EP2199713A2 - Container and device for indirect cooling of goods and method for producing the container - Google Patents

Container and device for indirect cooling of goods and method for producing the container Download PDF

Info

Publication number
EP2199713A2
EP2199713A2 EP09015245A EP09015245A EP2199713A2 EP 2199713 A2 EP2199713 A2 EP 2199713A2 EP 09015245 A EP09015245 A EP 09015245A EP 09015245 A EP09015245 A EP 09015245A EP 2199713 A2 EP2199713 A2 EP 2199713A2
Authority
EP
European Patent Office
Prior art keywords
container
cooling
thermal conductivity
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09015245A
Other languages
German (de)
French (fr)
Other versions
EP2199713A3 (en
EP2199713B1 (en
Inventor
Bert-Olaf Grimm
Peter Zehnel
Kai Marschner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eppendorf SE
Original Assignee
Eppendorf SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf SE filed Critical Eppendorf SE
Priority to PL09015245T priority Critical patent/PL2199713T3/en
Publication of EP2199713A2 publication Critical patent/EP2199713A2/en
Publication of EP2199713A3 publication Critical patent/EP2199713A3/en
Application granted granted Critical
Publication of EP2199713B1 publication Critical patent/EP2199713B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a container according to the preamble of claim 1, a device according to the preamble of claim 5 and a method of manufacturing the container according to the preamble of claim 7.
  • the present invention relates to laboratory centrifuges, i. Centrifuges used, for example, in chemical, biological, biochemical or biotechnological laboratories.
  • the present invention can be advantageously used in large-scale centrifuges and mechanical stirring devices and all devices in which a good is to be cooled at least indirectly.
  • the invention is also in pure cooling devices, such as refrigerators and freezers and especially laboratory cooling and laboratory freezers, where a very deep cooling to be achieved, can be used.
  • the container forms the enclosure of the interior of the device in which the good is introduced.
  • the invention does not relate to cookware, frying pans or the like containers which serve to heat a good that can be arranged in the container.
  • the ambient air is passed directly through the centrifuge bowl at the centrifuge rotor, with the rotor acting as a kind of radial fan.
  • the centrifuge lid and / or centrifuge bowl has an inlet opening near the axis and an outlet opening arranged at a distance from the axis of rotation.
  • the centrifuge tank must have an outlet opening for it, which, however, also permits a material outlet.
  • Such boilers are thus not suitable for stirring devices or the like, in which materials are to be mixed directly and must therefore be formed closed all around.
  • a disadvantage of direct cooling results from the use of the ambient air as a coolant: the good can be cooled only to the maximum temperature of the ambient air.
  • indirect cooling the rotor is enclosed in the centrifuge vessel under the centrifuge lid and no cooling channel or the like is provided.
  • the air circulates therefore only within the centrifuge bowl. Cooling is now achieved by a second medium, which is passed on the outside of the boiler.
  • This can either be ambient air, which is conducted past the outside of the boiler, as is realized, for example, in the case of the centrifuge 5424 from Eppendorf AG.
  • a special coolant is routed past the boiler via conduits spiraling against the boiler, ie the side walls and the bottom plate of the boiler, to remove heat.
  • An advantage of indirect cooling is the better controllability of the temperature to be set compared to direct cooling.
  • the object of the present invention is to provide a container that allows efficient indirect cooling and is simple and inexpensive to produce.
  • the container should not only be used in centrifuges, but also stirring devices, cooling devices and the like can be found.
  • Container in the context of the present invention are all devices in which a good to be cooled can be arranged directly or indirectly via a separate enclosure and which can be cooled by means of indirect cooling via a standing in heat conductive contact cooling device.
  • the container according to the invention may be designed differently with respect to the outer shape. He can round or be kettle-shaped. In such a case, the container has a round bottom plate from which pulls up a side wall at the outer edge. The top of the container is closed by an openable lid.
  • the container is angular, ie designed rectangular or square. He then has a rectangular or square base plate, extending from the outer edge of each four sidewalls. The top of the container is closed with a top plate.
  • the container either at least one of the side walls is designed as an openable door or the top of the container, ie the upper plate is formed as an openable lid.
  • the upper plate is formed as an openable lid.
  • Heat conductive contact in the context of the present invention means that the contact must be such that the heat transfer can be carried out by heat conduction. So there must be a material contact, but this does not mean that this contact must exist directly - so between the two layers can also be arranged one or more intermediate layers.
  • heat-transferring contact means, for example, that the contact must be such that heat transfer can take place at least by one of the three principal heat transfer mechanisms, heat conduction, radiation or convection. It does not necessarily have to be a material contact.
  • Direct contact between two objects in the context of the present invention means that two objects at least partially abut each other directly and thus touch each other. When in the context of the present invention is generally referred to as “contact” or “contact point”, i. without the preceding words “heat conducting” or "heat transferring”, this always means a direct contact.
  • the container according to the invention comprises a container body which has at least two heat-conducting contact container layers with different thermal conductivity.
  • the two container layers create a large contact area that improves heat transfer during cooling. Due to the fact that the layer with higher thermal conductivity is arranged on the outside of the container to be cooled, the heat flow is increased in the direction of the cooling device, which only conducts heat in some areas in contact with the cooling surface of the container. This results in an overall increased cooling efficiency.
  • the thermal conductivities should differ by a factor greater than 10, preferably greater than 20, in particular greater than 100.
  • the layer with lower thermal conductivity is formed from a material comprising stainless steel, steel, ceramic, glass and / or plastic and the layer with higher thermal conductivity is made of a material aluminum, gold, carbon, including its modifications graphite, diamond, diamond-like carbon and carbon nanotubes, copper, magnesium, brass, silver and / or silicon or their alloys formed. Then a particularly efficient heat transfer can be ensured and the boiler is also easy to produce.
  • an embodiment of the layer with higher thermal conductivity than film is advantageous, for example, as a pyrolytic graphite foil (PGS), since this manufacturing technology is simply applied to the layer with lower thermal conductivity.
  • PPS pyrolytic graphite foil
  • nanolayers can be used, that is to say a layer which was produced using nanotechnology. In the following, such a layer is understood to consist of a "nanomaterial".
  • the layer with higher thermal conductivity has a small thickness of less than 1 mm, preferably less than 0.5 mm and in particular less than 0.2 mm. It should be noted that depending on the layer material, the heat flow at too thick layers decreases and the heat transfer may be disturbed in the case of layers that are too thin, so that there is an optimum with respect to the minimum thickness for each layer material, which the expert will find out routinely by means of tests and calculations.
  • a device for treatment in particular centrifuging, stirring, cooling or the like of a good, in particular a laboratory centrifuge, a refrigerator, a freezer, a laboratory refrigerator, a laboratory freezer, or the like, with a container and a region only with a cooled outer surface of the container in heat-conducting contact cooling means for indirect cooling of the arranged inside the container good, wherein the container is designed as the container according to the invention.
  • the container is surrounded by a tubular conduit, which is preferably wound helically around the container.
  • tubular includes round tubes as well as tubes with at least one flattened side, in particular also rectangular tubes.
  • On in some areas in the context of the present invention means that the contact area between the cooling device and the cooled outer surface of the container is smaller than the cooled outer surface of the container.
  • the cooling device can also be formed by a plurality of separately operating devices, but their total contact area should be smaller than the cooled container outer surface.
  • indirect heat transfer according to the invention can also be coupled with a direct heat transfer, for example, the known rotor air assisted centrifugal cooling.
  • the layer with higher thermal conductivity is disposed on the layer with lower thermal conductivity or vice versa.
  • this can be done by the one layer, preferably the one with the higher thermal conductivity aufplatiert on the other layer and then the container is formed or two separate layers are stacked, for example, as foils or sheets and the container, for example, by simultaneous forming, For example, deep drawing, the layers shaped.
  • the higher thermal conductivity layer is deposited on the lower thermal conductivity layer after the lower thermal conductivity layer has substantially the shape of the container, or vice versa, the lower thermal conductivity layer is applied to the higher thermal conductivity layer after the lower thermal conductivity layer Layer with higher thermal conductivity has essentially received the shape of the container. Then, the manufacturing process can be made more cost-effective, for example, the layer with higher thermal conductivity is galvanotechnically applied to the layer with low thermal conductivity or vice versa.
  • Q ⁇ the heat flow through the solid
  • the thermal conductivity, which is a material constant
  • A the size of the solid's cross-sectional area
  • s the thickness of the solid
  • ⁇ T the temperature difference between the input and output sides of the heat flow.
  • FIG. 1 This principle is explained purely schematically for a prior art known and partially illustrated centrifuge vessel with a boiler wall 1, which is in contact with a cooling line 2.
  • the possibilities are available to reduce the wall thickness s 1 and s 2 and / or the boiler wall 1 made of a material with a very high thermal conductivity ⁇ (eg copper or silver), however, the first possibility is technically limited by the functional design of the components and is usually exhausted and the second option is usually not possible for application reasons and the intended use, since for example copper or silver is not chemically inert are.
  • very high thermal conductivity
  • an additional heat conducting layer is provided on the outer wall of the boiler by the inventors, as in Fig. 2 again in a purely schematic for the resulting and illustrated by the arrows heat flow fragmentary is shown.
  • an additional Kotaktstelle is inserted with a large contact area.
  • Fig. 1 Unlike the centrifuge kettle after Fig. 1 here is thus adjacent to the interior of the boiler vessel defining inner layer 10 having the thickness of 10 s an additional external boiler layer 11 is applied with the thickness s 11 from good heat conducting material as a boiler outer wall.
  • the cooling line 12 has the thickness s 12 .
  • the principle according to the invention has been described herein with reference to two container layers with different thermal conductivity, it is clear that three or more layers can also be used. These may in particular be anti-corrosion, anti-contamination or the like layers. It is only important that the layer with higher thermal conductivity is arranged on the container outer surface to be cooled. However, one or more further layers can be arranged between the layer with higher and the layer with lower thermal conductivity as well as on the layer with lower thermal conductivity in order to adapt the container to particular conditions of use.
  • a laboratory centrifuge 5415R from Eppendorf AG which has as cooling line 2, 12 a spiral rectangular tube with a width of 9.5 mm, a height of 5.5 mm and a material thickness of 0.5 mm.
  • a serial centrifuge vessel 1 with a diameter of 185 mm, a height of 70 mm and a wall thickness of 1 mm (article No. 5426 123.101-00) from Eppendorf AG was used, which was made of V2A stainless steel (thermal conductivity about 15 W / m * K) and with thermal grease (thermal conductivity about 15 W / m * K) provided in the cooling line 2 was arranged to form the comparative example.
  • the standard stainless steel centrifuge vessel 10 (article No. 5426 123.101-00) from Eppendorf AG was provided with a 0.1 mm thick copper coating 11 (thermal conductivity about 350 W / m.sup.K), otherwise the experimental setup is the same, ie The centrifuge vessel was connected to the rectangular cooling line 12 by means of thermal paste (thermal conductivity also about 15 W / m * K).
  • the centrifuge 5415R was operated with a conventional rotor F45-24-11 from Eppendorf AG for one hour at a maximum of 13200 rpm. The minimum achievable sample temperature was measured with the temperature meter. The results are recorded in the table. ⁇ U> Table ⁇ / u> 5415R with centrifuge bowl without Cu coating 5415R with centrifuge bowl with Cu coating Room temperature [° C] 25 26 Sample temperature [° C] 3.9 0.4
  • the present invention allows much more efficient indirect cooling from the exterior of the container to the interior of the container.
  • the improvement of the heat conduction and the heat transfer of centrifuge boilers results in cooled centrifuges a reduction of the necessary performance of the refrigeration system. Due to the higher efficiency of the centrifuge, a higher rotational speed can be run for the same centrifuging product temperatures and / or the absorbed power of the cooling unit can be reduced with the same centrifuging product temperature and the same rotational speed.
  • the principle according to the invention is based on the finding that with indirect cooling of a container surface which is larger than the contact surface between the container and the cooling device, the cooling effect can be increased if the container has a layer with higher thermal conductivity in addition to the layer with low thermal conductivity and the layer with higher thermal conductivity is arranged on the container outer surface to be cooled and is in conductive contact with the cooling device.
  • the cooling capacity is better transferred to the interior of the container to be cooled there Good.
  • An alternative solution is to make the contact area between the cooling device and the cooled surface of the container at least equal to the cooled container surface. This can be realized by virtue of the fact that the cooling device is part of the layer of the container with greater thermal conductivity.
  • the second layer consists of a solid, such as copper or the like, and the cooling device is arranged directly in this layer.
  • the cooling device can also be arranged in a liquid, gel or the like which is in heat-conducting contact with the layer of lower thermal conductivity and which itself has a higher thermal conductivity.
  • the container has a layer which has, between itself and the layer with lower thermal conductivity, a cavity which can be filled with a liquid, gel or the like, in which the cooling device is arranged (the thermal conductivity of this further layer is insignificant, as it relates to FIG the cooling device is outside).
  • the container does not itself comprise the liquid, gel or the like, but it is provided with the cooling means housed therein in a device in which the container can be arranged to heat the liquid, gel or the like with the layer of low heat conductivity is in managerial contact.
  • the container in the sense of a bath itself preferably to the edge completely, are immersed in the liquid, gel or the like or the liquid, gel or the like is in contact only with a part of the container outer surface.
  • liquid, gel or the like and the layer with low thermal conductivity may also be arranged a further layer with higher thermal conductivity.
  • the liquid, gel or the like may be disposed with the cooling device within a copper sheath which is either integrated directly into the container or provided in the device, where then the container can be brought into direct contact with this copper sheath. This can also achieve the seal.
  • liquids and gels include both Newtonian fluids and non-Newtonian fluids, sols, dispersions, suspensions, as well as any combination of two or more of these listed substances.
  • a liquid or gel can be selected from the following group: water, ionic liquids, suspensions of carbon nanotubes, cooling brines, eutectics or eutectic mixtures and similar materials.
  • Antifrogen N, Antifrogen L and Antifrogen SOL) or potassium formate (Antifrogen KF) Furthermore, find ionic liquids, such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium methanesulfonate, 1-butyl-3-methylimidazolium chloride , 1-butyl-3-methylimidazolium methanesulfonate, 1-Ethyl-2,3-dimethylimidazolium ethylsulfate (sold under the trademark Basionics® BASF SE, 67063 Ludwigshafen, DE) application. Also can be used polyalkylene glycol derivatives.
  • the advantage of this alternative solution is that the cooling device no longer has to be in direct contact with the container surface to be cooled, possibly mediated by the intermediary of a thermal compound. As a result, there are no such great demands on the accuracy of, for example, the winding geometry of a cooling tube with respect to the container outer contour, which reduces costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Centrifugal Separators (AREA)

