EP2192201B1 - Gehärteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements - Google Patents

Gehärteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements Download PDF

Info

Publication number
EP2192201B1
EP2192201B1 EP09014562.4A EP09014562A EP2192201B1 EP 2192201 B1 EP2192201 B1 EP 2192201B1 EP 09014562 A EP09014562 A EP 09014562A EP 2192201 B1 EP2192201 B1 EP 2192201B1
Authority
EP
European Patent Office
Prior art keywords
hardness
spring
spring steel
depth
softened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09014562.4A
Other languages
English (en)
French (fr)
Other versions
EP2192201A1 (de
Inventor
Jörg Neubrand
Maik Hartwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muhr und Bender KG
Original Assignee
Muhr und Bender KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muhr und Bender KG filed Critical Muhr und Bender KG
Publication of EP2192201A1 publication Critical patent/EP2192201A1/de
Application granted granted Critical
Publication of EP2192201B1 publication Critical patent/EP2192201B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the invention relates to a hardened spring steel, a spring element, and a method for producing a spring element.
  • the service life of spring elements is essentially influenced by the externally impressed stresses, the material, the applied heat treatment and possibly by a shot peening treatment.
  • the aim is to build the highest possible compressive residual stresses down to deep surface areas.
  • the residual stresses change their sign of life-improving pressure to life-deteriorating tensile residual stresses at a depth of about 200 microns to 400 microns below the surface. It forms due to the Hertzian pressure generated by shot peening an internal stress distribution, in which the maximum of the compressive residual stress is depending on the method used at a depth of about 50 microns to 150 microns below the surface of the spring steel.
  • the stresses acting in a spring are maximum at the surface and decrease towards the core.
  • material dwarfings - such as roughness, cracks, tinder, corrosion scars, shallow inclusions, etc. - result in notch stresses that can exceed the macroscopic stresses by a multiple.
  • the higher the hardness of the spring steel the greater the notch stresses are, which is tantamount to decreasing toughness of the spring steel. This removes the susceptibility to damage to, in particular due to stress corrosion cracking due to notch stresses.
  • a method of manufacturing a steel wire for a high strength cold formed coil spring is known. After hardening of the steel wire, it is subjected to heat treatment by means of inductive heating, so that the surface hardness is less than or equal to 550 HV to a predetermined depth and the tensile strength in a core region is greater than or equal to 200 kgf / mm 2 .
  • the spring wire is heated over the entire cross section. The hardness is based on the surface of the spring wire over the entire depth, that is, in the core area, below 590 HV.
  • the DE 198 52 734 A1 describes a spring with improved corrosion fatigue strength.
  • a steel with a certain composition is used for the production of spring steel, which is cured to a hardness of 50.5 to 55.0 HRC (hardness Rockwell C), wherein the curing followed by a shot peening treatment at moderate temperatures.
  • HRC hardness Rockwell C
  • the temperature is chosen such that a hardening waste in the edge area is avoided.
  • the DE 100 32 313 discloses a coil spring made of alloyed steel, wherein the coil spring is hardened and has a core hardness of about 610 HV 0.1 (hardness Vickers). To increase the wear resistance, a diffusion layer with a thickness of about 100 microns is provided, the hardness of which is more than 750 HV 0.1 at a depth of 10 microns.
  • the DE 41 38 991 discloses a method for producing different mechanical properties between the edge and core regions of a steel body.
  • the steel body is subjected to a work hardening treatment and then the edge and core portions are heated to different temperatures.
  • the DD 267 513 A1 discloses a high-strength steel for use in prestressed concrete construction, which has a higher strength in the core area than in the edge zone.
  • a spring and a method of manufacture is known.
  • the spring material is adjusted to a hardness of more than 500 HV and then heated by a heat treatment by means of high-frequency electrical energy of greater than 10 MHz to 500 to 700 ° C.
  • the hardness remains at over 500 HV.
  • From the JP 62 260020 A is also a spring or a process for their preparation is known in which the hardness is adjusted in a range of 10 microns, starting from the surface to a hardness of less than 450 HV.
  • the surface-hardened layer is softened by a heat treatment, which is carried out at 450 ° C to 750 ° C. This achieves a softened edge layer having a depth of up to about 0.1 mm, which has a hardness greater than 520 HV.
  • a high strength spring wire having a decarburized surface layer with a reduced hardness is known.
  • the decarburized layer extends to a maximum depth of 200 microns from the wire surface and has a hardness of 420 HV to 50 HV below the hardness inside the wire.
  • a spring steel and a method for producing a spring steel are known.
  • the spring steel is first hardened and then tempered.
  • Hardness and fatigue strength are reported for different spring samples for a scraped, non-scraped and a comparative sample. The fatigue strength is best with the scraped spring sample.
  • the hardness profile increases from outside to inside for all three spring steels to a depth of about 100 microns and then runs constant or decreasing. From a depth of about 100 micrometers, the hardness for all spring steels is over 600 HV.
  • the object of the present invention is to reduce the negative effects of possible critical notch stresses by material dances in an edge region of a spring steel or a spring element.
  • the invention is accomplished by a hardened spring steel made by inductive heating to austenitizing temperature, followed by quenching, and inductive heating to tempering temperature and an external one by inductive heating entognie edge layer having a thickness of at least 500 microns, within which the hardness decreases from the inside outwards, such that the hardness of the edge layer, starting from a surface of the spring steel to a depth of at least 500 microns increases with increasing depth, wherein the surface layer to a depth of at least 500 microns has a maximum hardness of 590 HV; and wherein the spring steel has an unconsolidated core region having a hardness of at least 600 HV beginning at a depth of at least 500 ⁇ m.
  • notch stresses depends on the reason of a surface crack, that is, on a crack tip, on the hardness or toughness of the material, this will slow down or even avoid extension of the crack.
  • the component mass of a spring element can be reduced and / or the life of the spring element can be increased.
  • a hardened spring steel is understood in this context, a spring steel, the mechanical resistance is increased by targeted change and transformation of its microstructure. This is preferably achieved by a heat treatment followed by rapid cooling.
  • a heat treatment should be such spring steels that are subjected to a further treatment after curing, for example, be tempered.
  • Such a heat treatment from hardening and subsequent tempering is also referred to as tempering.
  • a significant advantage of the invention is that can be deformed by the Randentfest Trent also components with higher output strength.
  • the risk of unwanted wire breaks after hardening or quenching is significantly reduced. This is achieved by increasing the ductility in the edge region. Namely, according to the invention, with the same integral tensile strength as compared with conventional components, the ductility increases, which can be up to 15% higher than with non-softened components.
  • Another advantage of the spring steel according to the invention with decreasing hardness from inside to outside is that the wire ductility is increased.
  • Spring steel refers to materials used to make technical springs.
  • a technical spring is a component that can absorb, store and then release the externally applied force.
  • all hardenable steels come into consideration as materials for spring steel.
  • the spring property is achieved with spring steel by the addition of different alloying elements.
  • the elements silicon, manganese, chromium, vanadium or molybdenum come into question.
  • Particularly suitable for the requirements of springs are silicon-chromium steels, silicon-chromium-vanadium steels and chromium-vanadium steels.
  • the spring steel is hardened or tempered in its entire cross section.
  • a through hardening or thorough tempering of the spring steel is softened by a heat treatment.
  • This can preferably be done by a relatively high-frequency inductive heating, which is to be understood as the use of frequencies above 50 kHz or 60 kHz.
  • the inductive heating can be carried out over a relatively short duration.
  • the edge layer Since it has been found that for the life of a spring element critical corrosion scars have a depth in the size range of 300-400 microns, the edge layer has a thickness of at least 500 .mu.m, in particular of at least 800 microns. This ensures that an increase in the toughness of the material and thus a reduction in the negative effects of the notch stress are achieved at the crack tip of a surface crack or at the bottom of a corrosion scar.
  • the surface layer can also be up to 1/4 of the radius of the spring element. In this case, the edge layer may even have a thickness of more than 800 microns and up to 2000 microns in special cases.
  • the edge layer preferably has a maximum hardness of 590 HV to a depth of 500 .mu.m to 800 .mu.m. It can be provided that the hardness of the edge layer starting from a surface of the spring steel with increasing depth increases. In general, the hardness of the spring steel over the depth depends on the integral tensile strength of the spring steel over its cross section. The higher the integral tensile strength, the greater the depth, up to which a maximum hardness of 590 HV can be present. Thus, with low integral tensile strength of the spring steel, the surface layer can even have a maximum hardness of 590 HV up to a depth of up to 1000 ⁇ m.
  • a hardness of at least 250 HV, preferably 450 HV, in particular of at least 500 HV or 560 HV is provided in the boundary layer from a depth of 50 microns.
  • a core region adjoining the surface layer begins at a depth of at least 500 ⁇ m, in particular of at least 800 ⁇ m.
  • the core area can even begin at a depth of 2000 microns.
  • the hardness of the core area is at least 600 HV.
  • the hardness of the core region can even exceed 730 HV, which can be achieved by a lower tempering temperature.
  • the hardness may be reduced or increased as a result of manufacturing-related microstructural changes, such as segregation.
  • the object is further achieved by a spring element, which is made of a spring steel, as described above.
  • the spring steel is in this case preferably a round material, for example a spring wire, an oval wire or a flat material, for example a spring band.
  • the spring element can be wound into a coil spring.
  • the spring steel may have a softened edge layer only on an inner side of the turns of the round material of the coil spring in order to reduce the effects of notch stresses. Viewed over the remaining circumference of the round material in cross-section, it can be provided that no softened edge layer is provided, ie that the core area extends to the surface.
  • the spring steel on an outer side of the turns of the Round material of the coil spring has a softened edge layer, whereby possible winding breaks in the shaping of the spring can be avoided.
  • the softened edge layer viewed in cross-section, extends over the entire circumference of the round material.
  • the object is achieved by a method for producing a spring steel, wherein the spring steel is first cured by inductive heating to Austenitmaschinestemperatur and subsequent quenching, wherein a core region is cured to a hardness of about 600 HV, then tempered by inductive heating and then a Edge layer of the spring steel over a thickness of at least 500 microns is softened by an inductive heat treatment, such that the hardness of the softened edge layer increases from a surface of the spring steel to a depth of at least 500 microns with increasing depth and maximum 590 HV.
  • the hardening or tempering of the spring steel means, preferably, that the entire cross section is first through hardened. However, the central region of the cross section does not necessarily have to be through hardened.
  • the structure of the spring steel is fine-needle martensitic. This martensitic structure is achieved by relatively rapid cooling after curing. Depending on the cooling rate after curing, a different microstructure of the spring steel can be produced. If the spring steel cooled more slowly, for example, a bainite microstructure can be generated. With even slower cooling, the retention of the ferrite / pearlite microstructure of the spring steel is conceivable.
  • the spring steel is hardened or tempered.
  • the spring steel is first heated to the austenitizing temperature, namely inductively heated, and then quenched.
  • the temperature here are preferably above the Ac 3 Point, especially at 800 or 900 to 1000 ° C.
  • the spring steel is tempered after hardening, to which the spring steel is inductively heated again.
  • the spring steel is preferably heated to a temperature of 400 ° C to 500 ° C or to 550 ° C. This is a tempered spring steel.
  • the spring steel is once again inductively heated for a short time in order to soften the surface layer.
  • the edge detackifying depending on the duration of the heating, preferably at a temperature between 500 ° C and 750 ° C, in particular between 570 ° C and 610 ° C.
