EP2215615B1 - Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation - Google Patents

Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation Download PDF

Info

Publication number
EP2215615B1
EP2215615B1 EP08854823A EP08854823A EP2215615B1 EP 2215615 B1 EP2215615 B1 EP 2215615B1 EP 08854823 A EP08854823 A EP 08854823A EP 08854823 A EP08854823 A EP 08854823A EP 2215615 B1 EP2215615 B1 EP 2215615B1
Authority
EP
European Patent Office
Prior art keywords
signal
antenna
frequency
packets
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08854823A
Other languages
German (de)
English (en)
Other versions
EP2215615A2 (fr
Inventor
Alois Ineichen
Thorsten Godau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilz GmbH and Co KG
Original Assignee
Pilz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilz GmbH and Co KG filed Critical Pilz GmbH and Co KG
Publication of EP2215615A2 publication Critical patent/EP2215615A2/fr
Application granted granted Critical
Publication of EP2215615B1 publication Critical patent/EP2215615B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to a device and a method for wireless networking of devices of automation technology, in particular for networking remote sensors, actuators and a central control unit.
  • the communication between the control units and the sensors and actuators often has to be done in very tight, cyclically recurring time intervals to enable a continuous and trouble-free production process.
  • there are increased demands on the reliability of the communication link when security-relevant data to be transmitted on which the reliability of an automated system depends. For example, many production facilities perform dangerous movements that must be stopped immediately when an operator approaches the facility. In such a case, the signal from a photocell that detects the person must be quickly transmitted to the central control unit, and the shutdown command must be the correct drive of the system within a defined and reach guaranteed time span. In contrast to home and office networks, fractions of seconds are often required.
  • Object of the present invention is to provide a device and a method of the type mentioned above, which allow a cost-effective manner reliable and stable communication of networked devices under the harsh environmental conditions of a factory.
  • this object is achieved by a device of the type mentioned, having a signal path for transmitting a high-frequency signal having a plurality of temporally successive signal packets, with a first and a second antenna, with an antenna switch, the Signal path selectively connects to the first or the second antenna, and with a control circuit which is adapted to generate a low-frequency switching signal for the antenna switch from the successive signal packets.
  • the new apparatus and method uses at least two antennas to wirelessly transmit the signals.
  • the at least two antennas do not cooperate with each other in terms of a transmitting antenna and a receiving antenna. Rather, the two antennas are alternatively used to each other or at least in complement to each other, either to send a transmission signal or to receive a received signal.
  • the two antennas are alternatively used to each other or at least in complement to each other, either to send a transmission signal or to receive a received signal.
  • each networked device has at least two such antennas.
  • the controllers have two such antennas and transmit and receive over each of these antennas.
  • the first and second antennas operate redundantly with each other.
  • only one of the at least two antennas is in operation at any time.
  • the at least two antennas can not be arranged in one and the same location, they transmit and receive their signals at different positions. These different positions result in that the transmission and reception conditions for each antenna can be different. Due to the numerous reflections of a radio signal in one typical workshop with many, sometimes moving metallic objects even small spatial differences can ensure that one antenna has good transmission and reception conditions, while the other antenna has poor transmission and reception conditions. Since the new device and the new method use at least two antennas which are arranged spatially offset from one another, the probability increases that at least one of the antennas has good transmission and reception conditions. Switching between the antennas thus increases the availability and reliability of the radio link.
  • a low-frequency switching signal for switching between the antennas is generated from the high-frequency signal that is transmitted and / or received via the redundant antennas.
  • the term "low-frequency” is not to be understood in terms of an absolute frequency value, but refers to the fact that the switching signal has a lower signal frequency than the high-frequency radio signal that is transmitted and received via the at least two antennas.
  • the low-frequency switching signal is generated from the signal packets, which has the high-frequency transmit and receive signal. Due to the cyclical communication requirements between control units and sensors / actuators of an automated system, the signal packets occur regularly within defined time intervals.
  • the new device and the new method make use of the regular signal packets, in order to generate a switching signal, which is used to switch between the antennas. In preferred embodiments, the switching occurs solely in response to the successive signal packets, i. the actual transmission and reception conditions at the location of each antenna are ignored.
