenerzeugung erforderliche HF-Energie zur Verfügung, wobei das von dem HF-Generator 3 abgegebene Sendesignal zur Aktivierung der einzelnen Antennen AiV, AiH frequenzmoduliert ist und mittels eines Leistungsverteilers 4 verstärkt und auf die jeweilige Senderantenne AiV, AiH geleitet wird.
Die von den einzelnen, als Empfangsantennen dienenden Antenneneinheiten AiV, AiH detektierten Mikrowellen werden in analoge Mikrowellensignale umgewandelt und vor der Digitalisierung mit dem Sendesignal, das als Referenzsignal dient, mittels eines Mischers 5 gemischt. Hierbei gilt es darauf zu achten, dass die Wellenleiterabschnitte (6+8) und (7+9+10), die für eine verlustfreie Übertragung von HF-Signalen ausgelegt sind, über die gleiche Länge verfügen, was für die zeitliche Abstimmung bei der Vermischung von Signalen von besonderer Bedeutung ist. Eine mehrkanalige Datenaufnahmeelektronik 11 sorgt für eine Analog/Digital- Wandlung der gemischten Mikrowellensignale und Abspeicherung der Signale für eine nachfolgende Datenauswertung im Rahmen eines Rekonstruktionsmoduls 12, das auf Basis paralleler Rechnerstrukturen arbeitet und eine Bildrekonstruktion eines erfassten Objektes unter Echtzeit-Bedingungen im Rahmen einer 3D-Bildgebung ermöglicht. Schließlich werden die Auswertergebnisse mittels einer Visualisierungseinheit 13 dargestellt.
Beim Betrieb der in Figur 1 gezeigten Vorrichtung wird pro Messtakt immer eine Antenneneinheit 1 als Sender eingesetzt, wobei alle n Antenneneinheiten 1 während des gesamten Sendevorganges die Empfangssignale aufnehmen. Die zeitliche Steuerung der Sendevorgänge von verschiedenen Antenneeinheiten 1 erfolgt durch die Steuereinheit 2. Jede Antenneneinheit 1 ist pro Messtakt an zwei Sendetakten als Sender beteiligt, sodass elektromagnetische Wellen mit unterschiedlichen Polarisationen (horizontal H und vertikal V) ausgestrahlt werden. Die aufgenommenen Mikrowellensignale werden in Form von Zeitsignalen abgespeichert, insgesamt fallen nach Aktivierung sämtlicher Antenneneinheiten 4 x N x N Signaldaten an, die in Figur 2 näher erläutert sind.
In Figur 2a sei angenommen, dass n=12 Antenneneinheiten 1 um ein zu erfassendes Objekt O angeordnet sind. Hierbei weist jede einzelne Antenneneinheit 1 zwei Sende-/Empfangsantennen mit horizontaler AiH und vertikaler AiV Polarisation auf, mit i= 1 , ... 12. Die Figur 2a erläutert das Messprinzip anhand einer 2-dimensionalen Schnittebene, wobei dieses Beispiel auf den 3-dimensionalen Fall erweiterbar ist.
Im Rahmen eines Messzyklus werden alle Antennen nacheinander „durchgetaktet", sodass die in den Figuren 2 b bis e dargestellten Informationsmatrizen komplett mit empfangenen Mikrowellensignalen in der folgenden Weise aufgefüllt werden:
Der Inhalt einer jeden Informationsmatrix ist wie folgt zu verstehen: jedes Element einer Matrix A hat zwei Indizes, bestehend jeweils aus einer Nummer und einem Buchstaben V oder H. Der erste Index entspricht der jeweiligen Sendeantenne, der zweite der jeweiligen Empfangsantenne. V oder H entspricht der eingesetzten Polarisation beim Senden bzw. beim Empfangen. Durch den Einsatz von unterschiedlichen Polarisationen ergibt sich ein vierfacher Informationsinhalt, da sich folgende Polarisationskombinationen für jedes Sender/Empfänger-Paar ergeben: HxH, HxV, VxH, VxV. Dies gestattet, die Qualität von MW-Bildern wesentlich zu erhöhen.
