EP2216112A1 - Nickel based moulded component with a compensation body and method for producing same - Google Patents

Nickel based moulded component with a compensation body and method for producing same Download PDF

Info

Publication number
EP2216112A1
EP2216112A1 EP09001830A EP09001830A EP2216112A1 EP 2216112 A1 EP2216112 A1 EP 2216112A1 EP 09001830 A EP09001830 A EP 09001830A EP 09001830 A EP09001830 A EP 09001830A EP 2216112 A1 EP2216112 A1 EP 2216112A1
Authority
EP
European Patent Office
Prior art keywords
nickel
cast component
component according
compensating
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09001830A
Other languages
German (de)
French (fr)
Inventor
Heinz Dallinger
Torsten-Ulf Dr. Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09001830A priority Critical patent/EP2216112A1/en
Priority to EP10702642A priority patent/EP2396128A1/en
Priority to CN201080007377XA priority patent/CN102317008B/en
Priority to PCT/EP2010/050726 priority patent/WO2010091931A1/en
Priority to JP2011548636A priority patent/JP2012517351A/en
Publication of EP2216112A1 publication Critical patent/EP2216112A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting

Definitions

  • the invention relates to a nickel-based cast component and a method for producing a nickel-based cast component, wherein the nickel-based cast component is in particular a steam turbine housing.
  • Steam turbines are used for example in steam power plants at live steam temperatures up to 620 ° C and up to a shaft power of 1000 MW. It is desirable to select the steam temperature as high as possible to increase the efficiency of the steam power plant, the steam temperature is sought up to 720 ° C. In particular, areas of the housing of the steam turbine are in direct contact with the live steam, so that the use of nickel-based materials for reasons of strength is necessary for this purpose. This affects in particular the high-pressure inner casing, the intermediate-pressure inner casing and valves of the steam turbine. In addition, the components of the steam turbine up to a power range of 1000 MW such a high weight that the limits of manufacturability and manageability can be at least partially exceeded.
  • the use of the nickel-based alloys for the components of the steam turbine leads to high production costs, wherein the production times of these components are long.
  • the machining of the components, such as milling, broaching or drilling, due to the material of the nickel-base alloys is complicated and expensive.
  • the object of the invention is to provide a nickel-base cast component which is easier to produce by a corresponding method for producing this nickel-base cast component.
  • the nickel-based cast component according to the invention has a compensation body, which is cast into the cast component and thereby covers a cavity formed in the nickel-based material, wherein the compensation body is compressed by the surrounding nickel-based material such that Cooling of the cast component during its production by casting the compensating body has given way to a shrinkage of the surrounding nickel-based material, whereby the formation of cracks in the nickel-based material caused by the shrinkage is prevented.
  • the compensation body is formed such that it is a hollow body before shrinking, which collapsed after shrinking in itself and is thereby destroyed. Further, it is preferred that the compensation body is formed as a solid body, the material of which prior to casting has at least such a high porosity that the pores in the material of the solid body are compressed by the shrinkage. It is preferred that the material of the compensation body is ceramic.
  • the compensating body is formed as a hollow body, which is slotted by a parting line, on which the hollow body overlaps after shrinking.
  • the compensating body is formed as a hollow body composed of at least two shell elements, the shell elements, after shrinking at their edges, overlapping each other.
  • the compensation body is formed with a lattice structure defining the outer surface of the compensation body which is closed. Preferred dimensions of the material of the compensating body is steel.
  • the compensating body is furthermore preferably coated with a separating layer, with which it is prevented that the compensating body is connected to the surrounding nickel-based material is.
  • the nickel-based material preferably comprises a solid solution hardening alloy.
  • the nickel-based cast component is a steam turbine casing.
  • the cavity is a channel provided in the nickel-base cast component and / or an undercut provided in the nickel-base cast component.
  • the method according to the invention for producing a nickel-base cast component comprises the steps of: casting the nickel-base cast component while inserting the compensation body; Cooling the nickel base cast component; Remove the balance body from the nickel base cast component.
  • the compensating body is removed during post-processing of the nickel-base cast component.
  • the compensation body is cast, whereby a cavity is defined by the compensation body.
  • the compensating body is deformed or destroyed by the shrinkage during solidification of the nickel-based material and can be easily removed thereby.
  • cracking in the nickel-base cast component is prevented during the shrinking process.
  • the compensating body is provided with a greater deformability than the nickel-based material in that the compensating body is provided with a targeted weakening of its structure.
  • the solid solution hardening alloy has the advantage that in the case of a subsequent heat treatment of the nickel-based cast component there are no structure-related or precipitation-related stresses at critical radii or cavities or transitions. As a result, cracking in the nickel-based cast component is prevented.
  • the inventively defined generation of the cavity in the nickel-based cast component by pouring the compensation body, taking into account the shrinkage behavior of the nickel-based material cracking in the nickel-base cast component can be prevented. If the compensating body is provided with the separating layer, then a connection of the compensating body to the nickel-based material is prevented, wherein the compensating body can be removed within the framework of a post-processing of the nickel-based cast component.
  • the nickel-based cast component according to the invention may advantageously have a complicated geometric shape, wherein the strength of the nickel-base cast component is not impaired thereby.
  • the processing time of the nickel-based cast component is reduced and its weight reduced by the provision of the cavity.
  • larger nickel-based cast components tend to be produced with the same material use as without cavity formation.
  • a steam turbine casing 1 has a cavity 2.
  • the cavity 2 is filled by a compensating body 3.
  • a ceramic body 4 which is formed as a solid body, the material prior to casting of the steam turbine housing 1 has at least such a high porosity that the pores of the ceramic body 4 are compressed by the shrinkage of the ceramic body 4 in the cavity 2.
  • the compensation body 3 is shown as a steel body 5, which is formed as a hollow body 6.
  • the outer surface of the hollow body 6 is provided with a separating layer 7, with which it is prevented that the hollow body 6 is connected in the cavity 2.
  • a first embodiment of the hollow body 6 is shown, wherein the hollow body 6 is formed as a cylinder.
  • the hollow body 6 is provided with a slot which extends in the longitudinal direction of the hollow body 6, wherein at the slot 8, the hollow body 6 has a first tab 9 and a second tab 10, wherein, when the hollow body 6 is compressed in the radial direction, the first Tab 9 and the second tab 10 are arranged overlapping each other.
  • a second embodiment of the hollow body 6 is shown, which is formed from two semi-cylindrical shell elements 11, 12.
  • the shell elements 11, 12 each have an edge 13, wherein the edges 13 of the shell elements 11, 12 are radially offset from each other so that the edges 13 of the second shell member 12 radially disposed within the edges 13 of the first shell member 11 are.
  • the edges 13 of the first shell element 11 slide against one another at the edges 13 of the second shell element 12 in the circumferential direction of the hollow body 6, whereby the radial extension of the hollow body 6 is reduced.