  • the new device and the new method can be realized very inexpensively. It is particularly possible to an individual measurement of the transmission and Replace receiving conditions at the location of each antenna, because it is switched regularly in response to the signal packets. By the regular and preferably periodic switching the transmission and reception conditions are changed regularly. As a result, the new device and the new method very cost-effectively enable increased availability and reliability in the wireless networking of devices located in environments with difficult and varying transmission ratios.
  • a signal coupler is used with at least three terminals for dividing the high-frequency signal into partial signals, wherein a first terminal is connected to the signal path, and wherein a second terminal is connected to the control circuit.
  • the high-frequency signal is divided into at least two sub-signals, wherein a first sub-signal is guided via the signal path and the antenna switch to the antennas, while a second sub-signal is fed to the control circuit.
  • the at least two sub-signals are signal equal in preferred embodiments, i. the signal coupler extracts only a partial signal for the control circuit from the high-frequency signal. The embodiment allows a very cost-effective implementation, since the control circuit can generate the low-frequency switching signal directly from the high-frequency antenna signal.
  • the signal coupler is designed to generate a first sub-signal having a higher first signal power and a second sub-signal having a lower second signal power, wherein the second sub-signal is supplied to the control circuit.
  • the signal coupler splits the high-frequency antenna signal into two sub-signals, which may indeed be identical in terms of their signal form however, differ in terms of their signal power. This refinement is advantageous in order to extract as little energy as possible from the radio signal used for the communication.
  • the second sub-signal is much weaker than the first sub-signal.
  • the coupling loss between the high frequency signal and the second partial signal is between about 10 dB and 20 dB.
  • control circuit has a pulse generator configured to generate a plurality of pulses in response to the signal packets, the plurality of pulses representing the switching signal. In a preferred embodiment, one pulse per signal packet is generated in each case.
  • This embodiment enables a very simple and cost-effective implementation of the new method and the new device, since the switching signal correlates directly with the sequence of signal packets.
  • This configuration leads to frequent switching between the antennas, which is advantageous in the case of poor transmission and reception conditions on one of the antennas, because the "bad" antenna is used only briefly in each case due to frequent switching.
  • the multiplicity of signal packets which succeed each other in time include pairs of successive signal packets, the antenna switch being switched after each pair.
  • This embodiment is advantageous because here after each pair of signal packets is switched to another antenna. There is thus an increased probability that at least every other pair of signal packets will find better transmission and reception conditions. As a result, it can be assumed that at least every other pair of signal packets can be transmitted successfully.
  • the design benefits from the fact that a failure of a signal packet in the communication in an automated system usually leads to the signal packet is sent again.
  • the pairs of signal packets each contain a transmission signal packet and a reception signal packet.
  • each pair of signal packets represents a communication event with request and response. This is advantageous because the sender of a message receives a response very quickly, on the basis of which he can recognize whether the transmission message has arrived at the receiver. If each pair of signal packets each includes a transmit signal packet and a receive signal packet, this, in combination with the preceding embodiment, results in the successive communication events occurring via different antennas. This embodiment results in a very simple and cost-effective diversity system.
  • the device has a transmitter for generating a high-frequency transmission signal and a receiver for receiving a high-frequency received signal, wherein the transmitter and the receiver are coupled to the signal path via the signal coupler.
  • the high-frequency signal includes both a transmission signal and a reception signal. Both signals are passed through the signal coupler, which branches off a partial signal for the control circuit.
  • the control circuit receives a maximum number of signal packets. As a result, switching between the antennas is faster, and the new apparatus and method can respond more quickly to bad transmission and reception conditions.
  • control circuit to a DC voltage circuit which is adapted to generate a regulated DC voltage from the high-frequency signal.
  • the regulated DC voltage is advantageously used as the operating voltage for switching the antenna switch and for other electronic components of the device.
  • a low-frequency switching signal for the antenna switch is generated from the high-frequency signal, but also a regulated DC voltage is generated, which is available as an operating voltage for the components of the control circuit.