Abstract

The container has a container body with two container layers that are in heat conductive contact with different thermal conductivities. The thermal conductivities differ by a factor greater than 10, particularly greater than 20, particularly greater than 100. A layer with lower thermal conductivity is formed from a material which comprises stainless steel, steel, ceramics, glass, nanomaterial or plastic material. Another layer with higher heat conductivity, is formed from a material which comprises aluminum, gold, carbon, copper, magnesium, brass, silver or silicon or alloys. Independent claims are also included for: (1) a device for handling, particularly centrifugation, stirring or cooling of goods, particularly a laboratory centrifuge; and (2) a method for producing a container.

Description

Die vorliegende Erfindung betrifft einen Behälter nach dem Oberbegriff von Anspruch 1, eine Vorrichtung nach dem Oberbegriff von Anspruch 5 und ein Verfahren zur Herstellung des Behälters nach dem Oberbegriff von Anspruch 7.The present invention relates to a container according to the preamble of claim 1, a device according to the preamble of claim 5 and a method of manufacturing the container according to the preamble of claim 7.

Insbesondere bezieht sich die vorliegende Erfindung auf Laborzentrifugen, d.h. Zentrifugen, die beispielsweise in chemischen, biologischen, biochemischen oder biotechnologischen Laboren Verwendung finden. Andererseits kann die vorliegende Erfindung vorteilhaft auch bei großtechnischen Zentrifugen und mechanischen Rührvorrichtungen eingesetzt werden und allen Vorrichtungen, bei denen ein Gut zumindest mittelbar gekühlt werden soll. Damit ist die Erfindung aber auch bei reinen Kühlvorrichtungen, wie Kühl- und Gefrierschränken und insbesondere Laborkühl- und Laborgefrierschränken, bei denen eine sehr tiefe Auskühlung erreicht werden soll, einsetzbar. In solchen Reinen Kühlvorrichtungen bildet der Behälter die Umhausung des Innenraums der Vorrichtung in den das Gut eingebracht wird.In particular, the present invention relates to laboratory centrifuges, i. Centrifuges used, for example, in chemical, biological, biochemical or biotechnological laboratories. On the other hand, the present invention can be advantageously used in large-scale centrifuges and mechanical stirring devices and all devices in which a good is to be cooled at least indirectly. Thus, the invention is also in pure cooling devices, such as refrigerators and freezers and especially laboratory cooling and laboratory freezers, where a very deep cooling to be achieved, can be used. In such pure cooling devices, the container forms the enclosure of the interior of the device in which the good is introduced.

Die Erfindung betrifft insbesondere keine Kochgeschirre, Bratpfannen oder dergleichen Behälter, die der Erwärmung eines in dem Behälter anordenbaren Gutes dienen.In particular, the invention does not relate to cookware, frying pans or the like containers which serve to heat a good that can be arranged in the container.

Hintergrund der ErfindungBackground of the invention

Bei der Zentrifugation entsteht während der Drehung des Zentrifugenrotors im Zentrifugenkessel Wärme durch Luftreibung und elektrische Verlustleistung. Da der Zentrifugenkessel zum Verhindern eines Austritts von Zentrifugiergut mit einem Deckel verschlossen ist, kann dieser Wärmeeintrag nicht ohne weiteres abgeführt werden und führt zur Erhöhung der Temperatur des Zentrifugiergutes.During centrifugation, heat is generated during the rotation of the centrifuge rotor in the centrifuge vessel due to air friction and electrical power loss. Since the centrifuge vessel is closed with a lid to prevent spillage of centrifuging, this heat input can not be easily dissipated and leads to an increase in the temperature of Zentrifugiergutes.

Diese Temperaturerhöhung ist jedoch zumeist unerwünscht. Daher wurden schon in der Vergangenheit Vorkehrungen zur Vermeidung einer Erhöhung der Zentrifugierguttemperatur getroffen. Dies kann zum einen durch direkt Kühlung erfolgen oder durch indirekte Kühlung mittels Wärmetauscherprinzip. Bei der indirekten Kühlung (mittelbare Kühlung) besteht also kein direkter Kontakt zwischen Kühlmedium und zu kühlendem Gut bzw. Umhüllung des zu kühlenden Gutes.However, this temperature increase is usually undesirable. Therefore, precautions have been taken in the past to avoid an increase in centrifuging temperature. This can be done either by direct cooling or by indirect cooling using the heat exchanger principle. In the indirect cooling (indirect cooling) so there is no direct contact between the cooling medium and to be cooled Good or wrapping the goods to be cooled.

Bei der direkten Kühlung wird die Umgebungsluft unmittelbar am Zentrifugenrotor durch den Zentrifugenkessel geleitet, wobei der Rotor als eine Art Radiallüfter wirkt. Dazu weist der Zentrifugendeckel und/oder Zentrifugekessel achsennah eine Einlassöffnung und eine in Bezug auf die Rotationsachse entfernter angeordnete Auslassöffnung auf. Eine solche direkte Kühlung hat sich zwar bewährt, jedoch muss der Zentrifugenkessel dazu eine Auslassöffnung aufweisen, die allerdings auch einen Materialaustritt gestattet. Solche Kessel sind damit auch nicht für Rührvorrichtungen oder dergleichen verwendbar, in denen Materialien direkt vermengt werden sollen und die damit ringsum geschlossen ausgebildet sein müssen. Ein Nachteil der direkten Kühlung ergibt sich aus der Verwendung der Umgebungsluft als Kühlmittel: das Gut kann maximal nur auf die Temperatur der Umgebungsluft abgekühlt werden.In direct cooling, the ambient air is passed directly through the centrifuge bowl at the centrifuge rotor, with the rotor acting as a kind of radial fan. For this purpose, the centrifuge lid and / or centrifuge bowl has an inlet opening near the axis and an outlet opening arranged at a distance from the axis of rotation. Although such direct cooling has proven itself, the centrifuge tank must have an outlet opening for it, which, however, also permits a material outlet. Such boilers are thus not suitable for stirring devices or the like, in which materials are to be mixed directly and must therefore be formed closed all around. A disadvantage of direct cooling results from the use of the ambient air as a coolant: the good can be cooled only to the maximum temperature of the ambient air.