Abstract

Nickel-based cast component (1) comprises an equalization body (3) and a hollow body (2) filled with a nickel-based material. The equalization body is compressed by the nickel-based material so that after cooling the component during its manufacture the nickel-based material shrinks. An independent claim is also included for a method for the production of a nickel-based cast component.

Description

Die Erfindung betrifft ein Nickel-Basis-Gussbauteil und ein Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils, wobei das Nickel-Basis-Gussbauteil insbesondere ein Dampfturbinengehäuse ist.The invention relates to a nickel-based cast component and a method for producing a nickel-based cast component, wherein the nickel-based cast component is in particular a steam turbine housing.

Dampfturbinen werden beispielsweise in Dampfkraftwerken bei Frischdampftemperaturen bis zu 620°C und bis zu einer Wellenleistung von 1000 MW eingesetzt. Es ist erstrebenswert zur Wirkungsgradsteigerung des Dampfkraftwerks die Frischdampftemperatur möglichst hoch zu wählen, wobei die Frischdampftemperatur bis zu 720°C angestrebt wird. Insbesondere Bereiche des Gehäuses der Dampfturbine sind mit dem Frischdampf in Berührkontakt, so dass hierfür der Einsatz von Nickel-Basis-Werkstoffen aus Festigkeitsgründen notwendig ist. Betroffen hiervon sind insbesondere das Hochdruckinnengehäuse, das Mitteldruckinnengehäuse und Ventile der Dampfturbine. Außerdem haben die Komponenten der Dampfturbine bis zu einem Leistungsbereich von 1000 MW ein derart hohes Gewicht, dass die Grenzen der Herstellbarkeit und der Handhabbarkeit zumindest teilweise überschritten sein können. Der Einsatz der Nickel-Basis-Legierungen für die Komponenten der Dampfturbine führt zu hohen Herstellungskosten, wobei die Herstellungszeiten dieser Komponenten lang sind. Außerdem ist die spanende Bearbeitung der Komponenten, wie beispielsweise Fräsen, Räumen oder Bohren, aufgrund des Materials aus den Nickel-Basis-Legierungen kompliziert und aufwendig.Steam turbines are used for example in steam power plants at live steam temperatures up to 620 ° C and up to a shaft power of 1000 MW. It is desirable to select the steam temperature as high as possible to increase the efficiency of the steam power plant, the steam temperature is sought up to 720 ° C. In particular, areas of the housing of the steam turbine are in direct contact with the live steam, so that the use of nickel-based materials for reasons of strength is necessary for this purpose. This affects in particular the high-pressure inner casing, the intermediate-pressure inner casing and valves of the steam turbine. In addition, the components of the steam turbine up to a power range of 1000 MW such a high weight that the limits of manufacturability and manageability can be at least partially exceeded. The use of the nickel-based alloys for the components of the steam turbine leads to high production costs, wherein the production times of these components are long. In addition, the machining of the components, such as milling, broaching or drilling, due to the material of the nickel-base alloys is complicated and expensive.