  • the switching unit can be operated independently of an external power supply.
  • the switching unit is arranged in the region of the first and second antenna and particularly preferably even integrated into the antennas. Due to the spatial proximity satisfies a relatively weak switching signal with the advantage that the high frequency signal is available for the most part for the transmission and / or reception process.
  • the combination of first and second antenna and control circuit can be used very flexibly. It is sufficient to connect an antenna cable for the common supply of the antennas and the control circuit.
  • Fig. 1 is a plant in which the new device and the new method are used, referred to in their entirety by the reference numeral 10.
  • the system 10 has a control unit 12 and a plurality of remote I / O (input / output) units 14, 16, 18.
  • An electrical drive 20 is connected to the I / O unit 16.
  • This is an electric drive for a robot or other machine for the automated machining of workpieces (not shown here).
  • the drive 20 is powered by the I / O unit 16 and therefore can be turned off by the I / O unit 16.
  • To the I / O units 14 and 18, a photocell 22 is connected in each case.
  • the light barriers 22 secure the robot or the electrical machine against dangerous intervention from the outside.
  • the light barriers 22 are typical examples of sensors whose signal states are read in by the control unit 12 in order to generate control signals in response to which the drive 20 can be switched off.
  • the control unit 12 and the I / O units 14, 16, 18 together form a safety-relevant control system in the sense of the standards EN 954-1, IEC 61508 and / or EN ISO 13849-1.
  • the control unit 12 and the I / O units 14, 16, 18 are each designed to be fail-safe in the sense of category 3 and higher of EN 954-1.
  • the safety-related parts of the control unit 12 and the I / O units 14, 16, 18 are of redundant construction and perform regular functional tests to ensure that the drive 20 is switched off even if a fault occurs.
  • the control unit 12 also includes the operation control of the drive 20, ie the control of the normal working movements of the robot or the machine.
  • the control unit 12 could also be a pure operation control and the safety-relevant control functions could be controlled by a further control unit (not shown here) which is installed, for example, in the control cabinet of the robot or the machine.
  • control unit 12 has a signal and data processing part 24, which is constructed redundantly.
  • the signal and data processing part 24 has two processors 26a, 26b, which operate redundantly to each other and monitor each other.
  • the processors 26a, 26b can access a memory 28 in which the control program for the system 10 is stored.
  • the control unit 12 further has a communication interface 30, which is here connected to two antennas 32, 34.
  • the two antennas 32, 34 are integrated into a diversity antenna, wherein the two antennas 32, 34 are arranged in preferred examples with a lateral distance of ⁇ / 4 to each other. In other embodiments, it may be two separate antennas, such as ⁇ / 2-rod antennas, which are arranged with a lateral distance of ⁇ / 4 to each other ..
  • the signal and data processing part 24 communicates via the communication interface 30 with the remote I / O -Units 14, 16, 18 to read the signal states of the sensors 22 and output the control commands for the drive 20.
  • Each I / O unit 14, 16, 18 has an antenna 36 and a communication interface 38.
  • the I / O units 14, 16, 18 communicate with the control unit 12 via the antenna 36 and communication interface 38 to transmit the sensor signals and receive the control commands.
  • the communication interfaces 30, 38 transmit and receive high-frequency radio signals 40, 42.
  • the frequency of the radio signals 40, 42 is about 2.4 GHz.
  • Each radio signal consists of a large number of time-sequential signal bursts (so-called bursts), between which there are temporal pauses.
  • the high-frequency signal packets transmit so-called telegrams 46, in which the data are encoded, which are exchanged between the control unit 12 and the I / O units 14, 16, 18.
  • the control unit 12 communicates in sequence with the individual I / O units 14, 16, 18, which are distinguished by addresses which are part of the Telegrams 46 are sent. Each addressed I / O unit 14, 16, 18 responds to a transmission telegram of the control unit 12 with a corresponding response telegram.
  • the control unit 12 alternately uses one of the antennas 32, 34 for this communication, wherein the change between the antennas 32, 34 occurs in each case in a preferred embodiment, when the control unit 12 transmits a transmission signal packet to an I / O unit 14, 16, 18 and has received a corresponding received signal packet.
  • the change between the antennas 32, 34 (and possibly other antennas, which are not shown here) is possible according to another scheme.
  • Fig. 2 shows a preferred embodiment for the communication interface 30 of the control unit 12.
  • the communication interfaces 38 in the I / O units can be equipped with multiple antennas.
  • simple antennas and communication interfaces 38 are used in the I / O units 14, 16, 18.
  • the communication interface 30 to a signal coupler 50 which is connected via a signal path 52 and an antenna switch 54 with the two antennas 32, 34.
