EP2193336B1 - System und verfahren zur positionierung - Google Patents

System und verfahren zur positionierung Download PDF

Info

Publication number
EP2193336B1
EP2193336B1 EP08800073.2A EP08800073A EP2193336B1 EP 2193336 B1 EP2193336 B1 EP 2193336B1 EP 08800073 A EP08800073 A EP 08800073A EP 2193336 B1 EP2193336 B1 EP 2193336B1
Authority
EP
European Patent Office
Prior art keywords
positioning
ranging data
data
virtual
satellite ranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08800073.2A
Other languages
English (en)
French (fr)
Other versions
EP2193336A1 (de
EP2193336A4 (de
Inventor
Anthony Cole
William Kellar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007905327A external-priority patent/AU2007905327A0/en
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Publication of EP2193336A1 publication Critical patent/EP2193336A1/de
Publication of EP2193336A4 publication Critical patent/EP2193336A4/de
Application granted granted Critical
Publication of EP2193336B1 publication Critical patent/EP2193336B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present invention relates to a positioning system and method.
  • the invention relates to a positioning method and system integrating measurements from Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS).
  • GNSS Global Navigation Satellite Systems
  • INS Inertial Navigation Systems
  • GNSS Global Navigation Satellite Systems
  • An INS provides the position, velocity, orientation, and angular velocity of a vehicle by measuring the linear and angular accelerations applied to the system in an inertial reference frame.
  • Kalman Filters are used to generate an estimate of a trajectory and to allow vehicle guidance in real-time.
  • a Kalman Filter is a recursive estimator that relies on an estimated state from a previous step and current measured data to calculate an estimate for a current state along with an explicit measure of confidence in this estimate.
  • Integrated Navigation Systems require post processing of both the GNSS data which, in a GPS system, occurs on the output from the GPS receiver, and the positioning data obtained from the INS to provide positioning information.
  • US 6 750 816 B1 discloses a GPS-inertial system having inertial sensors incorporated into a housing of the GPS antenna. The outputs of the inertial sensors are modulated and sent to a receiver on the same cable as the RF signals from the antenna.
  • NASA Technical Memorandum 89418 "Range Filtering for Sequential GPS Receivers with External Sensor Augmentation" by R.Paielli discloses the use of virtual satellites based on the measurements of inertial sensors and/or altimeters.
  • US 6 721 657 B2 discloses a GPS-INS system combining all outputs by a Kalman filter, wherein on GPS signal loss, an interpolated inertial position is used for the next measurement cycle.
  • JP 2007-218865 A discloses a GPS/INS positioning system wherein the INS sensors are used to estimate the current position even when no radio signal is available from GPS satellites.
  • the invention resides in a positioning method including the steps of:
  • FIG 1 shows a schematic view of a vehicle utilizing a GNSS to navigate
  • FIG 2 shows a schematic view of the vehicle shown in FIG 1 ;
  • FIG 3 shows a schematic representation of a positioning system according to an embodiment of the invention
  • FIG 4 shows a positioning method according to an embodiment of the invention.
  • FIG 5 shows a method of translating inertial positioning data and augmenting that data with satellite ranging data forming part of the positioning method shown in FIG 4 .
  • the invention will be described with reference to a GPS GNSS for guidance of an agricultural vehicle. However, a skilled person will appreciate that the system is applicable utilizing any known GNSS for any known guidance application.
  • the positioning system and method of the invention converts INS positioning data into a data form that is able to be input into a processing module of a GPS receiver such that the GPS receiver is able to process the converted INS positioning data as GPS ranging data.
  • the GPS processing module is able to seamlessly provide positioning data that utilizes traditional GPS range processing techniques augmented with INS positioning data.
  • FIG 1 shows a schematic view of a vehicle 10 utilizing a GNSS to navigate and FIG 2 shows a schematic view of vehicle 10.
  • the vehicle 10 is used for cultivation of soil on farmland. In order that cultivation occurs in a precise manner, the actual position of the vehicle, or a point thereof, is derived using ranging signals from satellites 20.
  • the vehicle 10 has located thereon a GPS receiver 110 having an antenna 111 for receiving GPS signals from satellites 20.
  • An INS 120 is mounted on or within the vehicle 10 for generating inertial positioning data in respect of the vehicle 10 as is known in the art.
  • the INS 120 is preferably in the form of an accelerometer working in combination with an angular rate sensor and associated computational devices.
  • the INS 120 may be in the form of any known Inertial Navigation System.
  • FIG 3 shows a schematic representation of a positioning system 100 according to an embodiment of the invention.
  • Positioning system 100 comprises GPS receiver antenna 111, INS 120, translation module 130, augmentation module 140 and GPS processing module 112.
  • INS 120 is able to provide inertial positioning data in the form of position data, velocity data, orientation data and angular acceleration data in respect of vehicle 10 in an inertial reference frame.
  • the INS 120 is in communication with translation module 130.