Aufgabe der Erfindung ist es ein Nickel-Basis-Gussbauteil zu schaffen, das einfacher herstellbar durch ein entsprechendes Verfahren zum Herstellen dieses Nickel-Basis-Gussbauteils.The object of the invention is to provide a nickel-base cast component which is easier to produce by a corresponding method for producing this nickel-base cast component.

Das erfindungsgemäße Nickel-Basis-Gussbauteil weist einen Ausgleichskörper auf, der in das Gussbauteil eingegossen ist und dadurch einen in dem Nickel-Basis-Material ausgebildeten Hohlraum aushüllt, wobei der Ausgleichskörper von dem ihn umgebenden Nickel-Basis-Material derart komprimiert ist, dass nach Abkühlen des Gussbauteils bei dessen Herstellung durch Gießen der Ausgleichskörper einem Schrumpfen des ihn umgebenden Nickel-Basis-Materials nachgegeben hat, wodurch die Bildung von Rissen in dem Nickel-Basis-Material, hervorgerufen durch das Schrumpfen, unterbunden ist.The nickel-based cast component according to the invention has a compensation body, which is cast into the cast component and thereby covers a cavity formed in the nickel-based material, wherein the compensation body is compressed by the surrounding nickel-based material such that Cooling of the cast component during its production by casting the compensating body has given way to a shrinkage of the surrounding nickel-based material, whereby the formation of cracks in the nickel-based material caused by the shrinkage is prevented.

Bevorzugt ist der Ausgleichskörper derart gebildet, dass er vor dem Schrumpfen ein Hohlkörper ist, der nach dem Schrumpfen in sich zusammengefallen und dadurch zerstört ist. Ferner ist es bevorzugt, dass der Ausgleichskörper als ein Vollkörper ausgebildet ist, dessen Material vor dem Gießen eine mindestens derart hohe Porosität hat, dass durch das Schrumpfen die Poren in dem Material des Vollkörpers zusammengedrückt sind. Bevorzugt ist es, dass das Material des Ausgleichskörpers Keramik ist.Preferably, the compensation body is formed such that it is a hollow body before shrinking, which collapsed after shrinking in itself and is thereby destroyed. Further, it is preferred that the compensation body is formed as a solid body, the material of which prior to casting has at least such a high porosity that the pores in the material of the solid body are compressed by the shrinkage. It is preferred that the material of the compensation body is ceramic.

Alternativ ist es bevorzugt, dass der Ausgleichskörper als ein Hohlkörper ausgebildet ist, der von einer Teilfuge geschlitzt ist, an der der Hohlkörper nach dem Schrumpfen sich überlappt. Außerdem ist es als eine Alternative bevorzugt, dass der Ausgleichskörper als ein Hohlkörper gebildet ist, der von mindestens zwei Schalenelementen zusammengesetzt ist, wobei die Schalenelemente nach dem Schrumpfen an ihren Rändern sich überlappend aneinander liegen. Ferner alternativ ist es bevorzugt, dass der Ausgleichskörper mit einer Gitterstruktur gebildet ist, die die Außenoberfläche des Ausgleichskörpers definiert, die geschlossen ist. Bevorzugtermaßen ist das Material des Ausgleichskörpers hierbei Stahl.Alternatively, it is preferred that the compensating body is formed as a hollow body, which is slotted by a parting line, on which the hollow body overlaps after shrinking. In addition, as an alternative, it is preferred that the compensating body is formed as a hollow body composed of at least two shell elements, the shell elements, after shrinking at their edges, overlapping each other. Further alternatively, it is preferred that the compensation body is formed with a lattice structure defining the outer surface of the compensation body which is closed. Preferred dimensions of the material of the compensating body is steel.

Der Ausgleichskörper ist ferner bevorzugt mit einer Trennschicht überzogen, mit der es unterbunden ist, dass der Ausgleichskörper an das ihn umgebende Nickel-Basis-Material angebunden ist. Das Nickel-Basis-Material weist bevorzugt eine Mischkristall härtende Legierung auf.The compensating body is furthermore preferably coated with a separating layer, with which it is prevented that the compensating body is connected to the surrounding nickel-based material is. The nickel-based material preferably comprises a solid solution hardening alloy.

Bevorzugtermaßen ist das Nickel-Basis-Gussbauteil ein Dampfturbinengehäuse. Dabei ist es bevorzugt, dass der Hohlraum ein in dem Nickel-Basis-Gussbauteil vorgesehener Kanal und/oder eine in dem Nickel-Basis-Gussbauteil vorgesehene Hinterschneidung ist.Preferably, the nickel-based cast component is a steam turbine casing. In this case, it is preferred that the cavity is a channel provided in the nickel-base cast component and / or an undercut provided in the nickel-base cast component.

