EP2207950B1 - Exhaust gas manifold for internal combustion engines - Google Patents

Exhaust gas manifold for internal combustion engines Download PDF

Info

Publication number
EP2207950B1
EP2207950B1 EP08847012A EP08847012A EP2207950B1 EP 2207950 B1 EP2207950 B1 EP 2207950B1 EP 08847012 A EP08847012 A EP 08847012A EP 08847012 A EP08847012 A EP 08847012A EP 2207950 B1 EP2207950 B1 EP 2207950B1
Authority
EP
European Patent Office
Prior art keywords
flange
collar
inner shell
outer shell
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08847012A
Other languages
German (de)
French (fr)
Other versions
EP2207950A1 (en
Inventor
Thomas Weidner
Andreas Steigert
Markus Geminn
Margit Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenneco GmbH
Original Assignee
Heinrich Gillet GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinrich Gillet GmbH filed Critical Heinrich Gillet GmbH
Publication of EP2207950A1 publication Critical patent/EP2207950A1/en
Application granted granted Critical
Publication of EP2207950B1 publication Critical patent/EP2207950B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/105Other arrangements or adaptations of exhaust conduits of exhaust manifolds having the form of a chamber directly connected to the cylinder head, e.g. without having tubes connected between cylinder head and chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1827Sealings specially adapted for exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1838Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
    • F01N13/1844Mechanical joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/10Exhaust treating devices having provisions not otherwise provided for for avoiding stress caused by expansions or contractions due to temperature variations

Definitions

  • the invention relates to air gap-insulated exhaust manifolds for internal combustion engines according to the preamble of claim 1.
  • Air gap insulated exhaust manifolds essentially comprise a manifold for the engine exhaust, consisting of an inner and an outer shell construction, which are isolated from each other by an air gap. This collecting housing is also provided with a plurality of flanges, which connect to the corresponding outlets of the cylinder head of the internal combustion engine. Air gap insulated exhaust manifolds are prior art, especially in motor vehicles equipped with catalytic converters.
  • a catalyst requires a relatively high minimum temperature in order to efficiently carry out the exhaust gas conversion. This so-called light-off temperature is about 250 ° C.
  • the hot exhaust gases flowing from the cylinder chamber into the exhaust manifold after engine starting, which are then forwarded for conversion into the catalyst are themselves the only heat source for activating the catalyst.
  • the thin-walled wall panel of the inner shell structure in the exhaust manifold quickly reaches the exhaust gas temperature of up to 900 ° C, without withdrawing the exhaust gas flow significantly heat.
  • the heat losses to the outer shell and thus finally kept small in the engine compartment by the insulating acting air gap does not exceed a temperature of 500 ° C even during prolonged engine operation.
  • Critical areas for unwanted heat losses on the inner shell and thus also heat losses of the exhaust gas flow are the areas where the inner shell in direct contact with the colder outer shell and especially the considerable colder flanges, which are approximately the temperature of the water-cooled cylinder head of max. 120 ° C is located. The reason for this is that in these areas the heat transfer takes place by heat conduction. From the warmer inner shell, the heat flows by transferring the kinetic energy of the atoms to the colder outer shell, or to the colder flanges.
  • the present invention has for its object to construct an exhaust manifold so that the inner shell for a fixed, that is stored vibration-free and that on the other hand, the thermal expansion of the inner shell relative to the flange and outer shell, especially in the temperature changes in the phase shortly after Start and stop of the engine, is made possible without these thermal expansions have a negative impact on the vibration-free mounting of the inner shell.
  • An essential advantage of the exhaust manifold according to the invention is that it consists of only three components: the flange, a hood-shaped outer shell, which is connected via its peripheral collar with the flange, and an inner shell, which has the same hood-shaped shell shape as the outer shell and with her Collar between the collar of the outer shell and the flange is clamped.
  • Characteristic feature of the present invention is that the inner shell is clamped by bulges along its collar surface between the outer shell and the flange in a fixed, defined position. So there are no other parts such as fasteners or sealing devices necessary.
  • the outer shell is welded or soldered to the flange. In the case of soldering the flange is formed as a sheet metal part, which is crimped at the edges around the edge of the outer shell.
  • the Fig. 1 shows an isometric view of an exhaust manifold
  • the Fig. 2 to 8 show in each case in the form of longitudinal or cross sections different embodiments of the positionally fixed attachment of the inner shell in the region between the outer shell and the flange.
  • a flange 11, which is attached to a cylinder head, not shown, of the internal combustion engine is covered on the gas outlet side with a gas-tight outer shell 20, in turn, an inner shell 30 is introduced.
  • the design of the outer shell 20 does not change. It is formed of sheet metal (eg 2 mm wall thickness) and consists of a hood-shaped upper part 21, to which a circumferential collar 22 connects, which is connected to the flange 11.
  • outer shell collar 22 is also a characteristic feature of the present invention: it consists of a directly adjacent to the hood-shaped sheet metal upper part 21, inner collar segment 22 ', which extends parallel to the surface of the flange 11, and from a via an oblique Sheet segment 23 subsequent, outer collar segment 22 ", which rests on the flange 11, and is connected to it by welding or soldering.
  • the inner shell 30 has in its hood-shaped upper part 31 the same contour as the upper part 21 of the outer shell 20, with the obvious difference that it is due to their smaller dimensions at a distance of an air gap within the upper part 21 of the outer shell 20.
  • the inner shell collar 32 lies in all embodiments according to the FIGS. 2 to 10 in the air gap between inner outer shell collar 22 'and flange 11.
  • the embodiments in the Fig. 2 to 10 differ only in the geometry of the inner shell collar 22, the design of the flange 11 and in the introduction of additional clamping or guide elements in the waistband area (wire rings 40 and additional sheet 50).
  • Fig. 2 shows an exhaust manifold 10 in cross-section, which has an inner shell 30, the collar 32 rests on the flange 11 and projects into the air gap between the inner outer shell collar 22 'and flange 11.
  • the firm clamping of the inner shell is achieved in that the inner shell collar 32 on its outer edge from the collar surface upwards in the direction of the inner outer shell collar 22 'exiting bulges 33 which rest on the inner outer shell collar 22' punctiform under pressure.
  • the inner shell 30 between the outer shell 20 and flange 11 is firmly clamped punctiform.
  • the hot gases emerging through the flange opening 13 from the cylinder, not shown, cause a thermal expansion of the gas-carrying inner shell 30.
  • Fig. 3 shows a modification of the in Fig. 2 illustrated inner shell construction.
  • the inner shell collar 32 rests against the inner outer shell collar 22 'and the bulges 33 on the edge of the inner shell collar 32 are consequently formed on the lower side, the flange side, in the form of a nub in punctiform contact with the flange 11.
  • exhaust gas could flow into the air gap between the inner outer shell collar 22 'and the flange 11 from the gas-carrying inner shell 30 through the intermediate space between the bulges 33.
  • Fig. 4 shows an embodiment in which the inner shell collar 32, without an unfavorable wide bearing surface with outer shell 30 or flange 11 to form, is placed centrally in the air gap between the inner outer shell collar 22 'and flange 11.
  • the positionally fixed support of the inner shell 30 is achieved in that the bulges 33 are formed on both sides of the edge of the inner shell collar 32 and so fix the inner shell 30 by punctiform support on the inner outer shell collar 22 'and the flange 11.
  • This design is particularly loss, because here surface-like bearing surfaces between inner shell collar 32 and flange 11 and inner outer shell collar 22 'are not present, but the inner shell 30 is fixed only by punctiform support pads on the bulges 33 at the edge of the inner shell collar 32.
  • Fig. 5 shows a longitudinal section along the line IV-IV through the bulges 33 of the inner shell collar of Fig. 4 ,
  • the bulges 33 are distributed uniformly wave-shaped at the edge of the inner shell collar 32 and are supported at the top of the outer shell collar 22 'and at the bottom of the flange 11.
  • Fig. 6 shows the cross section of another embodiment of the exhaust manifold 10.
  • the inner shell collar 32 is as in the embodiment in Fig. 3 represented on the inner outer shell collar 22 'on.
  • the bulges 33 of the inner shell collar 32 are as in Fig. 3 nubbed down, formed against the surface of the flange 11, but not at the edge of the inner shell collar 32 but slightly indented, so that the bulges 33 still follows a straight, undeformed collar segment, the inner outer shell collar 22 'is applied.
  • Fig. 7 shows a structure similar to that in FIG Fig. 6 illustrated embodiment.
  • the bulges 33 do not extend to the surface of the flange 11.
  • the fixed clamping of the inner shell 30 is achieved by wire rings 40 which are inserted between inner shell collar 32 and flange 11.
  • the wire rings 40 are like this inserted, that the bulges 33 of the inner shell collar 32 are located between them, so that the wire rings 40 are thereby fixed in the transverse direction.
  • the inner shell 30 is thus not clamped directly between the flange 11 and outer shell collar 22, but indirectly between the resting on the flange 11 wire rings 40 and the outer shell collar 22.
  • the bulges 33 of the inner shell collar 32 act in this embodiment as guides for the wire rings 40th Die Drahtringe 40 serve not only as Verklemmungsetti for the inner shell 30 but also as guide elements along which the inner shell 30 can slide in thermal expansion. Another advantage is that the contact surface and consequently also the associated heat losses between wire rings 40 and gas-carrying inner shell 32 is small.
  • Fig. 8 shows the cross section of another embodiment, according to the embodiment according to Fig. 4 the protrusions 33 unfolding the clamping action of the inner shell collar 32 are formed on both sides.
  • the bulges 33 are formed at a distance from the edge of the inner shell collar 32 and the bulges 32 is still followed by a straight undeformed part of the inner shell collar 32.
  • the flange 11 is here as the shells 20, 30 of the exhaust manifold 10 formed as a sheet metal part.
  • the sheet metal of the flange 11 is crimped at its edges around the outer collar 22 'of the outer shell 20.
  • This flanging has the advantage that flange 11 and outer shell 20 are held together, and that a soldering of the outer shell 20 with the flange 11 along the outer outer shell collar 22 'is possible.
  • the sheet metal design of the flange 11 offers the advantage that the opening 13 of the flange 11 can be bent upwards into the exhaust manifold 10, wherein the diameter of the flange opening 13 easily merges, similar to a nozzle.
  • This nozzle-like shape of the flange opening 13 offers the advantage that the heat of the exhaust gas is quickly led away from the flange 11.
  • Fig. 9 represents a longitudinal section along the line IX-IX through the bulges 33 of the inner shell collar 32 in Fig. 8
  • the bulges 33 of the inner shell collar 32 are designed here uniformly wave-shaped and are supported alternately upwards against the inner outer shell collar 22 'and down against the sheet-formed Flange 11 from.
  • These protrusions 33 are always in contact only via small, almost punctiform zones with outer shell 20 and flange 11. Consequently, the heat losses by heat conduction remain low.
  • Fig. 10 shows the cross section of a further embodiment in which the bulges of the inner shell collar 32 at a distance from the edge and on one side up against the inner outer shell collar 22 'are formed.
  • the inner shell collar 32 is not on the underside on the flange 11, but is guided centrally in the air gap between the inner outer shell collar 22 'and flange 11.
  • the fixed position clamping is achieved by an additional plate 50 which is inserted between inner shell collar 32 and flange 11.
  • this additional sheet 50 is also not over its entire surface on the relatively cold flange 11, but is by a similar shape design as the inner shell collar 32 only in ddlingförmigem contact with the flange 11.
  • the additional sheet 50 everywhere, where the Inner shell collar 32 bulges 33, also bulges 52, which are opposite in mirror image.
  • the additional sheet 50 has an opening 51 which coincides with the nozzle diameter of the flange opening 13.
  • the edge surface of the opening 51 of the additional sheet 50 is flush with the inwardly tapered plate of the flange opening 13. The position-resistant clamping of the inner shell 30 thus takes place between the contact points of the bulges 33 of the inner shell collar 32 on the inner outer shell collar 22 'and the support of the inner shell collar 32 on the additional sheet 50.
  • a further advantage of this embodiment is that between additional sheet 50 and flange 11, a further air gap 60 is formed, which isolates the flowing through the flange opening 13 hot exhaust gas stream (temperature at about 900 ° C) from the surface of the flange 11. This is particularly advantageous because the flange 11 remains relatively cool even in the operating condition of the engine, as it is flatly mounted on the water-cooled cylinder block (temperature up to 120 ° C). As a result, the undesired heat losses of the exhaust gas flow are further reduced by this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