  • Translation module 130 is able to receive the inertial positioning data generated by the INS 120 and translate that inertial positioning data to virtual satellite ranging data as will be discussed in greater detail below.
  • Translation module 130 is in communication with augmentation module 140.
  • GPS receiver antenna 111 receives satellite ranging data communicated from visible satellites 20 as is known in the art.
  • the satellite ranging data is communicated to augmentation module 140.
  • augmentation module 140 receives virtual satellite ranging data from translation module 130 and satellite ranging data from GPS receiver antenna 111. Augmentation module 140 combines the virtual satellite ranging data from the translation module 130 and the satellite ranging data from GPS receiver antenna 111 and communicates combined satellite ranging data to GPS processing module 112. Augmentation module 140 will be discussed in greater detail below.
  • GPS processing module 112 is configured to receive the combined satellite ranging data from the augmentation module 140 and perform positioning calculation on this data in order to provide a positioning solution (150) that is able to be utilized as is known in the art.
  • the translation module 130, the augmentation module 140 and the GPS processing module 112 are software modules executing in a computing device of GPS receiver 110.
  • GPS receiver 110 is in the form of any known GPS receiver that has had proprietary software, in the form of translation module 130 and augmentation module 140, installed thereon.
  • translation module 130 may be in the form of a hardware module or hardware and software module separate from GPS receiver 110 and in communication with GPS processing module 112 of GPS receiver 110.
  • augmentation module 140 may be in the form of a hardware module or a hardware and software module separate from GPS receiver 110 and in communication with GPS processing module 112 of GPS receiver 110.
  • FIG 4 shows a positioning method 200 according to an embodiment of the invention.
  • positioning method 200 provides virtual satellite ranging data to processing module 112 of GPS receiver 110 when the positioning solution becomes ambiguous.
  • processing module 112 of GPS receiver 110 receives satellite ranging data from less than 4 satellites 20.
  • Positioning method 200 commences by initializing the INS 120 (step 210).
  • the INS 120 is initialized by GPS processing module 112 of GPS receiver 110 based on a positioning solution calculated from satellite ranging signals received by GPS antenna 111 of GPS receiver 110.
  • the GPS antenna 111 is able to receive satellite ranging signals from at least four satellites 20 in order that the GPS processing module 112 is able to calculate an unambiguous three-dimensional positioning solution and also solve for the clock bias of the GPS receiver 110.
  • the positioning solution calculated by the GPS processing module 112 of the GPS receiver 110 is communicated to the INS 120 such that the INS 120 has an initial position to begin calculating an inertial positioning solution as is known in the art.
  • the step of initializing the INS 120 is conducted at vehicle 10 start up prior to movement thereof.
  • the GPS processing module 112 of the GPS receiver 110 calculates a GPS positioning solution for the vehicle 10 based upon satellite ranging data (step 220) received by GPS antenna 111 as discussed above.
  • the GPS processing module 112 of the GPS receiver 110 continues to calculate a GPS positioning solution for the vehicle 10 based upon satellite ranging data received at GPS antenna 111 from visible satellites 20.
  • the GPS positioning solution calculated by the GPS processing module 112 is communicated to the INS 120 to correct errors in the inertial positioning solution calculated by the INS 120 (step 230).
  • inertial positioning solutions are subject to errors that grow with respect to time. As such, by communicating the GPS positioning solution calculated by the GPS processing module 112 of the GPS receiver 110 to the INS 120 the extent of the error of the inertial positioning solution calculated by the INS 120 is minimized.
  • step 230 is conducted at each epoch in order to minimize the error growth of the positioning solution calculated by the INS 120.
  • the GPS processing module 112 of the GPS receiver 110 continuously determines whether an ambiguous positioning solution exists (step 240). Suitably, the GPS processing module 112 undertakes this determination at each epoch.
  • the positioning solution calculated by the GPS processing module 112 becomes ambiguous.
  • ambiguity occurs when the GPS processing module 112 is unable to calculate for four variables based on satellite ranging data received from less than four satellites 20.
  • step 220 the GPS processing module 112 continues to calculate a GPS positioning solution based on the satellite ranging data received at the GPS antenna 111.
  • the augmentation module 140 combines inertial positioning data calculated by the INS 120 and translated to virtual satellite ranging data by translation module 140, and satellite ranging data received at GPS antenna 111 from visible satellites 20 (step 250).
  • the inertial positioning data calculated by the INS measurement module 120 is translated in such a way that that data is communicated to the GPS processing module 112, augmented with actual satellite ranging data received at GPS antenna 111, such that the GPS processing module 112 calculates the positioning solution using standard GPS positioning calculation techniques as if the GPS antenna 111 had received a satellite ranging signal from each of the four satellites 20 in order to calculate an un-ambiguous positioning solution.