Das erfindungsgemäße Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils weist die Schritte auf: Gießen des Nickel-Basis-Gussbauteils unter Einlegen des Ausgleichskörpers; Abkühlen des Nickel-Basis-Gussbauteils; Entfernen des Ausgleichskörpers aus dem Nickel-Basis-Gussbauteil. Bevorzugt wird der Ausgleichskörper bei einer Nachbearbeitung des Nickel-Basis-Gussbauteils aus diesem entfernt.The method according to the invention for producing a nickel-base cast component comprises the steps of: casting the nickel-base cast component while inserting the compensation body; Cooling the nickel base cast component; Remove the balance body from the nickel base cast component. Preferably, the compensating body is removed during post-processing of the nickel-base cast component.

Somit wird in dem Nickel-Basis-Gussbauteil der Ausgleichskörper eingegossen, wodurch von dem Ausgleichskörper ein Hohlraum definiert ist. Der Ausgleichskörper wird durch den Schrumpfvorgang beim Erstarren des Nickel-Basis-Materials verformt oder zerstört und kann dadurch leicht entfernt werden. Somit ist beim Schrumpfvorgang eine Rissbildung im Nickel-Basis-Gussbauteil unterbunden. Erfindungsgemäß ist der Ausgleichskörper mit einer stärkeren Verformbarkeit ausgestattet wie das Nickel-Basis-Material, indem der Ausgleichskörper mit einer gezielten Schwächung seiner Struktur versehen ist. Dadurch, dass mit dem Ausgleichskörper der Hohlraum in dem Nickel-Basis-Gussbauteil geschaffen wird, ist das Schmelzengewicht für das Nickel-Basis-Gussbauteil vorteilhaft reduziert. Ferner können mit dem Nickel-Basis-Gussbauteil komplizierte konstruktive Ausführungen realisiert werden, die über eine Bearbeitung eines Vollgussstücks nicht umsetzbar wären. Die Mischkristall härtende Legierung hat den Vorteil, dass bei einer nachträglichen Wärmebehandlung des Nickel-Basis-Gussbauteils sich keine gefügebedingten oder ausscheidungsbedingten Spannungen an kritischen Radien, Hohlräumen oder Übergängen einstellen. Dadurch ist eine Rissbildung in dem Nickel-Basis-Gussbauteil unterbunden.Thus, in the nickel-base cast component, the compensation body is cast, whereby a cavity is defined by the compensation body. The compensating body is deformed or destroyed by the shrinkage during solidification of the nickel-based material and can be easily removed thereby. Thus, cracking in the nickel-base cast component is prevented during the shrinking process. According to the invention, the compensating body is provided with a greater deformability than the nickel-based material in that the compensating body is provided with a targeted weakening of its structure. By providing the cavity in the nickel-based cast component with the balancing body, the melt weight for the nickel-based cast component is advantageously reduced. Furthermore, complicated structural designs can be realized with the nickel-base cast component, which would not be feasible on a processing of a solid casting. The solid solution hardening alloy has the advantage that in the case of a subsequent heat treatment of the nickel-based cast component there are no structure-related or precipitation-related stresses at critical radii or cavities or transitions. As a result, cracking in the nickel-based cast component is prevented.

Durch die erfindungsgemäß definierte Erzeugung von dem Hohlraum in dem Nickel-Basis-Gussbauteil durch Eingießen des Ausgleichskörpers unter Berücksichtigung des Schrumpfverhaltens des Nickel-Basis-Materials kann die Rissbildung in dem Nickel-Basis-Gussbauteil unterbunden werden. Ist der Ausgleichskörper mit der Trennschicht versehen, so ist eine Anbindung des Ausgleichskörpers an das Nickel-Basis-Material unterbunden, wobei der Ausgleichskörper im Rahmen einer Nachbearbeitung des Nickel-Basis-Gussbauteils entfernt werden kann.The inventively defined generation of the cavity in the nickel-based cast component by pouring the compensation body, taking into account the shrinkage behavior of the nickel-based material cracking in the nickel-base cast component can be prevented. If the compensating body is provided with the separating layer, then a connection of the compensating body to the nickel-based material is prevented, wherein the compensating body can be removed within the framework of a post-processing of the nickel-based cast component.

Das erfindungsgemäße Nickel-Basis-Gussbauteil kann vorteilhaft eine komplizierte geometrische Form haben, wobei die Festigkeit des Nickel-Basis-Gussbauteils dadurch nicht beeinträchtigt ist. Außerdem ist die Bearbeitungszeit des Nickel-Basis-Gussbauteils verringert und dessen Gewicht durch das Vorsehen des Hohlraums reduziert. Dadurch sind tendenziell größere Nickel-Basis-Gussbauteile bei gleichem Materialeinsatz wie ohne Hohlraumausbildung herstellbar.The nickel-based cast component according to the invention may advantageously have a complicated geometric shape, wherein the strength of the nickel-base cast component is not impaired thereby. In addition, the processing time of the nickel-based cast component is reduced and its weight reduced by the provision of the cavity. As a result, larger nickel-based cast components tend to be produced with the same material use as without cavity formation.