The invention relates to an airgap-insulated exhaust gas manifold (10) for internal combustion engines. The exhaust gas manifold (10) according to the invention comprises three components: an outer shell (20), an inner shell (30), and a flange (11) joined to the internal combustion engine. The outer shell (20) and the inner shell (30) are each designed in the shape of a hood and each comprise a circumferential collar (22, 32), wherein the outer shell collar (22'') is connected to the flange (11) and the inner shell collar (32) is in turn clamped between the outer shell collar (22') and the flange (11). In order to effect said clamping, a plurality of knob- or wave-shaped bulges (33) are formed on the inner shell collar (32) that rest in points against the outer shell collar (22') or the flange (11). Said clamping does not interfere with the heat expansion of the inner shell (30) parallel to the flange (11) when in the operational state.

Description

Technisches Gebiet:Technical area:

Die Erfindung betrifft luftspaltisolierte Abgaskrümmer für Brennkraftmaschinen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to air gap-insulated exhaust manifolds for internal combustion engines according to the preamble of claim 1.

Stand der Technik:State of the art:

Luftspaltisolierte Abgaskrümmer umfassen im Wesentlichen ein Sammelgehäuse für die Motorabgase, bestehend aus einer Innen- und einer Außenschalenkonstruktion, welche durch einen Luftspalt voneinander isoliert sind. Dieses Sammelgehäuse ist zudem mit mehreren Flanschen versehen, die an den entsprechenden Auslässen des Zylinderkopfes der Brennkraftmaschine anschließen. Luftspaltisolierte Abgaskrümmer gehören insbesondere bei mit Katalysator ausgestatteten Kraftfahrzeugen zum Stand der Technik. Hier setzen luftspaltisolierte Abgaskrümmer, wie sie aus DE 101 02 637 bekannt sind, mit den ihnen innewohnenden Vorteilen an: einerseits mit ihrer geringen "thermischen Masse" durch eine möglichst dünnwandige Auslegung der gasführenden Innenschale (kleiner 1 mm), andererseits mit ihren geringen Wärmeverlusten, bedingt durch den als zusätzliche Wärmeisolation wirkenden Luftspalt zwischen Innen- und Außenschale.Air gap insulated exhaust manifolds essentially comprise a manifold for the engine exhaust, consisting of an inner and an outer shell construction, which are isolated from each other by an air gap. This collecting housing is also provided with a plurality of flanges, which connect to the corresponding outlets of the cylinder head of the internal combustion engine. Air gap insulated exhaust manifolds are prior art, especially in motor vehicles equipped with catalytic converters. This is where air gap insulated exhaust manifolds set out DE 101 02 637 are known, with their inherent advantages: on the one hand with their low "thermal mass" by a thin-walled as possible design of the gas-conducting inner shell (less than 1 mm), on the other hand with their low heat losses, due to acting as additional heat insulation air gap between indoor and outer shell.

Ein Katalysator benötigt eine relativ hohe Mindesttemperatur, um die Abgasumwandlung effizient vornehmen zu können. Diese sogenannte Anspringtemperatur liegt bei etwa 250 °C. So sind die nach dem Motorstart aus dem Zylinderraum in den Abgaskrümmer strömenden heißen Abgase, die dann zur Konvertierung in den Katalysator weitergeleitet werden, selbst die einzige Wärmequelle zur Aktivierung des Katalysators. Vorteilsmäßig nimmt das dünnwandige Wandblech der Innenschalenstruktur im Abgaskrümmer schnell die Abgastemperatur von bis zu 900 °C an, ohne dem Abgasstrom nennenswert Wärme zu entziehen. Des Weiteren vorteilsmäßig werden die Wärmeverluste zur Außenschale und damit schließlich in den Motorraum durch den isolierend wirkenden Luftspalt klein gehalten. Die Außenschale des Abgaskrümmers überschreitet selbst bei längerem Motorbetrieb eine Temperatur von 500 °C nicht.A catalyst requires a relatively high minimum temperature in order to efficiently carry out the exhaust gas conversion. This so-called light-off temperature is about 250 ° C. Thus, the hot exhaust gases flowing from the cylinder chamber into the exhaust manifold after engine starting, which are then forwarded for conversion into the catalyst, are themselves the only heat source for activating the catalyst. Advantageously, the thin-walled wall panel of the inner shell structure in the exhaust manifold quickly reaches the exhaust gas temperature of up to 900 ° C, without withdrawing the exhaust gas flow significantly heat. Furthermore, advantageously, the heat losses to the outer shell and thus finally kept small in the engine compartment by the insulating acting air gap. The outer shell of the exhaust manifold does not exceed a temperature of 500 ° C even during prolonged engine operation.