  • Step 250 is discussed in greater detail below with reference to FIG 5 .
  • the GPS processing module 112 then calculates a GPS positioning solution as discussed previously (step 260).
  • the GPS positioning solution calculated by the GPS processing module 112 is communicated to the INS 120 in order to correct any time dependent error growth in the inertial positioning solution calculated by the INS 120 (step 230).
  • the GPS processing module 112 again determines whether an ambiguous positioning solution exists based on satellite ranging data received at antenna 111 and the method continues based upon the determination step 240.
  • FIG 5 shows a method 250 of translating inertial positioning data and augmenting that data with satellite ranging data forming part of the positioning method 200 according to an embodiment of the invention.
  • method 250 commences when GPS processing module 112 determines that an ambiguous positioning solution exists based on satellite ranging data received at GPS antenna 111.
  • Translation module 130 receives the inertial positing data from the INS 120 calculated for the epoch immediately prior to the epoch in which an ambiguous positioning solution is calculated (step 251). This data is able to provide an inertial positing solution for the vehicle 10 independent of any positioning solution calculated by the GPS processing module 112 based upon satellite ranging data received by the GPS antenna 111.
  • the translation module 130 then identifies which of the four satellites 20 has become obstructed (step 252) and the translation module 130 then generates virtual satellite ranging data based upon the inertial positioning solution calculated by the INS 120 (step 253).
  • the translation module 130 Based upon the inertial positioning solution calculated by the INS 120, the translation module 130 generates virtual satellite ranging data such that the virtual satellite ranging data is identical in form to satellite ranging data of the obstructed satellite had that satellite not been obstructed.
  • the virtual satellite ranging data generated by translation module 130 includes identification data associated with the obstructed satellite for communication to the GPS processing module 112.
  • the translation module 130 injects atmospheric errors into the virtual satellite ranging data.
  • GPS receivers use a mathematical model to correct for atmospheric errors present in received satellite ranging data.
  • the virtual satellite ranging data will be processed with the received satellite ranging data in the same manner and have these injected errors corrected by the GPS processing module 112.
  • the virtual satellite ranging data generated by the translation module 130 is then communicated to augmentation module 140 and augmentation module 140 then augments the virtual satellite ranging data generated by translation module 130 with satellite ranging data received by GPS antenna 111 (step 254).
  • the augmentation module 140 combines the received satellite ranging data with the generated virtual satellite ranging data to create combined satellite ranging data.
  • the combined satellite ranging data is then communicated to the GPS processing module 112 of the GPS receiver 110 (step 255) and the GPS processing module 112 then calculates a GPS positioning solution as discussed above.
  • the embodiment of the positioning method 100 of the invention described above is implemented when a satellite becomes obstructed whereby the virtual satellite ranging data is used to replace satellite ranging data of a satellite that has become temporarily obstructed.
  • the inventors have recognized that the positioning method of the invention may be embodied to generate virtual satellite ranging data in respect of truly virtual satellites.
  • the augmentation module 130 is able to edit the almanac and ephemeris of the GPS receiver 110 in order that the GPS receiver will validly accept ranging signals from sources other than the 32 satellites in the GPS constellation.
  • the method and system of the invention allows generation of a GPS positioning solution based upon satellite ranging data received from an actual satellite constellation and virtual satellite ranging data manipulated to appear that each virtual satellite ranging data is generated from a satellite in a virtual satellite constellation.
  • the determination step 240 from method 200 is removed such that the GPS receiver receives combined satellite ranging data comprised of both satellite ranging data received by GPS antenna 111 and virtual satellite ranging data.
  • virtual satellite ranging data suitably includes virtual ranging data from one or more virtual satellites, the orbit and identification of which have previously been stored in the almanac of the GPS receiver 110 by the augmentation module 140.
  • This embodiment of the invention is applicable even when an unambiguous positioning solution is able to be calculated by the GPS processing module 112 based on satellite ranging data received at GPS antenna 111.
  • the virtual satellite ranging data allows the GPS processing module 112 to calculate a positioning solution half way between every epoch in order to provide twice the amount of positioning calculations per unit time at the GPS processing module 112 when compared with positing calculations based upon satellite ranging data alone.
  • a particular advantage of this embodiment of the invention is that the virtual satellites may be placed in an orbit that minimizes the dilution of precision of the GPS satellite and virtual satellite constellation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Claims (11)