  • the core area is set to a hardness of more than 600 HV, in special cases more than 730 HV.
  • the surface layer is softened over a thickness of at least 500 .mu.m, in particular of at least 800 .mu.m, wherein the edge layer is preferably softened to a maximum hardness of 590 HV. In special cases, depending on the integral tensile strength of the spring steel, the surface layer can even be softened over a thickness of more than 800 ⁇ m and up to 2000 ⁇ m.
  • the surface layer is preferably debonded from a depth of 50 microns to a hardness of not less than 250 HV, preferably not below 450 HV, in particular not below 500 HV or 560 HV.
  • a method for producing a spring element made of a spring steel wherein the spring steel is produced by one of the above-mentioned methods.
  • the spring steel is wound into a spring element in the form of a helical spring, wherein the boundary layer can be softened either before the winding of the spring steel or after the winding of the spring steel.
  • FIG. 1 shows a portion of a spring steel according to the invention in the form of a spring wire 1 with a circular cross-section.
  • the spring steel be designed with any cross-sections, for example, as a spring band.
  • the spring wire 1 extends along a longitudinal axis L.
  • the coordinates of the cross section are indicated by X (depth from the surface of) and Y (radius by the depth).
  • X depth from the surface of
  • Y radius by the depth
  • the spring wire 1 has an edge layer 2 and a core region 3, the edge layer 2 forming the surface 4 of the spring wire 1 on the outside.
  • the edge layer 2 and the core region 3 are not to be understood as separate elements, but merely serve to illustrate the different hardness properties.
  • the spring wire 1 is an integral element.
  • the spring wire 1 has a lower hardness in the region of the edge layer 2 than in the core region 3.
  • the softened edge layer 2 is arranged over the entire circumference about the longitudinal axis L viewed in cross section.
  • the softened edge layer 2 can also be provided only partially, so that it extends only partially over the circumference and / or extends only partially over the length.
  • the spring steel is made of a hardenable steel. Particularly suitable for the requirements of springs are silicon-chromium steels, silicon-chromium-vanadium steels and chromium-vanadium steels.
  • FIG. 2 schematically shows the curve 16 of the hardness curve over the entire cross section of the spring wire according to FIG. 1 along the axis X.
  • FIG. 3 shows in an enlarged view schematically the hardness curve in the region of the edge layer along the axis X. On the abscissa, the depth of the surface or the distance from the surface is removed. On the ordinate the hardness is removed.
  • the FIGS. 2 and 3 will be described together below.
  • the hardness of the spring wire increases substantially continuously until a maximum value is reached which is approximately constant in the core region of the spring wire.
  • the hardness may also be different, in particular lower, due to microstructural influences during production, for example due to segregations.
  • the increase in hardness, in each case from outside to inside, is present at all points of the surface of the wire.
  • a hardness of approx. 500 HV hardness Vickers
  • the hardness increases substantially continuously up to a value of approx. 580 HV.
  • This area represents the softened edge layer 2 whose hardness is lower than the hardness of the core area 3. From a depth of 0.6 mm, the hardness profile is constant until the opposite surface area is reached, where the hardness decreases towards the surface again.
  • the hardness should not be lower than a hardness lower limit of 450 HV.
  • the hardness should not exceed a hardness upper limit 18 of 590 HV.
  • the boundary layer 2 can also extend to a greater depth of up to 0.8 mm, in which case the core region can also have higher hardnesses of well over 600 HV.
  • the curve according to the FIGS. 2 and 3 is shown only schematically and represents the desired hardness profile. This is not achievable in reality in the straight line shape shown.
  • FIG. 4 shows measured values of the hardness curve in a region near the surface of a spring steel.
  • two curves are shown, on the one hand a first curve 5, which reproduces the hardness curve of the hardened or tempered spring steel without Entumbleen edge region.
  • a second curve 6 shows the hardness curve as it appears after the softening of the surface layer 2.
  • the edge layer of the spring steel is through a short-term heating softens, so that a hardness profile according to the curve 6 is achieved.
  • the edge layer 2 should have a minimum thickness starting from the surface of 0.3 mm, preferably 0.5 mm, and have a hardness of 450 to at most 590 HV.
  • the curve 6 increases continuously starting from the surface in the direction of the core region 3 and continues to approach the curve 5 of the hardness curve of the hardened or tempered spring steel and merges into it in the core region 3.
  • the core region can thus be defined as that region of the spring steel which is not softened.
  • the softened edge layer in the present example is about 0.6 mm thick and should be softened in this range to a hardness between 450 and 590 HV.
  • a transition region 19 which has also been softened, but has a hardness of more than 590 HV, wherein the hardness of the transition region 19 continues to increase up to the hardness of the core region.
  • a spring element in the form of a helical spring 7 is shown with a geometric spring center line M wherein a detail X is marked.
  • FIG. 6a and 6b show cross sections in the area of the detail X according to FIG. 5 by two embodiments of the spring wire from which the coil spring 7 is made.
  • FIG. 6a shows a core region 8 and an edge layer region 9, which extends only over part of the circumference, wherein the edge layer region 9 is provided on an outer side of the coil spring 9.
  • the softened first boundary layer region 9 is intended to prevent fractures during forming of the spring wire, ie during winding of the helical spring 7.
  • FIG. 6b shows a core region 8 and an edge layer region 10, which also extends over only a portion of the circumference, wherein the edge layer region 10 is provided on an inner side of the coil spring 7.
  • the softened edge layer region 10 is intended to locally reduce the negative effects of the notch stress.
  • the softened edge layer regions 9, 10 are shown sickle-shaped, they may also have other shapes or extend over a larger or smaller area of the circumference. Furthermore, the softened edge layer can extend over the entire length of the spring wire or only over part of the length of the spring wire.
  • FIG. 7 shows schematically the production of a spring steel in the form of a spring wire 1, wherein the softening takes place before the further processing of the spring wire, for example, to a helical spring.
  • the softening of an edge layer can take place even after the forming of the spring wire 1 into a helical spring.
  • the spring wire 1 is first passed through a first induction coil 11 and heated to Austenitmaschinestemperatur. Subsequently, the spring wire 1 is quenched, which takes place in a shower 12. Subsequently, the spring wire 1 is passed through a second induction coil 13 and heated to a tempering temperature.
  • the tempering temperature of the spring wire 1 is preferably 30 ° C lower than conventional inductive remuneration, in particular between 420 ° C and 490 ° C. In this case, the tempering temperature is dependent on the desired final strength of the spring wire 1, which should lie in a favorable manner between 1800 N / mm 2 and 2050 N / mm 2 .
  • the tempering temperature is lower and is preferably 380 ° C to 420 ° C.
  • the temperature of the spring wire is measured behind the second induction coil 13, preferably 50 mm to 90 mm, in particular 70 mm behind the induction coil 13. This staggered measurement, with distance to the induction coil 13, allows determining the core temperature of the spring wire first
  • a third induction coil 14 in which the spring wire 1 is briefly inductively heated to to soften the surface layer.
  • the edge hardening by heating is preferably carried out at a temperature between 500 ° C and 750 ° C, in particular between 570 ° C and 610 ° C. .. By choosing a suitable frequency in this case only the near-surface areas are heated.
  • the induction coils 11, 13, 14 are in FIG. 7 merely schematically illustrated and may of course be formed in various conventional forms for hardening spring wires.
  • a cooling unit can be integrated into the system in order to adjust specific material properties of the spring wire in a targeted manner.
  • the induction coil 14 for softening (directly before or after winding) may be designed in particular sickle-shaped, to allow the spring wire is only partially softened over its circumference.
  • the heating and softening temperatures may also differ from the temperatures mentioned.
  • FIG. 8 shows the relationship between the edge heating and the hardness of the spring wire 1, ie the edge or the core hardness, namely at different edge temperatures. It can be seen that the core strength is dependent on the desired integral tensile strength of the spring wire.
  • the curves of the hardness which are provided with the reference numerals 20, 21, 22, 23, 24, shown for different softening temperatures.
  • the softening is preferably carried out at a temperature between 500 ° C and 750 ° C, in particular between 570 ° C and 610 ° C.
  • the depth of the surface or the distance from the surface, in millimeters is removed.
  • the hardness, in hardness HV1 is removed. It can be seen that the hardness of the spring wire, starting from the surface (depth 0 mm) increases continuously until a maximum value is reached, which is approximately constant in the core region of the spring wire.
  • the hardness in the area of the surface and in the surface layer depends on the edge temperature. At a lower temperature, for example, 570 ° C, the hardness at the surface is particularly high, and here is about 570 HV and increases continuously to a depth of about 0.8 mm to a hardness of about 620 HV. This area of increasing hardness represents the softened edge layer 2 whose hardness is lower than the hardness of the core area 3. From a depth of 0.8 mm, the hardness profile is constant until the opposite surface area is reached where the hardness is towards the surface decreases again.
  • the hardness at the surface is slightly lower, here about 530 HV, and increases continuously to a greater depth of about 1.0 mm where it has a value of about 630 HV. That is, at higher heating temperature to achieve the Randentfestist the hardness in the surface layer decreases more and there is a softening into greater depth.
  • curve 25 shows the hardness curve for a heating at 610 ° C for edge hardening.
  • the hardness at the surface is only about 500 HV and increases continuously to a depth of about 1.25 mm.
  • the spring element has a hardness of about 650 HV.
  • FIGS. 9 and 10 show two examples of actual measured values of the hardness curve over the entire cross section of two inventive spring wires 1. It shows FIG. 9 the hardness curve for a spring wire with a higher integral tensile strength, amounting to 2086 N / mm 2 , while FIG. 10 the hardness curve for a spring wire with a lower integral tensile strength, in the amount of 2000 N / mm 2 shows. The diameter of the spring wire is 12.05 mm.
  • the two FIGS. 9 and 10 will be described together below.
  • the hardness curve in FIG. 9 is somewhat steeper in the peripheral areas and increases from the surface where there is a hardness of about 550 HV to a depth of about 1.0 mm to a hardness value of about 600 HV largely linear. Further inside, ie from a depth of about 1.0 mm to a depth of 2.0 mm, the hardness continues to increase, albeit not linearly but curvilinearly, up to a maximum value of about 630 HV. Between the depth of 2.0 mm to the core, which is at 6.0 mm, the hardness drops off again slightly and reaches a relative minimum of about 610 HV at about 4.0 mm. The maximum hardness of approximately 650 HV is in the core of the spring wire. This point is identified by the reference numeral 30.
  • the hardness curve which in FIG. 10 is shown is similar. Here, too, the hardness increases steeply in the marginal areas, in order to then assume a flatter slope further inside. At a depth of about 2.0 mm, the maximum hardness is about 610 HV. This point is indicated by the reference 31 '. Further inside, ie from a depth of about 2.0 mm to the core, ie to a depth of 6.0 mm, the hardness drops off again slightly and reaches a relative minimum of about 600 HV in the core 30 '.
  • the starting material defines the strength or hardness of the finished produced spring wire according to the invention.
  • FIG. 9 For example, where a starting material with a higher integral tensile strength of 2086 N / mm 2 was used, the hardness of the finished edge-strengthened spring wire with a maximum hardness of 650 HV is also higher.
  • the hardness of the finished edge-strengthened spring wire is also lower and is about 610 HV.
  • the spring steel according to the invention and the inventive method for producing such a spring steel offers the advantage that can be deformed by the Randentfest Trent also components with higher output strength. Overall, this leads to an increased strength or hardness of the component. This is especially true for spring elements, which are made of the spring steel according to the invention.
  • the peripheral strengthening of the spring wire increases the ductility in the edge region. In this way, the risk of unwanted wire breaks after curing or the remuneration is significantly reduced. In addition, the wire formability is improved.