Bei der mittelbaren Kühlung ist der Rotor im Zentrifugenkessel unter dem Zentrifugendeckel eingeschlossen und es ist kein Kühlkanal oder dergleichen vorgesehen. Die Luft zirkuliert daher nur innerhalb des Zentrifugenkessels. Eine Kühlung wird nun durch ein zweites Medium erreicht, das an der Außenseite des Kessels vorbeigeführt wird. Dabei kann es sich entweder um Umgebungsluft handeln, die am Kesseläußeren vorbeigeleitet wird, wie es z.B. bei der Zentrifuge 5424 der Eppendorf AG verwirklicht ist. Alternativ wird ein spezielles Kühlmittel über Rohrleitungen, die spiralförmig an dem Kessel, d.h. den Seitenwänden und der Bodenplatte des Kessels, anliegen, an dem Kessel vorbeigeführt, um Wärme abzutransportieren. Bei letzterer Variante der mittelbaren Kühlung ist auch eine Abkühlung des Guts auf eine Temperatur unter die Temperatur der Umgebungsluft möglich. Ein Vorteil der mittelbaren Kühlung ist die bessere Regelbarkeit der einzustellenden Temperatur im Vergleich zur direkten Kühlung.In indirect cooling, the rotor is enclosed in the centrifuge vessel under the centrifuge lid and no cooling channel or the like is provided. The air circulates therefore only within the centrifuge bowl. Cooling is now achieved by a second medium, which is passed on the outside of the boiler. This can either be ambient air, which is conducted past the outside of the boiler, as is realized, for example, in the case of the centrifuge 5424 from Eppendorf AG. Alternatively, a special coolant is routed past the boiler via conduits spiraling against the boiler, ie the side walls and the bottom plate of the boiler, to remove heat. In the latter variant of the indirect cooling and cooling of the material to a temperature below the temperature of the ambient air is possible. An advantage of indirect cooling is the better controllability of the temperature to be set compared to direct cooling.

Der mit der mittelbaren Kühlung erzielte Kühleffekt ist jedoch bisher noch nicht so effizient, wie bei der direkten Kühlung, weshalb der Energieaufwand bei gleicher Kühlleistung entsprechend hoch ist. Dies ist eine Folge des flächenmäßig begrenzten Kontakts des Kühlmediums, das an der Außenseite des Kessels vorbeigeführt wird.However, the cooling effect achieved with the indirect cooling is not yet as efficient as in direct cooling, which is why the energy consumption is correspondingly high with the same cooling capacity. This is a consequence of the areal limited contact of the cooling medium, which is led past the outside of the boiler.

Bereits aus dem Stand der Technik sind Bemühungen bekannt, die mittelbare Kühlung zu verbessern. So beschreibt die US 5,477,704 A einen Zentrifugenkessel, an dessen äußeren Seitenwänden und der Bodenplatte Kühlschlangen aus Kupfer mittels eines Aluminium-gefüllten Epoxidharzes geklebt sind. Das Aluminium-gefüllte Epoxidharz weist eine hohe Wärmeleitfähigkeit auf und dient der Unterstützung der Wärmeableitung aus dem Zentrifugenkessel. Die in der US 5,477,704 A offenbarten Kühlschlangen, die an den Kessel geklebt werden, zeichnen sich durch ihre besondere Ausgestaltung aus: die an der Kesselseitenwand bzw. and der Bodenplatte anliegende Seite der Kühlschlange ist abgeflacht, um so die Kontaktfläche zwischen Kühlschlange und Kessel zu vergrößern. Ein Epoxidharz ist allerdings schwierig auf Kupferrohre aufzubringen und es bedarf einer gewissen Aushärtezeit, bevor ein solcher Kessel nutzbar bzw. weiter verarbeitet werden kann. Dazu kommt, dass der Kessel und der Verbund Epoxidharz/Kupfer unterschiedliche Wärmeausdehnungskoeffizienten aufweisen. Das führt dazu, dass bei einer Temperaturveränderung Knackgeräusche auftreten können, die beim Benutzer ein Unsicherheitsgefühl hinsichtlich der Betriebssicherheit der Zentrifuge hinterlassen können.Efforts are already known from the prior art to improve the indirect cooling. That's how it describes US 5,477,704 A a centrifuge vessel, on the outer side walls and the bottom plate of which cooling coils of copper are glued by means of an aluminum-filled epoxy resin. The aluminum-filled epoxy resin has a high thermal conductivity and serves to assist heat dissipation from the centrifuge bowl. The in the US 5,477,704 A disclosed cooling coils, which are glued to the boiler, are characterized by their special design: the voltage applied to the boiler side wall and the bottom plate side of the cooling coil is flattened, so as to increase the contact area between the cooling coil and boiler. However, an epoxy resin is difficult to apply to copper pipes and it takes a certain curing time before such a boiler can be used or further processed. In addition, the boiler and the composite epoxy resin / copper have different thermal expansion coefficients. The result of this is that, in the event of a change in temperature, clicks can occur which leave the user with an uncertainty with regard to the operational safety of the centrifuge.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, einen Behälter bereit zu stellen, der eine effiziente mittelbare Kühlung erlaubt und einfach und möglichst kostengünstig herzustellen ist. Außerdem soll auch eine mit dem Behälter zusammenwirkende Vorrichtung und ein Verfahren zur Herstellung des Behälters bereit gestellt werden. Dabei soll der Behälter nicht nur Anwendung in Zentrifugen, sondern auch Rührvorrichtungen, Kühlvorrichtungen und dergleichen finden können.The object of the present invention is to provide a container that allows efficient indirect cooling and is simple and inexpensive to produce. In addition, a cooperating with the container device and a method for producing the container to be provided. The container should not only be used in centrifuges, but also stirring devices, cooling devices and the like can be found.

Behälter im Sinne der vorliegenden Erfindung sind alle Einrichtungen, in denen ein zu kühlendes Gut direkt oder über eine gesonderte Umhüllung indirekt angeordnet werden kann und der mittels mittelbarer Kühlung über eine im Wärme leitenden Kontakt stehende Kühleinrichtung gekühlt werden kann. Der erfindungsgemäße Behälter kann bezüglich der äußeren Form verschiedenartig ausgestaltet sein. Er kann rund bzw. kesselförmig sein. In einem solchen Falle weist der Behälter eine runde Bodenplatte auf, von der sich am äußeren Rand eine Seitenwand hochzieht. Die Oberseite des Behälters ist verschließbar durch einen öffenbaren Deckel. In einer alternativen Ausgestaltung ist der Behälter eckig, d.h. rechteckig bzw. quadratisch ausgestaltet. Er besitzt dann eine rechteckige bzw. quadratische Bodenplatte, von deren äußeren Rand sich jeweils vier Seitenwände erstrecken. Die Oberseite des Behälters ist mit einer oberen Platte verschlossen. Je nach Verwendung des Behälters ist entweder wenigstens eine der Seitenwände als öffenbare Tür ausgestaltet oder die Oberseite des Behälters, d.h. die obere Platte ist als öffenbarer Deckel ausgebildet. Wenn im Weiteren von "Seitenwand" die Rede ist, umfasst dieser Begriff auch den Plural, d.h. "Seitenwände".Container in the context of the present invention are all devices in which a good to be cooled can be arranged directly or indirectly via a separate enclosure and which can be cooled by means of indirect cooling via a standing in heat conductive contact cooling device. The container according to the invention may be designed differently with respect to the outer shape. He can round or be kettle-shaped. In such a case, the container has a round bottom plate from which pulls up a side wall at the outer edge. The top of the container is closed by an openable lid. In an alternative embodiment, the container is angular, ie designed rectangular or square. He then has a rectangular or square base plate, extending from the outer edge of each four sidewalls. The top of the container is closed with a top plate. Depending on the use of the container either at least one of the side walls is designed as an openable door or the top of the container, ie the upper plate is formed as an openable lid. Whenever "sidewall" is mentioned, this term also includes the plural, ie "sidewalls".

Kurzbeschreibung der ErfindungBrief description of the invention

Überraschenderweise wurde gefunden, dass diese Aufgabe gelöst wird durch einen zumindest zweischichtigen Behälter gemäß Anspruch 1. Ebenso überraschend sind die Ergebnisse, die mit einer Vorrichtung, insbesondere Zentrifuge gemäß Anspruch 5 erzielt werden. Diese Ergebnisse sind deswegen überraschend, weil bisher keinerlei Hinweise vorlagen, dass ein zumindest zweischichtiger Zentrifugenkessel eine solche enorme Verbesserung der mittelbaren Kühlung bei einer Zentrifuge erbringen kann.Surprisingly, it has been found that this object is achieved by an at least two-layer container according to claim 1. Equally surprising are the results that are achieved with a device, in particular centrifuge according to claim 5. These results are surprising because so far there were no indications that an at least two-layer centrifuge vessel can provide such a tremendous improvement in indirect cooling in a centrifuge.

Die Erfindung betrifft somit

  1. (1) einen Behälter zur mittelbaren Kühlung von Gut in einer Vorrichtung, wie Zentrifugen, Rührvorrichtungen, Kühlvorrichtungen, wie Kühlschränken, und dergleichen, wobei der Behälter mit einer Kühleinrichtung der Vorrichtung in Wärme leitenden Kontakt bringbar ist und einen Behälterkörper aufweist, dadurch gekennzeichnet, dass der Behälterkörper zumindest zwei in Wärme leitendem Kontakt stehende Behälterschichten (10, 11) mit unterschiedlicher Wärmeleitfähigkeit aufweist, wobei die Schicht mit höherer Wärmeleitfähigkeit (11) an der durch die Kühleinrichtung zu kühlenden Behälteraußenseite angeordnet ist;
  2. (2) eine Vorrichtung zur Behandlung, insbesondere Zentrifugieren, Rühren, Kühlen oder dergleichen., eines Gutes, insbesondere eine Laborzentrifuge, ein Kühlschrank, ein Gefrierschrank, insbesondere ein Laborkühlschrank- und/oder Laborgefrierschrank oder dergleichen., mit einem Behälter und einer nur bereichsweise mit einer gekühlten Außenfläche des Behälters in Wärme leitendem Kontakt stehenden Kühleinrichtung zur mittelbaren Kühlung des im Inneren des Behälters angeordnetes Gutes, dadurch gekennzeichnet, dass der Behälter als Behälter gemäß (1) ausgebildet ist; und
  3. (3) ein Verfahren zur Herstellung des Behälters gemäß (1), dadurch gekennzeichnet, dass die Schicht mit höherer Wärmeleitfähigkeit (11) auf der Schicht mit geringerer Wärmeleitfähigkeit (10) angeordnet wird oder umgekehrt.
The invention thus relates
  1. (1) a container for indirect cooling of goods in a device, such as centrifuges, stirring devices, cooling devices, such as refrigerators, and the like, wherein the container can be brought into heat-conductive contact with a cooling device of the device and has a container body, characterized in that the container body has at least two heat-conductive contact container layers (10, 11) with different thermal conductivity, wherein the higher thermal conductivity layer (11) is disposed on the container side to be cooled by the cooling device;
  2. (2) a device for treatment, in particular centrifuging, stirring, cooling or the like., Of a good, in particular a laboratory centrifuge, a refrigerator, a freezer, in particular a laboratory refrigerator and / or laboratory freezer or the like., With a container and a region only with a cooled outer surface of the container in heat conductive contact cooling device for the indirect cooling of the goods arranged inside the container, characterized in that the container is designed as a container according to (1); and
  3. (3) A method of manufacturing the container according to (1), characterized in that the higher thermal conductivity layer (11) is disposed on the lower thermal conductivity layer (10) or vice versa.