Beispielsweise stellt die Informationsmatrix im Fall 2b jenen Fall dar, bei dem die Mikrowellen mit vertikaler Polarisation ausgesandt wurden und der Empfang mit den vertikal polarisierten Empfangsantennen erfolgte. So bedeutet bspw. der Matrixinhalt „A12V6V", ein Messsignal, das durch Aussenden von der Antenne 12 in Form von vertikal polarisierten Mikrowellen und durch Empfang von der Antenne 6 unter vertikaler Polarisation hervorgeht.
In der Informationsmatrix in Figur 2c ist der Fall dargestellt bei der die Sendepolarisation - horizontal und die Empfängerpolarisation - horizontal sind. In der Informationsmatrix in Figur 2d ist der Fall dargestellt bei der die Sendepolarisation - horizontal und die Empfängerpolarisation - vertikal sind. In der Informationsmatrix in Figur 2e ist der Fall dargestellt bei der die Senderpolarisation - vertikal und die Empfängerpolarisation - horizontal sind.
Figur 3 zeigt eine Messsituation zur Erfassung einer Person P mittels räumlich um die Person angeordneten Mikrowellenantenneneinheiten 1. In der gezeigten Anordnung werden die MW-Antennen 1 dreidimensional im Raum verteilt bspw. an oder in einer Kammer fest installiert. In der Bilddarstellung ist diese Anordnung zwecks Vereinfachung lediglich in einem 2D-Schnittbild schematisch dargestellt. Die Richtcharakteristik der MW-Antennen 1 und Ihre räumliche Ausrichtung sind so ausgelegt, dass der zu rekonstruierende Bereich von der Richtcharakteristik aller MW-Antenne 1 in ihrer Zusammenschau komplett abgedeckt wird.
Ein hervorzuhebendes Merkmal der neuartigen Vorrichtung gegenüber bekannten MW-Systemen betrifft die Verteilung der MW-Antennen 1 im Raum um das zu untersuchende Objekt mit möglichst großen Abständen zwischen den einzelnen MW- Antennen 1. Die Anzahl der MW-Antennen 1 sollte zudem so niedrig wie möglich bleiben, um die zu verarbeitenden Datenmengen möglichst zu reduzieren. Dieser Abstand zwischen zwei benachbarten MW-Antennen 1 kann wesentlich größer sein als die Wellenlänge der Mikrowellen, die von den einzelnen MW-Antennen 1 abgestrahlt werden, wodurch das „Sampling"-Theorem bewusst verletzt wird. Dies ist möglich durch eine geeignete synthetische Fokussierung auf jeden Bild-, bzw. Raumpunkt, wodurch störende Beugungsphänomene einer verteilten Apertur unterdrückt werden. Dieses Rekonstruktionsprinzip wird im Weiteren erläutert.
Für eine zielführende Datenauswertung der empfangenen Mikrowellensignale bedarf es neben der vorstehend beschriebenen Datenbevorratung einer geeigneten Vorbehandlung der Messsignale in der nachfolgenden Weise.
Die Messsignale werden zunächst als Zeitsignale abgespeichert, d.h. Amplitudenwerte aufgetragen längs zur Zeitachse. Betrachtet wird der Fall, wenn die gleiche Antenne als Sender und als Empfänger dient. Es werden frequenzmodulierte Signale im GHz- Bereich, d.h. Frequenzen je nach Anwendung von 10 bis 200 GHz, ausgestrahlt. Befinden sich zwei Objekte in unterschiedlicher Entfernung von der Antenne, so wird die ausgestrahlte Welle von diesen Objekten zumindest teilweise reflektiert und am Ort der Antenne empfangen. Durch Vermischen des zurückkommenden Signals mit dem Referenzsignal, d.h. dem Sendesignal, ergibt sich ein neues Signal in Form eines Summensignals. Stellt man dieses Signal in der Frequenzdomäne dar, so werden die in unterschiedlicher Entfernung liegenden Objekte durch unterschiedliche Frequenzwerte repräsentiert, wie dies aus der Diagrammdarstellung in Figur 4 zu entnehmen ist. Längs der Abszisse sind hier Frequenzwerte f, längs der Ordinate Amplitudenwerte A eines empfangenen Mikrowellensignals dargestellt. Aus dieser Frequenzdarstellung lässt sich ersehen, dass der Frequenzpeak bei der Frequenz f1 von einem Objekt 1 herrührt, das näher zur Empfangsantenne