Description

  • Die Erfindung betrifft einen gehärteten Federstahl, ein Federelement, sowie ein Verfahren zur Herstellung eines Federelements.
  • Die Lebensdauer von Federelementen wird im Wesentlichen durch die von außen aufgeprägten Spannungen, den Werkstoff, die applizierte Wärmebehandlung und gegebenenfalls durch eine Kugelstrahlbehandlung beeinflusst. Ziel ist der Aufbau von möglichst hohen Druckeigenspannungen bis in tiefe Oberflächenbereiche. Bei bekannten Federherstellungsverfahren, insbesondere bei der Kaltformgebung von Schraubendruckfedern, ändern die Eigenspannungen ihr Vorzeichen von lebensdauerverbessernden Druck- zu lebensdauerverschlechternden Zugeigenspannungen in einer Tiefe von ca. 200 µm bis 400 µm unter der Oberfläche. Es bildet sich infolge der durch das Kugelstrahlen erzeugten Hertz'schen Pressung eine Eigenspannungsverteilung aus, bei der das Maximum der Druckeigenspannung je nach angewandtem Verfahren in einer Tiefe von ca. 50 µm bis 150 µm unter der Oberfläche des Federstahls liegt.
  • Die in einer Feder wirkenden Spannungen sind an der Oberfläche maximal und nehmen zum Kern hin ab. Zudem entstehen an Werkstoffungänzen - wie beispielsweise Rauheiten, Rissen, Zunder, Korrosionsnarben, oberflächennahen Einschlüssen, etc. - Kerbspannungen, welche die makroskopischen Spannungen um ein Vielfaches überschreiten können. Im Allgemeinen gilt, dass die Kerbspannungen umso größer sind, je höher die Härte des Federstahls ist, wobei dies gleichbedeutend mit abnehmender Zähigkeit des Federstahls ist. Hiermit nimmt die Anfälligkeit für Schädigungen zu, insbesondere infolge von Spannungsrisskorrosion aufgrund von Kerbspannungen.
  • Die Gefahr von Korrosion gewinnt aufgrund von geänderten Umweltbedingungen sowie durch erhöhte Anforderungen an Gewichtsoptimierung, höhere Werkstoffauslastung und Materialfestigkeit zunehmend an Bedeutung. Es besteht nämlich die Bestrebung, Gewichte von Federn zu reduzieren, was durch eine Verbesserung der Materialeigenschaften des Federstahls bewirkt werden kann. Um hierbei der im Betrieb verursachten Ermüdung und dem Setzen der Federstähle entgegenzuwirken, werden diese in der Regel vergütet, d.h. durch Erwärmen austenitisiert, danach abgeschreckt und durch erneutes Erwärmen angelassen.
  • Aus der JP 62-074027 A ist ein Verfahren zur Herstellung eines Stahldrahts für eine hochfeste kaltgeformte Schraubenfeder bekannt. Nach dem Härten des Stahldrahts wird dieser einer Wärmebehandlung mittels induktiver Erwärmung unterzogen, so dass die Oberflächenhärte bis in eine vorbestimmte Tiefe weniger oder gleich 550 HV und die Zugfestigkeit in einem Kernbereich größer oder gleich 200 kgf/mm2 beträgt. Zur Randschichtentfestigung wird der Federdraht über dem gesamten Querschnitt erhitzt. Die Härte liegt ausgehend von der Oberfläche des Federdrahts über die gesamte Tiefe, das heißt auch im Kernbereich, bei unter 590 HV.
  • Aus der JP 61 218 843 A ist ein Verfahren bekannt, bei dem die Oberfläche einer Feder durch eine Wärmebehandlung entfestigt wird. Hierdurch weist die Feder im Randbereich eine niedrigere Härte auf als die durchschnittliche Härte. Zum Entfestigen der Randschicht wird hauptsächlich der Oberflächenbereich des Federstahls erwärmt. Damit wird ein Härteverlauf über der Tiefe erreicht, bei dem die Härte bis zu einer Tiefe von nur etwa 0,5 mm zunimmt, wo sie bei etwa 57 HRC liegt.
  • Die DE 198 52 734 A1 beschreibt eine Feder mit verbesserter Korrosionsermüdungsfestigkeit. Hierbei wird für die Herstellung des Federstahls ein Stahl mit bestimmter Zusammensetzung verwendet, der auf eine Härte von 50,5 bis 55,0 HRC (Härte Rockwell C) gehärtet wird, wobei sich der Härtung eine Kugelstrahlbehandlung bei mäßigen Temperaturen anschließt. Hierbei wird die Temperatur derart gewählt, dass ein Härteabfall im Randbereich vermieden wird.
  • Die DE 100 32 313 offenbart eine Schraubenfeder aus legiertem Stahl, wobei die Schraubenfeder gehärtet ist und eine Kernhärte von etwa 610 HV 0,1 (Härte Vickers) aufweist. Zur Erhöhung der Verschleißfestigkeit ist eine Diffusionsschicht mit einer Dicke von ca. 100 µm vorgesehen, deren Härte in einer Tiefe von 10 µm mehr als 750 HV 0,1 beträgt.
  • Aus der DE 22 34 891 A ist ein Verfahren zum Herstellen von aus vergütbarem Stahl bestehenden Warmwalzerzeugnissen mit hartem Kern und weicher Schale bekannt. Der Stahl wird erwärmt, warmgewalzt, abgeschreckt und daraufhin angelassen.
  • Die DE 41 38 991 offenbart ein Verfahren zum Erzeugen von unterschiedlichen mechanischen Eigenschaften zwischen Rand- und Kernbereich eines Stahlkörpers. Der Stahlkörper wird einer Kaltverfestigungsbehandlung unterzogen und dann wird der Rand- und Kernbereich auf unterschiedliche Temperaturen erwärmt.
  • Die DD 267 513 A1 offenbart einen hochfesten Stahl für den Einsatz im Spannbetonbau, der im Kernbereich eine höhere Festigkeit als in der Randzone aufweist.
  • Aus der JP 62 260015 A ist eine Feder und ein Verfahren zur Herstellung bekannt. Das Federmaterial wird auf eine Härte von mehr als 500 HV eingestellt und dann durch eine Wärmebehandlung mittels hochfrequenter elektrischer Energie von größer 10 MHz auf 500 bis 700°C erwärmt. Dabei wird ein Bereich von 10 µm, gemessen von der Oberfläche des Federdrahts, erwärmt, um hier eine reduzierte Härte von kleiner 450 HV zu erhalten. In tieferen Bereichen des Werkstücks von mehr als 100 µm bleibt die Härte bei über 500 HV.
  • Aus der JP 62 260020 A ist ebenfalls eine Feder bzw. ein Verfahren zu deren Herstellung bekannt, bei der die Härte in einem Bereich von 10 µm, ausgehend von der Oberfläche, auf eine Härte von weniger als 450 HV eingestellt wird.
  • Aus der JP 07 188745 A ist ein Verfahren zur Herstellung von Federdraht bekannt, wobei das Auftreten von Entkohlungserscheinungen in den Oberflächenschichten während des Herstellungsprozesses verhindert werden soll. Dabei wird die oberflächengehärtete Schicht durch eine Wärmebehandlung entfestigt, die bei 450°C bis 750°C durchgeführt wird. Hiermit wird eine entfestigte Randschicht mit einer Tiefe von bis zu etwa 0,1 mm erreicht, die eine Härte von mehr als 520 HV aufweist.
  • Aus der US 2005/161131 A1 ist ein vergüteter Federdraht bekannt, bei dem durch Hochfrequenzinduktionshärten eine auftretende Entkohlung und der damit verbundene Härteverlust verhindert werden soll.
  • Aus der US 6 074 496 A ist ein hochfester Federdraht bekannt, der eine entkohlte Oberflächenschicht mit einer reduzierten Härte aufweist. Die entkohlte Schicht erstreckt sich bis in eine Tiefe von maximal 200 µm ab der Drahtoberfläche und hat hier eine Härte von 420 HV bis 50 HV unter der Härte im Drahtinneren.
  • Aus der US 2003/0168136 A1 sind ein Federstahl und ein Verfahren zur Herstellung eines Federstahls bekannt. Hierfür wird der Federstahl zunächst gehärtet und anschließend angelassen. Es werden der Härteverlauf und die Dauerfestigkeit für verschiedene Federproben angegeben, und zwar für eine geschabte, nicht-geschabte und eine Vergleichsprobe. Die Dauerfestigkeit ist bei der geschabten Federprobe am besten. Der Härteverlauf nimmt bei allen drei Federstählen von außen nach innen bis zu einer Tiefe von etwa 100 Mikrometer zu und verläuft dann konstant oder abnehmend. Ab einer Tiefe von etwa 100 Mikrometer liegt die Härte für alle Federstähle bei über 600 HV.
  • Aufgabe der vorliegenden Erfindung ist es, die negativen Auswirkungen möglicher kritischer Kerbspannungen durch Werkstoffungänzen in einem Randbereich eines Federstahls bzw. eines Federelements zu reduzieren.
  • Die Erfindung wird durch einen gehärteten Federstahl gelöst, der durch induktives Erwärmen auf Austenitisierungstemperatur, anschließendes Abschrecken, und induktives Erwärmen auf Anlasstemperatur hergestellt ist und eine außenliegende durch induktives Erwärmen entfestigte Randschicht mit einer Dicke von mindestens 500 µm aufweist, innerhalb der die Härte von innen nach außen abfällt, derart, dass die Härte der Randschicht ausgehend von einer Oberfläche des Federstahls bis in eine Tiefe von mindestens 500 µm mit zunehmender Tiefe zunimmt, wobei die Randschicht bis in eine Tiefe von mindestens 500 µm eine Härte von maximal 590 HV aufweist; und wobei der Federstahl einen nicht entfestigten Kernbereich mit einer Härte von mindestens 600 HV aufweist, der in einer Tiefe von mindestens 500 µm beginnt.
  • Da die Auswirkung der Kerbspannungen zum Beispiel am Grund eines Oberflächenrisses, das heißt, an einer Rissspitze, von der Härte bzw. der Zähigkeit des Werkstoffs abhängt, wird hierdurch eine Erweiterung des Risses verlangsamt oder sogar vermieden. Durch die dadurch erhöhte Beanspruchbarkeit des Materials, kann die Bauteilmasse eines Federelements reduziert werden und/oder die Lebensdauer des Federelements erhöht werden. Unter einem gehärteten Federstahl wird in diesem Zusammenhang ein Federstahl verstanden, dessen mechanische Widerstandsfähigkeit durch gezielte Änderung und Umwandlung seines Gefüges erhöht ist. Dies wird vorzugsweise durch eine Wärmebehandlung mit anschließendem schnellem Abkühlen erreicht. Ausdrücklich mitumfaßt sollen solche Federstähle sein, die nach dem Härten noch einer weiteren Behandlung unterzogen werden, beispielsweise angelassen werden. Eine solche Wärmebehandlung aus Härten und anschließendem Anlassen wird auch als Vergüten bezeichnet. Durch das Vergüten wird eine große Festigkeit bei gleichzeitig hoher Zähigkeit des Werkstoffs erreicht.
