EP2188581B1 - Air-supplied dry cooler - Google Patents

Air-supplied dry cooler Download PDF

Info

Publication number
EP2188581B1
EP2188581B1 EP08831373A EP08831373A EP2188581B1 EP 2188581 B1 EP2188581 B1 EP 2188581B1 EP 08831373 A EP08831373 A EP 08831373A EP 08831373 A EP08831373 A EP 08831373A EP 2188581 B1 EP2188581 B1 EP 2188581B1
Authority
EP
European Patent Office
Prior art keywords
suction chamber
condensate
per
dry cooler
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08831373A
Other languages
German (de)
French (fr)
Other versions
EP2188581A2 (en
Inventor
Markus Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP2188581A2 publication Critical patent/EP2188581A2/en
Application granted granted Critical
Publication of EP2188581B1 publication Critical patent/EP2188581B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Definitions

  • the invention relates to a luftbeierschlagten dry cooler with the features in the preamble of claim 1.
  • a dry cooler is off DE 44 39 801 known.
  • Two types of surface capacitor circuits are common: first, the flow-through capacitor circuit and, secondly, the countercurrent capacitor circuit (dephlegmator circuit).
  • the flow condenser With the flow condenser, the steam flows down from an overhead distribution pipe into the water Flow condenser. The also flowing down condensate is collected in a condensate collecting line.
  • the countercurrent condenser circuit exhaust steam is introduced from below into the cooling tubes and thus guided against the outflowing condensate.
  • flow condensers and countercurrent condensers are combined. The so-called "condensation end" of the steam then lies in the countercurrent condenser.
  • the invention is based on the object to further improve an air-cooled dry cooler for condensing water vapor with respect to achieving a high overall efficiency, with a freezing of the dephlegmator, as well as a tearing off of the gas-steam stream flowing into the suction chamber should be reliably avoided.
  • the condensate entering the suction via an orifice collects in the deepest part of the suction chamber and can be reintroduced into a heat exchanger tube via a gas barrier in the form of siphons.
  • the gas barrier is to ensure that the suction prevailing in the suction chamber does not lead to gas or steam passing the aperture opening into the suction chamber. This can be prevented by means of a gas barrier in the form of a siphon.
  • the siphon drain separates the gas-steam stream from the countercurrent condensate stream. It can no longer be swallowed in the region of the individual apertures, since the condensate flows off via a separate path and is immediately introduced back into the heat exchanger tubes.
  • Another advantage is that only small amounts of condensate can accumulate in the deepest of the suction chamber. Lower amounts of condensate can be heated faster by the extracted gas-steam mixture, so that freezing during operation can be excluded. This increases the reliability.
  • pressure fluctuations avoided within each Dephlegmatorrohre since in any case it is ensured that the condensate does not hinder the gas-steam flow.
  • the gas barrier is formed by the baffle, a tube plate arranged below the baffle, in which the heat exchanger tubes are welded, and the collecting condensate itself.
  • the condensate can flow back into the heat exchanger tubes directly above the outlet openings of the heat exchanger tubes fastened to the tubesheet and mix with the condensate that precipitates there.
  • the panel may be part of a bottom plate of the suction chamber.
  • condensate discharge openings are arranged in the diaphragm within the gas barrier. The condensate discharge openings are preferably located in the lowest areas of the diaphragm.
  • the weld seam superelevation over which the heat exchanger tubes are connected to the tubesheet are welded, in a sense serves as a seal in the region of the connection between tube plate and heat exchanger tube, which is not subject to the risk of crevice corrosion due to the existing residual gap of about 1-2 mm.
  • the seal is due to a distance which is not more than 2 mm, but preferably not greater than 1 mm, so tight that there is no risk that steam or gas from adjacent, ie not directly under the aperture, heat exchanger tubes is sucked ,
  • dammed condensate in the area of the weld seam elevations can pass into the heat exchanger tubes and drain off. Due to the sufficient distance between the outlet opening and the bottom plate, crevice corrosion can not occur.
  • a special manufacturing advantage results when a pair of opposite in a roof-shaped arrangement dephlegmators is connected to a common suction. This does not mean that the suction chamber of two dephlegmators is provided with only a single suction tube, but that, instead of two separate extraction chambers to be produced, a single suction chamber is mounted on the dephlegmators.
  • the lowest point of the ridge area lies between the tubesheets of the dephlegmators. In this area, the condensate collects.
  • the condensate collects up to a barrier height, in which a partition wall dips and shares as a gas barrier, the suction chamber in a first dephlegmator associated first sub-chamber and the second dephlegmator associated second sub-chamber. Each sub-chamber is provided with a separate suction. The discharge of the condensate from the deepest via condensate discharge openings in the bottom plate of the suction.