"Wärme leitender Kontakt" heißt im Zusammenhang der vorliegenden Erfindung, dass der Kontakt so beschaffen sein muss, dass die Wärmeübertragung durch Wärmeleitung erfolgen kann. Es muss also ein stofflicher Kontakt vorhanden sein, was jedoch nicht bedeutet, dass dieser Kontakt unmittelbar bestehen muss - zwischen den beiden Schichten können also auch noch ein oder mehrere Zwischenschichten angeordnet sein. "Wärme übertragender Kontakt" heißt dagegen im Zusammenhang der vorliegenden Erfindung, dass der Kontakt so beschaffen sein muss, dass eine Wärmeübertragung zumindest durch eine der drei prinzipiellen Wärmeübertragungsmechanismen, Wärmeleitung, -strahlung oder -konvektion, erfolgen kann. Es muss dabei also nicht zwingend ein stofflicher Kontakt bestehen. "Direkter Kontakt" zwischen zwei Objekten heißt im Rahmen der vorliegenden Erfindung, dass zwei Objekte zumindest bereichsweise direkt aneinander anliegen und sich somit berühren. Wenn im Rahmen der vorliegenden Erfindung allgemein von "Kontakt" oder "Kontaktstelle" die Rede ist, d.h. ohne die voranstehenden Worte "Wärme leitend" bzw. "Wärme übertragend", ist damit immer ein direkter Kontakt gemeint."Heat conductive contact" in the context of the present invention means that the contact must be such that the heat transfer can be carried out by heat conduction. So there must be a material contact, but this does not mean that this contact must exist directly - so between the two layers can also be arranged one or more intermediate layers. In the context of the present invention, "heat-transferring contact" means, for example, that the contact must be such that heat transfer can take place at least by one of the three principal heat transfer mechanisms, heat conduction, radiation or convection. It does not necessarily have to be a material contact. "Direct contact" between two objects in the context of the present invention means that two objects at least partially abut each other directly and thus touch each other. When in the context of the present invention is generally referred to as "contact" or "contact point", i. without the preceding words "heat conducting" or "heat transferring", this always means a direct contact.

Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.Advantageous developments are specified in the dependent claims.

Kurzbeschreibung der FigurenBrief description of the figures

Die Erfindung wird anhand der nachfolgenden Figuren illustriert, die zusätzlich auch in der detaillierten Beschreibung der Erfindung näher erläutert sind. Dabei zeigen

Fig. 1
eine schematische, ausschnittsweise Darstellung eines herkömmlichen Zentrifugenkessel in Kontakt mit einer Kühlleitung und
Fig. 2
eine schematische, ausschnittsweise Darstellung eines erfindungsgemäßen Zentrifugenkessel in Kontakt mit einer Kühlleitung.
The invention is illustrated by the following figures, which are additionally explained in detail in the detailed description of the invention. Show
Fig. 1
a schematic, partial view of a conventional centrifuge vessel in contact with a cooling line and
Fig. 2
a schematic, partial view of a centrifuge vessel according to the invention in contact with a cooling line.

Der erfindungsgemäße Behälter umfasst einen Behälterkörper, der zumindest zwei in Wärme leitendem Kontakt stehende Behälterschichten mit unterschiedlicher Wärmeleitfähigkeit aufweist. Durch die zwei Behälterschichten wird eine große Kontaktfläche geschaffen, die die Wärmeübertragung bei der Kühlung verbessert. Dadurch, dass die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenseite angeordnet ist, wird der Wärmestrom in Richtung zu der nur bereichsweise in Wärme leitendem Kontakt mit der zu kühlenden Behälterfläche stehenden Kühleinrichtung erhöht. Dadurch ergibt sich insgesamt eine erhöhte Kühleffizienz.The container according to the invention comprises a container body which has at least two heat-conducting contact container layers with different thermal conductivity. The two container layers create a large contact area that improves heat transfer during cooling. Due to the fact that the layer with higher thermal conductivity is arranged on the outside of the container to be cooled, the heat flow is increased in the direction of the cooling device, which only conducts heat in some areas in contact with the cooling surface of the container. This results in an overall increased cooling efficiency.

Um eine besonders effiziente Kühlung zu ermöglichen, sollen sich die Wärmeleitfähigkeiten um einen Faktor größer 10, bevorzugt größer 20, insbesondere größer 100 unterscheiden.In order to enable particularly efficient cooling, the thermal conductivities should differ by a factor greater than 10, preferably greater than 20, in particular greater than 100.

In einer besonders bevorzugten Ausgestaltung ist die Schicht mit niedrigerer Wärmeleitfähigkeit aus einem Material umfassend Edelstahl, Stahl, Keramik, Glas und/oder Kunststoff gebildet und die Schicht mit höherer Wärmeleitfähigkeit ist aus einem Material Aluminium, Gold, Kohlenstoff, einschließlich dessen Modifikationen Graphit, Diamant, diamantähnlicher Kohlenstoff und Kohlenstoff-Nanoröhrchen, Kupfer, Magnesium, Messing, Silber und/oder Silizium oder deren Legierungen umfassend gebildet. Dann lässt sich eine besonders effiziente Wärmeübertragung sicherstellen und der Kessel ist auch leicht herstellbar. Insbesondere ist auch eine Ausgestaltung der Schicht mit höherer Wärmeleitfähigkeit als Folie vorteilhaft, beispielsweise als pyrolytische Graphitfolie (PGS), da diese fertigungstechnisch einfach auf die Schicht mit niedrigerer Wärmeleitfähigkeit aufbringbar ist. Als Schicht mit niedrigerer Wärmeleitfähigkeit können alternativ auch sogenannte Nanoschichten verwendet werden, also eine Schicht, die mit Nanotechnologie erzeugt wurde. Im weiteren wird eine solche Schicht aus einem "Nanomaterial" bestehend aufgefasst.In a particularly preferred embodiment, the layer with lower thermal conductivity is formed from a material comprising stainless steel, steel, ceramic, glass and / or plastic and the layer with higher thermal conductivity is made of a material aluminum, gold, carbon, including its modifications graphite, diamond, diamond-like carbon and carbon nanotubes, copper, magnesium, brass, silver and / or silicon or their alloys formed. Then a particularly efficient heat transfer can be ensured and the boiler is also easy to produce. In particular, an embodiment of the layer with higher thermal conductivity than film is advantageous, for example, as a pyrolytic graphite foil (PGS), since this manufacturing technology is simply applied to the layer with lower thermal conductivity. As a layer with lower thermal conductivity, alternatively, so-called nanolayers can be used, that is to say a layer which was produced using nanotechnology. In the following, such a layer is understood to consist of a "nanomaterial".

Die Herstellungskosten lassen sich bei guter Effizienz dadurch reduzieren, dass die Schicht mit höherer Wärmeleitfähigkeit eine geringe Dicke von weniger als 1 mm, bevorzugt weniger als 0,5 mm und insbesondere weniger als 0,2 mm aufweist. Dabei ist zu beachten, dass in Abhängigkeit vom Schichtmaterial der Wärmestrom bei zu dicken Schichten abnimmt und der Wärmetransport bei zu dünnen Schichten möglicherweise gestört ist, so dass bezüglich der minimalen Dicke für jedes Schichtmaterial ein Optimum besteht, das der Fachmann anhand von Versuchen und Berechnungen routiniert herausfinden wird.The production costs can be reduced with good efficiency in that the layer with higher thermal conductivity has a small thickness of less than 1 mm, preferably less than 0.5 mm and in particular less than 0.2 mm. It should be noted that depending on the layer material, the heat flow at too thick layers decreases and the heat transfer may be disturbed in the case of layers that are too thin, so that there is an optimum with respect to the minimum thickness for each layer material, which the expert will find out routinely by means of tests and calculations.

Unabhängiger Schutz wird beansprucht für eine Vorrichtung zur Behandlung, insbesondere Zentrifugieren, Rühren, Kühlen oder dergleichen, eines Gutes, insbesondere eine Laborzentrifuge, ein Kühlschrank, ein Gefrierschrank, ein Laborkühlschrank, ein Laborgefrierschrank, oder dergleichen, mit einem Behälter und einer nur bereichsweise mit einer gekühlten Außenfläche des Behälters in Wärme leitendem Kontakt stehenden Kühleinrichtung zur mittelbaren Kühlung des im Inneren des Behälters angeordnetes Gutes, wobei der Behälter als der erfindungsgemäße Behälter ausgebildet ist.Independent protection is claimed for a device for treatment, in particular centrifuging, stirring, cooling or the like of a good, in particular a laboratory centrifuge, a refrigerator, a freezer, a laboratory refrigerator, a laboratory freezer, or the like, with a container and a region only with a cooled outer surface of the container in heat-conducting contact cooling means for indirect cooling of the arranged inside the container good, wherein the container is designed as the container according to the invention.

Vorteilhafterweise ist dabei der Behälter von einer rohrförmigen Leitung umgeben, die vorzugsweise spiralförmigen um den Behälter gewickelt ist. Der Begriff "rohrförmig" umfasst runde Rohre sowie auch Rohre mit zumindest einer abgeflachten Seite, insbesondere auch Rechteckrohre.Advantageously, the container is surrounded by a tubular conduit, which is preferably wound helically around the container. The term "tubular" includes round tubes as well as tubes with at least one flattened side, in particular also rectangular tubes.

"Nur bereichsweise" bedeutet im Zusammenhang der vorliegenden Erfindung, dass die Kontaktfläche zwischen der Kühleinrichtung und der gekühlten Außenfläche des Behälters kleiner ist als die gekühlte Außenfläche des Behälters. Die Kühleinrichtung kann dabei auch durch mehrere getrennt arbeitende Einrichtungen gebildet sein, wobei jedoch deren gesamte Kontaktfläche kleiner sein soll als die gekühlte Behälteraußenfläche."Only in some areas" in the context of the present invention means that the contact area between the cooling device and the cooled outer surface of the container is smaller than the cooled outer surface of the container. The cooling device can also be formed by a plurality of separately operating devices, but their total contact area should be smaller than the cooled container outer surface.

Aufgrund der Effizienz der ermöglichten mittelbaren Kühlung kann auf die Vorsehung von Kühlleitungen am Boden des Behälters verzichtet werden. Allerdings steigt die Temperatur beispielsweise in einem Zentrifugenkessel in Abhängigkeit von der Rotationsgeschwindigkeit exponentiell an, so dass für sehr hohe Drehzahlen und/oder angestrebte sehr tiefe Auskühlungen zusätzliche Kühlleitungen am Kesselboden vorgesehen werden können.Due to the efficiency of the indirect cooling enabled, it is possible to dispense with the provision of cooling lines at the bottom of the container. However, the temperature rises exponentially in a centrifuge vessel, for example, as a function of the rotational speed, so that additional cooling lines can be provided on the bottom of the vessel for very high rotational speeds and / or desired very deep cooling.