  1. Positionierungsverfahren (200), umfassend die folgenden Schritte:
    Berechnen von Trägheitspositionierungsdaten auf Basis von Messungen eines Trägheitsnavigationssystems (120);
    gekennzeichnet durch die folgenden weiteren Schritte:
    (i) Erzeugen von virtuellen Satellitenentfernungsdaten auf Basis der Trägheitspositionierungsdaten; umfassend die folgenden Schritte:
    (a) Identifizieren von einem oder mehreren blockierten Satelliten, die Teil des GNSS sind, wobei die Satellitenentfernungsdaten von dem einen oder den mehreren blockierten Satelliten nicht empfangen werden;
    (b) Übersetzen der Trägheitspositionierungsdaten, um die virtuellen Satellitenentfernungsdaten zu bilden, so dass die virtuellen Satellitenentfernungsdaten in ihrer Form identisch mit Satellitenentfernungsdaten von dem einen oder den mehreren blockierten Satelliten sind;
    (ii) Kombinieren der empfangenen Satellitenentfernungsdaten von einem oder mehreren Satelliten, die Teil eines globalen Navigationssatellitensystems (GNSS) sind, mit den virtuellen Satellitenentfernungsdaten; und
    (iii) Berechnen einer GNSS-Positionierungslösung auf Basis der kombinierten empfangenen Satellitenentfernungsdaten und der virtuellen Satellitenentfernungsdaten.
  2. Positionierungsverfahren (200) nach Anspruch 1, wobei ein Almanach und eine Ephemeride eines GPS-Empfängers (110) modifiziert werden, um virtuelle Entfernungsdaten von einem oder mehreren virtuellen Satelliten zu akzeptieren, die nicht Teil einer GNSS-Konstellation sind, wobei der Schritt des Erzeugens virtueller Satellitenentfernungsdaten auf Basis der Trägheitspositionierungsdaten den folgenden Schritt umfasst:
    (a) Übersetzen der Trägheitspositionierungsdaten, um die virtuellen Satellitenentfernungsdaten zu bilden, so dass die virtuellen Satellitenentfernungsdaten mit dem modifizierten Almanach und der modifizierten Ephemeride des GPS-Empfängers (110) übereinstimmen.
  3. Positionierungsverfahren (200) nach Anspruch 2, wobei der Almanach und die Ephemeride des GPS-Empfängers (110) derart modifiziert werden, dass der eine oder die mehreren virtuellen Satelliten in einer Umlaufbahn angeordnet werden, um zu ermöglichen, dass die Berechnung der GNSS-Positionierungslösung auf halben Weg zwischen aufeinanderfolgenden Epochen erfolgt.
  4. Positionierungsverfahren (200) nach Anspruch 1, ferner umfassend den folgenden Schritt: Verwenden der berechneten GNSS-Positionierungslösung, um Fehler in den Trägheitspositionierungsdaten zu korrigieren.
  5. Positionierungsverfahren (200) nach Anspruch 1, ferner umfassend den folgenden Schritt: Anpassen der erzeugten virtuellen Satellitenentfernungsdaten, um atmosphärische Fehler einzubeziehen, bevor die virtuellen Satellitenentfernungsdaten mit den empfangenen Satellitenentfernungsdaten kombiniert werden.
  6. Positionierungssystem (100), umfassend:
    ein Trägheitsnavigationssystem (120), das geeignet ist, Trägheitspositionierungsdaten zu berechnen;
    ein GPS-System mit einem Verarbeitungsmodul (112), wobei das GPS-System geeignet ist, Satellitenentfernungsdaten zu empfangen und auf Basis der empfangenen Satellitenentfernungsdaten eine GNSS-Positionierungslösung zu berechnen;