  • the partition wall of the gas barrier is formed by a suction plate closing the cover plate.
  • the cover plate can be made as well as the bottom plate of a folded sheet metal blank.
  • the board is perforated in the area of the apertures and the suction tube.
  • condensate discharge openings are manufactured.
  • the perforated board is according to the inclination of the tube sheets folded.
  • the side walls to which the suction tubes are attached can be made in one piece with the bottom plate of the board. The side walls and bottom plates effectively form a trough on which the cover plate is placed.
  • the cover plate basically only needs to be folded once, in such a way that its fold in the installed position is lower than the deepest regions of the outlet openings of the heat exchanger tubes, so that a gas barrier is formed.
  • the cover plate is thus more folded than the board between the two bottom plates.
  • the thus prefabricated suction can be provided in the region of its side walls with spacers, which are supported on the tube plate of the heat exchanger.
  • the spacers also serve as a vacuum support. They define a fixed distance between the tubesheet and the bottom plate. In the transition region between the side wall and the bottom plate, the suction chamber can be firmly welded to the tube plate via a fillet weld in ideal welding position.
  • the cross-sectional wedge-shaped design of the suction chamber is structurally simple in terms of the course of the cover plate and the bottom plate and also fluidly particularly favorable.
  • the cover plate can be stiffened by vacuum supports, which are arranged in triangular form above the cover plate.
  • the dry cooler according to the invention optimizes the construction of the suction chamber, because in a simple manner provided with apertures bottom plate is part of a completely factory pre-finished chamber. Due to the bending radii during the production of the chamber, the welding phases for the subsequent welding with the tubesheets are created automatically. This reduces costs as a whole.
  • a significant advantage of the suction chamber designed according to the invention is that there is no significant difference between countercurrent and DC capacitors with regard to the design of the individual tube bundles. This is primarily a logistical advantage, since on the construction site not on the Care must be taken to ensure the order of the capacitors to be installed, but first the capacitors can be placed independently of their wiring and then determine the wiring as a countercurrent condenser or DC capacitor. Only after the gas-tight welding of the tubesheets are the factory-made completely prefabricated Absaugkammem mounted on the individual, operated in countercurrent heat exchanger elements and connected to the tube sheets.
  • the cross-sectional area of the aperture is in direct proportion to the cross-sectional area of the suction tube, which has not hitherto been recognized in this form.
  • the adaptation of the cross-sectional areas makes it possible to use due to the relatively small aperture suction tubes with also relatively small cross-sections, which is particularly advantageous to note that each Dephlegmator only a single suction pipe must be connected to the suction. This leads to a significant reduction of the previously required welding.
  • countercurrent condensers which are used for the condensation of steam of a power plant, regularly have a width of about 2 m per tube bundle, so far distributed over the width of the tube bundle three suction tubes were connected to respective Absaugkammem.
  • the Absaugkammem were here separated gas-tight. It has been installation technology extremely complicated to connect the individual Absaugkammem over a variety of individual extraction with a manifold, as this is a variety of welds required. However, the number of welds increases the risk of leaks. To make matters worse, that the welds must be partially welded on site in the overhead position, so that the welding process is very complex and time consuming.
  • the cross section of the individual apertures may vary, to the edge region, i. in the areas farther from the suction tube, increase and be smaller towards the central area immediately adjacent to the suction.
  • the diameter changes can be continuous or in stages. For example, one-third of the gradation is conceivable, i. in the middle, the suction pipe adjacent area are the apertures with the smallest cross-sectional areas. In an edge area are the apertures with the largest cross-sectional areas and in each case between apertures with average cross-sectional areas.
  • FIG. 1 shows the upper portion of a DC capacitor (dephlegmator) 1 of a not shown in its entirety airborne dry cooler for condensing water vapor.
  • the flow direction of the steam is illustrated by the arrows P shown.
  • the steam rises inside of mutually parallel heat exchanger tubes 2 upwards and enters a suction chamber 3 a.
  • a suction pipe 4 is centrally connected, via which the vapor-gas mixture is sucked out of the dephlegmator 1.
  • FIG. 2 Based on the perspective view of FIG. 2 it can be seen that in each case two of the Absaugkammem 3 are connected to a central suction 5.
  • FIG. 1 It can also be seen that a part of a DC capacitor 6 is shown in the right-most picture plane.
  • the DC capacitor 6 is not provided with a suction chamber 4 because the steam flows from top to bottom.