Im Folgenden werden bevorzugte Ausführungsformen des erfindungsgemäßen Nickel-Basis-Gussbauteils anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:

Fig. 1
einen Querschnitt durch einen Ausschnitt eines Dampfturbinengehäuses, und
Fig. 2 bis 5
Querschnitte von Ausgleichskörpern.
In the following, preferred embodiments of the nickel-base cast component according to the invention will be explained with reference to the attached schematic drawings. Show it:
Fig. 1
a cross-section through a section of a steam turbine housing, and
Fig. 2 to 5
Cross sections of compensation bodies.

Wie es in Fig. 1 gezeigt ist, weist ein Dampfturbinengehäuse 1 einen Hohlraum 2 auf. Der Hohlraum 2 wird von einem Ausgleichskörper 3 ausgefüllt. Gemäß Fig. 2 ist der Ausgleichskörper 3 ein Keramikkörper 4, der als ein Vollkörper ausgebildet ist, dessen Material vor dem Gießen des Dampfturbinengehäuses 1 mindestens eine derart hohe Porosität hat, dass durch das Schrumpfen des Keramikkörpers 4 in dem Hohlraum 2 die Poren des Keramikkörpers 4 zusammengedrückt sind. In Fig. 3 ist der Ausgleichskörper 3 als ein Stahlkörper 5 gezeigt, der als ein Hohlkörper 6 ausgebildet ist. Die Außenoberfläche des Hohlkörpers 6 ist mit einer Trennschicht 7 versehen, mit der es unterbunden ist, dass der Hohlkörper 6 in dem Hohlraum 2 angebunden ist.As it is in Fig. 1 1, a steam turbine casing 1 has a cavity 2. The cavity 2 is filled by a compensating body 3. According to Fig. 2 is the compensation body 3, a ceramic body 4, which is formed as a solid body, the material prior to casting of the steam turbine housing 1 has at least such a high porosity that the pores of the ceramic body 4 are compressed by the shrinkage of the ceramic body 4 in the cavity 2. In Fig. 3 the compensation body 3 is shown as a steel body 5, which is formed as a hollow body 6. The outer surface of the hollow body 6 is provided with a separating layer 7, with which it is prevented that the hollow body 6 is connected in the cavity 2.

In Fig. 4 ist eine erste Ausführungsform des Hohlkörpers 6 gezeigt, wobei der Hohlkörper 6 als ein Zylinder ausgebildet ist. Der Hohlkörper 6 ist mit einem Schlitz versehen, der in Längsrichtung des Hohlkörpers 6 sich erstreckt, wobei an dem Schlitz 8 der Hohlkörper 6 eine erste Lasche 9 und eine zweite Lasche 10 aufweist, wobei, wenn der Hohlkörper 6 in Radialrichtung zusammengedrückt ist, die erste Lasche 9 und die zweite Lasche 10 einander überlappend angeordnet sind. In Fig. 5 ist eine zweite Ausführungsform des Hohlkörpers 6 gezeigt, der aus zwei halbzylindrischen Schalenelementen 11, 12 gebildet ist. In Längsrichtung des Hohlkörpers 6 weisen die Schalenelemente 11, 12 jeweils einen Rand 13 auf, wobei die Ränder 13 der Schalenelemente 11, 12 radial zueinander so versetzt sind, dass die Ränder 13 des zweiten Schalenelements 12 radial innerhalb der Ränder 13 des ersten Schalenelements 11 angeordnet sind. Beim radialen Zusammendrücken des Hohlkörpers 6 gleiten die Ränder 13 des ersten Schalenelements 11 an den Rändern 13 des zweiten Schalenelements 12 in Umfangsrichtung des Hohlkörpers 6 aneinander, wodurch die radiale Erstreckung des Hohlkörpers 6 reduziert wird.In Fig. 4 a first embodiment of the hollow body 6 is shown, wherein the hollow body 6 is formed as a cylinder. The hollow body 6 is provided with a slot which extends in the longitudinal direction of the hollow body 6, wherein at the slot 8, the hollow body 6 has a first tab 9 and a second tab 10, wherein, when the hollow body 6 is compressed in the radial direction, the first Tab 9 and the second tab 10 are arranged overlapping each other. In Fig. 5 a second embodiment of the hollow body 6 is shown, which is formed from two semi-cylindrical shell elements 11, 12. In the longitudinal direction of the hollow body 6, the shell elements 11, 12 each have an edge 13, wherein the edges 13 of the shell elements 11, 12 are radially offset from each other so that the edges 13 of the second shell member 12 radially disposed within the edges 13 of the first shell member 11 are. During the radial compression of the hollow body 6, the edges 13 of the first shell element 11 slide against one another at the edges 13 of the second shell element 12 in the circumferential direction of the hollow body 6, whereby the radial extension of the hollow body 6 is reduced.