platziert ist als das Objekt 2, das durch den Frequenzpeak bei der Frequenz f2 mit f2 > f1 dargestellt wird. So sind die jeweiligen „Frequenzkoordinaten" in den gespeicherten Summensignalen direkt proportional zum Abstand eines Objektes, das als Reflektor für die Mikrowellen dient, von der Antenne. Damit können die Objekte direkt geortet werden. Das gleiche gilt, wenn die Positionen von Sender und Empfänger nicht gleich sind. Dies ermöglicht die Rekonstruktion von 2- und 3-dimensionalen Bildern. Das Rekonstruktionsprinzip wird im Weiteren unter Bezugnahme auf Figur 5 anhand einer 2D-Skizze erläutert, wobei der 2-D-FaII ohne Weiteres auf eine 3D- Rekonstruktion erweitert werden kann.
Der Rekonstruktionsbereich, hier ein Kreisbereich, wird in kleine räumliche Cluster oder Einheitsraumbereiche aufgeteilt, wobei die Clusterabmessungen typischerweise nach der maximaler möglichen physikalischen Auflösung ausgewählt werden sollten, d.h. abhängig von der Arbeitsfrequenz. Vor der eigentlichen Rekonstruktion wird eine „Look-Up"-Tabelle berechnet, die die Abstände von jeder Antenne 1 zu jedem Einheitsraumbereich, auch Voxel genannt, 14 innerhalb des Rekonstruktionsbereiches beinhaltet. Für jeden Voxel 14 des Rekonstruktionsbereiches werden n Werte gespeichert, die der räumlichen Entfernung von jeder der n Antennen 1 zu diesem Voxel 14 entsprechen. Durch entsprechende Kombination dieser Werte können Wellenlaufwege für alle Kombinationen von Sendern und Empfängern berechnet werden.
Die Rekonstruktion erfolgt nun anhand der so erstellten „Look-Up"-Tabellen. Die gespeicherten Signalwerte werden unter Berücksichtigung von Laufwegen nach dem tomografischen Prinzip räumlich aufaddiert, sodass sich die Signalmaxima von verschiedenen Signalen in entsprechenden Voxel überlagern. Die Nutzung von „Look-Up"-Tabellen erspart somit eine zeitaufwendige, sich wiederholende Berechnung von Laufwegen während der Rekonstruktion und beschränkt die Rekonstruktionsmathematik auf einfaches Summieren von Amplitudenwerten. Das lohnt sich insbesondere beim Einsatz von Rekonstruktionsmodulen mit parallelen Rechnerstrukturen, die eine besonders effektive Verteilung von Additionsoperationen gestatten.
Die vorstehend skizzierte Rekonstruktion erfolgt im entsprechenden Rekonstruktionsmodul gemäß der Bilddarstellung in Figur 1 vorzugsweise unter Einsatz paralleler Rechnerstrukturen, der eine Echtzeit-Berechnung von 3- dimensionalen Bildern u.a. auch von sich bewegenden Objekten gestattet. Diese Bilder werden schließlich durch eine Visualisierungseinheit, z.B. Monitoreinheit, dargestellt. Eine weitere vorteilhafte Weiterbildung des Verfahrens dient einer Verbesserung der Bildrekonstruktion bzw. zur Erhöhung des Informationsinhaltes des Mikrowellenverfahrens mit verteilten Aperturen und betrifft ist die Nutzung der Objektbewegung zwecks seiner Abtastung gemäß der Bilddarstellung in Figur 6. Bewegt sich ein Objekt O in einem von Antennen 1 erfassten Raumbereich, bspw. von rechts nach links gemäß der drei gezeigten Sequenzbilddarstellungen in Figur 6, so wird as Objekt O in festen Zeitabständen mittels Mikrowellen geortet. Die Rekonstruktionsergebnisse des Objektbildes werden in verschiedenen Zeitpunkten überlagert, sodass die Qualität der Abbildung mit jeder Iteration verbessert wird.
Bezugszeichenliste
MW-Antenneneinheiten Steuereinheit Generator Leistungsverteiler Mischer , 7, Wellenleiter , 9, Wellenleiter 0 Wellenleiter 1 Mehrkanalige Datenaufnahmeelektronik 2 Rekonstruktionsmodul mit parallelen Rechnerstrukturen3 Visualisierungseinheit 4 Voxel