Selbstverständlich kann die erfindungsgemäße mittelbare Wärmeübertragung auch mit einer direkten Wärmeübertragung, beispielsweise die bekannte Rotorluft gestützte Zentrifugenkühlung gekoppelt werden.Of course, the indirect heat transfer according to the invention can also be coupled with a direct heat transfer, for example, the known rotor air assisted centrifugal cooling.

Weiterhin wird selbständiger Schutz für das Verfahren zur Herstellung des erfindungsgemäßen Behälters beansprucht, bei dem die Schicht mit höherer Wärmeleitfähigkeit auf der Schicht mit geringerer Wärmeleitfähigkeit angeordnet wird oder umgekehrt. Beispielsweise kann dies dadurch erfolgen, dass die eine Schicht, bevorzugt die mit der höheren Wärmeleitfähigkeit auf der anderen Schicht aufplatiert und dann der Behälter geformt wird oder zwei von einander getrennte Schichten werden beispielsweise als Folien oder Bleche aufeinander gelegt und der Behälter beispielsweise durch gleichzeitiges Umformen, beispielsweise Tiefziehen, der Schichten geformt.Furthermore, independent protection for the method for producing the container according to the invention is claimed, in which the layer with higher thermal conductivity is disposed on the layer with lower thermal conductivity or vice versa. For example, this can be done by the one layer, preferably the one with the higher thermal conductivity aufplatiert on the other layer and then the container is formed or two separate layers are stacked, for example, as foils or sheets and the container, for example, by simultaneous forming, For example, deep drawing, the layers shaped.

Allerdings wird bevorzugt, wenn die Schicht mit höherer Wärmeleitfähigkeit auf der Schicht mit niedrigerer Wärmeleitfähigkeit aufgebracht wird nachdem die Schicht mit niedrigerer Wärmeleitfähigkeit im Wesentlichen die Form des Behälters erhalten hat oder umgekehrt wird die Schicht mit niedrigerer Wärmeleitfähigkeit auf der Schicht mit höherer Wärmeleitfähigkeit aufgebracht wird nachdem die Schicht mit höherer Wärmeleitfähigkeit im Wesentlichen die Form des Behälters erhalten hat. Dann lässt sich das Herstellungsverfahren kostengünstiger gestalten, wobei beispielsweise die Schicht mit höherer Wärmeleitfähigkeit galvanotechnisch auf der Schicht mit niedriger Wärmeleitfähigkeit aufgebracht wird oder umgekehrt.However, it is preferable that the higher thermal conductivity layer is deposited on the lower thermal conductivity layer after the lower thermal conductivity layer has substantially the shape of the container, or vice versa, the lower thermal conductivity layer is applied to the higher thermal conductivity layer after the lower thermal conductivity layer Layer with higher thermal conductivity has essentially received the shape of the container. Then, the manufacturing process can be made more cost-effective, for example, the layer with higher thermal conductivity is galvanotechnically applied to the layer with low thermal conductivity or vice versa.

Zusammenfassend kann festgehalten werden, dass die Erfinder erkannt haben, dass bei der mittelbaren Kühlung die Effektivität ganz wesentlich von der Wärmeübertragung zwischen den Elementen des Wärmetauschers abhängt, wie im Folgenden dargelegt wird. Dabei wird zur Beschreibung der Vorgänge bei der Wärmeübertragung nur die Wärmeleitung berücksichtigt und die Wärmestrahlung und Wärmekonvektion werden außer Acht gelassen.In summary, it can be stated that the inventors have recognized that in indirect cooling, the effectiveness depends substantially on the heat transfer between the elements of the heat exchanger, as will be explained below. In this case, only the heat conduction is taken into account for the description of the processes during the heat transfer and the heat radiation and convection are disregarded.

Der Wärmestroms innerhalb eines Festkörpers ist definiert als: Q ˙ = λ A s Δ T ,

Figure imgb0001

wobei der Wärmestrom durch den Festkörper, λ die Wärmeleitfähigkeit, die eine Materialkonstante ist, A die Größe der Querschnittsfläche des Festkörpers, s die Dicke des Festkörpers und ΔT die Temperaturdifferenz zwischen der Eingangs- und Ausgangsseite des Wärmestroms sind.The heat flow within a solid is defined as: Q ˙ = λ A s Δ T .
Figure imgb0001

where Q̇ is the heat flow through the solid, λ the thermal conductivity, which is a material constant , A is the size of the solid's cross-sectional area, s is the thickness of the solid, and Δ T is the temperature difference between the input and output sides of the heat flow.

Das erfindungsgemäße Prinzip mit seinen Vorteilen wird im Folgenden anhand der Zeichnung am Beispiel von Zentrifugenkesseln näher erläutert.The principle of the invention with its advantages will be explained in more detail below with reference to the drawing using the example of centrifuge boilers.

Anhand von Fig. 1 wird dieses Prinzip rein schematisch für einen nach Stand der Technik bekannten und ausschnittsweise dargestellten Zentrifugenkessel mit einer Kesselwand 1, der mit einer Kühlleitung 2 in Kontakt steht, erläutert. Dabei fließt der anhand der Pfeile verdeutlichte Wärmestrom von der Kesselinnenseite 3 mit einer Temperatur T1 durch die Kesselwand 1, die eine Wandstärke s1 aufweist, über die Kontaktfläche A zwischen Kesselwand 1 und Kühlleitung 2 mit einer Temperatur TA durch das Kühlmedium führende Material der Kühlleitung 2, die eine Wandstärke s2 besitzt, wobei das Kühlmedium die Temperatur T2 aufweist.Based on Fig. 1 This principle is explained purely schematically for a prior art known and partially illustrated centrifuge vessel with a boiler wall 1, which is in contact with a cooling line 2. The illustrated by the arrows heat flow from the boiler inside 3 flows at a temperature T 1 through the boiler wall 1, which has a wall thickness s 1 , via the contact surface A between the boiler wall 1 and the cooling pipe 2 with a temperature T A through the cooling medium leading material Cooling line 2, which has a wall thickness s 2 , wherein the cooling medium has the temperature T 2 .

Zur Vereinfachung werden weiterhin die Annahmen getroffen, dass die Wandstärken s1 und s2 gleich sind, und zwar s = 1 mm, der Querschnitt der Kontaktfläche A = 1 mm2 beträgt und der Wärmestrom außerhalb der Kontaktfläche A gleich Null ist, dort also ein Luftspalt vorliegt. Damit kann der Wärmestrom durch die Kesselwand 1 nur durch die Kontaktfläche A erfolgen und für den Wärmestrom durch die Kesselwand 1 ergibt sich dann: Q ˙ 1 = λ 1 T 1 - T A

Figure imgb0002
und für den Wärmestrom durch das Kühlmedium führende Material der Kühlleitung 2: Q ˙ 2 = λ 2 T A - T 2
Figure imgb0003
For simplicity, the assumptions are further made that the wall thicknesses s 1 and s 2 are the same, that is s = 1 mm, the cross-section of the contact surface A = 1 mm 2 and the heat flow outside the contact surface A is zero, there so a Air gap is present. Thus, the heat flow through the boiler wall 1 can be made only by the contact surface A and for the heat flow through the boiler wall 1 then results: Q ˙ 1 = λ 1 T 1 - T A
Figure imgb0002
and for the heat flow through the cooling medium leading material of the cooling line 2: Q ˙ 2 = λ 2 T A - T 2
Figure imgb0003

Nach dem Kontinuitätsprinzip ist Q ˙ 1 = Q ˙ 2 .

Figure imgb0004
After the continuity principle is Q ˙ 1 = Q ˙ 2 ,
Figure imgb0004

Nach dem Einsetzen ergibt sich: λ 1 T 1 - T A = λ 2 T A - T 2 .

Figure imgb0005
After inserting results: λ 1 T 1 - T A = λ 2 T A - T 2 ,
Figure imgb0005

Mit T 1 -TA T 1 und TA-T 2T 2 folgt schließlich: λ 1 T 1 = λ 2 T 2 .

Figure imgb0006
With T 1 -T A = Δ T 1 and T A -T 2 = Δ T 2 finally follows: λ 1 T 1 = λ 2 T 2 ,
Figure imgb0006

Wenn λ1 < λ2 gewählt wird, muss folglich ΔT 1T 2 sein.Consequently, if λ 12 is chosen, then Δ T 1 > Δ T 2 .

Im Anwendungsfall einer Zentrifuge wird T2 mittels Kühlmittel konstant niedrig gehalten. Das bedeutet im Umkehrschluss, dass die Temperatur im Kesselinneren T1 einen wesentlich höheren Temperaturabstand zur Temperatur der Kontaktstelle TA haben wird.In the application of a centrifuge T 2 is kept constant low by means of coolant. Conversely, this means that the temperature inside the boiler T 1 will have a much higher temperature difference from the temperature of the contact point T A.

Um nun die Temperatur im Kesselinneren T1 noch weiter absenken zu können, stehen zwar prinzipiell auch die Möglichkeiten zur Verfügung, die Wandstärken s1 und s2 zu verringern und/oder die Kesselwand 1 aus einem Material mit sehr hoher Wärmeleitfähigkeit λ (z.B. aus Kupfer oder Silber) zu fertigen, jedoch ist die erste Möglichkeit technisch durch die funktionelle Auslegung der Bauteile begrenzt und wird in der Regel auch ausgeschöpft und die zweite Möglichkeit ist zumeist aus anwendungstechnischen Gründen und dem vorgesehenen Einsatzbereich nicht möglich, da z.B. Kupfer oder Silber nicht chemisch inert sind.In order to be able to lower the temperature in the interior of the boiler T 1 still further, in principle the possibilities are available to reduce the wall thickness s 1 and s 2 and / or the boiler wall 1 made of a material with a very high thermal conductivity λ (eg copper or silver), however, the first possibility is technically limited by the functional design of the components and is usually exhausted and the second option is usually not possible for application reasons and the intended use, since for example copper or silver is not chemically inert are.

Damit verbleibt die praktikable Möglichkeit, die Kontaktfläche A zu vergrößern. Dazu können Rechteckrohre an Stelle von Rundrohren verwendet werden, denn üblicherweise wird rundes Kupferrohr für die Kühlmittel führenden Bauteile verwendet und bei der Verwendung von Rechteckrohr erfolgt eine wesentliche Vergrößerung der Kontaktfläche A. Allerdings ist es in der praktischen Ausführung jedoch derzeit technologisch nicht möglich, einen vollständigen Kontakt der eckigen Rohrwandung mit dem Zentrifugenkessel herzustellen. Es bleiben immer Spalte, an denen effektiv gesehen kein Wärmeübergang stattfindet.This leaves the practicable possibility to increase the contact area A. For this purpose, rectangular tubes can be used instead of round tubes, because usually round copper tube is used for the coolant-carrying components and the use of rectangular tube is a significant increase in the contact surface A. However, it is currently technologically impossible, a complete Contact the square pipe wall with the centrifuge boiler. There are always gaps where effectively no heat transfer takes place.