  • the antenna switcher 54 is configured to selectively connect the signal path 52 to the antenna 32 or the antenna 34.
  • the signal coupler 50 has four ports here. At a first terminal 56, the signal path 52 is connected. At a second terminal 58, a control circuit 59 is connected, whose function is explained below. At a further connection 60, a transmitter 62 is connected here. At a fourth port 64, a receiver 66 is connected.
  • the signal coupler 50 is designed so that a high-frequency transmission signal of the transmitter 62, which is fed to the terminal 60, is distributed to the terminals 56, 58, wherein the first partial signal at the terminal 56 has a much higher power than the second partial signal the connection 58. In one embodiment, the coupling loss is between terminals 60 and 58 between about 16 dB.
  • the coupling loss between the terminals 58 and 56 is greater than 20 dB and preferably even greater than 30 dB. In a preferred embodiment, the coupling loss between terminals 58 and 56 is about 35 dB. This high coupling damping ensures that signal components which are generated in the control circuit 59 are not emitted via the antennas 32, 34.
  • the high-frequency received signal is transmitted via the signal path 52 and split here to the terminals 58 and 64.
  • the signal coupler 50 may use only the ports 56, 58, 60 and the sharing of the antenna signals between the transmitter 62 and the receiver 66 is via another switch (not shown) connected to the port 60.
  • the control circuit 59 has at its input an impedance converter 68, which is preferably realized in microstrip technology.
  • the impedance converter 68 serves to match the impedance of the signal path 52 to the impedance of the subsequent rectifier circuit 70.
  • the rectifier circuit 70 here includes a Schottky diode and a so-called charge pump (not shown).
  • the rectifier circuit 70 is configured to convert the high-frequency antenna signal on the signal path 52 into a pulsating DC voltage, which in FIG Fig. 3 at reference numeral 71 is shown.
  • Each pulse of the pulsating DC voltage 71 represents a signal packet 44 Fig. 3 can recognize, follow here two signal packets 44a, 44b relatively close to each other.
  • the signal packets 44a here are transmission signal packets, which are transmitted via one of the antennas 32, 34.
  • the signal packets 44b are received signal packets which are received via one of the antennas 32, 34.
  • a first branch of the control circuit 59 includes a differentiator 72, a Comparator 74 and a flip-flop 76.
  • the differentiator 72 serves as an edge detector. It generates a signal 73 with a plurality of needle pulses, each needle pulse corresponding to a rising edge of the pulsating DC voltage 71.
  • the comparator 74 serves as a pulse shaper, which forms from the needle pulses of the signal 73 rectangular pulses with which the flip-flop 76 is triggered.
  • At the output of the flip-flop 76 is an antenna switching signal (Q and nQ) available, which in Fig. 3 at reference numeral 77 is shown.
  • the flip-flop 76 alternately switches the antenna switch 54 so that the antenna 32 and the antenna 34 are alternately used for transmission and reception.
  • the pulsating voltage 71 is conducted at the output of the rectifier circuit 70 via a diode 78 to a so-called buffer limiter 80.
  • Buffer limiter 80 is a storage and limiting circuit that smoothes the pulsating DC voltage.
  • the smoothed DC voltage at the output of the buffer limiter 80 is fed to a DC / DC converter 82, which generates a regulated DC voltage 83.
  • the regulated DC voltage is in Fig. 4 at reference numeral 83.
  • the curve 81 below shows the pulsating DC voltage at the input of the buffer limiter 80.
  • a storage capacitor 84 is arranged, which stores the regulated DC voltage 83.
  • the stored DC voltage 83 serves as the operating voltage with which the electronic components of the control circuit 59, in particular the differentiator 72, the comparator 74 and the flip-flop 76 are supplied.
  • the antenna switch 54 is controlled with the output Q and with the negated output nQ of the flip-flop 76 so that the antennas 32, 34 alternately emit the transmission signals of the control unit 12.
  • an antenna change takes place here so that two successive transmission bursts are emitted via different antennas.
  • the change from one antenna to another takes place after the corresponding received signal has been received by the addressed I / O unit.
  • the control unit 12 it is also possible for the control unit 12 to transmit its transmission signals via one of the two Antennas 30, 32 sends out until a change to the other antenna is caused by the fact that a corresponding received signal is missing.
  • the control unit 12 repeats a transmission telegram if a corresponding reception telegram is omitted in response.
  • the control unit 12 transmits transmit signals at defined periodic intervals. Accordingly, it is possible to switch over from one antenna to the other at the defined time intervals. Furthermore, the periodically occurring transmission signal packets and received signal packets supply the control circuit 59 with energy, from which the operating voltage is generated with the aid of the DC / DC converter 82. The storage capacitor 84 ensures that short voltage dips can be bypassed if the transmission and / or reception of signals is delayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Selective Calling Equipment (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (9)