Kritische Bereiche für unerwünschte Wärmeverluste an der Innenschale und damit demzufolge auch Wärmeverluste des Abgasstromes sind die Bereiche, an denen sich die Innenschale in direktem Kontakt mit der kälteren Außenschale und vor allem den erheblich kälteren Flanschen, die ungefähr die Temperatur des wassergekühlten Zylinderkopfes von max. 120 °C annehmen, befindet. Ursache dafür ist, dass in diesen Bereichen die Wärmeübertragung durch Wärmeleitung stattfindet. Von der wärmeren Innenschale fließt die Wärme durch Übertragung der kinetischen Energie der Atome zur kälteren Außenschale, bzw. zu den kälteren Flanschen. Dieser Weg der Wärmeübertragung zwischen Feststoffen durch Wärmeleitung ist erheblich (etwa um den Faktor 1000) stärker als die Wärmeübertragung durch Konvektion (= Übergang an das strömende Medium) und durch Wärmestrahlung, die in den übrigen Bereichen der vom Luftspalt umgebenen Innenschale für die Wärmeverluste verantwortlich sind. Andererseits sind solche Kontaktbereiche unvermeidbar, weil man die Innenschalenstruktur aus Stabilitätsgründen befestigen muss und sie nicht in der Außenschalenstruktur lose einsetzen kann. Dabei ist eine Befestigung der Innenschale ohne Klappergeräusche und ohne Spiel wichtig, um unerwünschte Vibrationen, die zu einer zusätzlichen Geräuschemissionsquelle werden, auszuschließen. Demzufolge muss für eine effektive Fixierung der Innenschale im Abgaskrümmer Sorge getragen werden.Critical areas for unwanted heat losses on the inner shell and thus also heat losses of the exhaust gas flow are the areas where the inner shell in direct contact with the colder outer shell and especially the considerable colder flanges, which are approximately the temperature of the water-cooled cylinder head of max. 120 ° C is located. The reason for this is that in these areas the heat transfer takes place by heat conduction. From the warmer inner shell, the heat flows by transferring the kinetic energy of the atoms to the colder outer shell, or to the colder flanges. This way of heat transfer between solids by heat conduction is considerably (about a factor of 1000) stronger than the heat transfer by convection (= transition to the flowing medium) and by thermal radiation, which are responsible for the heat losses in the other areas of the inner shell surrounded by the air gap , On the other hand, such contact areas are unavoidable because you have to fix the inner shell structure for stability reasons and they can not use loosely in the outer shell structure. In this case, an attachment of the inner shell without rattling noises and without play important to eliminate unwanted vibrations, which will become an additional noise emission source. Consequently, care must be taken to effectively fix the inner shell in the exhaust manifold.

Diese Fixierung geschieht, wie in der DE 100 01 287 A1 beschrieben und in der zugehörigen Fig. 13 illustriert, dadurch, dass die Innenschale zwischen Außenschale und Anschlussflansch eingeklemmt wird, wobei die Klemmkraft durch die Befestigungselemente aufgebracht wird, die gleichzeitig für die Befestigung von Außenschale und Flansch am Zylinderkopf verantwortlich sind. In der EP 0 671 551 A1 wird die Klemmung der Innenschale im Flanschbereich durch die Eigenelastizität der Innenschale bewirkt, deren Rand gegen die Außenschale unter Pressung anliegt.This fixation happens as in the DE 100 01 287 A1 described and illustrated in the accompanying Fig. 13, characterized in that the inner shell between the outer shell and the connection flange is clamped, wherein the clamping force is applied by the fastening elements, which are responsible for the attachment of outer shell and flange on the cylinder head. In the EP 0 671 551 A1 the clamping of the inner shell in the flange is effected by the inherent elasticity of the inner shell, the edge of which bears against the outer shell under pressure.

Aus der WO02/07301 A2 ist ein Abgaskrümmer zur Anbringung an einem Zylinderkopf einer Brennkraftmaschine bekannt, welcher folgende Merkmale aufweist:

  1. 1. Ein Abgassammelgehäuse zur Aufnahme von Abgas aus dem Zylinderkopf.
  2. 2. Einen innerhalb des Abgassammelgehäuses angeordneten Gasführungskanal.
  3. 3. Zwischen dem Abgassammelgehäuse und dem Gasführungskanal befindet sich ein Luftspalt.
  4. 4. Zwischen dem Abgassammelgehäuse und dem Zylinderkopf ist eine Dichtung angeordnet.
  5. 5. Das Abgassammelgehäuse weist Öffnungen auf, durch welche es mit dem Zylinderkopf verschraubt wird.
  6. 6. Der Gasführungskanal ist an seiner dem Zylinderkopf zugewandten Seite mit einem über wenigstens annähernd seinen gesamten Umfang umlaufenden Bund versehen, welcher zumindest mittelbar zwischen dem Abgassammelgehäuse und der Dichtungseinrichtung oder dem Zylinderkopf eingeklemmt ist.
  7. 7. Das Abgassammelgehäuse oder ein gegebenenfalls zwischen dem Abgassammelgehäuse und der Dichtungseinrichtung angeordnetes Niederhalterelement weist einen umlaufenden Rücksprung auf, in welchem der umlaufende Bund des Gasführungskanals derart geführt ist, dass zwischen dem Gasführungskanal und der Dichtungseinrichtung und/oder zwischen dem Gasführungskanal und dem Abgassammelgehäuse durch Wärmeeinwirkung hervorgerufene Bewegungen möglich sind.
From the WO02 / 07301 A2 an exhaust manifold for attachment to a cylinder head of an internal combustion engine is known, which has the following features:
  1. 1. An exhaust manifold for receiving exhaust gas from the cylinder head.
  2. 2. An arranged within the exhaust gas collection housing gas guide channel.
  3. 3. There is an air gap between the exhaust manifold housing and the gas duct.
  4. 4. Between the exhaust manifold and the cylinder head, a seal is arranged.
  5. 5. The exhaust manifold has openings through which it is bolted to the cylinder head.
  6. 6. The gas guide channel is provided on its side facing the cylinder head with a circumferential over at least approximately its entire circumference collar, which is at least indirectly clamped between the exhaust gas collecting housing and the sealing device or the cylinder head.
  7. 7. The exhaust manifold or optionally disposed between the exhaust manifold and the sealing device hold-down element has a circumferential recess in which the circumferential collar of the gas duct is guided such that between the gas duct and the sealing device and / or between the gas duct and the exhaust manifold by heat caused movements are possible.

Alle drei Konstruktionen haben den Nachteil, dass den durch die Wärmeeinwirkung verursachten Bewegungen der Innenschalenstruktur kein oder kein effizient zu kontrollierender Freigang gewährt wird. In der DE 100 01 287 A1 wird unterstellt, dass die Klemmung durch unterschiedliches Anziehen der Schrauben so gesteuert werden könne, dass die thermische Dehnung der Innenschale nicht behindert wird. Das erscheint nicht praktikabel, denn das Anzugsmoment der Zylinderkopfschrauben muss auf jeden Fall so groß gewählt werden, dass der Abgaskrümmer unter Gewährung absoluter Abgas-Dichtheit am Motorblock sitzt. In der EP 0 671 551 A1 ist der thermischen Dehnung der Innenschale keine Rechnung getragen. Während der Erwärmungs- und Abkühlphasen bei Motorstart und -stopp werden Spannungen in die Innenschalenstruktur induziert, die bei dieser Konstruktion auch die Dichtheit der Klemmung beeinträchtigen könnten, da hier quasi selbsthemmend die Eigenelastizität der Innenschale verantwortlich ist für die Pressung gegen die Außenschale und damit für die Gasdichtheit der Innenschalenstruktur.All three constructions have the disadvantage that the movements of the inner shell structure caused by the effect of heat are granted no clearance or no clearance which can be controlled efficiently. In the DE 100 01 287 A1 it is assumed that the clamping can be controlled by different tightening the screws so that the thermal expansion of the inner shell is not hindered. This does not seem practical, because the torque of the cylinder head bolts must be chosen so large in any case, that the exhaust manifold sits on the engine block with absolute exhaust gas tightness. In the EP 0 671 551 A1 the thermal expansion of the inner shell is not taken into account. During the heating and cooling phases at engine start and stop voltages are induced in the inner shell structure, which could affect the tightness of the clamp in this construction, since here virtually self-locking the inherent elasticity of the inner shell is responsible for the pressure against the outer shell and thus for the Gas-tightness of the inner shell structure.