    gekennzeichnet durch
    ein Übersetzungsmodul (130), das mit dem Trägheitsnavigationssystem (120) in Verbindung steht, wobei das Übersetzungsmodul (130) geeignet ist, die Trägheitspositionierungsdaten zu empfangen und die Trägheitspositionierungsdaten in virtuelle Satellitenentfernungsdaten zu übersetzen, die virtuelle Entfernungsdaten von einem oder mehreren virtuellen Satelliten umfassen, wobei das Übersetzungsmodul geeignet ist,
    (a) einen oder mehrere blockierte Satelliten zu identifizieren, die Teil des GNSS sind, wobei die Satellitenentfernungsdaten von dem einen oder den mehreren blockierten Satelliten nicht empfangen werden;
    (b) die Trägheitspositionierungsdaten zu übersetzen, um die virtuellen Satellitenentfernungsdaten zu bilden, so dass die virtuellen Satellitenentfernungsdaten in ihrer Form identisch mit Satellitenentfernungsdaten von dem einen oder den mehreren blockierten Satelliten sind; und
    ein Verstärkungsmodul (140), das mit dem Verarbeitungsmodul (112) des GPS-Systems und dem Übersetzungsmodul (130) in Verbindung steht, wobei das Verstärkungsmodul (140) geeignet ist, die Satellitenentfernungsdaten vom GPS-System und die virtuellen Satellitenentfernungsdaten vom Übersetzungsmodul (130) zu empfangen, um kombinierte Entfernungsdaten zu bilden und die kombinierten Entfernungsdaten an das Verarbeitungsmodul (112) des GPS-Systems zu senden; wobei das Verarbeitungsmodul (112) des GPS-Systems geeignet ist, eine Positionierungslösung (150) auf Basis der kombinierten Entfernungsdaten zu berechnen, die vom Verstärkungsmodul (140) empfangen wurden.
  7. Positionierungssystem (100) nach Anspruch 6, wobei das Verarbeitungsmodul (112) des GPS-Systems geeignet ist, die berechnete Positionierungslösung (150) an das Trägheitsnavigationssystem (120) zu senden.
  8. Positionierungssystem (100) nach Anspruch 7, wobei das Trägheitsnavigationssystem (120) geeignet ist, auf Basis der Positionierung, die vom Verarbeitungsmodul (112) des GPS-Systems empfangen wurde, Fehler in den berechneten Positionierungsdaten zu korrigieren.
  9. Positionierungssystem (100) nach Anspruch 6, wobei das Übersetzungsmodul (130) die erzeugten virtuellen Satellitenentfernungsdaten anpasst, um modellierte atmosphärische Fehler einzubeziehen.
  10. Positionierungssystem (100) nach Anspruch 6, wobei ein Almanach und eine Ephemeride eines GPS-Empfängers (110) modifiziert werden, um virtuelle Entfernungsdaten von einem oder mehreren virtuellen Satelliten zu akzeptieren, die nicht Teil einer GNSS-Konstellation sind.
  11. Positionierungssystem (100) nach Anspruch 10, wobei der Almanach und die Ephemeride des GPS-Empfängers (110) derart modifiziert werden, dass der eine oder die mehreren virtuellen Satelliten in einer Umlaufbahn angeordnet werden, um zu ermöglichen, dass die Berechnung der GNSS-Positionierungslösung auf halben Weg zwischen aufeinanderfolgenden Epochen erfolgt.
EP08800073.2A 2007-09-28 2008-09-26 System und verfahren zur positionierung Active EP2193336B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2007905327A AU2007905327A0 (en) 2007-09-28 A positioning system and method
PCT/AU2008/001438 WO2009039587A1 (en) 2007-09-28 2008-09-26 A positioning system and method