  1. Dispositif de mise en réseau sans fil d'appareils d'automatisme, notamment pour la mise en réseau de capteurs (22) déportés, d'actionneurs (20) et d'une unité de commande centrale (12), comprenant un trajet de signal (52) pour transmettre un signal à haute fréquence (44) qui possède une pluralité de paquets de signaux (44a, 44b) qui se suivent chronologiquement, une première et une deuxième antenne (30, 32), un inverseur d'antenne (54) qui relie le trajet du signal (52), au choix, avec la première ou la deuxième antenne (30, 32), un circuit de commande (59) qui est conçu pour générer un signal d'inversion à basse fréquence pour le commutateur d'antenne (54) à partir des paquets de signaux (44a, 44b) consécutifs, caractérisé en ce que le circuit de commande (59) présente un circuit de commutation de tension continue (82) qui est conçu pour générer une tension continue régulée (83) à partir du signal à haute fréquence, laquelle est disponible en tant que tension de service pour les composants (72, 74, 76) du circuit de commande (59).
  2. Dispositif selon la revendication 1, caractérisé par un coupleur de signal (50) comprenant au moins trois bornes (56, 58, 60) pour diviser le signal à haute fréquence en signaux partiels, une première borne (56) étant relié avec le trajet du signal (52) et une deuxième borne (58) étant reliée avec le circuit de commande (59).
  3. Dispositif selon la revendication 2, caractérisé en ce que le coupleur de signal (50) est conçu pour générer un premier signal partiel ayant une première puissance de signal plus élevée et un deuxième signal partiel ayant une deuxième puissance de signal plus faible, le deuxième signal partiel étant acheminé au circuit de commande (59).
  4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que le circuit de commande possède un générateur d'impulsions (72) qui est conçu pour générer une pluralité d'impulsions (73) en fonction des paquets de signaux (44a, 44b), la pluralité d'impulsions représentant le signal d'inversion.
  5. Dispositif selon la revendication 4, caractérisé par un étage bascule bistable (76) qui reçoit la pluralité d'impulsions en vue de générer le signal d'inversion (77).
  6. Dispositif selon l'une des revendications 2 à 5, caractérisé par un émetteur (62) pour générer un signal d'émission à haute fréquence et un récepteur (66) pour recevoir un signal de réception à haute fréquence, l'émetteur (62) et le récepteur (66) étant connectés avec le trajet du signal (52) par le biais du coupleur de signal (50).
  7. Procédé de mise en réseau sans fil d'appareils d'automatisme, notamment pour la mise en réseau de capteurs (22) déportés, d'actionneurs (20) et d'une unité de commande centrale (12), comprenant les étapes suivantes:
    mise à disposition d'une première et d'une deuxième antenne (30, 32),
    mise à disposition d'un inverseur d'antenne (54) qui est relié avec la première et la deuxième antenne (30, 32),
    génération d'un signal à haute fréquence (44) qui possède une pluralité de paquets de signaux (44a, 44b) qui se suivent chronologiquement,
    génération d'un signal d'inversion à basse fréquence (77) à partir des paquets de signaux (44a, 44b) consécutifs, et
    commutation entre la première et la deuxième antenne (30, 32) en commandant périodiquement l'inverseur d'antenne (54) avec le signal d'inversion à basse fréquence (77), caractérisé en ce
    qu'une tension continue régulée (83) est en outre générée à partir du signal d'émission à haute fréquence (44), laquelle est utilisée en tant que tension de service pour l'inversion de l'inverseur d'antenne (54).
  8. Procédé selon la revendication 7, caractérisé en ce que la pluralité de paquets de signaux (44a, 44b) qui se suivent chronologiquement contient des paires de paquets de signaux consécutifs, l'inverseur d'antenne (54) étant inversé après chaque paire.
  9. Procédé selon la revendication 8, caractérisé en ce que les paires de paquets de signaux (44a, 44b) contiennent respectivement un paquet de signal d'émission (44a) et un paquet de signal de réception (44b).
EP08854823A 2007-11-26 2008-11-15 Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation Active EP2215615B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007058258A DE102007058258A1 (de) 2007-11-26 2007-11-26 Vorrichtung und Verfahren zur drahtlosen Vernetzung von Geräten der Automatisierungstechnik
PCT/EP2008/009689 WO2009068198A2 (fr) 2007-11-26 2008-11-15 Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation

Publications (2)

Publication Number Publication Date
EP2215615A2 EP2215615A2 (fr) 2010-08-11
EP2215615B1 true EP2215615B1 (fr) 2011-05-11

Family

ID=40621024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08854823A Active EP2215615B1 (fr) 2007-11-26 2008-11-15 Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation

Country Status (6)

Country Link
US (1) US20110050402A1 (fr)
EP (1) EP2215615B1 (fr)
AT (1) ATE509336T1 (fr)
DE (1) DE102007058258A1 (fr)
HK (1) HK1144486A1 (fr)
WO (1) WO2009068198A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2328325B1 (fr) * 2009-11-26 2014-01-08 Alcatel Lucent Cadre de gestion et procédé pour extraire des informations d'identification de logiciel appartenant à un capteur dans un réseau
DE102010015650A1 (de) * 2010-04-14 2011-10-20 Pilz Gmbh & Co. Kg Vorrichtung zur drahtlosen Vernetzung von Geräten der Automatisierungstechnik
US9342980B2 (en) * 2012-09-12 2016-05-17 Panasonic Intellectual Property Corporation Of America Communication apparatus, which communicates with an external terminal, method of controlling a communication apparatus which communicates with an external terminal, program, and server

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566133A (en) * 1982-12-27 1986-01-21 Commtech International Switched diversity method and apparatus for FM receivers
US4977616A (en) * 1987-11-30 1990-12-11 Motorola, Inc. Antenna selection control circuit
JP3100716B2 (ja) * 1991-01-04 2000-10-23 シーエスアイアール 識別装置
US5329555A (en) * 1992-09-09 1994-07-12 Motorola, Inc. Method and apparatus for antenna diversity in a wireless communication system
JPH08321785A (ja) * 1995-05-24 1996-12-03 Sony Corp 送信機,受信機,送信方法,受信方法及び伝送方法
DE19621199A1 (de) * 1996-05-25 1997-11-27 Bosch Gmbh Robert Verfahren und Verringerung von Schwund
DE19653443A1 (de) * 1996-09-13 1998-03-19 Fraunhofer Ges Forschung Datenfunknetz
US6795508B1 (en) * 1997-12-02 2004-09-21 Qualcomm, Incorporated Method and apparatus for obtaining transmit diversity using switched antennas
FI111438B (fi) * 1999-07-09 2003-07-15 Nokia Corp Symbolijonon lähetysmenetelmä
US6882128B1 (en) * 2000-09-27 2005-04-19 Science Applications International Corporation Method and system for energy reclamation and reuse
US8996698B1 (en) * 2000-11-03 2015-03-31 Truphone Limited Cooperative network for mobile internet access
AT411631B (de) * 2001-05-21 2004-03-25 Siemens Ag Oesterreich Industrielle steuerung
US8090381B2 (en) * 2001-11-20 2012-01-03 At&T Intellectual Property Ii, L.P. Protocol assisted switched diversity of antennas
FR2843240B1 (fr) * 2002-08-05 2008-03-21 Siemens Vdo Automotive Procede de commande d'antennes d'un systeme mains libres d'un vehicule automobile et dispositif correspondant
DE102005017335B3 (de) * 2005-03-09 2006-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Protokollgesteuerte Antennenselektion
JP4602808B2 (ja) * 2005-03-18 2010-12-22 富士通株式会社 アンテナ切換器
FI20065108A0 (fi) * 2006-02-13 2006-02-13 Nokia Corp Tiedonsiirtomenetelmä, lähetinvastaanotin ja tietoliikennejärjestelmä
US20070296583A1 (en) * 2006-06-21 2007-12-27 Broadcom Corporation, A California Corporation Integrated circuit assembly including RFID and components thereof