Ähnlich verhält es sich auch bei der Konstruktion der WO02/073010 A2 , da hier der aus stabilem Blech hergestellte innen liegende Gasführungskanal zwischen dem ebenfalls aus stabilem Blech hergestellten äußeren Abgassammelgehäuse und dem Zylinderkopf eingeklemmt wird, wodurch die Klemmkraft wie bei der DE 100 01 287 A1 von der Genauigkeit der Blechbearbeitung bei der Herstellung von Abgassammelgehäuse und Gasführungskanal abhängt. Außerdem ist der innere Gasführungskanal aus zwei Schalenteilen zusammengesetzt, wodurch der Herstellungsaufwand erhöht und das Gewicht vergrößert werden. Das ist unerwünscht.The situation is similar with the construction of the WO02 / 073010 A2 , As here made of stable sheet metal inner gas duct between the also made of sturdy sheet metal outer exhaust manifold and the cylinder head is clamped, whereby the clamping force as in the DE 100 01 287 A1 depends on the accuracy of the sheet metal processing in the manufacture of exhaust manifold and gas duct. In addition, the inner gas duct is composed of two shell parts, whereby the manufacturing cost increases and the weight can be increased. That is undesirable.

Darstellung der Erfindung:Presentation of the invention:

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Abgaskrümmer so zu konstruieren, dass die Innenschale zum Einen fest, das heißt vibrationsfrei gelagert ist und dass zum Anderen die thermische Ausdehnung der Innenschale gegenüber Flansch und Außenschale, vor allem bei den Temperaturänderungen in der Phase kurz nach Start und Stopp des Motors, ermöglicht wird, ohne dass diese Wärmedehnungen negativen Einfluss auf die vibrationsfreie Lagerung der Innenschale haben.The present invention has for its object to construct an exhaust manifold so that the inner shell for a fixed, that is stored vibration-free and that on the other hand, the thermal expansion of the inner shell relative to the flange and outer shell, especially in the temperature changes in the phase shortly after Start and stop of the engine, is made possible without these thermal expansions have a negative impact on the vibration-free mounting of the inner shell.

Erfindungsgemäß wird diese Aufgabe durch die in Anspruch 1 genannten Merkmale gelöst.According to the invention, this object is achieved by the features mentioned in claim 1.

Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.Advantageous developments emerge from the subclaims.

Ein wesentlicher Vorteil des erfindungsgemäßen Abgaskrümmers ist, dass er aus lediglich drei Komponenten besteht: dem Flansch, einer haubenförmigen Außenschale, die über ihren umlaufenden Bund mit dem Flansch verbunden ist, und einer Innenschale, die die gleiche haubenförmige Schalenform aufweist wie die Außenschale und mit ihrem Bund zwischen dem Bund der Außenschale und dem Flansch eingeklemmt ist. Kenzeichnendes Merkmal der vorliegenden Erfindung ist, dass die Innenschale durch Ausbuchtungen entlang ihrer Bundfläche zwischen der Außenschale und dem Flansch in einer festen, definierten Position eingeklemmt wird. Es sind also keine weiteren Teile wie Befestigungselemente oder Dichtungseinrichtungen notwendig. Die Außenschale wird mit dem Flansch verschweißt oder verlötet. Im Falle der Verlötung wird der Flansch als Blechteil ausgebildet, der an den Rändern um den Rand der Außenschale gebördelt wird.An essential advantage of the exhaust manifold according to the invention is that it consists of only three components: the flange, a hood-shaped outer shell, which is connected via its peripheral collar with the flange, and an inner shell, which has the same hood-shaped shell shape as the outer shell and with her Collar between the collar of the outer shell and the flange is clamped. Characteristic feature of the present invention is that the inner shell is clamped by bulges along its collar surface between the outer shell and the flange in a fixed, defined position. So there are no other parts such as fasteners or sealing devices necessary. The outer shell is welded or soldered to the flange. In the case of soldering the flange is formed as a sheet metal part, which is crimped at the edges around the edge of the outer shell.

Kurze Beschreibung der Zeichnungen:Brief description of the drawings:

Anhand der Zeichnungen soll die Erfindung in Form verschiedener Ausführungsbeispiele näher erläutert werden. Es zeigen

Fig. 1
eine Isometrieansicht des Abgaskrümmers,
Fig. 2
einen Querschnitt durch den Abgaskrümmer der Fig. 1,
Fig. 3
einen Querschnitt durch den Abgaskrümmer der Fig. 1 gemäß einer zweiten Ausführungsform,
Fig. 4
einen Querschnitt durch den Abgaskrümmer der Fig. 1 gemäß einer dritten Ausführungsform,
Fig. 5
einen Längsschnitt durch den Abgaskrümmer der Fig. 4 entlang der Linie IV-IV in Fig. 4,
Fig. 6
einen Querschnitt durch den Abgaskrümmer der Fig. 1 gemäß einer vierten Ausführungsform,
Fig. 7
einen Querschnitt durch eine fünfte Ausführungsform,
Fig. 8
einen Querschnitt durch eine sechste Ausführungsform,
Fig. 9
einen Längsschnitt durch den Abgaskrümmer der Fig. 8 entlang der Linie IX-IX der Fig. 8 und
Fig. 10
einen Querschnitt durch eine siebte Ausführungsform.
Reference to the drawings, the invention will be explained in more detail in the form of various embodiments. Show it
Fig. 1
an isometric view of the exhaust manifold,
Fig. 2
a cross section through the exhaust manifold of Fig. 1 .
Fig. 3
a cross section through the exhaust manifold of Fig. 1 according to a second embodiment,
Fig. 4
a cross section through the exhaust manifold of Fig. 1 according to a third embodiment,
Fig. 5
a longitudinal section through the exhaust manifold of Fig. 4 along the line IV-IV in Fig. 4 .
Fig. 6
a cross section through the exhaust manifold of Fig. 1 according to a fourth embodiment,
Fig. 7
a cross section through a fifth embodiment,
Fig. 8
a cross section through a sixth embodiment,
Fig. 9
a longitudinal section through the exhaust manifold of Fig. 8 along the line IX-IX of Fig. 8 and
Fig. 10
a cross section through a seventh embodiment.

Wege zur Ausführung der Erfindung und gewerbliche Anwendbarkeit:Ways to carry out the invention and industrial applicability:

Die Fig. 1 zeigt eine isometrische Gesamtansicht eines Abgaskrümmers, die Fig. 2 bis 8 zeigen jeweils in Form von Längs- bzw. Querschnitten verschiedene Ausführungsformen der positionsfesten Anbringung der Innenschale im Bereich zwischen Außenschale und Flansch.The Fig. 1 shows an isometric view of an exhaust manifold, the Fig. 2 to 8 show in each case in the form of longitudinal or cross sections different embodiments of the positionally fixed attachment of the inner shell in the region between the outer shell and the flange.

Bei allen in den Fig. 2 bis 10 dargestellten Ausführungsformen ist der prinzipielle Aufbau aus drei Basiskomponenten immer gleich: Ein Flansch 11, der an einem nicht dargestellten Zylinderkopf der Brennkraftmaschine befestigt wird, ist auf der Gasaustrittseite mit einer gasdichten Außenschale 20 überdeckt, in die wiederum eine Innenschale 30 eingebracht ist. Die Ausgestaltung der Außenschale 20 ändert sich dabei nicht. Sie ist aus Blech (z.B. 2 mm Wandstärke) geformt und besteht aus einem haubenförmigen Oberteil 21, an das ein umlaufender Bund 22 anschließt, der mit dem Flansch 11 verbunden ist. Die Gestaltung des Außenschalenbundes 22 ist dabei ebenfalls ein kennzeichnendes Merkmal der vorliegenden Erfindung: er besteht aus einem direkt an das haubenförmige Blechoberteil 21 rechtwinklig anschließenden, inneren Bundsegment 22', das in parallelem Abstand zur Fläche des Flansches 11 verläuft, und aus einem über ein schräges Blechsegment 23 anschließenden, äußeren Bundsegment 22", das auf dem Flansch 11 aufliegt, und mit ihm durch Schweißen oder Löten verbunden ist.At all in the Fig. 2 to 10 In the illustrated embodiments, the basic structure of three basic components is always the same: A flange 11, which is attached to a cylinder head, not shown, of the internal combustion engine is covered on the gas outlet side with a gas-tight outer shell 20, in turn, an inner shell 30 is introduced. The design of the outer shell 20 does not change. It is formed of sheet metal (eg 2 mm wall thickness) and consists of a hood-shaped upper part 21, to which a circumferential collar 22 connects, which is connected to the flange 11. The design of the outer shell collar 22 is also a characteristic feature of the present invention: it consists of a directly adjacent to the hood-shaped sheet metal upper part 21, inner collar segment 22 ', which extends parallel to the surface of the flange 11, and from a via an oblique Sheet segment 23 subsequent, outer collar segment 22 ", which rests on the flange 11, and is connected to it by welding or soldering.