Claims (14)

Nickel-Basis-Gussbauteil mit einem Ausgleichskörper (3, 4, 5), der in das Gussbauteil (1) eingegossen ist und dadurch einen in dem Nickel-Basis-Material (1) ausgebildeten Hohlraum (2) ausfüllt,
wobei der Ausgleichskörper (3, 4, 5) von dem ihn umgebenden Nickel-Basis-Material derart komprimiert ist, dass nach Abkühlen des Gussbauteils (1) bei dessen Herstellung durch Gießen der Ausgleichskörper (3, 4, 5) einem Schrumpfen des ihn umgebenden Nickel-Basis-Materials nachgegeben hat, wodurch die Bildung von Rissen in dem Nickel-Basis-Material hervorgerufen, durch das Schrumpfen, unterbunden ist.
A nickel base cast component comprising a balancing body (3, 4, 5) cast in the cast component (1) and thereby filling a cavity (2) formed in the nickel base material (1),
wherein the compensating body (3, 4, 5) of the surrounding nickel-based material is compressed such that after cooling of the cast component (1) during its production by casting the compensating body (3, 4, 5) a shrinking of the surrounding Has yielded nickel base material, whereby the formation of cracks in the nickel-based material caused by the shrinkage, is prevented.
Nickel-Basis-Gussbauteil gemäß Anspruch 1,
wobei der Ausgleichskörper (3) derart gebildet ist, dass er vor dem Schrumpfen ein Hohlkörper ist, der nach dem Schrumpfen in sich zusammengefallen und dadurch zerstört ist.
Nickel-based cast component according to claim 1,
wherein the compensating body (3) is formed such that it is a hollow body before shrinking, which collapsed after shrinking and thereby destroyed.
Nickel-Basis-Gussbauteil gemäß Anspruch 1 oder 2,
wobei der Ausgleichskörper (3) als ein Vollkörper ausgebildet ist, dessen Material vor dem Gießen eine mindestens derart hohe Porosität hat, dass durch das Schrumpfen die Poren in dem Material des Vollkörpers zusammengedrückt sind.
Nickel-based cast component according to claim 1 or 2,
wherein the compensating body (3) is formed as a solid body, the material of which has at least such a high porosity prior to casting, that the pores in the material of the solid body are compressed by the shrinkage.
Nickel-Basis-Gussbauteil gemäß Anspruch 2 oder 3,
wobei das Material des Ausgleichskörpers (4) Keramik ist.
Nickel-based cast component according to claim 2 or 3,
wherein the material of the compensating body (4) is ceramic.
Nickel-Basis-Gussbauteil gemäß Anspruch 1,
wobei der Ausgleichskörper (3) als ein Hohlkörper (6) gebildet ist, der von einer Teilfuge (8) geschlitzt ist, an der der Hohlkörper (6) nach dem Schrumpfen sich überlappt.
Nickel-based cast component according to claim 1,
wherein the compensating body (3) is formed as a hollow body (6) which is slotted by a parting line (8), at which the hollow body (6) overlaps after shrinking.
Nickel-Basis-Gussbauteil gemäß Anspruch 1,
wobei der Ausgleichskörper (3) als ein Hohlkörper (6) gebildet ist, der von mindestens zwei Schalenelementen (11, 12) zusammen gesetzt ist,
wobei die Schalenelemente (11, 12) nach dem Schrumpfen an ihren Rädern (13) sich überlappend aneinander liegen.
Nickel-based cast component according to claim 1,
wherein the compensating body (3) is formed as a hollow body (6) which is composed of at least two shell elements (11, 12),
wherein the shell elements (11, 12) overlap each other after shrinking at their wheels (13).
Nickel-Basis-Gussbauteil gemäß Anspruch 1,
wobei der Ausgleichskörper (3) mit einer Gitterstruktur gebildet ist, die die Außenoberfläche des Ausgleichskörpers (3) definiert, die geschlossen ist.
Nickel-based cast component according to claim 1,
wherein the balancing body (3) is formed with a grid structure defining the outer surface of the balancing body (3) which is closed.
Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 5 bis 7,