Also Published As

Publication number Publication date
HK1144486A1 (en) 2011-02-18
DE102007058258A1 (de) 2009-06-10
WO2009068198A2 (fr) 2009-06-04
ATE509336T1 (de) 2011-05-15
WO2009068198A3 (fr) 2009-08-27
EP2215615A2 (fr) 2010-08-11
US20110050402A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
DE602004011201T2 (de) Paketkommunikation zwischen einer sammeleinheit und einer vielzahl von steuervorrichtungen über die stromversorgung
EP2681632B1 (fr) Système de bus avec un maître et un groupe d'esclaves et procédé de communication pour échanger des données dans un tel système de bus
EP0344609B1 (fr) Système de transmission numérique pour installations domestiques
DE102013207760B4 (de) Elektrisches Interfacemodul
EP2215614B1 (fr) Procédé pour la transmission de données entre une unité de commande et une pluralité d'unités d'e/s décentralisées d'une installation automatisée
EP2002413B1 (fr) Canal de transmission bidirectionnel séparé galvaniquement
EP2204014B1 (fr) Procédé de communication et système maître-esclave pour un bus de champ de conception conforme à la norme d'interface actionneur-capteur
EP2031625B1 (fr) Procédé de reconnaissance de composants dans une installation de commutation à basse tension électrique
EP3632052A1 (fr) Unité de module permettant de connecter un abonné de bus de données
EP2215615B1 (fr) Dispositif et procédé pour la mise en réseau sans fil d'appareils utilisés en automatisation
EP1672446B1 (fr) Module d'entrée/sortie sécurisé pour un controleur
EP1687681A2 (fr) Reseau, notamment reseau pa profibus, a proprietes de redondance, element de ramification pour appareil d'abonne dans un reseau de ce type, gestionnaire de redondance pour un reseau de ce type et procede pour faire fonctionner un reseau de ce type
DE102017213365B4 (de) Kommunikationsvorrichtung, System und Verfahren
EP2031626B1 (fr) Dispositif de commutation à basse tension électrique
EP3632049B1 (fr) Émission de signal d'état
EP2778811A1 (fr) Dispositif pour un système d'interface AS
WO2015164897A1 (fr) Procédé pour la régulation souple de flux de données temporisés dans un système informatique distribué
DE102014224642B3 (de) Feldbuskommunikationsmodul
EP3441832A1 (fr) Commande modulaire par programme enregistré
EP3632054B1 (fr) Determination de noeuds d'un bus de données local
DE4232922C2 (de) Anordnung zur Datenübertragung in Prozeßleitsystemen
DE10258919A1 (de) Vorrichtung, System und Verfahren zur Schaltstellungssignalisierung eines Schaltgerätes
DE202008003988U1 (de) Busknoten eines Profinet-Bussystems
DE19606940B4 (de) Asynchrones Bussystem mit gemeinsamer Informations- und Energieübertragung auf der Basis einer maximal zweiadrigen Leitung
EP1091331B1 (fr) Poste d'abonné d'un système d'installation radio

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100625

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1144486

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003536

Country of ref document: DE

Effective date: 20110622

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1144486

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120214

BERE Be: lapsed

Owner name: PILZ G.M.B.H. & CO. KG

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003536

Country of ref document: DE

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110811

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131120

Year of fee payment: 6

Ref country code: CH

Payment date: 20131121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131122

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 509336

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231228

Year of fee payment: 16