Claims

Patentansprüche
1. Verfahren zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen, bei dem wenigstens ein zu erfassendes Objekt mit Mikrowellen beaufschlagt wird, die von einer Vielzahl von Mikrowellenantennen erzeugt werden, und von dem Objekt reflektierte Mikrowellenanteile detektiert und in auswertbare Mikrowellensignale umgewandelt werden, auf deren Grundlage eine Auswertung zur ortsaufgelösten Objekterfassung erfolgt, dadurch gekennzeichnet, dass das Erzeugen und das Detektieren der Mikrowellen in der nachfolgenden Weise erfolgen: a) Vorsehen von n Mikrowellenantenneneinheiten in räumlicher Verteilung um das zu erfassende Objekt, in der die Mikrowellenantenneneinheiten jeweils einen Abstand zur jeweils benachbarten Mirkowellenantenneneinheit aufweisen, der größer ist als die Wellenlängen der Mirkowellen, b) Auswählen und Aktivieren einer ersten Mikrowellenantenneneinheit zum Aussenden von Mikrowellen, c) Empfangen der am Objekt reflektierten Mikrowellen mit m Mikrowellenantenneneinheiten, mit m < n, und Generieren von Mikrowellensignalen, d) Abspeichern der Mikrowellensignale, e) Auswählen und Aktivieren einer anderen Mikrowellenantenneneinheit zum Aussenden von Mikrowellen und Durchführen der Verfahrensschritte c) und d), f) Wiederholtes Ausführen des Verfahrensschrittes e) mit jeweils der Auswahl einer weiteren Mikrowellenantenneneinheit unter der Maßgabe, dass sich die weitere Mikrowellenantenneneinheit von einer bereits ausgewählten Mikrowellenantenneneinheit unterscheidet, und g) Auswerten der abgespeicherten Mikrowellensignale.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass beim Aktivieren jeder einzelnen
Mikrowellenantenneneinheit ein gleichzeitiges Aussenden oder ein in zeitlicher
Abfolge erfolgendes Aussenden von Mikrowellen mit jeweils unterschiedlicher
Polarisation durchgeführt wird, und dass das Empfangen der Mikrowellen selektiv nach der Polarisation durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mikrowellenantenneneinheiten bei jeweiliger Aktivierung jeweils vertikal und horizontal polarisierte Mikrowellen aussenden und dass die Mikrowellenantenneneinheiten Mikrowellen selektiv nach vertikaler und horizontaler Polarisation detektieren.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Abspeichern der Mikrowellensignale in der folgenden Weise erfolgt: pro Aktivieren einer Mikrowellenantenneneinheit zum Aussenden horizontal polarisierter Mikrowellen werden zwei Mikrowellensignale abgespeichert, nämlich ein Mikrowellensignal aufgenommen im horizontal polarisierten Detektionsmode und ein weiteres Mikrowellensignal aufgenommen im vertikal polarisierten Detektionsmode der Mikrowellenantenneneinheit und pro Aktivieren einer Mikrowellenantenneneinheit zum Aussenden vertikal polarisierter Mikrowelle werden zwei Mikrowellensignale pro Mikrowellenantenneneinheit abgespeichert, nämlich ein Mikrowellensignal aufgenommen im horizontal polarisierten Detektionsmode und ein weiteres Mikrowellensignal aufgenommen im vertikal polarisierten Detektionsmode der Mikrowellenantenneneinheit.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mikrowellen frequenzmoduliert ausgesendet werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor dem Abspeichern der Mikrowellensignale eine Signalmischung des jeweils abzuspeichernden Mikrowellensignals mit einem Sendesignal durchgeführt wird, das zum Aktivieren der jeweiligen Mikrowellenantenneneinheit dient.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Signalmischung im Wege einer Summensignalbildung durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mikrowellen mit Frequenzen von 10 bis 200 GHz frequenzmoduliert ausgesendet werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein von den Mikrowellenantenneneinheiten erfassbarer Raumbereich in eine Vielzahl von Einheitsraumbereichen, so genannte Voxel, unterteilt wird, und dass für jedes Voxel m Werte abgespeichert werden, die jeweils der räumlichen Entfernung zwischen dem Voxel und der m Mikrowellenantenneneinheiten entsprechen.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zur Laufwegbestimmung der Mikrowellen von jeweils einer Mikrowellenantenneneinheit zu einem Voxel die Mikrowellensignale frequenzmoduliert werden.