Als erfindungsgemäße Lösung wird durch die Erfinder eine zusätzliche Wärmeleitschicht an der Kesselaußenwand vorgesehen, wie in Fig. 2 wiederum rein schematisch für den sich ergebenden und anhand der Pfeile verdeutlichten Wärmestrom ausschnittsweise dargestellt ist. Hierdurch wird eine zusätzliche Kotaktstelle mit großer Kontaktfläche eingefügt.As a solution according to the invention, an additional heat conducting layer is provided on the outer wall of the boiler by the inventors, as in Fig. 2 again in a purely schematic for the resulting and illustrated by the arrows heat flow fragmentary is shown. As a result, an additional Kotaktstelle is inserted with a large contact area.

Im Unterschied zum Zentrifugenkessel nach Fig. 1 ist hier also neben der das Kesselinnere begrenzenden inneren Kesselschicht 10 mit der Dicke s10 eine zusätzliche äußere Kesselschicht 11 mit der Dicke s11 aus gut Wärme leitendem Material als Kesselaußenwand aufgebracht. Die Kühlleitung 12 weist die Dicke s12 auf.Unlike the centrifuge kettle after Fig. 1 here is thus adjacent to the interior of the boiler vessel defining inner layer 10 having the thickness of 10 s an additional external boiler layer 11 is applied with the thickness s 11 from good heat conducting material as a boiler outer wall. The cooling line 12 has the thickness s 12 .

Zur Vereinfachung gelten auch hier die Annahmen von Fig. 1, dass die Wandstärken alle gleich s = 1 mm sind, der Querschnitt der zwischen der äußeren Kesselschicht 11 und der Kühlleitung 12 angeordneten Kontaktfläche A = 1 mm2 beträgt und der Wärmestrom außerhalb der Kontaktfläche A gleich Null ist, also dort ein Luftspalt vorliegt.For simplification, the assumptions of Fig. 1 in that the wall thicknesses are all equal to s = 1 mm, the cross section of the contact surface A arranged between the outer boiler layer 11 and the cooling line 12 is 1 mm 2 and the heat flow outside the contact surface A is equal to zero, that is to say where there is an air gap.

Zusätzlich ergibt sich hier jedoch eine Kontaktfläche B zwischen den Kesselschichten 10, 11, die sehr viel größer ist als die andere Kontaktfläche A. Der Wärmestrom geht jetzt durch die drei Materialien der inneren Kesselschicht 10, der äußeren Kesselschicht 11 und der Kühlleitung 12 sowie durch die zwei dazwischen liegenden Kontaktstellen A, B, die sich von ihrer Größe erheblich unterscheiden.In addition, however, here there is a contact surface B between the boiler layers 10, 11, which is much larger than the other contact surface A. The heat flow is now through the three materials of the inner shell layer 10, the outer shell layer 11 and the cooling line 12 and through the two intermediate contact points A, B, which differ significantly from their size.

Nach dem Kontinuitätsprinzip gilt auch hier: 1 = B-A = 2.According to the continuity principle, 1 = BA = 2 .

Mit dem Einsetzten der Formel für den Wärmestrom ergibt sich: λ 1 B T 1 - T B = λ A - B A T B - T A = λ 2 A T A - T 2 .

Figure imgb0007
Using the formula for the heat flow yields: λ 1 B T 1 - T B = λ A - B A T B - T A = λ 2 A T A - T 2 ,
Figure imgb0007

Unter der weiteren Vereinfachung, dass die Materialien der äußeren Kesselschicht 11 und der Kühlleitung 12 dieselben sind und daher λ A-B = λ2 gilt, vereinfacht sich der Zusammenhang zu: λ 1 B T 1 - T B = λ 2 A 2 T B - T 2 ,

Figure imgb0008

und mit T 1 -TB=ΔT 1 und TB-T 2T 2 zu: λ 1 B T 1 = λ 2 A 2 T 2 .
Figure imgb0009
Further simplifying that the materials of the outer shell 11 and the cooling pipe 12 are the same, and therefore λ AB = λ 2 , the relation to: λ 1 B T 1 - T B = λ 2 A 2 T B - T 2 .
Figure imgb0008

and T 1 -T B = Δ T 1 and T B -T 2 = Δ T 2 to: λ 1 B T 1 = λ 2 A 2 T 2 ,
Figure imgb0009

D.h. wenn wiederum λ12 gewählt wird, muss folglich wiederum ΔT 1T 2 sein. Allerdings wird hier ein Teil der erforderlichen Temperaturdifferenz durch die wesentlich größere Kontaktfläche B abgefangen. Oder anders formuliert ist B T 1 > A 2 T 2 .

Figure imgb0010
That is to say, if λ 12 is selected, Δ T 1 > Δ T 2 must therefore again be Δ. However, here a part of the required temperature difference is intercepted by the much larger contact surface B. Or put differently B T 1 > A 2 T 2 ,
Figure imgb0010

Im Anwendungsfall einer Zentrifuge mit Kühlung wird T2 mittels Kühlmittel konstant niedrig gehalten. Das bedeutet aber im Umkehrschluss, dass die Temperatur im Kesselinneren T1 zwar einen höheren Temperaturabstand zur Temperatur der Kontaktstelle TB haben muss, jedoch ist der wiederum geringer als im Zusammenhang mit Fig.1 beschrieben, da B >> A.In the application of a centrifuge with cooling T 2 is kept constant low by means of coolant. However, this means conversely that the temperature inside the boiler T 1 must have a higher temperature distance to the temperature of the contact point T B , but this in turn is lower than in connection with Fig.1 described since B >> A.

Auch wenn das erfindungsgemäße Prinzip vorliegend anhand von zwei Behälterschichten mit unterschiedlicher Wärmeleitfähigkeit beschrieben wurde, ist doch klar, dass auch drei oder mehr Schichten verwendet werden können. Dabei kann es sich insbesondere um Korrosionsschutz-, Verschmutzungsschutz- oder dergleichen Schichten handeln. Wichtig ist nur, dass die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenfläche angeordnet ist. Es können aber sowohl zwischen der Schicht mit höherer und der Schicht mit niedrigerer Wärmeleitfähigkeit als auch auf der Schicht mit niedrigerer Wärmeleitfähigkeit noch ein oder mehrere weitere Schichten angeordnet sein, um den Behälter an besondere Einsatzbedingungen anzupassen.Although the principle according to the invention has been described herein with reference to two container layers with different thermal conductivity, it is clear that three or more layers can also be used. These may in particular be anti-corrosion, anti-contamination or the like layers. It is only important that the layer with higher thermal conductivity is arranged on the container outer surface to be cooled. However, one or more further layers can be arranged between the layer with higher and the layer with lower thermal conductivity as well as on the layer with lower thermal conductivity in order to adapt the container to particular conditions of use.

Beispielexample

Nachfolgend werden die Wirkungen der Erfindung anhand eines bevorzugten Ausführungsbeispiels verglichen mit einem aus dem Stand der Technik bekannten Vergleichsbeispiel geschildert.Hereinafter, the effects of the invention will be described with reference to a preferred embodiment compared with a comparative example known from the prior art.

Es wurde eine Laborzentrifuge 5415R der Firma Eppendorf AG verwendet, die als Kühlleitung 2, 12 ein spiralförmiges Rechteckrohr mit einer Breite von 9,5 mm, einer Höhe von 5,5 mm und einer Materialstärke von 0,5 mm aufweist. Dazu wurde ein serienmäßiger Zentrifugenkessel 1 mit 185 mm Durchmesser, 70 mm Höhe und einer Wandstärke von 1 mm (Art.-Nr. 5426 123.101-00) der Firma Eppendorf AG verwendet, der aus V2A-Edelstahl (Wärmeleitfähigkeit ca. 15 W/m*K) besteht und mit Wärmeleitpaste (Wärmeleitfähigkeit ca. 15 W/m*K) versehen in der Kühlleitung 2 angeordnet wurde, um das Vergleichsbeispiel zu bilden. Für das Erfindungsgemäße Ausführungsbeispiel wurde der serienmäßige Edelstahl-Zentrifugenkessel 10 (Art.-Nr. 5426 123.101-00) der Firma Eppendorf AG mit einer 0,1 mm dicken Kupferbeschichtung 11 (Wärmeleitfähigkeit ca. 350 W/m*K) versehen, ansonsten war der Versuchsaufbau gleich, d.h. der Zentrifugenkessel wurde mittels Wärmeleitpaste (Wärmeleitfähigkeit ebenfalls ca. 15 W/m*K) mit der rechteckigen Kühlleitung 12 verbunden.A laboratory centrifuge 5415R from Eppendorf AG was used, which has as cooling line 2, 12 a spiral rectangular tube with a width of 9.5 mm, a height of 5.5 mm and a material thickness of 0.5 mm. For this purpose, a serial centrifuge vessel 1 with a diameter of 185 mm, a height of 70 mm and a wall thickness of 1 mm (article No. 5426 123.101-00) from Eppendorf AG was used, which was made of V2A stainless steel (thermal conductivity about 15 W / m * K) and with thermal grease (thermal conductivity about 15 W / m * K) provided in the cooling line 2 was arranged to form the comparative example. For the exemplary embodiment according to the invention, the standard stainless steel centrifuge vessel 10 (article No. 5426 123.101-00) from Eppendorf AG was provided with a 0.1 mm thick copper coating 11 (thermal conductivity about 350 W / m.sup.K), otherwise the experimental setup is the same, ie The centrifuge vessel was connected to the rectangular cooling line 12 by means of thermal paste (thermal conductivity also about 15 W / m * K).

In beiden Fällen wurde die Zentrifuge 5415R mit einem gebräuchlichen Rotor F45-24-11 der Firma Eppendorf AG für eine Stunde bei maximal 13200 U/min betrieben. Die minimal erreichbare Probentemperatur wurde jeweils mit dem Temperaturmesser gemessen. Die Ergebnisse sind in der Tabelle festgehalten. Tabelle: 5415R mit Zentrifugenkessel ohne Cu-Beschichtung 5415R mit Zentrifugenkessel mit Cu-Beschichtung Raumtemperatur [°C] 25 26 Probentemperatur [°C] 3,9 0,4 In both cases, the centrifuge 5415R was operated with a conventional rotor F45-24-11 from Eppendorf AG for one hour at a maximum of 13200 rpm. The minimum achievable sample temperature was measured with the temperature meter. The results are recorded in the table. <U> Table </ u> 5415R with centrifuge bowl without Cu coating 5415R with centrifuge bowl with Cu coating Room temperature [° C] 25 26 Sample temperature [° C] 3.9 0.4

Die Ergebnisse zeigen, dass durch die Kupferbeschichtung 11 des Zentrifugenkessels 10 bei gleicher Kühlleistung eine wesentlich niedrigere Probentemperatur erreicht wird. Durch die Kupferbeschichtung 11 wird die Wärmeleitfähigkeit des Zentrifugenkessels 10 und damit der Wirkungsgrad der Kühlanlage verbessert. Es wird bei gleichem elektrischen Energieverbrauch eine geringere Probentemperatur erreicht.The results show that a significantly lower sample temperature is achieved by the copper coating 11 of the centrifuge vessel 10 with the same cooling capacity. By the copper coating 11, the thermal conductivity of the centrifuge tank 10 and thus the efficiency of the cooling system is improved. It is achieved with the same electrical energy consumption, a lower sample temperature.