  • Ein wesentlicher Vorteil der Erfindung ist, dass sich durch die Randentfestigung auch Bauteile mit höherer Ausgangsfestigkeit verformen lassen. Dabei wird die Gefahr ungewünschter Drahtbrüche nach dem Härten bzw. dem Vergüten erheblich gesenkt. Dies wird durch eine Erhöhung der Duktilität im Randbereich erreicht. Gemäß der Erfindung wird nämlich, bei gleicher integraler Zugfestigkeit verglichen mit herkömmlichen Bauteilen, die Duktilität erhöht, die bis zu 15 % höher sein kann als bei nicht-entfestigten Bauteilen. Ein weiterer Vorteil des erfindungsgemäßen Federstahls mit von innen nach außen abnehmender Härte besteht darin, dass die Drahtverformbarkeit gesteigert wird.
  • Als Federstahl werden Werkstoffe für die Herstellung technischer Federn bezeichnet. Eine technische Feder ist ein Bauteil, das die von außen aufgenommene Krafteinwirkung aufnehmen, speichern und dann auch wieder abgeben kann. Als Werkstoffe für den Federstahl kommen prinzipiell alle härtbaren Stähle in Frage. Die Federeigenschaft wird bei Federstahl durch den Zusatz verschiedener Legierungselemente erreicht. Dabei kommen einzeln oder in Kombination die Elemente Silizium, Mangan, Chrom, Vanadium oder Molybdän in Frage. Besonders gut geeignet für die Anforderungen an Federn sind Silizium-Chrom-Stähle, Silizium-Chrom-Vanadium-Stähle und Chrom-Vanadium-Stähle.
  • Vorzugsweise ist der Federstahl in seinem gesamten Querschnitt gehärtet bzw. vergütet. Hiermit ist eine Durchhärtung bzw. Durchvergütung des Federstahls gemeint. Nach dem Härten bzw. Vergüten wird die Randschicht durch eine Wärmebehandlung entfestigt. Dies kann vorzugsweise durch ein relativ hochfrequentes induktives Erwärmen geschehen, worunter die Anwendung von Frequenzen über 50 kHz oder 60 kHz verstanden werden soll. Das induktive Erwärmen kann hierbei über eine verhältnismäßig kurze Dauer vorgenommen werden.
  • Da sich herausgestellt hat, dass für die Lebensdauer eines Federelements kritische Korrosionsnarben eine Tiefe im Größenbereich von 300 - 400 µm aufweisen, weist die Randschicht eine Dicke von mindestens 500 µm, insbesondere von mindestens 800 µm auf. Somit ist gewährleistet, dass an der Rissspitze eines Oberflächenrisses beziehungsweise am Grund einer Korrosionsnarbe eine Erhöhung der Zähigkeit des Werkstoffs und damit eine Reduzierung der negativen Auswirkungen der Kerbspannung erzielt werden. Je nach Dicke des Federelements und nach Wahl der Parameter für das Härten, Anlassen bzw. Entfestigen kann die Randschicht auch bis zu 1/4 des Radius des Federelements betragen. Dabei kann die Randschicht in besonderen Fällen sogar eine Dicke von mehr als 800 µm und bis zu 2000 µm aufweisen.
  • Die Randschicht weist vorzugsweise bis in eine Tiefe von 500 µm bis 800 µm eine Härte von maximal 590 HV auf. Hierbei kann vorgesehen sein, dass die Härte der Randschicht ausgehend von einer Oberfläche des Federstahls mit zunehmender Tiefe zunimmt. Generell gilt, daß die Härte des Federstahls über der Tiefe von der integralen Zugfestigkeit des Federstahls über dessen Querschnitt abhängt. Je höher die integrale Zugfestigkeit, desto größer ist auch die Tiefe, bis zu der eine Härte von maximal 590 HV vorliegen kann. So kann die Randschicht bei niedriger integraler Zugfestigkeit des Federstahls sogar auch bis in eine Tiefe von bis zu 1000 µm eine Härte von maximal 590 HV aufweisen.
  • Vorzugsweise ist in der Randschicht ab einer Tiefe von 50 µm eine Härte von mindestens 250 HV, vorzugsweise 450 HV, insbesondere von mindestens 500 HV oder 560 HV, vorgesehen.
  • Ein sich an die Randschicht innen anschließender Kernbereich beginnt in einer Tiefe von mindestens 500 µm, insbesondere von mindestens 800 µm. In besonderen Fällen kann der Kernbereich sogar erst in einer Tiefe von 2000 µm beginnen. Die Härte des Kernbereichs beträgt mindestens 600 HV. In besonderen Fällen kann die Härte des Kernbereichs sogar über 730 HV betragen, was durch eine geringere Temperatur beim Anlassen erreicht werden kann. Im Zentrum des Kernbereichs kann die Härte infolge von herstellungsbedingten Mikrostrukturänderungen, beispielsweise von Seigerungen reduziert oder gesteigert sein.
  • Die Aufgabe wird ferner durch ein Federelement gelöst, das aus einem Federstahl, wie er vorangehend beschrieben ist, gefertigt ist. Der Federstahl ist hierbei vorzugsweise ein Rundmaterial, zum Beispiel ein Federdraht, ein Ovaldraht oder ein Flachmaterial, zum Beispiel ein Federband.
  • Hierbei kann das Federelement zu einer Schraubenfeder gewunden sein. Der Federstahl kann ausschließlich auf einer Innenseite der Windungen des Rundmaterials der Schraubenfeder eine entfestigte Randschicht aufweisen, um die Auswirkungen der Kerbspannungen zu reduzieren. Über den übrigen Umfang des Rundmaterials im Querschnitt betrachtet kann vorgesehen sein, dass keine enthärtete Randschicht vorgesehen ist, d.h. dass der Kernbereich bis an die Oberfläche reicht. Alternativ zu einer partiellen Entfestigung an der Innenseite der Windungen oder zusätzlich hierzu kann vorgesehen sein, dass der Federstahl auf einer Außenseite der Windungen des Rundmaterials der Schraubenfeder eine entfestigte Randschicht aufweist, wodurch mögliche Wickelbrüche bei der Formgebung der Feder vermieden werden können. Im Regelfall ist jedoch davon auszugehen, dass sich die entfestigte Randschicht im Querschnitt betrachtet über den gesamten Umfang des Rundmaterials erstreckt.
  • Es wird deutlich, dass, im Querschnitt des Federstahls betrachtet, lediglich teilweise über den Umfang ein oder mehrere Bereiche mit einer entfestigten Randschicht vorgesehen sein können, um in diesen bestimmten Bereichen eine Anpassung der Materialeigenschaften an die Beanspruchung zu ermöglichen.
  • Ferner wird die Aufgabe durch ein Verfahren zur Herstellung eines Federstahls gelöst, wobei der Federstahl durch induktives Erwärmen auf Austenitisierungstemperatur und anschließendes Abschrecken zunächst gehärtet wird, wobei ein Kernbereich auf eine Härte von über 600 HV gehärtet wird, anschließend durch induktives Erwärmen angelassen wird und anschließend eine Randschicht des Federstahls über eine Dicke von mindestens 500 µm durch eine induktive Wärmebehandlung entfestigt wird, derart, dass die Härte der entfestigten Randschicht ausgehend von einer Oberfläche des Federstahls bis in eine Tiefe von mindestens 500 µm mit zunehmender Tiefe zunimmt und maximal 590 HV beträgt. Das Härten bzw. Vergüten des Federstahls bedeutet, vorzugsweise, dass der gesamte Querschnitt zunächst durchgehärtet wird. Der Zentralbereich des Querschnitts muss jedoch nicht unbedingt durchgehärtet werden. Als Wärmebehandlung für das Entfestigen wird eine induktive Erwärmung durchgeführt. Vor und nach dem Entfestigen ist das Gefüge des Federstahls feinnadelig martensitisch. Dieses martensitische Gefüge wird durch verhältnismäßig schnelles Abkühlen nach dem Härten erreicht. Je nach Abkühlgeschwindigkeit nach dem Härten kann auch eine andere Gefügestruktur des Federstahls erzeug werden. Wird der Federstahl langsamer abgekühlt, kann beispielsweise auch eine Bainit-Gefügestruktur erzeugt werden. Bei noch langsamerer Abkühlung ist auch die Beibehaltung der Ferrit/Perlit-Gefügestruktur des Federstahls denkbar.
  • Der Federstahl wird gehärtet bzw. vergütet. Hierbei wird der Federstahl zunächst auf die Austenitisierungstemperatur erwärmt, und zwar induktiv erwärmt, und anschließend abgeschreckt. Die Temperatur liegen hierbei vorzugsweise oberhalb des Ac3 Punktes, insbesondere bei 800 oder 900 bis 1000°C. Zur Erreichung eines vergüteten Federstahls wird der Federstahl nach dem Härten angelassen, wozu der Federstahl erneut induktiv erwärmt wird. Hierbei wird der Federstahl vorzugsweise auf eine Temperatur von 400°C bis 500°C oder bis 550°C erwärmt. Hiermit liegt ein vergüteter Federstahl vor.
  • Nach einem anschließenden Abkühlen wird der Federstahl ein weiteres Mal kurzzeitig induktiv erwärmt, um die Randschicht zu entfestigen. Dabei erfolgt das Randentfestigen, in Abhängigkeit von der Dauer der Erwärmung, vorzugsweise bei einer Temperatur zwischen 500°C und 750°C, insbesondere zwischen 570°C und 610°C.
  • Der Kernbereich wird auf eine Härte von über 600 HV, in besonderen Fällen von über 730 HV eingestellt.
  • Die Randschicht wird über eine Dicke von mindestens 500 µm, insbesondere von mindestens 800 µm entfestigt, wobei die Randschicht vorzugsweise auf eine maximale Härte von 590 HV entfestigt wird. In besonderen Fällen kann die Randschicht, in Abhängigkeit von der integralen Zugfestigkeit des Federstahls, sogar über eine Dicke mehr als 800 µm und bis zu 2000 µm entfestigt werden. Die Randschicht wird vorzugsweise ab einer Tiefe von 50 µm auf eine Härte von nicht unter 250 HV, vorzugsweise nicht unter 450 HV, insbesondere nicht unter 500 HV oder 560 HV entfestigt.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Herstellung eines Federelements aus einem Federstahl vorgeschlagen, wobei der Federstahl nach einem der obengenannten Verfahren hergestellt ist. Um eine Schraubendruckfeder herzustellen, wird der Federstahl zu einem Federelement in Form einer Schraubenfeder gewunden, wobei die Randschicht entweder vor dem Winden des Federstahls oder nach dem Winden des Federstahls entfestigt werden kann.