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Werte in Look-Up-Tabellen abgespeichert werden, die der Auswertung und Rekonstruktion jeweils eines Objektes zugrunde gelegt werden.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass sämtliche einem Voxel zuordenbare, abgespeicherte Mikrowellensignalanteile aufaddiert werden.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Auswerten der Mikrowellensignale mit einem Rekonstruktionsalgorithmus nach Aktivieren aller Mikrowellenantenneneinheiten durchgeführt wird, und dass der Rekonstruktionsalgorithmus unter Massgabe synthetischer Fokussierung auf jeweils ein vorgebbares Voxel auf die abgespeicherten Mikrowellensignale angewendet wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Auswerten der Mikrowellensignale in parallelen Rechenprozessen durchgeführt wird zur Realisierung einer Echtzeit-Rekonstruktion eines zu erfassenden Objektes.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das zu erfassende Objekt während der Verfahrensschritte a bis f relativ zur den Mikrowellenantenneneinheiten bewegt wird.
16. Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen, mit einer Vielzahl von Mikrowellenantennen zur Erzeugung von Mikrowellen, die auf ein erfassendes Objekt gerichtet sind, sowie zur Erfassung von an dem Objekt reflektierten Mikrowellenanteilen und Umwandlung in auswertbare Mikrowellensignale, und mit einer Auswerteeinheit, in der die Mikrowellensignale unter Massgabe einer ortsaufgelösten Objekterfassung ausgewertet werden, dadurch gekennzeichnet, dass n Mikrowellenantenneneinheiten in räumlicher Anordnung um ein zu erfassenden Objekt angeordnet sind und die Mirkowellenantenneneinheiten jeweils einen Abstand zur jeweils benachbarten Mikrowellenantenneneinheit aufweisen, der größer ist als die Wellenlänge der Mikrowelle,, dass jede Mikrowellenantenneneinheit zwei Sende-/Empfangsantennen mit jeweils unterschiedlicher Polarisation aufweist, dass eine Steuereinheit vorgesehen ist, die eine zeitliche Abfolge zur Aktivierung der n Mikrowellenantenneneinheiten vornimmt, dass eine HF-Generatoreinheit mit den n Mikrowellenantenneneinheiten in
Verbindung steht zur HF-Leistungsbereitstellung, dass die Auswerteeinheit eine mit den n Mikrowellenantenneneinheiten verbundene
Datenaufnahmeeinheit, ein Rekonstruktionsmodul sowie eine Ausgabeeinheit umfasst.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die pro Mikrowellenantenneneinheit vorgesehenen zwei Sende-/Empfangsantennen eine Antenne zum Aussenden und Empfangen horizontal polarisierter Mikrowellen und eine Antenne zum Aussenden und Empfangen horizontal polarisierter Mikrowellen sind.
18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die räumliche Anordnung der n Mikrowellenantenneneinheiten mit gleich verteilten Abständen zu jeweils benachbarten Mikrowellenantenneneinheiten vorgenommen ist.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass der Abstand zwischen zwei benachbarten Mikrowellenantenneneinheiten größer als die Wellenlänge der Mikrometerwelle ist, vorzugsweise größer 10 cm.
20. Vorrichtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass eine Mischereinheit vorgesehen ist, die zwischen der Antenneneinheit und der Auswerteinheit geschaltet und mit der HF-Generatoreinheit verbunden ist.
21. Vorrichtung nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass das Rekonstruktionsmodul parallele Rechnerstrukturen sowie in Look-up-Tabellen abgespeicherte Abstandsinformationen von vorgebbaren Raumpunkten in einem zu erfassen Raumbereich zu den einzelnen Mikrowellenantenneneinheiten vorsieht.
22. Vorrichtung nach einem der Ansprüche 16 bis 21 , dadurch gekennzeichnet, dass die Ausgabeeinheit eine Visualisierungseinheit ist.
EP08853084A 2007-11-19 2008-09-20 Verfahren und vorrichtung zum ortsaufgelösten erfassen und rekonstruieren von objekten mittels mikrowellen Withdrawn EP2217943A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007055217A DE102007055217B4 (de) 2007-11-19 2007-11-19 Verfahren und Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen
PCT/DE2008/001567 WO2009065369A1 (de) 2007-11-19 2008-09-20 Verfahren und vorrichtung zum ortsaufgelösten erfassen und rekonstruieren von objekten mittels mikrowellen