Somit wurde gezeigt, dass die vorliegende Erfindung eine wesentlich effizientere mittelbare Kühlung vom Behälteräußeren in das Behälterinnere erlaubt. Die Verbesserung der Wärmeleitung und des Wärmeübergangs von Zentrifugenkesseln ergibt bei gekühlten Zentrifugen eine Verminderung der notwendigen Leistung der Kälteanlage. Durch die höhere Leistungsfähigkeit der Zentrifuge kann für gleiche Zentrifugierguttemperaturen eine höhere Drehzahl gefahren und/oder bei gleicher Zentrifugierguttemperatur und gleicher Drehzahl die aufgenommene Leistung des Kühlaggregats reduziert werden.Thus, it has been demonstrated that the present invention allows much more efficient indirect cooling from the exterior of the container to the interior of the container. The improvement of the heat conduction and the heat transfer of centrifuge boilers results in cooled centrifuges a reduction of the necessary performance of the refrigeration system. Due to the higher efficiency of the centrifuge, a higher rotational speed can be run for the same centrifuging product temperatures and / or the absorbed power of the cooling unit can be reduced with the same centrifuging product temperature and the same rotational speed.

Das erfindungsgemäße Prinzip beruht auf der Erkenntnis, dass bei mittelbarer Kühlung einer Behälterfläche, die größer ist als die Kontaktfläche zwischen dem Behälter und der Kühleinrichtung, die Kühlwirkung dann erhöht werden kann, wenn der Behälter neben der Schicht mit niedriger Wärmeleitfähigkeit eine Schicht mit höherer Wärmeleitfähigkeit aufweist und dabei die Schicht mit höherer Wärmeleitfähigkeit an der zu kühlenden Behälteraußenfläche angeordnet ist und mit der Kühleinrichtung in Wäre leitendem Kontakt steht. So wird die Kühlleistung besser in das Behälterinnere auf das dort zu kühlende Gut übertragen.The principle according to the invention is based on the finding that with indirect cooling of a container surface which is larger than the contact surface between the container and the cooling device, the cooling effect can be increased if the container has a layer with higher thermal conductivity in addition to the layer with low thermal conductivity and the layer with higher thermal conductivity is arranged on the container outer surface to be cooled and is in conductive contact with the cooling device. Thus, the cooling capacity is better transferred to the interior of the container to be cooled there Good.

Eine alternative Lösung besteht darin, die Kontaktfläche zwischen der Kühleinrichtung und der gekühlten Fläche des Behälters zumindest gleich groß der gekühlten Behälterfläche zu machen. Dies kann dadurch verwirklicht werden, dass die Kühleinrichtung ein Teil der Schicht des Behälters mit größerer Wärmeleitfähigkeit ist.An alternative solution is to make the contact area between the cooling device and the cooled surface of the container at least equal to the cooled container surface. This can be realized by virtue of the fact that the cooling device is part of the layer of the container with greater thermal conductivity.

Dazu kann beispielsweise vorgesehen sein, dass die zweite Schicht aus einem Feststoff, wie Kupfer oder dergleichen besteht und die Kühleinrichtung direkt in dieser Schicht angeordnet ist.For this purpose, it can be provided, for example, that the second layer consists of a solid, such as copper or the like, and the cooling device is arranged directly in this layer.

Andererseits kann die Kühleinrichtung auch in einer Flüssigkeit, Gel oder dergleichen angeordnet sein, die mit der Schicht mit niedrigerer Wärmeleitfähigkeit in Wärme leitendem Kontakt steht und selbst eine höhere Wärmeleitfähigkeit aufweist. Dazu weist entweder der Behälter eine Schicht auf, die zwischen sich und der Schicht mit niedrigerer Wärmeleitfähigkeit einen mit einer Flüssigkeit, Gel oder dergleichen füllbaren Hohlraum aufweist, in dem die Kühleinrichtung angeordnet ist (die Wärmeleitfähigkeit dieser weiteren Schicht ist unerheblich, da sie in Bezug auf die Kühleinrichtung außerhalb liegt). Oder der Behälter weist nicht selbst die Flüssigkeit, Gel oder dergleichen auf, sondern diese ist mit der darin aufgenommenen Kühleinrichtung in einer Vorrichtung vorgesehen, in der der Behälter so anordenbar ist, dass die Flüssigkeit, Gel oder dergleichen mit der Schicht mit niedriger Wärmeleitfähigkeit in Wärme leitendem Kontakt steht. Dazu kann beispielsweise der Behälter im Sinne eines Bades selbst, bevorzugt bis zum Rand vollständig, in die Flüssigkeit, Gel oder dergleichen eingetaucht werden oder die Flüssigkeit, Gel oder dergleichen steht nur mit einem Teil der Behälteraußenfläche in Kontakt. Für einen Transport sollte bevorzugt darauf geachtet werden, dass eine ausreichende Abdichtung der Flüssigkeit, Gel oder dergleichen erfolgt.On the other hand, the cooling device can also be arranged in a liquid, gel or the like which is in heat-conducting contact with the layer of lower thermal conductivity and which itself has a higher thermal conductivity. For this purpose, either the container has a layer which has, between itself and the layer with lower thermal conductivity, a cavity which can be filled with a liquid, gel or the like, in which the cooling device is arranged (the thermal conductivity of this further layer is insignificant, as it relates to FIG the cooling device is outside). Or the container does not itself comprise the liquid, gel or the like, but it is provided with the cooling means housed therein in a device in which the container can be arranged to heat the liquid, gel or the like with the layer of low heat conductivity is in managerial contact. For this purpose, for example, the container in the sense of a bath itself, preferably to the edge completely, are immersed in the liquid, gel or the like or the liquid, gel or the like is in contact only with a part of the container outer surface. For transport, care should preferably be taken to ensure adequate sealing of the liquid, gel or the like.

Zwischen der Flüssigkeit, Gel oder dergleichen und der Schicht mit niedriger Wärmeleitfähigkeit kann auch eine weitere Schicht mit höherer Wärmeleitfähigkeit angeordnet sein. Beispielsweise kann die Flüssigkeit, Gel oder dergleichen mit der Kühleinrichtung innerhalb einer Kupferumhüllung angeordnet sein, die entweder direkt in den Behälter integriert ist oder in der Vorrichtung vorgesehen wird, wo dann der Behälter mit dieser Kupferumhüllung in direkten Kontakt bringbar ist. Dadurch lässt sich auch die Abdichtung erzielen. Unter die Begriffe "Flüssigkeiten" bzw. "Gele" fallen sowohl Newtonsche Flüssigkeiten wie auch Nicht-Newtonsche Flüssigkeiten, Sole, Dispersionen, Suspensionen, so wie auch jegliche Kombination von zwei oder mehr dieser aufgeführten Substanzen. Insbesondere kann eine Flüssigkeit bzw. Gel ausgewählt sein aus nachstehender Gruppe: Wasser, ionische Flüssigkeiten, Suspensionen von Kohlenstoff-Nanoröhrchen" Kühlsole, Eutektika bzw. eutektische Gemische und ähnliche Materialien. Insbesondere kommen in Frage Antifrogene, d.h. Wärmeträger-Flüssigkeiten auf Basis von Glykolen (Antifrogen N, Antifrogen L und Antifrogen SOL) bzw. Kaliumformiat (Antifrogen KF). Weiterhin finden ionische Flüssigkeiten, wie beispielsweise 1-Ethyl-3-methylimidazolium chloride, 1-Ethyl-3-methylimidazolium methanesulfonate, 1-Butyl-3-methylimidazolium chloride, 1-Butyl-3-methylimidazolium methanesulfonate, 1-Ethyl-2,3-di-methylimidazolium ethylsulfate (vertrieben unter der Marke Basionics® der BASF SE, 67063 Ludwigshafen, DE) Anwendung. Ebenfalls eingesetzt werden können Polyalkylenglykol-Derivate.Between the liquid, gel or the like and the layer with low thermal conductivity may also be arranged a further layer with higher thermal conductivity. For example, the liquid, gel or the like may be disposed with the cooling device within a copper sheath which is either integrated directly into the container or provided in the device, where then the container can be brought into direct contact with this copper sheath. This can also achieve the seal. The terms "liquids" and "gels" include both Newtonian fluids and non-Newtonian fluids, sols, dispersions, suspensions, as well as any combination of two or more of these listed substances. In particular, a liquid or gel can be selected from the following group: water, ionic liquids, suspensions of carbon nanotubes, cooling brines, eutectics or eutectic mixtures and similar materials. Antifrogen N, Antifrogen L and Antifrogen SOL) or potassium formate (Antifrogen KF) Furthermore, find ionic liquids, such as 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium methanesulfonate, 1-butyl-3-methylimidazolium chloride , 1-butyl-3-methylimidazolium methanesulfonate, 1-Ethyl-2,3-dimethylimidazolium ethylsulfate (sold under the trademark Basionics® BASF SE, 67063 Ludwigshafen, DE) application. Also can be used polyalkylene glycol derivatives.

Der Vorteil dieser alternativen Lösung liegt darin, dass die Kühleinrichtung nicht mehr selbst in direktem Kontakt, der ggf. durch Vermittlung einer Wärmeleitpaste vermittelt wird, mit der zu kühlenden Behälterfläche stehen muss. Dadurch bestehen keine so großen Anforderungen an die Genauigkeit beispielsweise der Wicklungsgeometrie eines Kühlrohrs bezüglich der Behälteraußenkontur, was die Kosten reduziert.The advantage of this alternative solution is that the cooling device no longer has to be in direct contact with the container surface to be cooled, possibly mediated by the intermediary of a thermal compound. As a result, there are no such great demands on the accuracy of, for example, the winding geometry of a cooling tube with respect to the container outer contour, which reduces costs.