  • Bevorzugte Ausführungsbeispiele werden im Folgenden anhand der Figuren näher erläutert. Hierin zeigt:
  • Figur 1
    einen Abschnitt eines erfindungsgemäßen Federstahls in Form eines Federdrahts;
    Figur 2
    ein Diagramm eines schematischen Härteverlaufs über den gesamten Durchmesser eines erfindungsgemäßen Federdrahts;
    Figur 3
    ein Diagramm des Härteverlaufs eines erfindungsgemäßen Federdrahts im Bereich der Randschicht;
    Figur 4
    ein Diagramm, das die Messwerte des Härteverlaufs eines erfindungsgemäßen Federdrahts wiedergibt;
    Figur 5
    ein erfindungsgemäßes Federelement in Form einer Schraubenfeder;
    Figuren 6 und 6a
    einen Querschnitt des Federdrahts der Schraubenfeder gemäß Figur 5;
    Figur 7
    eine schematische Darstellung der Fertigung eines erfindungsgemäßen Federstahls in Form einer Schraubenfeder;
    Figur 8
    ein weiteres Diagramm der Härteverlaufe eines erfindungsgemäßen Federdrahts im Bereich der Randschicht bei verschiedenen Temperaturen für die Randentfestigung;
    Figur 9
    ein Diagramm, das die Messwerte des Härteverlaufs eines erfindungsgemäßen Federdrahts bei einer ersten integralen Zusfestigkeit wiedergibt;
    Figur 10
    ein Diagramm, das die Messwerte des Härteverlaufs eines erfindungsgemäßen Federdrahts bei einer zweiten integralen Zusfestigkeit wiedergibt.
  • Figur 1 zeigt einen Abschnitt eines erfindungsgemäßen Federstahls in Form eines Federdrahts 1 mit einem kreisrunden Querschnitt. Grundsätzlich kann der Federstahl mit beliebigen Querschnitten, zum Beispiel auch als Federband gestaltet sein. Der Federdraht 1 erstreckt sich entlang einer Längsachse L. Die Koordinaten des Querschnitts sind mit X (Tiefe von der Oberfläche aus) und Y (Halbmesser über der Tiefe) angegeben. Schematisch ist dargestellt, dass der Federdraht 1 eine Randschicht 2 und einen Kernbereich 3 aufweist, wobei die Randschicht 2 außen die Oberfläche 4 des Federdrahts 1 bildet. Die Randschicht 2 und der Kernbereich 3 sind nicht als separate Elemente zu verstehen, sondern dienen lediglich der Veranschaulichung der unterschiedlichen Härteeigenschaften. Der Federdraht 1 ist ein integrales Element. Wie später anhand von Diagrammen dargstellt wird, weist der Federdraht 1 im Bereich der Randschicht 2 eine geringere Härte auf als im Kernbereich 3. Im vorliegenden Fall ist die entfestigte Randschicht 2 im Querschnitt betrachtet über den gesamten Umfang um die Längsachse L angeordnet. Die entfestigte Randschicht 2 kann jedoch auch nur partiell vorgesehen sein, so dass diese lediglich teilweise über den Umfang verläuft und/oder sich nur teilweise über die Länge erstreckt.
  • Der Federstahl besteht aus einem härtbaren Stahl. Besonders gut geeignet für die Anforderungen an Federn sind Silizium-Chrom-Stähle, Silizium-Chrom-Vanadium-Stähle und Chrom-Vanadium-Stähle.
  • Figur 2 zeigt schematisch die Kurve 16 des Härteverlaufs über den gesamten Querschnitt des Federdrahts gemäß Figur 1 entlang der Achse X. Figur 3 zeigt in vergrößerter Ansicht schematisch den Härteverlauf im Bereich der Randschicht entlang der Achse X. Auf der Abszisse ist die Tiefe von der Oberfläche bzw. die Entfernung von der Oberfläche abgetragen. Auf der Ordinate ist die Härte abgetragen. Die Figuren 2 und 3 werden im folgenden zusammen beschrieben.
  • Es ist zu erkennen, dass die Härte des Federdrahts ausgehend von der Oberfläche (Tiefe 0 mm) weitestgehend kontinuierlich ansteigt, bis ein Maximalwert erreicht ist, der im Kernbereich des Federdrahts in etwa konstant verläuft. Im Zentrum des Federdrahts kann die Härte durch Mikrostruktureinflüsse bei der Herstellung, beispielsweise durch Seigerungen auch abweichend, insbesondere niedriger sein. Der Anstieg der Härte liegt, jeweils von außen nach innen, an allen Punkten der Oberfläche des Drahtes vor.
  • Im Bereich der Oberfläche wird eine Härte von ca. 500 HV (Härte Vickers) erzielt. Bis zu einer Tiefe von 0,6 mm steigt die Härte weitestgehend kontinuierlich bis zu einem Wert von ca. 580 HV an. Dieser Bereich stellt die entfestigte Randschicht 2 dar, deren Härte geringer ist, als die Härte des Kernbereichs 3. Ab einer Tiefe von 0,6 mm ist der Härteverlauf konstant, bis der gegenüberliegende Oberflächenbereich erreicht wird, wo die Härte zur Oberfläche hin wieder abnimmt. Die Härte sollte durchgehend eine Härteuntergrenze 17 von 450 HV nicht unterschreiten. Im Bereich der entfestigte Randschicht 2, das heißt in demjenigen Bereich, in dem die Härte ausgehend von der Oberfläche ansteigt, sollte die Härte eine Härteobergrenze 18 von 590 HV nicht übersteigen. Die Randschicht 2 kann auch bis zu einer größeren Tiefe von bis zu 0,8 mm reichen, hierbei kann der Kernbereich auch höhere Härten von deutlich über 600 HV aufweisen.
  • Der Kurvenverlauf gemäß den Figuren 2 und 3 ist lediglich schematisch dargestellt und stellt den gewünschten Härteverlauf dar. Dieser ist in der Realität in der gezeigten gradlinigen Form nicht erzielbar.
  • Die Figur 4 zeigt Messwerte des Härteverlaufs in einem Bereich nahe der Oberfläche eines Federstahls. In dem Diagramm gemäß Figur 4 sind zwei Kurven dargestellt, zum einen eine erste Kurve 5, die den Härteverlauf des gehärteten bzw. vergüteten Federstahls ohne entfestigten Randbereich wiedergibt. Eine zweite Kurve 6 gibt den Härteverlauf wieder, wie er sich nach der Entfestigung der Randschicht 2 darstellt. Anhand der Kurve 5 ist zu erkennen, dass der gehärtete bzw. vergütete Federstahl ab einer Tiefe von ca. 0,1 mm ein Härte von über 590 HV aufweist und somit über der Obergrenze 18 liegt, wobei dieser Wert im weiteren Verlauf nicht mehr unterschritten wird. Bei Korrosionsnarben mit einer Tiefe von erfahrungsgemäß bis zu 400 µm würden sich somit die hohen Kerbspannungen im Bereich der Rissspitzen der Korrosionsnarben oder Risse negativ auf die Lebensdauer des Federstahls auswirken.
  • Um die Zähigkeit und damit den Widerstand des Materials gegen die Wirkung der hohen Kerbspannungen zu verbessern, wird die Randschicht des Federstahls durch eine kurzzeitige Erwärmung entfestigt, so dass ein Härteverlauf gemäß der Kurve 6 erzielt wird. Die Randschicht 2 sollte eine Mindestdicke ausgehend von der Oberfläche von 0,3 mm bevorzugt 0,5 mm aufweisen und eine Härte von 450 bis höchstens 590 HV aufweisen. Die Kurve 6 steigt kontinuierlich ausgehend von der Oberfläche in Richtung zum Kernbereich 3 an und nähert sich immer weiter der Kurve 5 des Härteverlaufs des gehärteten bzw. vergüteten Federstahls an und geht in diese im Kernbereich 3 über. Der Kernbereich lässt sich somit als derjenige Bereich des Federstahls definieren, der nicht entfestigt wird. Die entfestigte Randschicht ist im vorliegenden Beispiel definitionsgemäß etwa 0,6 mm dick und soll in diesem Bereich auf eine Härte zwischen 450 und 590 HV entfestigt sein. Zwischen der Randschicht 2 und dem Kernbereich 3 ergibt sich ein Übergangsbereich 19, der ebenfalls entfestigt wurde, jedoch eine Härte von über 590 HV aufweist, wobei die Härte des Übergangsbereichs 19 bis zur Härte des Kernbereichs weiter ansteigt.
  • In Figur 5 ist beispielhaft ein Federelement in Form einer Schraubenfeder 7 mit einer geometrischen Federmittellinie M dargestellt wobei eine Einzelheit X markiert ist.
  • Die Figuren 6a und 6b zeigen Querschnitte im Bereich der Einzelheit X gemäß Figur 5 durch zwei Ausführungsbeispiele des Federdrahts, aus dem die Schraubenfeder 7 hergestellt ist.
  • Figur 6a zeigt einen Kernbereich 8 sowie einen Randschichtbereich 9, der nur über einen Teil des Umfangs verläuft, wobei der Randschichtbereich 9 an einer Außenseite der Schraubenfeder 9 vorgesehen ist. Der entfestigte erste Randschichtbereich 9 soll Brüche beim Umformen des Federdrahts, d.h. beim Winden der Schraubenfeder 7 verhindern.
  • Figur 6b zeigt einen Kernbereich 8 sowie einen Randschichtbereich 10, der ebenfalls nur über einen Teil des Umfangs verläuft, wobei der Randschichtbereich 10 an einer Innenseite der Schraubenfeder 7 vorgesehen ist. Der entfestigte Randschichtbereich 10 soll die negativen Auswirkungen der Kerbspannung örtlich reduzieren.
  • Grundsätzlich ist es jedoch auch möglich, eine vollständig umlaufende entfestigte Randschicht 2 oder beide teilweise umlaufenden Randschichtbereiche 9, 10 am Federdraht vorzusehen. In den Figuren 6a und 6b sind die entfestigten Randschichtbereiche 9,10 zwar sichelförmig dargestellt, diese können jedoch auch andere Formen aufweisen oder über einen größeren oder kleineren Bereich des Umfangs verlaufen. Ferner kann die entfestigte Randschicht über die gesamte Länge des Federdrahts oder nur über einen Teil der Länge des Federdrahts verlaufen.
  • Figur 7 zeigt schematisch die Fertigung eines Federstahls in Form eines Federdrahts 1, wobei die Entfestigung vor dem Weiterverarbeiten des Federdrahts zum Beispiel zu einer Schraubenfeder stattfindet. Grundsätzlich kann die Entfestigung einer Randschicht auch nach dem Umformen des Federdrahts 1 zu einer Schraubenfeder stattfinden.