Publications (1)

Publication Number Publication Date
EP2217943A1 true EP2217943A1 (de) 2010-08-18

Family

ID=40394371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08853084A Withdrawn EP2217943A1 (de) 2007-11-19 2008-09-20 Verfahren und vorrichtung zum ortsaufgelösten erfassen und rekonstruieren von objekten mittels mikrowellen

Country Status (7)

Country Link
US (1) US8248293B2 (de)
EP (1) EP2217943A1 (de)
KR (1) KR20100101108A (de)
CN (1) CN101910865A (de)
CA (1) CA2705974A1 (de)
DE (1) DE102007055217B4 (de)
WO (1) WO2009065369A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282258B2 (en) * 2012-02-23 2016-03-08 Apstec Systems Usa Llc Active microwave device and detection method
CN102608133B (zh) * 2012-04-05 2013-10-16 王广生 物质成分含量评测仪及方法
US9316732B1 (en) * 2012-04-05 2016-04-19 Farrokh Mohamadi Standoff screening apparatus for detection of concealed weapons
DE102013100817A1 (de) * 2013-01-28 2014-07-31 Sick Ag Mikrowellenschranke und Verfahren zur Erkennung eines Objekts in einem Mikrowellenpfad
DE102013107696B4 (de) * 2013-07-18 2020-03-05 Sick Ag Mikrowellenschranke
JP6290036B2 (ja) * 2013-09-25 2018-03-07 株式会社東芝 検査装置及び検査システム
HUE043037T2 (hu) * 2013-11-19 2019-07-29 Apstec Systems Usa Llc Aktív mikrohullámú készülék és detektálási eljárás
CN103927013B (zh) 2014-04-16 2017-12-22 北京智谷睿拓技术服务有限公司 交互方法和系统
CN103927009B (zh) 2014-04-16 2017-12-05 北京智谷睿拓技术服务有限公司 交互方法和系统
JP6271384B2 (ja) * 2014-09-19 2018-01-31 株式会社東芝 検査装置
CN104301595B (zh) * 2014-10-31 2017-09-29 武汉理工大学 一种微波相机微波闪照装置
DE102015209578B4 (de) * 2015-05-26 2017-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur entfernungsaufgelösten Bestimmung eines physikalischen Parameters in einer Messumgebung
US10330610B2 (en) * 2015-09-16 2019-06-25 Massachusetts Institute Of Technology Methods and apparatus for imaging of near-field objects with microwave or terahertz radiation
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN105783798B (zh) * 2016-05-04 2019-05-31 清华大学 结构表面变形监测系统及方法
CN106556874B (zh) * 2016-10-31 2018-10-23 华讯方舟科技有限公司 一种近距离微波成像方法及系统
CN109991599B (zh) * 2019-03-21 2023-09-08 西安电子科技大学 一种基于单发单收共焦成像的微波成像系统及方法
CN115219996A (zh) * 2021-09-03 2022-10-21 深圳迈睿智能科技有限公司 基于微波动态传感的抗干扰空间管理方法和微波探测装置
US20240118411A1 (en) * 2022-10-04 2024-04-11 Battelle Memorial Institute Imaging Systems and Associated Methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485743A (en) * 1994-09-23 1996-01-23 Schlumberger Technology Corporation Microwave device and method for measuring multiphase flows
US6839471B1 (en) * 1999-04-08 2005-01-04 Vogt Iv Robert Extended discrete fourier transform and parametric image algorithms
US6777684B1 (en) * 1999-08-23 2004-08-17 Rose Research L.L.C. Systems and methods for millimeter and sub-millimeter wave imaging
US7405692B2 (en) * 2001-03-16 2008-07-29 Battelle Memorial Institute Detecting concealed objects at a checkpoint
US6927691B2 (en) * 2002-03-25 2005-08-09 Spatial Dynamics, Ltd. Dielectric personnel scanning
US7205926B2 (en) * 2004-04-14 2007-04-17 Safeview, Inc. Multi-source surveillance system
US7034746B1 (en) * 2005-03-24 2006-04-25 Bettelle Memorial Institute Holographic arrays for threat detection and human feature removal
US7298317B2 (en) * 2005-11-16 2007-11-20 Intellifit Corporation Gain compensation in an ultra-wideband transceiver
US7504985B2 (en) * 2005-11-17 2009-03-17 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Reno Multi-dimensional real-array radar antennas and systems steered and focused using fast fourier transforms
US7551123B2 (en) * 2006-03-22 2009-06-23 Enterprise Electronics Corporation Phase shifted transmitted signals in a simultaneous dual polarization weather system
US7492303B1 (en) * 2006-05-09 2009-02-17 Personnel Protection Technologies Llc Methods and apparatus for detecting threats using radar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009065369A1 *