Claims (8)

Behälter zur mittelbaren Kühlung von Gut in einer Vorrichtung, wie Zentrifugen, Rührvorrichtungen, Kühlvorrichtungen, wie Kühlschränken, Gefrierschränken und dergleichen, wobei der Behälter mit einer Kühleinrichtung der Vorrichtung in Wärme leitenden Kontakt bringbar ist und einen Behälterkörper aufweist, dadurch gekennzeichnet, dass der Behälterkörper zumindest zwei in Wärme leitendem Kontakt stehende Behälterschichten (10, 11) mit unterschiedlicher Wärmeleitfähigkeit aufweist, wobei die Schicht mit höherer Wärmeleitfähigkeit (11) an der durch die Kühleinrichtung zu kühlenden Behälteraußenseite angeordnet ist.A container for indirect cooling of goods in a device, such as centrifuges, stirring devices, cooling devices, such as refrigerators, freezers and the like, wherein the container can be brought into heat-conductive contact with a cooling device of the device and has a container body, characterized in that the container body at least two standing in heat conductive contact container layers (10, 11) having different thermal conductivity, wherein the layer with higher thermal conductivity (11) is arranged on the container to be cooled by the cooling means outside. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmeleitfähigkeiten sich um einen Faktor größer 10, bevorzugt größer 20, insbesondere größer 100 unterscheiden.Container according to claim 1, characterized in that the thermal conductivities differ by a factor of greater than 10, preferably greater than 20, in particular greater than 100. Behälter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schicht mit niedrigerer Wärmeleitfähigkeit (10) aus einem Material umfassend Edelstahl, Stahl, Keramik, Glas, Nanomaterial und/oder Kunststoff gebildet ist und die Schicht mit höherer Wärmeleitfähigkeit (11) aus einem Material unfassend Aluminium, Gold, Kohlenstoff, Kupfer, Magnesium, Messing, Silber und/oder Silizium oder deren Legierungen gebildet ist.Container according to one of the preceding claims, characterized in that the layer with lower thermal conductivity (10) from a material comprising stainless steel, steel, ceramic, glass, nanomaterial and / or plastic is formed and the layer of higher thermal conductivity (11) of a material aluminum, gold, carbon, copper, magnesium, brass, silver and / or silicon or their alloys. Behälter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schicht mit höherer Wärmeleitfähigkeit (11) eine Dicke von weniger als 1 mm, bevorzugt weniger als 0,5 mm und insbesondere weniger als 0,2 mm.Container according to one of the preceding claims, characterized in that the layer of higher thermal conductivity (11) has a thickness of less than 1 mm, preferably less than 0.5 mm and in particular less than 0.2 mm. Vorrichtung zur Behandlung, insbesondere Zentrifugieren, Rühren, Kühlen oder dergleichen, eines Gutes, insbesondere eine Laborzentrifuge, ein Kühlschrank, ein Gefrierschrank, ein Laborkühlschrank, ein Laborgefrierschrank oder dergleichen, mit einem Behälter und einer nur bereichsweise mit einer gekühlten Außenfläche des Behälters in Wärme leitendem Kontakt stehenden Kühleinrichtung zur mittelbaren Kühlung des im Inneren des Behälters angeordnetes Gutes, dadurch gekennzeichnet, dass der Behälter nach einem der vorherigen Ansprüche ausgebildet ist.Apparatus for the treatment, in particular centrifuging, stirring, cooling or the like of a good, in particular a laboratory centrifuge, a refrigerator, a freezer, a laboratory refrigerator, a laboratory freezer or the like, with a container and a heat-conducting only in some areas with a cooled outer surface of the container Contact standing cooling device for indirect cooling of the arranged inside the container Good, characterized in that the container is designed according to one of the preceding claims. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Behälter an seiner Seitenwand und/oder seinem Boden von einer rohrförmigen, ein Kühlmedium führenden Kühlleitung (12) umgeben ist, die vorzugsweise spiralförmig um die Seitenwand und/oder auf den Boden gewickelt ist.Apparatus according to claim 5, characterized in that the container is surrounded on its side wall and / or its bottom by a tubular, a cooling medium-carrying cooling line (12), which is preferably wound spirally around the side wall and / or on the floor. Verfahren zur Herstellung eines Behälters nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schicht mit höherer Wärmeleitfähigkeit (11) auf der Schicht mit geringerer Wärmeleitfähigkeit (10) angeordnet wird oder umgekehrt.Method for producing a container according to one of claims 1 to 4, characterized in that the layer with higher thermal conductivity (11) is arranged on the layer with lower thermal conductivity (10) or vice versa. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Schicht mit höherer Wärmeleitfähigkeit (11) auf der Schicht mit niedrigerer Wärmeleitfähigkeit (10) aufgebracht wird nachdem die Schicht mit niedrigerer Wärmeleitfähigkeit (10) im Wesentlichen die Form des Behälters erhalten hat oder umgekehrt.A method according to claim 7, characterized in that the higher thermal conductivity layer (11) is applied to the lower thermal conductivity layer (10) after the lower thermal conductivity layer (10) has substantially the shape of the container or vice versa.
EP09015245.5A 2008-12-22 2009-12-09 Laboratory centrifuge Active EP2199713B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09015245T PL2199713T3 (en) 2008-12-22 2009-12-09 Laboratory centrifuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13988008P 2008-12-22 2008-12-22
DE102008064178A DE102008064178A1 (en) 2008-12-22 2008-12-22 Container and device for indirect good cooling and method for producing the container

Publications (3)

Publication Number Publication Date
EP2199713A2 true EP2199713A2 (en) 2010-06-23
EP2199713A3 EP2199713A3 (en) 2012-05-02
EP2199713B1 EP2199713B1 (en) 2018-08-29

Family

ID=43334663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09015245.5A Active EP2199713B1 (en) 2008-12-22 2009-12-09 Laboratory centrifuge

Country Status (4)

Country Link
US (2) US20100155037A1 (en)
EP (1) EP2199713B1 (en)
DE (1) DE102008064178A1 (en)
PL (1) PL2199713T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572980B (en) * 2020-05-19 2021-07-13 西安交通大学 Environment-friendly dark ultraviolet intelligent delivery case that disinfects
CA3185823A1 (en) * 2020-06-05 2021-12-09 Pepsico, Inc. Chiller for cooling a beverage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477704A (en) 1992-12-11 1995-12-26 Beckman Instruments, Inc. Refrigerant cooling assembly for centrifuges

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1806839A1 (en) * 1968-11-04 1970-09-17 Bauknecht Gmbh G Cooler
HU177645B (en) * 1979-07-12 1981-11-28 Huetoegepgyar Setup for water tight insulating evaporator of the refrigerators in particular of the absorption machines
US4738113A (en) * 1985-10-18 1988-04-19 The Cola-Cola Company Combination cooler and freezer for refrigerating containers and food in outer space
IT1188061B (en) * 1985-11-15 1987-12-30 Armco Spa HEAT EXCHANGER IN PARTICULAR EVAPORATOR AND METHOD FOR ITS MANUFACTURE
US4690669A (en) * 1985-11-27 1987-09-01 E. I. Du Pont De Nemours And Company Refrigerated centrifuge having a removable bowl
JPH0225045U (en) * 1988-07-29 1990-02-19
US5504007A (en) * 1989-05-19 1996-04-02 Becton, Dickinson And Company Rapid thermal cycle apparatus
GB9702473D0 (en) 1997-02-07 1997-03-26 Junair Spraybooths Ltd Spraybooth
IT1291271B1 (en) * 1997-02-10 1998-12-30 Raco Spa METHOD FOR THE CREATION OF EVAPORATOR FOR REFRIGERATION SYSTEMS AND RESPECTIVE EVAPORATOR OR APPARATUS THAT
JP2000015142A (en) * 1998-07-01 2000-01-18 Tomy Seiko:Kk Centrifugal separator
DE60330045D1 (en) * 2002-12-20 2009-12-24 Corning Inc CAPILLARY ASSAY DEVICE AND METHOD
KR20040069476A (en) * 2003-01-29 2004-08-06 엘지전자 주식회사 A heat-exchanger for direct-type refrigerator
DE202004014916U1 (en) * 2004-09-24 2004-12-30 Tall & Stout Industrial Corp., Banchiau Inner tank arrangement for drinking water dispenser, has cooling device located in outside of plastic tank and covered by metallic element
DE202007014916U1 (en) 2007-10-26 2008-03-27 Kew Kunststofferzeugnisse Gmbh Wilthen insulation holders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477704A (en) 1992-12-11 1995-12-26 Beckman Instruments, Inc. Refrigerant cooling assembly for centrifuges

Also Published As

Publication number Publication date
EP2199713A3 (en) 2012-05-02
US20100155037A1 (en) 2010-06-24
EP2199713B1 (en) 2018-08-29
DE102008064178A1 (en) 2010-07-01
US20120264582A1 (en) 2012-10-18
US8845967B2 (en) 2014-09-30
PL2199713T3 (en) 2019-03-29

Similar Documents

Publication Publication Date Title
DE112008000296T5 (en) Mikrowellenrotationsdünnschichtkonzentrator
DE10296557T5 (en) Trap device and method for condensable by-products of deposition reactions
EP1439218A1 (en) Solvent-free microwave extraction of volatile natural compounds
EP3463001A1 (en) Cooking utensil
EP2199713B1 (en) Laboratory centrifuge
EP1094911B1 (en) Method and device for producing soft solder powder
DE102013211845A1 (en) Pump housing with hard inner layer and weldable outer layer
EP2751502B1 (en) Evaporator heat exchanger unit
DE3545047A1 (en) SHEATHING UNIT WITH FORCED ROTATION FOR X-RAY TUBES WITH ROTATING ANODE
EP2600978B1 (en) Centrifuge having compressor cooling
DE102014001267A1 (en) electric motor
DE1432769A1 (en) Vacuum centrifuge
EP3417227B1 (en) Heat exchanger, in particular water-air heat exchanger or oil-water heat exchanger
DE3010625A1 (en) LATENT HEAT STORAGE
DE19700499B4 (en) Apparatus for treating chemical substances by heating
DE102004037341C5 (en) Apparatus for refrigerated storage and dispensing of samples for an integrated liquid cooling unit
DE961630C (en) Heat exchanger in which a medium consisting of several components is cooled
EP0897517B1 (en) Process and device for freezing of cell suspensions
EP1150773B1 (en) Evaporator arrangement with a holder for a sample container and method for evaporating a sample
DE102015001999B3 (en) Double syringe for feeding a fluid into a microfluidic system
DE10126550B4 (en) Cooling group for coffins with a separable cooling element and use of polymers for the production of the cooling element
DE3706408C1 (en) Heat transfer tube
EP2890944B1 (en) Heat exchanger for a rail heating device
DE1601084C3 (en) Device for making fine ice from water or the like
DE4108024A1 (en) Sediment removal from bottle, esp. for sparkling wine - has closed tube section in bottle neck to take liq. nitrogen@ or air coolant, to freeze sediment to a plug for removal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B04B 15/02 20060101ALI20120326BHEP

Ipc: F25D 31/00 20060101ALI20120326BHEP

Ipc: F25D 19/00 20060101AFI20120326BHEP

17P Request for examination filed

Effective date: 20121030

17Q First examination report despatched

Effective date: 20150330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035595

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015227

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1035595

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091209

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221202

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009015227

Country of ref document: DE

Owner name: EPPENDORF SE, DE

Free format text: FORMER OWNER: EPPENDORF AG, 22339 HAMBURG, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15