Die Innenschale 30 hat in ihrem haubenförmigen Oberteil 31 die gleiche Kontur wie das Oberteil 21 der Außenschale 20, mit dem offensichtlichen Unterschied, dass sie durch ihre kleinere Dimensionierung im Abstand eines Luftspaltes innerhalb des Oberteiles 21 der Außenschale 20 liegt. Der Innenschalenbund 32 liegt dabei in allen Ausführungsformen gemäß den Figuren 2 bis 10 im Luftspalt zwischen innerem Außenschalenbund 22' und Flansch 11. Die Ausführungsformen in den Fig. 2 bis 10 unterscheiden sich lediglich in der Geometrie des Innenschalenbundes 22, der Ausgestaltung des Flansches 11 und im Einbringen zusätzlicher Klemm- bzw. Führungselemente im Bundbereich (Drahtringe 40 bzw. Zusatzblech 50).The inner shell 30 has in its hood-shaped upper part 31 the same contour as the upper part 21 of the outer shell 20, with the obvious difference that it is due to their smaller dimensions at a distance of an air gap within the upper part 21 of the outer shell 20. The inner shell collar 32 lies in all embodiments according to the FIGS. 2 to 10 in the air gap between inner outer shell collar 22 'and flange 11. The embodiments in the Fig. 2 to 10 differ only in the geometry of the inner shell collar 22, the design of the flange 11 and in the introduction of additional clamping or guide elements in the waistband area (wire rings 40 and additional sheet 50).

Auf diese Ausführungsformen wird jetzt explizit eingegangen:These embodiments will now be explicitly addressed:

Fig. 2 zeigt einen Abgaskrümmer 10 im Querschnitt, welcher eine Innenschale 30 aufweist, deren Bund 32 auf dem Flansch 11 aufliegt und in den Luftspalt zwischen innerem Außenschalenbund 22' und Flansch 11 hineinragt. Die feste Klemmung der Innenschale wird dadurch erreicht, dass der Innenschalenbund 32 an seiner äußeren Kante aus der Bundfläche nach oben in Richtung des inneren Außenschalenbundes 22' austretende Ausbuchtungen 33 aufweist, die an dem inneren Außenschalenbund 22' punktförmig unter Pressung anliegen. Auf diese Weise wird die Innenschale 30 zwischen Außenschale 20 und Flansch 11 punktförmig fest eingeklemmt. Die durch die Flanschöffnung 13 aus dem nicht dargestellten Zylinder austretenden heißen Gase bewirken eine thermische Dehnung der gasführenden Innenschale 30. Diese thermische Dehnung bleibt vorteilsmäßig in einer flanschparallelen Richtung zwischen innerem Außenschalenbund 22' und Flansch 11 weiterhin möglich, ohne die formfeste Klemmung der Innenschale zu verschlechtern. Die Ausbuchtungen sind dabei nicht als durchgehende Rinne / Sicke ausgeformt, sondern noppenförmig mit einzelnen Erhebungen, die gegen die Außenschale 20 drücken, aber diese nur punktuell berühren, damit die Kontaktflächen und die darüber durch Wärmeleitung abströmenden Wärmeverluste der Innenschale 20 möglichst klein gehalten werden. Fig. 2 shows an exhaust manifold 10 in cross-section, which has an inner shell 30, the collar 32 rests on the flange 11 and projects into the air gap between the inner outer shell collar 22 'and flange 11. The firm clamping of the inner shell is achieved in that the inner shell collar 32 on its outer edge from the collar surface upwards in the direction of the inner outer shell collar 22 'exiting bulges 33 which rest on the inner outer shell collar 22' punctiform under pressure. In this way, the inner shell 30 between the outer shell 20 and flange 11 is firmly clamped punctiform. The hot gases emerging through the flange opening 13 from the cylinder, not shown, cause a thermal expansion of the gas-carrying inner shell 30. This thermal expansion remains advantageous in a flange-parallel direction between the inner outer shell collar 22 'and flange 11 continues to be possible without deteriorating the dimensionally stable clamping of the inner shell , The bulges are not formed as a continuous gutter / bead, but knob-shaped with individual elevations that press against the outer shell 20, but these touch only selectively, so that the contact surfaces and the heat loss flowing through heat losses of the inner shell 20 are kept as small as possible.

Fig. 3 zeigt eine Abwandlung der in Fig. 2 dargestellten Innenschalenkonstruktion. Der Innenschalenbund 32 liegt am inneren Außenschalenbund 22' an und die Ausbuchtungen 33 am Rand des Innenschalenbundes 32 sind folglich auf die untere Seite, die Flanschseite, noppenförmig in punktuellem Kontakt mit dem Flansch 11 ausgebildet. Bei dieser Konstruktion ist zu erwähnen, dass aus der gasführenden Innenschale 30 durch den Zwischenraum zwischen den Ausbuchtungen 33 Abgas in den Luftspalt zwischen innerem Außenschalenbund 22' und Flansch 11 strömen könnte. Allerdings liegt hier kein Druckgefälle vor und deshalb sind diese Strömungs- und Wärmeverluste vernachlässigbar. Fig. 3 shows a modification of the in Fig. 2 illustrated inner shell construction. The inner shell collar 32 rests against the inner outer shell collar 22 'and the bulges 33 on the edge of the inner shell collar 32 are consequently formed on the lower side, the flange side, in the form of a nub in punctiform contact with the flange 11. In this construction, it should be mentioned that exhaust gas could flow into the air gap between the inner outer shell collar 22 'and the flange 11 from the gas-carrying inner shell 30 through the intermediate space between the bulges 33. However, there is no pressure gradient and therefore these flow and heat losses are negligible.

Vorteil dieser Konstruktion aber ist die kleine Kontaktfläche zwischen Innenschale 30 und Außenschale 20 und Flansch 11.Advantage of this design but is the small contact area between the inner shell 30 and outer shell 20 and flange eleventh

Fig. 4 zeigt eine Ausführungsform, bei der der Innenschalenbund 32, ohne eine ungünstige breite Auflagefläche mit Außenschale 30 oder Flansch 11 zu bilden, mittig in den Luftspalt zwischen innerem Außenschalenbund 22' und Flansch 11 gelegt ist. Die positionsfeste Abstützung der Innenschale 30 wird dadurch erreicht, dass die Ausbuchtungen 33 am Rand des Innenschalenbundes 32 beidseitig ausgebildet sind und so die Innenschale 30 durch punktförmige Abstützung am inneren Außenschalenbund 22' und am Flansch 11 fixieren. Diese Bauform ist besonders verlustarm, weil hier flächenförmige Auflageflächen zwischen Innenschalenbund 32 und Flansch 11 bzw. innerem Außenschalenbund 22' nicht vorhanden sind, sondern die Innenschale 30 nur durch punktförmige Stützauflagen über die Ausbuchtungen 33 am Rand des Innenschalenbundes 32 fixiert wird. Auch hier ist prinzipiell ein Durchgang der Abgase aus der gasführenden Innenschale 30 in den Luftspalt zwischen Innen- 30 und Außenschale 20 möglich. Dieser Durchgang wird allerdings durch das fehlende oder geringe Druckgefälle in Relation zur entlang der weiterführenden Abgasrohrleitung herrschenden Druckdifferenz vernachlässigbar sein. Fig. 4 shows an embodiment in which the inner shell collar 32, without an unfavorable wide bearing surface with outer shell 30 or flange 11 to form, is placed centrally in the air gap between the inner outer shell collar 22 'and flange 11. The positionally fixed support of the inner shell 30 is achieved in that the bulges 33 are formed on both sides of the edge of the inner shell collar 32 and so fix the inner shell 30 by punctiform support on the inner outer shell collar 22 'and the flange 11. This design is particularly loss, because here surface-like bearing surfaces between inner shell collar 32 and flange 11 and inner outer shell collar 22 'are not present, but the inner shell 30 is fixed only by punctiform support pads on the bulges 33 at the edge of the inner shell collar 32. Again, in principle, a passage of the exhaust gases from the gas-carrying inner shell 30 in the air gap between the inner 30 and outer shell 20 is possible. However, this passage will be negligible due to the lack of or low pressure gradient in relation to the pressure difference prevailing along the secondary exhaust pipe.