Publications (3)

Publication Number Publication Date
EP2193336A1 EP2193336A1 (de) 2010-06-09
EP2193336A4 EP2193336A4 (de) 2011-12-14
EP2193336B1 true EP2193336B1 (de) 2013-07-31

Family

ID=40510681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08800073.2A Active EP2193336B1 (de) 2007-09-28 2008-09-26 System und verfahren zur positionierung

Country Status (7)

Country Link
US (1) US8547276B2 (de)
EP (1) EP2193336B1 (de)
CN (2) CN104316051A (de)
AU (1) AU2008303078B2 (de)
CA (1) CA2697980C (de)
NZ (1) NZ584205A (de)
WO (1) WO2009039587A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778686A (zh) * 2012-08-07 2012-11-14 东南大学 基于移动gps/ins节点的协同车辆定位方法
US9766341B2 (en) 2014-11-13 2017-09-19 Novatel Inc. GNSS positioning system employing a reconfigurable antenna subsystem
CN105068104B (zh) * 2015-08-31 2017-08-18 北京航空航天大学 一种基于惯性/双星间断伪距约束的定位方法
CN105807301B (zh) * 2016-03-03 2018-05-15 东南大学 一种基于增强型数字地图的车辆优化选星定位方法
KR102395294B1 (ko) * 2017-07-21 2022-05-09 현대자동차주식회사 차량용 항법장치 및 방법, 그리고 항법시스템
US11047990B2 (en) 2018-04-24 2021-06-29 Novatel Inc. Global navigation satellite system (GNSS) antenna data link
US10754044B2 (en) 2018-04-24 2020-08-25 Novatel Inc. Global navigation satellite system (GNSS) antenna data link
US11614545B2 (en) 2020-03-26 2023-03-28 Novatel Inc. Systems and methods for utilizing a connector with an external antenna to utilize multifrequency GNSS functionality of a mobile device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449559B2 (en) * 1998-11-20 2002-09-10 American Gnc Corporation Fully-coupled positioning process and system thereof
US6496778B1 (en) * 2000-09-14 2002-12-17 American Gnc Corporation Real-time integrated vehicle positioning method and system with differential GPS
US6721657B2 (en) * 2001-06-04 2004-04-13 Novatel, Inc. Inertial GPS navigation system
FR2830320B1 (fr) * 2001-09-28 2003-11-28 Thales Sa Centrale de navigation inertielle hybryde a integrite amelioree
US6801855B1 (en) * 2002-06-28 2004-10-05 Garmin Ltd. Systems and methods with integrated GPS and dead reckoning capabilities
US6750816B1 (en) * 2003-02-12 2004-06-15 Novatel, Inc. Integrated GPS-inertial system
US20040189515A1 (en) * 2003-03-31 2004-09-30 Giovanni Vannucci Hybrid satellite based positioning system
US20070109185A1 (en) * 2005-11-14 2007-05-17 Doug Kracke Providing GPS pseudo-ranges
JP4020143B2 (ja) 2006-02-20 2007-12-12 トヨタ自動車株式会社 測位システム、測位方法及びカーナビゲーションシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAIELLI R.: "Range Filtering for Sequential GPS Receivers with External Sensor Augumentation", 1 April 1987 (1987-04-01), Retrieved from the Internet <URL:http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870010824_1987010824.pdf> [retrieved on 20120625] *