wobei das Material des Ausgleichskörpers (5) Stahl ist.
Nickel-based cast component according to one of claims 5 to 7,
wherein the material of the compensating body (5) is steel.
Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 8,
wobei der Ausgleichskörper (3, 4, 5) mit einer Trennschicht (7) überzogen ist, mit der es unterbunden ist, dass der Ausgleichskörper (3, 4, 5) an das ihn umgebende Nickel-Basis-Material angebunden ist.
Nickel-based cast component according to one of claims 1 to 8,
wherein the compensating body (3, 4, 5) is coated with a separating layer (7) with which it is prevented that the compensating body (3, 4, 5) is connected to the surrounding nickel-based material.
Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 9,
wobei das Nickel-Basis-Material eine Mischkristall härtende Legierung aufweist.
Nickel-based cast component according to one of claims 1 to 9,
wherein the nickel-based material comprises a solid solution hardening alloy.
Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 10,
wobei das Nickel-Basis-Gussbauteil ein Dampfturbinengehäuse (1) ist.
Nickel-based cast component according to one of claims 1 to 10,
wherein the nickel-based cast member is a steam turbine casing (1).
Nickel-Basis-Gussbauteil gemäß Anspruch 11,
wobei der Hohlraum (2) ein in dem Nickel-Basis-Gussbauteil (1) vorgesehener Kanal und/oder eine in dem Nickel-Basis-Gussbauteil (1) vorgesehene Hinterschneidung ist.
Nickel-based cast component according to claim 11,
wherein the cavity (2) is a channel provided in the nickel-base casting member (1) and / or an undercut provided in the nickel-base casting member (1).
Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils,
mit den Schritten: Gießen des Nickel-Basis-Gussbauteils (1) unter Einlegen eines Ausgleichskörpers (3, 4, 5) gemäß einem der Ansprüche 1 bis 12; Abkühlen des Nickel-Basis-Gussbauteils (1); Entfernen des Ausgleichskörpers (3, 4, 5) aus dem Nickel-Basis-Gussbauteil (1).
Method for producing a nickel-based cast component,
with the steps: Casting the nickel-base cast component (1) with insertion of a compensation body (3, 4, 5) according to one of claims 1 to 12; Cooling the nickel-base cast component (1); Removing the compensating body (3, 4, 5) from the nickel-base cast component (1).
Verfahren gemäß Anspruch 13,
wobei der Ausgleichskörpers (3, 4, 5) bei einer Nachbearbeitung des Nickel-Basis-Gussbauteils (1) aus diesem entfernt wird.
Method according to claim 13,
wherein the compensation body (3, 4, 5) in a post-processing of the nickel-based cast component (1) is removed therefrom.
EP09001830A 2009-02-10 2009-02-10 Nickel based moulded component with a compensation body and method for producing same Withdrawn EP2216112A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09001830A EP2216112A1 (en) 2009-02-10 2009-02-10 Nickel based moulded component with a compensation body and method for producing same
EP10702642A EP2396128A1 (en) 2009-02-10 2010-01-22 Nickel-based cast component having a compensating body and method for producing the nickel-based cast component
CN201080007377XA CN102317008B (en) 2009-02-10 2010-01-22 Nickel-based cast component having a compensating body and method for producing the nickel-based cast component
PCT/EP2010/050726 WO2010091931A1 (en) 2009-02-10 2010-01-22 Nickel-based cast component having a compensating body and method for producing the nickel-based cast component
JP2011548636A JP2012517351A (en) 2009-02-10 2010-01-22 Nickel base cast part with compensator and method for manufacturing the nickel base cast part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09001830A EP2216112A1 (en) 2009-02-10 2009-02-10 Nickel based moulded component with a compensation body and method for producing same