Fig. 5 zeigt einen Längsschnitt entlang der Linie IV-IV durch die Ausbuchtungen 33 des Innenschalenbundes der Fig. 4. Die Ausbuchtungen 33 sind gleichmäßig wellenförmig am Rand des Innenschalenbundes 32 verteilt und stützen sich oben am Außenschalenbund 22' und unten am Flansch 11 ab. Fig. 5 shows a longitudinal section along the line IV-IV through the bulges 33 of the inner shell collar of Fig. 4 , The bulges 33 are distributed uniformly wave-shaped at the edge of the inner shell collar 32 and are supported at the top of the outer shell collar 22 'and at the bottom of the flange 11.

Fig. 6 zeigt den Querschnitt einer weiteren Ausführungsform des Abgaskrümmers 10. Der Innenschalenbund 32 liegt wie bei der Ausführungsform in Fig. 3 dargestellt am inneren Außenschalenbund 22' an. Die Ausbuchtungen 33 des Innenschalenbundes 32 sind wie in Fig. 3 noppenförmig nach unten, gegen die Oberfläche des Flansches 11 ausgeformt, allerdings nicht am Rand des Innenschalenbundes 32 sondern etwas eingerückt, so dass auf die Ausbuchtungen 33 noch eine gerades, unverformtes Bundsegment folgt, das am inneren Außenschalenbund 22' anliegt. Zwischen dem äußeren Ende des Innenschalenbundes 32 und dem äußeren Außenschalenbund 22' ist allerdings noch genug Freiraum, um die thermische Ausdehnung der Innenschale 30 in diesem Bereich ungehindert zu ermöglichen. Fig. 6 shows the cross section of another embodiment of the exhaust manifold 10. The inner shell collar 32 is as in the embodiment in Fig. 3 represented on the inner outer shell collar 22 'on. The bulges 33 of the inner shell collar 32 are as in Fig. 3 nubbed down, formed against the surface of the flange 11, but not at the edge of the inner shell collar 32 but slightly indented, so that the bulges 33 still follows a straight, undeformed collar segment, the inner outer shell collar 22 'is applied. However, between the outer end of the inner shell collar 32 and the outer outer shell collar 22 'is still enough space to allow the thermal expansion of the inner shell 30 in this area unhindered.

Fig. 7 zeigt einen Aufbau ähnlich der in Fig. 6 dargestellten Ausführungsform. Allerdings reichen die Ausbuchtungen 33 nicht bis zur Oberfläche des Flansches 11. Die feste Klemmung der Innenschale 30 wird durch Drahtringe 40 erreicht, die zwischen Innenschalenbund 32 und Flansch 11 eingelegt sind. Die Drahtringe 40 sind dabei so eingelegt, dass die Ausbuchtungen 33 des Innenschalenbundes 32 sich zwischen ihnen befinden, so dass die Drahtringe 40 dadurch in Querrichtung fixiert sind. Die Innenschale 30 ist also nicht unmittelbar zwischen Flansch 11 und Außenschalenbund 22 eingeklemmt, sondern mittelbar zwischen den auf dem Flansch 11 auflegenden Drahtringen 40 und dem Außenschalenbund 22. Die Ausbuchtungen 33 des Innenschalenbundes 32 fungieren in dieser Ausführungsform als Führungen für die Drahtringe 40. Die Drahtringe 40 dienen aber nicht nur als Verklemmungselemente für die Innenschale 30 sondern auch als Führungselemente, entlang welcher die Innenschale 30 bei thermischer Ausdehnung gleiten kann. Ein weiterer Vorteil ist, dass die Kontaktfläche und demzufolge auch die damit verbundenen Wärmeverluste zwischen Drahtringen 40 und gaswärmeführender Innenschale 32 klein ist. Fig. 7 shows a structure similar to that in FIG Fig. 6 illustrated embodiment. However, the bulges 33 do not extend to the surface of the flange 11. The fixed clamping of the inner shell 30 is achieved by wire rings 40 which are inserted between inner shell collar 32 and flange 11. The wire rings 40 are like this inserted, that the bulges 33 of the inner shell collar 32 are located between them, so that the wire rings 40 are thereby fixed in the transverse direction. The inner shell 30 is thus not clamped directly between the flange 11 and outer shell collar 22, but indirectly between the resting on the flange 11 wire rings 40 and the outer shell collar 22. The bulges 33 of the inner shell collar 32 act in this embodiment as guides for the wire rings 40th Die Drahtringe 40 serve not only as Verklemmungselemente for the inner shell 30 but also as guide elements along which the inner shell 30 can slide in thermal expansion. Another advantage is that the contact surface and consequently also the associated heat losses between wire rings 40 and gas-carrying inner shell 32 is small.

Fig. 8 zeigt den Querschnitt einer weiteren Ausführungsform, bei der gemäß Ausführungsform nach Fig. 4 die die Klemmwirkung entfaltenden Ausbuchtungen 33 des Innenschalenbundes 32 beidseitig ausgebildet sind. Allerdings sind bei dieser Ausführungsform die Ausbuchtungen 33 in einem Abstand vom Rand des Innenschalenbundes 32 geformt und auf die Ausbuchtungen 32 folgt noch ein gerader unverformter Teil des Innenschalenbundes 32. Der Flansch 11 ist hier wie die Schalen 20, 30 des Abgaskrümmers 10 als Blechteil ausgebildet. Das Blech des Flansches 11 ist an seinen Rändern um den äußeren Bund 22' der Außenschale 20 gebördelt. Diese Umbördelung hat den Vorteil, dass Flansch 11 und Außenschale 20 zusammengehalten werden, und dass so eine Verlötung der Außenschale 20 mit dem Flansch 11 entlang des äußeren Außenschalenbundes 22' möglich ist. Zusätzlich bietet die Blechausführung des Flansches 11 den Vorteil, dass die Öffnung 13 des Flansches 11 nach oben in den Abgaskrümmer 10 hineingebogen werden kann, wobei der Durchmesser der Flanschöffnung 13 ähnlich wie bei einer Düse leicht zusammenläuft. Diese düsenähnliche Form der Flanschöffnung 13 bietet den Vorteil, dass die Hitze des Abgases schnell vom Flansch 11 weggeführt wird. Dadurch wird eine Verringerung der Wärmeverluste bewirkt, denn die Flanschtemperatur ist mit ca. 120 °C erheblich niedriger als die Abgastemperatur von bis zu 900 °C, weil der Flansch 11 auf dem (nicht dargestellten) Zylinderkopf befestigt wird. Dieser ist wie der gesamte Motorblock wassergekühlt und überschreitet Temperaturen von max. 120 °C nicht. Fig. 8 shows the cross section of another embodiment, according to the embodiment according to Fig. 4 the protrusions 33 unfolding the clamping action of the inner shell collar 32 are formed on both sides. However, in this embodiment, the bulges 33 are formed at a distance from the edge of the inner shell collar 32 and the bulges 32 is still followed by a straight undeformed part of the inner shell collar 32. The flange 11 is here as the shells 20, 30 of the exhaust manifold 10 formed as a sheet metal part. The sheet metal of the flange 11 is crimped at its edges around the outer collar 22 'of the outer shell 20. This flanging has the advantage that flange 11 and outer shell 20 are held together, and that a soldering of the outer shell 20 with the flange 11 along the outer outer shell collar 22 'is possible. In addition, the sheet metal design of the flange 11 offers the advantage that the opening 13 of the flange 11 can be bent upwards into the exhaust manifold 10, wherein the diameter of the flange opening 13 easily merges, similar to a nozzle. This nozzle-like shape of the flange opening 13 offers the advantage that the heat of the exhaust gas is quickly led away from the flange 11. This causes a reduction of the heat losses, because the flange temperature is considerably lower than the exhaust gas temperature of up to 900 ° C at about 120 ° C, because the flange 11 is mounted on the (not shown) cylinder head. This is like the entire engine block water cooled and exceeds temperatures of max. 120 ° C not.