  • Der Federdraht 1 wird zunächst durch eine erste Induktionsspule 11 hindurch geführt und auf Austenitisierungstemperatur erwärmt. Anschließend wird der Federdraht 1 abgeschreckt, was in einer Dusche 12 stattfindet. Anschließend wird der Federdraht 1 durch eine zweite Induktionsspule 13 hindurchgeführt und auf eine Anlasstemperatur erwärmt. Die Anlasstemperatur des Federdrahts 1 liegt vorzugsweise 30°C niedriger als bei konventioneller induktiver Vergütung, insbesondere zwischen 420°C und 490°C. Dabei ist die Anlasstemperatur abhängig von der gewünschten Endfestigkeit des Federdrahts 1, die in günstiger Weise zwischen 1800 N/mm2 und 2050 N/mm2 liegen soll. Für hochfeste Federdrähte mit einer Zugfestigkeit von Rm zwischen 2050 bis 2200 N/mm2 ist die Anlasstemperatur geringer und beträgt vorzugsweise 380°C bis 420°C.
  • Die Temperatur des Federdrahts wird hinter der zweiten Induktionsspule 13 gemessen, vorzugsweise 50 mm bis 90 mm, insbesondere 70 mm hinter der Induktionsspule 13. Dieses versetzte Messen, mit Abstand zur Induktionsspule 13, ermöglicht das Bestimmen der Kerntemperatur des Federdrahts 1.
  • Im Anschluss an das Anlassen wird der Federdraht 1 durch eine dritte Induktionsspule 14 hindurchgeführt, in der der Federdraht 1 kurzzeitig induktiv erwärmt wird, um die Randschicht zu entfestigen. Die Randentfestigung durch Erwärmung erfolgt vorzugsweise bei einer Temperatur zwischen 500°C und 750°C, insbesondere zwischen 570°C und 610°C.. Durch die Wahl einer geeigneten Frequenz werden hierbei nur die oberflächennahen Bereiche erwärmt.
  • Die Induktionsspulen 11, 13, 14 sind in Figur 7 lediglich schematisch dargestellt und können selbstverständlich in verschiedenen herkömmlichen Formen zum Härten von Federdrähten ausgebildet sein. In den Bereichen 15 und/oder 15' kann eine Abkühleinheit in die Anlage integriert werden, um besondere Materialeigenschaften des Federdrahts gezielt einzustellen. Die Induktionsspule 14 zum Entfestigen (direkt vor oder nach dem Winden) kann insbesondere sichelförmig gestaltet sein, um zu ermöglichen, dass der Federdraht lediglich partiell über seinen Umfang entfestigt wird. Die Erwärmungs- und Entfestigungstemperaturen können von den genannten Temperaturen auch abweichen.
  • Die Figur 8 zeigt den Zusammenhang zwischen der Randerwärmung und der Härte des Federdrahts 1, d. h. der Rand- bzw. der Kernhärte, und zwar bei unterschiedlichen Randtemperaturen. Es ist erkennbar, dass die Kernfestigkeit von der gewünschten integralen Zugfestigkeit des Federdrahts abhängig ist.
  • Es sind die Kurvenverläufe der Härte, die mit den Bezugszeichen 20, 21, 22, 23, 24 versehen sind, für verschiedene Entfestigungstemperaturen dargestellt. Die Entfestigung erfolgt vorzugsweise bei einer Temperatur zwischen 500°C und 750°C, insbesondere zwischen 570°C und 610°C. Auf der Abszisse ist die Tiefe von der Oberfläche bzw. die Entfernung von der Oberfläche, in Millimetern, abgetragen. Auf der Ordinate ist die Härte, in Härte HV1, abgetragen. Es ist zu erkennen, dass die Härte des Federdrahts ausgehend von der Oberfläche (Tiefe 0 mm) kontinuierlich ansteigt, bis ein Maximalwert erreicht ist, der im Kernbereich des Federdrahts in etwa konstant verläuft.
  • Die Härte im Bereich der Oberfläche und in der Randschicht hängt von der Randtemperatur ab. Bei einer niedrigeren Temperatur von beispielsweise 570°C ist die Härte an der Oberfläche besonders hoch, und beträgt hier etwa 570 HV und steigt kontinuierlich bis in eine Tiefe von etwa 0,8 mm bis auf eine Härte von etwa 620 HV an. Dieser Bereich der ansteigenden Härte stellt die entfestigte Randschicht 2 dar, deren Härte geringer ist, als die Härte des Kernbereichs 3. Ab einer Tiefe von 0,8 mm ist der Härteverlauf konstant, bis der gegenüberliegende Oberflächenbereich erreicht wird, wo die Härte zur Oberfläche hin wieder abnimmt.
  • Bei höheren Temperaturen, wie sie beispielsweise durch Kurve 23 gekennzeichnet ist, ist die Härte an der Oberfläche etwas niedriger, und beträgt hier etwa 530 HV, und steigt kontinuierlich bis in eine größere Tiefe von etwa 1,0 mm an und hat dort einen Wert von etwa 630 HV an. Das heißt, bei höherer Erwärmungstemperatur zur Erreichung der Randentfestigung nimmt die Härte in der Randschicht stärker ab und es erfolgt eine Entfestigung in größere Tiefe hinein. Besonders deutlich wird dies anhand von Kurve 25, die den Härteverlauf für eine Erwärmung bei 610°C zur Randentfestigung zeigt. Hier beträgt die Härte an der Oberfläche nur etwa 500 HV und steigt kontinuierlich bis in eine Tiefe von etwa 1,25 mm an. Dort hat das Federelement eine Härte von etwa 650 HV.
  • Die Figuren 9 und 10 zeigen anhand zweier Beispiele tatsächliche Messwerte des Härteverlaufs über den gesamten Querschnitts zweier erfindungsgemäßer Federdrähte 1. Dabei zeigt Figur 9 den Härteverlauf für einen Federdraht mit einer höheren integralen Zugfestigkeit, in Höhe von 2086 N/mm2, während Figur 10 den Härteverlauf für einen Federdraht mit einer niedrigeren integralen Zugfestigkeit, in Höhe von 2000 N/mm2, zeigt. Der Durchmesser des Federdrahts beträgt 12,05 mm. Die beiden Figuren 9 und 10 werden im folgenden gemeinsam beschrieben.
  • In den beiden Diagrammen gemäß den Figuren 9 und 10 sind jeweils zwei Kurven dargestellt, von denen eine erste Kurve 26, 26' den Härteverlauf des gehärteten bzw. vergüteten Federstahls in einem Horizontalschnitt durch den Federdraht wiedergibt, während die zweite Kurve 27, 27' den Härteverlauf in einem Vertikalschnitt durch den Federdraht wiedergibt.
  • Es ist der weitestgehend symmetrische Verlauf der Härte über dem Querschnitt des Federdrahts von der Innenseite 28, 28' des Federdrahts bis zu dessen Außenseite 29, 29' erkennbar. Gewisse Abweichungen von der Symmetrie können durch Meßungenauigkeiten oder Auskohlung entstehend. Weiter ist in allen Kurven 26, 27, 26', 27' der Abfall der Härte im Bereich der Randschicht erkennbar, wie sie nach der Entfestigung der Randschicht 2 vorliegt.
  • Der Härteverlauf in Figur 9 ist in den Randbereichen etwas steiler und steigt von der Oberfläche, wo eine Härte von etwa 550 HV vorliegt, bis in eine Tiefe von etwa 1,0 mm auf einen Härtewert von etwa 600 HV weitestgehend linear an. Weiter innen, d. h. ab einer Tiefe von etwa 1,0 mm bis zu einer Tiefe von 2,0 mm nimmt die Härte weiter zu, allerdings nicht linear sondern kurvenförmig, bis zu einem maximalen Wert von etwa 630 HV. Zwischen der Tiefe von 2,0 mm bis zum Kern, der bei 6,0 mm liegt fällt die Härte wieder leicht ab und Erreicht ein relatives Minimum von etwa 610 HV bei etwa 4,0 mm. Die maximale Härte mit annähernd 650 HV liegt im Kern des Federdrahts vor. Dieser Punkt ist mit dem Bezugszeichen 30 gekennzeichnet.
  • Der Härteverlauf, welcher in Figur 10 gezeigt ist, ist ähnlich. Auch hier nimmt die Härte im Randbereichen zunächst steiler zu, um dann weiter innen eine flachere Steigung anzunehmen. In einer Tiefe von etwa 2,0 mm ist die Härte maximal und beträgt hier etwa 610 HV. Dieser Punkt ist mit dem Bezugszeigen 31' gekennzeichnet. Weiter innen, d. h. ab einer Tiefe von etwa 2,0 mm bis zum Kern, d. h. bis zu einer Tiefe von 6,0 mm, fällt die Härte wieder leicht ab und Erreicht ein relatives Minimum von etwa 600 HV im Kern 30'.
  • Insgesamt lässt sich anhand der Figuren 9 und 10 erkennen, dass der Ausgangswerkstoff die Festigkeit bzw. Härte des fertig hergestellten erfindungsgemäßen Federdrahts definiert. Bei Figur 9, wo ein Ausgangswerkstoff mit einer höheren integralen Zugfestigkeit von 2086 N/mm2 verwendet wurde, ist auch die Härte des fertigen, randentfestigten Federdrahts mit einer maximalen Härte von an die 650 HV höher. Demgegenüber ist bei der Probe gemäß Figur 10, bei der ein Ausgangswerkstoff mit einer niedrigeren integralen Zugfestigkeit von 2000 N/mm2 verwendet wurde, auch die Härte des fertigen, randentfestigten Federdrahts geringer und beträgt etwa 610 HV.
  • Insgesamt bietet der erfindungsgemäße Federstahl und das erfindungsgemäße Verfahren zu Herstellung eines solchen Federstahls den Vorteil, dass sich durch die Randentfestigung auch Bauteile mit höherer Ausgangsfestigkeit verformen lassen. Dies führt insgesamt zu einer erhöhten Festigkeit bzw. Härte des Bauteils. Dies gilt insbesondere für Federelemente, die aus dem erfindungsgemäßen Federstahl hergestellt sind. Durch die Randentfestigung des Federdrahts wird eine Erhöhung der Duktilität im Randbereich erreicht. Auf diese Weise wird die Gefahr unerwünschter Drahtbrüche nach dem Härten bzw. der Vergütung erheblich gesenkt. Außerdem wird die Drahtverformbarkeit verbessert.
  • Bezugszeichenliste
  • 1
    Federdraht
    2
    Randschicht
    3
    Kernbereich
    4
    Oberfläche
    5
    Kurve
    6
    Kurve
    7
    Schraubenfeder
    8
    Kernbereich
    9
    erster Randschichtbereich
    10
    zweiter Randschichtbereich
    11
    erste Induktionsspule
    12
    Dusche
    13
    zweite Induktionsspule
    14
    dritte Induktionsspule
    15
    Abkühleinheit
    16
    schematische Kurve
    17
    Untergrenze
    18
    Obergrenze
    19
    Übergangsbereich
    21-25
    Kurven (bei unterschiedlichen Entfestigungstemperaturen)
    26, 27
    Kurven (des Härteverlaufs über der Tiefe)
    28
    Innenseite
    29
    Außenseite
    30
    Kern
    31
    Maximum
    L
    Längsachse
    X
    Achse
    Y
    Achse