Publications (1)

Publication Number Publication Date
EP2216112A1 true EP2216112A1 (en) 2010-08-11

Family

ID=40792881

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09001830A Withdrawn EP2216112A1 (en) 2009-02-10 2009-02-10 Nickel based moulded component with a compensation body and method for producing same
EP10702642A Withdrawn EP2396128A1 (en) 2009-02-10 2010-01-22 Nickel-based cast component having a compensating body and method for producing the nickel-based cast component

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10702642A Withdrawn EP2396128A1 (en) 2009-02-10 2010-01-22 Nickel-based cast component having a compensating body and method for producing the nickel-based cast component

Country Status (4)

Country Link
EP (2) EP2216112A1 (en)
JP (1) JP2012517351A (en)
CN (1) CN102317008B (en)
WO (1) WO2010091931A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842147B (en) * 2019-11-29 2021-03-05 西安航天发动机有限公司 Method for controlling size of closed impeller investment precision casting runner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625524C (en) * 1932-12-06 1936-02-11 Foerderanlagen Ernst Heckel M Multi-part, flexible metal core, especially for cast steel pieces
DE669825C (en) * 1936-02-02 1939-01-05 Press Und Walzwerk Akt Ges Core for the production of cast hollow bodies
WO2006085995A2 (en) * 2004-07-27 2006-08-17 Honeywell International Inc. Method of producing metal article having internal passage coated with a ceramic coating
EP1721688A1 (en) * 2005-05-13 2006-11-15 Processi Innovativi Tecnologici, S.r.L Foundry cores and method for manufacturing the same
US20080078520A1 (en) * 2006-09-29 2008-04-03 General Electric Company Rare earth-based core constructions for casting refractory metal composites, and related processes
EP1992431A1 (en) * 2007-05-09 2008-11-19 United Technologies Corporation Investment casting cores and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310041A (en) * 1986-07-01 1988-01-16 Kawasaki Steel Corp Casting method for hollow cast billet
JPH07290188A (en) * 1994-04-25 1995-11-07 Aisin Seiki Co Ltd Manufacture of piston
JPH08206779A (en) * 1995-02-08 1996-08-13 Furukawa Electric Co Ltd:The Method for casting hollow member
JP3759656B2 (en) * 1996-10-25 2006-03-29 富士重工業株式会社 Gypsum dumping mold for laminating composite material and its manufacturing method
JP3295683B2 (en) * 1997-05-02 2002-06-24 三菱自動車テクノメタル株式会社 Hollow shaft casting method
WO2003024642A1 (en) * 2001-09-14 2003-03-27 Hydro Aluminium Deutschland Gmbh Method for producing castings, molding sand and its use for carrying out said method
US6637500B2 (en) * 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting
JP5109115B2 (en) * 2005-04-07 2012-12-26 国立大学法人 長崎大学 Nickel-base superalloy and manufacturing method thereof
JP2007307596A (en) * 2006-05-19 2007-11-29 Toyota Motor Corp Core for forming and manufacturing method therefor
CN101229975A (en) * 2008-01-04 2008-07-30 西北工业大学 Method for making alumina ceramic core and core leach method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625524C (en) * 1932-12-06 1936-02-11 Foerderanlagen Ernst Heckel M Multi-part, flexible metal core, especially for cast steel pieces
DE669825C (en) * 1936-02-02 1939-01-05 Press Und Walzwerk Akt Ges Core for the production of cast hollow bodies
WO2006085995A2 (en) * 2004-07-27 2006-08-17 Honeywell International Inc. Method of producing metal article having internal passage coated with a ceramic coating
EP1721688A1 (en) * 2005-05-13 2006-11-15 Processi Innovativi Tecnologici, S.r.L Foundry cores and method for manufacturing the same
US20080078520A1 (en) * 2006-09-29 2008-04-03 General Electric Company Rare earth-based core constructions for casting refractory metal composites, and related processes
EP1992431A1 (en) * 2007-05-09 2008-11-19 United Technologies Corporation Investment casting cores and methods

Also Published As

Publication number Publication date
CN102317008A (en) 2012-01-11
CN102317008B (en) 2013-11-20
WO2010091931A1 (en) 2010-08-19
EP2396128A1 (en) 2011-12-21
JP2012517351A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
EP2040354B1 (en) Rotor can of a drive motor for a pump assembly
EP2536924B1 (en) Sintered stator-cover unit and camshaft adjuster
WO2016058900A1 (en) Turbine blade having an inner module and method for producing a turbine blade
DE102007023152A1 (en) Method for producing a casting, casting mold and casting produced therewith
DE102009048665A1 (en) Turbine blade and method for its production
DE102007050142A1 (en) Method of making a blisk or bling, component and turbine blade made therewith
DE102013219774A1 (en) Shovel for a gas turbine
DE102011108957A1 (en) A method for producing, repairing and / or replacing a housing, in particular an engine housing, and a corresponding housing
DE102007027465A1 (en) Gas turbine blade with modular construction
EP3085888A1 (en) Turbine housing and corresponding exhaust gas turbocharger
WO2012072384A1 (en) Turbomachine with sealing structure between rotating and positionally fixed parts, and method for manufacturing said sealing structure
DE102008043605A1 (en) Method for producing a turbine housing
WO2011054342A1 (en) Blisk, gas turbine and method for producing a blisk of said type
DE102009033835A1 (en) Method for replacing a blade of a rotor with integrated blading and such a rotor
WO2008049393A1 (en) Method for producing a lightweight turbine blade
WO2006048379A1 (en) Vacuum pump impeller
DE102018209315A1 (en) Process for producing a component from gamma - TiAl and corresponding manufactured component
EP2738377B1 (en) Process for manufacturing a cylinder crankcase
EP1790865B1 (en) Cast hollow crankshaft
EP2216112A1 (en) Nickel based moulded component with a compensation body and method for producing same
EP2022944A1 (en) Blade fixation in a circumferential groove by means of a curable ceramic mass
EP2414129B1 (en) Method of weld manufacturing a large-dimension component part made from spheroidal graphite iron using laser builtup materials and electron beam welding
DE102012201871A1 (en) Making turbine casing for turbocharger, comprises inserting a partition wall in a sand core, inserting core in casting tool, filling cavity with casting material to provide turbine casing blank, and cooling turbine casing blank
EP3524843B1 (en) Method for producing a composite cast part and composite cast part
DE102006061448A1 (en) Method for producing a blisk or a bling and component produced therewith

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110212