Fig. 9 stellt einen Längsschnitt entlang der Linie IX-IX durch die Ausbuchtungen 33 des Innenschalenbundes 32 in Fig. 8 dar. Die Ausbuchtungen 33 des Innenschalenbundes 32 sind hier gleichmäßig wellenförmig ausgestaltet und stützen sich abwechselnd nach oben gegen den inneren Außenschalenbund 22' und nach unten gegen den blechgeformten Flansch 11 ab. Dabei stehen diese Ausbuchtungen 33 immer nur über kleine, fast punktförmige Zonen mit Außenschale 20 und Flansch 11 in Berührung. Folglich bleiben die Wärmeverluste durch Wärmeleitung gering. Fig. 9 represents a longitudinal section along the line IX-IX through the bulges 33 of the inner shell collar 32 in Fig. 8 The bulges 33 of the inner shell collar 32 are designed here uniformly wave-shaped and are supported alternately upwards against the inner outer shell collar 22 'and down against the sheet-formed Flange 11 from. These protrusions 33 are always in contact only via small, almost punctiform zones with outer shell 20 and flange 11. Consequently, the heat losses by heat conduction remain low.

Fig. 10 zeigt den Querschnitt einer weiteren Ausführungsform, bei der die Ausbuchtungen des Innenschalenbundes 32 im Abstand zum Rand und einseitig nach oben gegen den inneren Außenschalenbund 22' ausgeformt sind. Allerdings liegt der Innenschalenbund 32 unterseitig nicht auf dem Flansch 11 auf, sondern ist mittig im Luftspalt zwischen innerem Außenschalenbund 22' und Flansch 11 geführt. Die positionsfeste Verklemmung wird durch ein Zusatzblech 50 erreicht, das zwischen Innenschalenbund 32 und Flansch 11 eingelegt ist. Dieses Zusatzblech 50 liegt allerdings ebenfalls nicht über seine ganze Fläche auf dem verhältnismäßig kalten Flansch 11 auf, sondern ist durch eine ähnliche Formgestaltung wie der Innenschalenbund 32 nur in punktförmigem Kontakt mit dem Flansch 11. Zu diesem Zweck weist das Zusatzblech 50 überall dort, wo der Innenschalenbund 32 Ausbuchtungen 33 aufweist, ebenfalls Ausbuchtungen 52 auf, die spiegelbildlich entgegengesetzt sind. Das Zusatzblech 50 besitzt eine Öffnung 51, die mit dem Düsendurchmesser der Flanschöffnung 13 übereinstimmt. So liegt die Kantenfläche der Öffnung 51 des Zusatzbleches 50 bündig an dem nach innen zulaufenden Blech der Flanschöffnung 13 an. Die positionsfeste Verklemmung der Innenschale 30 findet demzufolge zwischen den Kontaktpunkten der Ausbuchtungen 33 des Innenschalenbundes 32 am inneren Außenschalenbund 22' und der Auflage des Innenschalenbundes 32 auf dem Zusatzblech 50 statt. Obwohl der Innenschalenbund 32 fast ganz auf dem Zusatzblech 50 aufliegt, sind die Wärmeverluste dennoch gering, weil das Zusatzblech 50 seinerseits nur über seine Ausbuchtungen 52 und über die Kantenfläche seiner Innenöffnung 51 mit dem kühleren Flansch 11 in Berührung ist. Ein weiter Vorteil dieser Ausführungsform ist, dass sich zwischen Zusatzblech 50 und Flansch 11 ein weiterer Luftspalt 60 bildet, der den durch die Flanschöffnung 13 strömenden heißen Abgasstrom (Temperatur bei etwa 900 °C) von der Oberfläche des Flansches 11 isoliert. Das ist besonders vorteilhaft, weil der Flansch 11 auch im Betriebszustand des Motors verhältnismäßig kühl bleibt, da er flächig auf dem wassergekühlten Zylinderblock (Temperatur bis 120 °C) befestigt wird. Durch diese Ausführungsform werden die unerwünschten Wärmeverluste des Abgasstromes demzufolge weiter reduziert. Fig. 10 shows the cross section of a further embodiment in which the bulges of the inner shell collar 32 at a distance from the edge and on one side up against the inner outer shell collar 22 'are formed. However, the inner shell collar 32 is not on the underside on the flange 11, but is guided centrally in the air gap between the inner outer shell collar 22 'and flange 11. The fixed position clamping is achieved by an additional plate 50 which is inserted between inner shell collar 32 and flange 11. However, this additional sheet 50 is also not over its entire surface on the relatively cold flange 11, but is by a similar shape design as the inner shell collar 32 only in punktförmigem contact with the flange 11. For this purpose, the additional sheet 50 everywhere, where the Inner shell collar 32 bulges 33, also bulges 52, which are opposite in mirror image. The additional sheet 50 has an opening 51 which coincides with the nozzle diameter of the flange opening 13. Thus, the edge surface of the opening 51 of the additional sheet 50 is flush with the inwardly tapered plate of the flange opening 13. The position-resistant clamping of the inner shell 30 thus takes place between the contact points of the bulges 33 of the inner shell collar 32 on the inner outer shell collar 22 'and the support of the inner shell collar 32 on the additional sheet 50. Although the inner shell collar 32 rests almost entirely on the additional sheet 50, the heat losses are still low because the additional sheet 50 in turn is only about its bulges 52 and the edge surface of its inner opening 51 with the cooler flange 11 in touch. A further advantage of this embodiment is that between additional sheet 50 and flange 11, a further air gap 60 is formed, which isolates the flowing through the flange opening 13 hot exhaust gas stream (temperature at about 900 ° C) from the surface of the flange 11. This is particularly advantageous because the flange 11 remains relatively cool even in the operating condition of the engine, as it is flatly mounted on the water-cooled cylinder block (temperature up to 120 ° C). As a result, the undesired heat losses of the exhaust gas flow are further reduced by this embodiment.

Claims (14)

  1. An air-gap insulated exhaust gas manifold (10) for internal combustion engines,
    at least comprising
    - a flange (11) with
    - openings (12) for fastening elements
    - and cylinder ports (13) which are in alignment with the cylinder exhaust ports of the internal combustion engine,
    - a gas-tight outer shell (20) with
    - a hood-shaped upper part (21)
    - and a circumferential outer shell collar (22) arranged parallel to the flange (11), which outer shell collar is connected to the flange (11),
    - and an inner shell (30) with
    - a hood-shaped upper part (31)
    - and a circumferential inner shell collar (32) arranged parallel to the flange (11), which inner shell collar is clamped between the outer shell collar (22) and the flange (11),
    characterised in that
    - the circumferential outer shell collar (22) is formed of two collar segments which are offset parallel to one another:
    - an internal outer shell collar (22') directly extending from the hood-shaped upper part (21) of the outer shell (20), which internal outer shell collar extends at a parallel distance from the surface of the flange (11),
    - and an external outer shell collar (22") which rests on the surface of the flange (11),
    - wherein internal and external outer shell collars (22', 22") are connected via a slope (23),
    - and that the circumferential inner shell collar (32)
    - is arranged between the internal outer shell collar (22') and the flange (11)
    - and has bulges (33) emerging from its collar surface extending parallel to the flange, which bulges rest in points against the surface of the internal outer shell collar (22') and/or against the surface of the flange (11) under elastic pressing and thus effect a fixed clamping of the inner shell (30) without any additional fastening means, wherein the thermal expansion of the inner shell collar (32) in the plane parallel to the flange (11) is not restricted by the clamping.
  2. An exhaust gas manifold according to claim 1, characterised in that the bulges (33) of the inner shell collar (32) are formed on one side.
  3. An exhaust gas manifold according to claim 1, characterised in that the bulges (33) of the inner shell collar (32) are formed on both sides.
  4. An exhaust gas manifold according to claim 1 or 3, characterised in that the bulges (33) have a uniform wave-like shape, as seen in the longitudinal section, and, under elastic pressing, the inner shell collar (32) rests in points alternately upwardly against the internal outer shell collar (22') and downwardly against the flange (11).
  5. An exhaust gas manifold according to any one of claims 1 to 4, characterised in that the bulges (33) of the inner shell collar (32) are at its outer edge.
  6. An exhaust gas manifold according to any one of claims 1 to 4, characterised in that the bulges (33) of the inner shell collar (32) are at a distance from its outer edge.
  7. An exhaust gas manifold according to claim 6, characterised in that wire rings (40) are placed between inner shell collar (32) and flange (11) and/or between inner shell collar (32) and internal outer shell collar (22'), wherein the bulges (33) of the inner shell collar (32) are within the wire rings (40).
  8. An exhaust gas manifold according to claim 6, characterised in that an additional sheet metal (50) is placed between inner shell collar (32) and flange (11), with:
    - openings (51) which match the openings (13) of the flange (11)
    - and bulges (52) which are formed as mirror images of the bulges (33) of the inner shell collar (32),
    such that, under elastic pressing, the bulges (52) of the additional sheet metal (50) rest in points against the flange (11) and the opposite bulges (33) of the inner shell collar (32) rest in points against the internal outer shell collar (22').
  9. An exhaust gas manifold according to claim 8, characterised in that the bulges (52) of the additional sheet metal (50) correspond to the bulges (33) of the inner shell collar (32) in number and position.
  10. An exhaust gas manifold according to claim 8 or 9, characterised in that an air-gap (60) exists between additional sheet metal (50) and flange (11), which air-gap insulates the flange (11) from the hot exhaust gases.
  11. An exhaust gas manifold according to any one of claims 1 to 10, characterised in that the flange (11) is formed as a cast part and the connection between the outer shell (20) and the flange (11) is welded along the external outer shell collar (22").
  12. An exhaust gas manifold according to any one of claims 1 to 10, characterised in that the flange (11) is formed as a sheet metal part and flanged around the rim of the external outer shell collar (22").
  13. An exhaust gas manifold according to claim 12, characterised in that the flange (11) is brazed to the external outer shell collar (22").
  14. An exhaust gas manifold according to claim 12 or 13, characterised in that the rims of the cylinder ports (13) of the flange (11) are bent into the exhaust gas manifold (10) in the manner of a nozzle.
EP08847012A 2007-11-09 2008-10-18 Exhaust gas manifold for internal combustion engines Not-in-force EP2207950B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202007015606U DE202007015606U1 (en) 2007-11-09 2007-11-09 Exhaust manifold for internal combustion engines
PCT/EP2008/008830 WO2009059688A1 (en) 2007-11-09 2008-10-18 Exhaust gas manifold for internal combustion engines