Also Published As

Publication number Publication date
WO2009039587A1 (en) 2009-04-02
AU2008303078A1 (en) 2009-04-02
CA2697980C (en) 2014-07-08
CN101809411A (zh) 2010-08-18
EP2193336A1 (de) 2010-06-09
EP2193336A4 (de) 2011-12-14
US20110050488A1 (en) 2011-03-03
CN104316051A (zh) 2015-01-28
NZ584205A (en) 2012-12-21
CA2697980A1 (en) 2009-04-02
AU2008303078B2 (en) 2012-06-21
US8547276B2 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
EP2193336B1 (de) System und verfahren zur positionierung
US6167347A (en) Vehicle positioning method and system thereof
US8756001B2 (en) Method and apparatus for improved navigation of a moving platform
US7171303B1 (en) Navigation method and apparatus
EP0870174B1 (de) Verbessertes fahrzeugnavigationssystem und -verfahren mittels gps-geschwindigkeiten
CN110988951A (zh) 多源数据融合实时导航定位方法及系统
US6240367B1 (en) Full fusion positioning method for vehicle
US20030149528A1 (en) Positioning and navigation method and system thereof
US20050234644A1 (en) Positioning and navigation method and system thereof
EP0856747A1 (de) Verfahren und Vorrichtung für Lagebestimmung mittels einer Trägheitsmesseinheit und mehrerer Satellitenfunksender
CA3003298A1 (en) Gnss and inertial navigation system utilizing relative yaw as an observable for an ins filter
Soon et al. An approach to aid INS using time-differenced GPS carrier phase (TDCP) measurements
Konrad et al. Advanced state estimation for navigation of automated vehicles
WO1996008730A1 (en) Navigation apparatus with attitude determination
JP2000506604A (ja) 改良された車両ナビゲーションシステム及びその方法
US5757317A (en) Relative navigation utilizing inertial measurement units and a plurality of satellite transmitters
CA2733032A1 (en) Method and apparatus for improved navigation of a moving platform
JP2000502801A (ja) 多重軸加速度計を使用する改良された車両ナビゲーションシステム及びその方法
Yi On improving the accuracy and reliability of GPS/INS-based direct sensor georeferencing
JP2009222438A (ja) 移動体用測位装置
GB2528117A (en) Method and apparatus for instantaneous positioning and timing without initial information
TW448304B (en) Fully-coupled positioning process and system
Moafipoor et al. Tightly coupled GPS/INS/CCD integration based on GPS carrier phase velocity update
Ding Optimal integration of GPS with inertial sensors: Modelling and implementation
Kubo et al. Integration of GNSS-PPP and IMU/SPEED sensors in urban areas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20111110

RIC1 Information provided on ipc code assigned before grant

Ipc: G01C 21/16 20060101AFI20111104BHEP

Ipc: G01S 5/00 20060101ALI20111104BHEP

17Q First examination report despatched

Effective date: 20120702

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 19/47 20100101ALI20130205BHEP

Ipc: G01C 21/16 20060101AFI20130205BHEP

Ipc: G01S 5/00 20060101ALI20130205BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 624903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008026461

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE AG, LI

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 624903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008026461

Country of ref document: DE

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080926

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190912

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190913

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210913

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230831

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230912

Year of fee payment: 16

Ref country code: DE

Payment date: 20230906

Year of fee payment: 16