Claims (13)

  1. Gehärteter Federstahl, hergestellt durch induktives Erwärmen auf Austenitisierungstemperatur, anschließendes Abschrecken, und induktives Erwärmen auf Anlasstemperatur,
    wobei der Federstahl eine durch induktives Erwärmen entfestigte Randschicht mit einer Dicke von mindestens 500 µm aufweist, innerhalb der die Härte von innen nach außen abfällt, derart, dass die Härte der Randschicht ausgehend von einer Oberfläche des Federstahls bis in eine Tiefe von mindestens 500 µm mit zunehmender Tiefe zunimmt, wobei die Randschicht bis in eine Tiefe von mindestens 500 µm eine Härte von maximal 590 HV aufweist;
    und wobei der Federstahl einen nicht entfestigten Kernbereich mit einer Härte von mindestens 600 HV aufweist, der in einer Tiefe von mindestens 500 µm beginnt.
  2. Gehärteter Federstahl nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Federstahl in seinem gesamten Querschnitt gehärtet ist.
  3. Gehärteter Federstahl nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Randschicht eine Dicke von mindestens 800 µm aufweist.
  4. Gehärteter Federstahl nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Randschicht bis in eine Tiefe von 500 bis 800 µm eine Härte von maximal 590 HV aufweist.
  5. Gehärteter Federstahl nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Randschicht ab einer Tiefe von 50 µm eine Härte von mindestens 450 HV, insbesondere von mindestens 500 HV aufweist.
  6. Gehärteter Federstahl nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Kernbereich in einer Tiefe von mindestens 800 µm beginnt.
  7. Federelement, das aus einem Federstahl nach einem der Ansprüche 1 bis 6 gefertigt ist, wobei der Federstahl insbesondere ein Rundmaterial, ein Flachmaterial oder ein Ovalmaterial bildet.
  8. Federelement nach Anspruch 7,
    dadurch gekennzeichnet,
    dass das Federelement zu einer Schraubenfeder gewunden ist, wobei der Federstahl auf der Innenseite und/oder der Außenseite der Windungen der Schraubenfeder eine entfestigte Randschicht aufweist.
  9. Verfahren zur Herstellung eines Federstahls mit den Schritten:
    Härten eines Federstahls durch induktives Erwärmen auf Austenitisierungstemperatur und anschließendes Abschrecken, wobei ein Kernbereich auf eine Härte von über 600 HV gehärtet wird, anschließendes Anlassen des Federstahls durch induktives Erwärmen auf Anlasstemperatur, und anschließendes Entfestigen einer Randschicht des Federstahls durch eine induktive Wärmebehandlung, wobei die Randschicht über eine Dicke von mindestens 500 µm entfestigt wird, derart, dass die Härte der entfestigten Randschicht ausgehend von einer Oberfläche des Federstahls bis in eine Tiefe von mindestens 500 µm mit zunehmender Tiefe zunimmt und maximal 590 HV beträgt.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die Randschicht über eine Dicke von mindestens 800 µm entfestigt wird.
  11. Verfahren nach einem der Ansprüche 9 oder 10,
    dadurch gekennzeichnet,
    dass die Randschicht bis in eine Tiefe von 500 bis 800 µm auf eine maximale Härte von 590 HV entfestigt wird.
  12. Verfahren nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet,
    dass die Randschicht ab einer Tiefe von 50 µm auf eine Härte von nicht unter 450 HV, insbesondere nicht unter 500 HV, entfestigt wird.
  13. Verfahren zur Herstellung eines Federelements aus einem Federstahl, hergestellt nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    dass der Federstahl zu einem Federelement in Form einer Schraubenfeder gewunden wird, wobei die Randschicht insbesondere vor dem Winden des Federstahls entfestigt wird.
EP09014562.4A 2008-11-21 2009-11-23 Gehärteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements Active EP2192201B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008058516 2008-11-21
DE102009011118A DE102009011118A1 (de) 2008-11-21 2009-03-03 Vergüteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements

Publications (2)

Publication Number Publication Date
EP2192201A1 EP2192201A1 (de) 2010-06-02
EP2192201B1 true EP2192201B1 (de) 2019-04-24

Family

ID=42114734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09014562.4A Active EP2192201B1 (de) 2008-11-21 2009-11-23 Gehärteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements

Country Status (3)

Country Link
EP (1) EP2192201B1 (de)
JP (1) JP2010133558A (de)
DE (1) DE102009011118A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008573B (zh) * 2013-03-12 2017-03-22 本田技研工业株式会社 弹簧用钢丝及其制造方法
RU2682882C1 (ru) * 2014-09-04 2019-03-22 Тиссенкрупп Федерн Унд Штабилизаторен Гмбх Пружина или торсион из стальной проволоки, полученная холодной деформацией. способ изготовления деформированных в холодном состоянии стальных пружин, применение стальной проволоки для изготовления деформированных в холодном состоянии пружин
DE102017107487A1 (de) 2017-04-07 2018-10-11 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung einer Torsionsstabfeder und Stabilisator für ein Fahrwerk eines Kraftfahrzeugs
JP2022097327A (ja) * 2020-12-19 2022-06-30 デルタ工業株式会社 トーションバー及びその製造方法
JP7203910B1 (ja) 2021-07-01 2023-01-13 日本発條株式会社 コイルばね、懸架装置およびコイルばねの製造方法
KR20230093723A (ko) 2021-12-20 2023-06-27 주식회사 포스코 내구성이 우수한 고탄소 강판 및 그 제조방법, 산업용 또는 자동차용 부품
DE102022002394A1 (de) 2022-07-03 2024-01-04 LSV Lech-Stahl Veredelung GmbH Verfahren zur Hersteliung eines Werkstücks aus Stahl und durch das Verfahren hergestelltes Werkstück

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218843A (ja) * 1985-03-25 1986-09-29 Nhk Spring Co Ltd 鋼製ばねとその製造方法
JPS6274027A (ja) * 1985-09-27 1987-04-04 High Frequency Heattreat Co Ltd 高強度冷間成形コイルばね用鋼線の製造方法
JP2002089599A (ja) * 2000-09-12 2002-03-27 Tama Spring:Kk 異形断面形状コイルスプリング
US20030168136A1 (en) * 1997-08-28 2003-09-11 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2234891C3 (de) * 1972-07-15 1979-10-11 Fried. Krupp, Huettenwerke Ag, 4630 Bochum Verfahren zum Herstellen von Stahlgegenständen und deren Verwendung
DE2801066A1 (de) * 1978-01-11 1979-07-12 British Steel Corp Verfahren zur erzeugung von stahlstaeben
JPS62260015A (ja) * 1986-05-02 1987-11-12 Sumitomo Electric Ind Ltd 耐疲れ性にすぐれたばねおよびその製造方法
JPS62260020A (ja) * 1986-05-02 1987-11-12 Sumitomo Electric Ind Ltd 耐疲れ性にすぐれたばね用鋼線およびその製造方法
DD267513A1 (de) * 1987-12-02 1989-05-03 Veb Stahl- Und Walzwerk "Wilhelm Florin",Dd Hochfester stahl, insbesondere spannstahl, mit verbesserter bestaendigkeit gegenueber spannungsrisskorrosion und verzoegerten bruechen
DE4138991A1 (de) * 1991-11-27 1993-06-03 Saarstahl Ag Verfahren zum erzeugen von unterschiedlichen mechanischen eigenschaften zwischen rand- und kernbereich eines stahlkoerpers
JPH07188745A (ja) * 1993-12-27 1995-07-25 Shinko Kosen Kogyo Kk 高級ばね用オイルテンパー線の製造方法
JPH10251760A (ja) * 1997-03-12 1998-09-22 Suzuki Kinzoku Kogyo Kk ばね成形加工性に優れた高強度オイルテンパー線および その製造方法
DE19852734B4 (de) 1997-11-17 2005-02-24 Chuo Hatsujo K.K., Nagoya Feder mit verbesserter Korrosionsermüdungsbeständigkeit
DE10032313A1 (de) 2000-07-04 2002-01-17 Bosch Gmbh Robert Schraubenfedern aus legiertem Stahl und Verfahren zum Herstellen solcher Schraubenfedern
JP3872364B2 (ja) * 2001-06-07 2007-01-24 中央発條株式会社 冷間成形コイルばね用オイルテンパー線の製造方法
US20040079067A1 (en) * 2002-03-18 2004-04-29 Chuo Hatsujo Kabushiki Kaisha Oil tempered wire for cold forming coil springs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218843A (ja) * 1985-03-25 1986-09-29 Nhk Spring Co Ltd 鋼製ばねとその製造方法
JPS6274027A (ja) * 1985-09-27 1987-04-04 High Frequency Heattreat Co Ltd 高強度冷間成形コイルばね用鋼線の製造方法
US20030168136A1 (en) * 1997-08-28 2003-09-11 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
JP2002089599A (ja) * 2000-09-12 2002-03-27 Tama Spring:Kk 異形断面形状コイルスプリング

Also Published As

Publication number Publication date
DE102009011118A1 (de) 2010-05-27
JP2010133558A (ja) 2010-06-17
EP2192201A1 (de) 2010-06-02

Similar Documents

Publication Publication Date Title
EP2192201B1 (de) Gehärteter Federstahl, Federelement und Verfahren zur Herstellung eines Federelements
EP1276915B1 (de) Wälzlagerbauteil
DE102007023087B4 (de) Verfahren zur Herstellung eines Nockens
DE102009004562B4 (de) Walzenkörper für eine Walze zur Behandlung eines Materials und Verfahren zur Herstellung eines Walzenkörpers
DE2919156A1 (de) Verfahren zur herstellung von hochwertigen schienen mit hoher schweissbarkeit
EP1263540B1 (de) Verfahren zur herstellung von dünnwandigen bauteilen aus stahl und danach hergestellte bauteile
DE102011004732B4 (de) Hochfeste Ventilfeder für einen Fahrzeugmotor und Verfahren zur Herstellung derselben
DE112015005630T5 (de) Lagerkomponente und Verfahren
EP3358021B1 (de) Hochfeste schraube mit einem enthärteten gewindeende
DE60130752T2 (de) Verfahren zum herstellen von einem teil eines walzlagers
EP2414552B1 (de) Kugelzapfen aus bainitischen stählen für pkw und leichte lkw
DE102006052834A1 (de) Verfahren zum Herstellen eines Wälzlagerringes und Wälzlagerring
DE3142270A1 (de) Verfahren zum verbessern der festigkeitseigenschaften in den oberflaechennahen bereichen von werkstuecken,insbesondere aus stahl
EP3276189B1 (de) Hochfeste schraube mit einer enthärtungsschicht
DE102007022487B3 (de) Verfahren zum Herstellen von Schmiedestücken mit einer exzellenten Zugfestigkeit und Bruchdehnung aus Stahldrahtstangen
DE102010063677A1 (de) Verfahren zur Herstellung eines Schraubankers und Schraubanker
DE112004001206B4 (de) Vergüteter Gelenkkäfig
DE102009011569B3 (de) Verfahren und Vorrichtung zum Härten von Kurbelwellen
WO2012048917A1 (de) Vergütungsstahl, seine verwendung als stangenmaterial, gewindespindel, zahnstange, zahnstangenelemente und verfahren zu deren herstellung
EP1413633B1 (de) Verfahren zur Herstellung von gehärteten Bauteilen aus Stahl
EP3426808B1 (de) Verwendung eines wärmebehandelten flachproduktes aus stahl
DE102019134498A1 (de) Verfahren zum Herstellen einer hochbelasteten Feder und hochbelastete Feder
EP1664563B1 (de) Verfahren zur herstellung von gelenkbauteilen mit verbesserter verschleissfestigkeit
EP0263300A1 (de) Verfahren und Vorrichtung zur Herstellung einer Schraubenfeder
WO2024008331A1 (de) Verfahren zur herstellung eines werkstücks aus stahl und durch das verfahren hergestelltes werkstück

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101109

17Q First examination report despatched

Effective date: 20101129

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180612

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTWIG, MAIK

Inventor name: NEUBRAND, JOERG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MUHR UND BENDER KG

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20181114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015726

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015726

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1124221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231103

Year of fee payment: 15