Publications (2)

Publication Number Publication Date
EP2207950A1 EP2207950A1 (en) 2010-07-21
EP2207950B1 true EP2207950B1 (en) 2011-05-18

Family

ID=40219311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08847012A Not-in-force EP2207950B1 (en) 2007-11-09 2008-10-18 Exhaust gas manifold for internal combustion engines

Country Status (4)

Country Link
EP (1) EP2207950B1 (en)
AT (1) ATE510114T1 (en)
DE (1) DE202007015606U1 (en)
WO (1) WO2009059688A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921670A2 (en) 2014-03-20 2015-09-23 Benteler Automobiltechnik GmbH Exhaust manifold for an exhaust system of a combustion engine
DE102014105656A1 (en) 2014-04-22 2015-10-22 Benteler Automobiltechnik Gmbh exhaust manifold
EP3001004A1 (en) 2014-09-26 2016-03-30 Benteler Automobiltechnik GmbH Exhaust manifold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223981A1 (en) * 2012-12-20 2014-06-26 Friedrich Boysen Gmbh & Co. Kg exhaust manifold
CN106274447A (en) * 2016-08-30 2017-01-04 保隆(安徽)汽车配件有限公司 A kind of heat insulation type tailpiece frame assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717224B1 (en) 1994-03-09 1996-05-03 Streit Sa Ets Exhaust manifold for motor vehicle engine.
DE10001287A1 (en) 1999-08-05 2001-02-22 Hans A Haerle Exhaust gas manifold for motor vehicle internal combustion engine has collector housing attached to the head by studs and sealing gasket
DE10102637A1 (en) 2001-01-20 2002-07-25 Bayerische Motoren Werke Ag Exhaust manifold for exhaust gas discharge from an internal combustion engine
WO2002073010A2 (en) 2001-01-29 2002-09-19 Haerle Hans A Exhaust manifold
DE10125121A1 (en) * 2001-05-23 2002-11-28 Daimler Chrysler Ag Exhaust gas manifold for attaching to a cylinder head of an internal combustion engine comprises exhaust gas bores, an exhaust gas collection housing, a gas guiding channel, and a sealing device
DE10200638C2 (en) * 2002-01-10 2003-12-11 Benteler Automobiltechnik Gmbh Arrangement for guiding exhaust gas from an internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921670A2 (en) 2014-03-20 2015-09-23 Benteler Automobiltechnik GmbH Exhaust manifold for an exhaust system of a combustion engine
CN104948283A (en) * 2014-03-20 2015-09-30 本特勒尔汽车技术有限公司 Exhaust manifold for an exhaust system of a combustion engine
EP2921670A3 (en) * 2014-03-20 2015-12-02 Benteler Automobiltechnik GmbH Exhaust manifold for an exhaust system of a combustion engine
DE102014103809A1 (en) 2014-03-20 2015-12-03 Benteler Automobiltechnik Gmbh Exhaust manifold for an exhaust system of an internal combustion engine
CN104948283B (en) * 2014-03-20 2017-11-24 本特勒尔汽车技术有限公司 Waste gas bend pipe for the waste gas system of internal combustion engine
DE102014105656A1 (en) 2014-04-22 2015-10-22 Benteler Automobiltechnik Gmbh exhaust manifold
EP2937539A1 (en) 2014-04-22 2015-10-28 Benteler Automobiltechnik GmbH Exhaust manifold
DE102014105656B4 (en) 2014-04-22 2017-02-02 Benteler Automobiltechnik Gmbh exhaust manifold
EP3001004A1 (en) 2014-09-26 2016-03-30 Benteler Automobiltechnik GmbH Exhaust manifold
DE102014114002A1 (en) 2014-09-26 2016-03-31 Benteler Automobiltechnik Gmbh exhaust manifold
US9689302B2 (en) 2014-09-26 2017-06-27 Benteler Automobiltechnik Gmbh Exhaust manifold

Also Published As

Publication number Publication date
WO2009059688A1 (en) 2009-05-14
DE202007015606U1 (en) 2009-03-26
ATE510114T1 (en) 2011-06-15
EP2207950A1 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2419614B1 (en) Charge air duct for an internal combustion engine
EP1985953B1 (en) Heat exchanger, in particular exhaust gas cooler, method for operating such a heat exchanger, system with an exhaust gas cooler
EP1132609B1 (en) Heat exchanger in an EGR arrangement
EP2207950B1 (en) Exhaust gas manifold for internal combustion engines
EP1286026B1 (en) Exhaust system for a motor vehicle
DE102006007843B4 (en) Auspuffkrümmeranordnung
EP1903207A1 (en) Heat exchanger, in particular exhaust gas heat exchanger
EP1941224A1 (en) Heat exchanger
EP0928885B1 (en) Exhaust gas device for an internal combustion engine
EP1914401B1 (en) Exhaust manifold
WO1999014477A1 (en) System for recirculating exhaust gas in an internal combustion engine
EP1864006B8 (en) Air-gap insulated exhaust manifold
DE102009058047A1 (en) Exhaust manifold with guide plate
DE10054006A1 (en) Exhaust manifold, for internal combustion engine, is insulated by air and is formed as inner tube, which penetrates into cylinder head, and outer tube, which is fitted to cylinder head by fixing bracket.
DE102008001659A1 (en) Exhaust gas heat exchanger with integrated mounting interface
EP1864347B1 (en) Unit with high-temperature fuel cells and a multicomponent sleeve for a cell stack
EP2921670B1 (en) Exhaust manifold for an exhaust system of a combustion engine
EP1389267B1 (en) Exhaust manifold
EP2444615A1 (en) Waste gas guidance device for a combustion engine
EP3001004B1 (en) Exhaust manifold
EP2083151A1 (en) Air suction channel system with an integrated charge air cooler
DE69408463T2 (en) EXHAUST GAS PIPE WITH PRIMARY PIPE
EP2218897B1 (en) Device for exhaust gas recirculation for an internal combustion engine
DE3803644A1 (en) Arrangement for the utilisation of exhaust heat
EP1761692B1 (en) Manifold for a multicylinder internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 13/18 20100101ALI20101015BHEP

Ipc: F01N 13/08 20100101AFI20101015BHEP

Ipc: F01N 13/10 20100101ALI20101015BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003622

Country of ref document: DE

Effective date: 20110630

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110818

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110918

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110819

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120221

BERE Be: lapsed

Owner name: HEINRICH GILLET G.M.B.H.

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003622

Country of ref document: DE

Effective date: 20120221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110818

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 510114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220920

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003622

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240501