Also Published As

Publication number Publication date
CA2705974A1 (en) 2009-05-28
US8248293B2 (en) 2012-08-21
CN101910865A (zh) 2010-12-08
KR20100101108A (ko) 2010-09-16
WO2009065369A1 (de) 2009-05-28
DE102007055217A1 (de) 2009-09-17
US20110050480A1 (en) 2011-03-03
DE102007055217B4 (de) 2013-01-17

Similar Documents

Publication Publication Date Title
DE102007055217B4 (de) Verfahren und Vorrichtung zum ortsaufgelösten Erfassen und Rekonstruieren von Objekten mittels Mikrowellen
EP2191296B1 (de) Verfahren und vorrichtung zur synthetischen bildgebung
EP1984758B1 (de) Verfahren und vorrichtung zur hochauflösenden abbildung von prüfobjekten
DE60015981T2 (de) Verfahren und vorrichtung zur nahfeldmessung unkontrollierter elektromagnetischer abstrahlungen
WO2013045232A1 (de) Radar-vorrichtung und verfahren zum erzeugen einer gruppencharakteristik eines radars
EP3377864B1 (de) Antennenvorrichtung und verfahren zum betreiben einer antennenvorrichtung
DE2143139A1 (de) Einrichtung zur Bestimmung der wah ren Winkellage eines Zielobjektes re lativ zu einem Bezugsort
DE60031000T2 (de) Bodendurchdringendes Radarsystem und Verfahren zur Erkennung eines Objektes auf oder unter einer Bodenfläche
EP2320240A2 (de) Verfahren und Vorrichtung zum Vermessen eines Strahlungsfelds
WO2010127739A1 (de) Verfahren zur erkennung eines verhüllten dielektrischen objekts
DE2143140A1 (de) Einrichtung zur bestimmung der wahren winkellage eines zielobjektes relativ zu einem bezugsort
EP2831619B1 (de) Verfahren und vorrichtung zur detektion von strukturen in einem zu untersuchenden objekt
DE102019110621B4 (de) Tomografievorrichtung und Tomografieverfahren
EP2375987A1 (de) Verfahren zur röntgenbildgebung unter ausnutzung von streustrahlung
EP4249938A2 (de) Verfahren und vorrichtung zur verfolgung von objekten, insbesondere sich bewegenden objekten, in den dreidimensionalen raum von abbildenden radarsensoren
DE10248747A1 (de) Breitstrahlabbildung
DE2240749A1 (de) Verfahren zur erfassung von in der luft, im raum oder unter wasser befindlichen objekten durch reflexion elektromagnetischer oder akustischer wellen
DE102013220131B4 (de) Bildgebungssystem mit orthogonalen Sendesignalen
DE2414644A1 (de) Vorrichtung zum empfangsseitigen bilden von richt-charakteristiken und zum korrelieren
DE102013221544B4 (de) Medizingerät mit einem Breitband-Radarsystem und bildgebendes Verfahren
DE102012100745A1 (de) Synthetisches Bildgebungsverfahren
DE3038900A1 (de) &#34;verfahren zum klassifizieren von unterwasserobjekten&#34;
DE102020130350B3 (de) Vorrichtung zur Erzeugung eines Bildes von einem Objekt
DE2532970A1 (de) Antenne
DE102014200038A1 (de) Antennenanordnung zum Lokalisieren eines bewegten Objektes und Verfahren zum Betreiben einer solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PINCHUK, ROMAN

Inventor name: BULAVINOV, ANDREY

Inventor name: KROENING, MICHAEL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131115