  • the heat exchanger tubes 2 have the same cross section as that of the dephlegmator 1. It can be clearly seen that in the suction chamber 3 much smaller openings for the passage of the vapor-gas mixture are present. This is due to the fact that an aperture 7 reducing the outlet cross section of the heat exchanger tubes 2 is arranged with aperture openings 8 above the outlet openings 9 of the individual heat exchanger tubes 2.
  • the aperture 7 is part of a bottom plate 10 of the suction chamber 3.
  • the individual apertures 8 have in their sum a cross-sectional area which is not greater than the cross-sectional area of the suction tube 4 connected to the suction chamber 4. This results in a particularly uniform extraction of steam-gas Mixture possible. As a result, cold zones within the heat exchanger tubes 2 of the dephlegmator 1 are largely avoided.
  • a tube bundle configured as a dephlegmator 1 has a width of preferably approximately 2.20 m.
  • FIG. 2 Based on the perspective view of FIG. 2 is the structure of Absaugkammem 3 even more clearly visible.
  • the left in the image plane suction chamber 3 is closed with a cover plate 12, in which it is a V-shaped beveled sheet.
  • This cover plate 12 is welded to a lower part 11 of the suction chamber 3.
  • the lower part 11 is formed by the bottom plates 10 and the angled 90 ° relative to the bottom plates 10 side walls 13.
  • the cover plate 12 is edge with the side walls 13 welded and stiffened over additional triangular vacuum supports 14.
  • spacers 15 are arranged on the side walls 13 at regular intervals, which will be described in more detail below.
  • the spacers 15 are located in the same spatial plane as the vacuum supports 14.
  • the cross-section of the suction chamber 3 tapers towards the middle, that is to say it is lowest where the fold occurs between the base plates 10.
  • this area of the fold is the lowest point of the suction chamber 3.
  • This area is referred to as the lowest 16 and is provided at regular intervals with condensate discharge openings 17.
  • the condensate discharge openings 17 are elongated holes, so that they extend on both sides of the fold, as shown by the enlarged view of FIG. 3 can be seen.
  • the suction chamber 3 is divided into a respective first dephlegmator 1 associated first sub-chamber 19 and a gas-tight separated from this second sub-chamber 19a.
  • the sub-chambers 19, 19a are mirror-symmetrical or the suction chamber 3 is symmetrical and coupled to a suction pipe, not shown. It can be seen that from the heat exchanger tubes 2, a vapor-gas mixture corresponding to the arrows P rises, forming within the heat exchanger tube 2 condensate drops T, which are reflected on the wall of the heat exchanger tube 2 and condensate K one not closer shown condensate line in the foot of the dephlegmators 1 are supplied. It can be seen that the cross-section of the apertures 8 is substantially smaller than the cross-sectional area of the outlet opening 9 of the heat exchanger tubes 2.
  • the vapor-gas mixture passing through the aperture 8 is at least partially condensed, with gas being sucked up in the direction of the arrows P1, ie in the direction of the suction tube 4, while condensate drops T move downward by gravity and in the lowest 16 of the suction chamber 3 collect.
  • the condensate K passes through the condensate drain opening 17, which in FIG. 4 are shown only as an interruption in the bottom plate 10, and collects above a heat exchanger tubes 2 supporting tube bottom 18. Die Tube plates 18 of the two dephlegmators are gas-tight welded together.
  • the condensate K passes through the condensate discharge openings 17 under the respective bottom plates 10, which are located at a small distance from the tube sheets 18.
  • This mandatory distance is defined by the spacers 15, which are also supported on the tubesheets 18.
  • the condensate can rise up to the level height, which is marked with the line of the broken line F.
  • the filling level height F corresponds to the altitude of the deepest regions of the outlet openings 9.
  • the condensate K can rise until it can flow between the bottom plates 10 and the tube plates 18 again through the outlet openings 9 in the heat exchanger tubes 2 and with the rest Condensate flow mixed.
  • the cover plate 12 extends below the level line F and immersed in the accumulating condensate.
  • a gas barrier 20 is formed by the bottom plate 10 or by the diaphragm 7, the tube plate 18 arranged underneath the bottom plate 10 and the condensate K so that no vapor-gas mixture can pass from the left partial chamber 19 into the right partial chamber 19a .
  • a so-called "swallowing" of the effluent condensate is prevented with the extracted in countercurrent vapor-gas mixture.
  • the factory prefabricated suction chamber 3 is welded as a complete assembly via a weldable in ideal position to be pulled fillet weld 21 with the tube plates 18.
  • the suction chamber 3 is held by the spacers 15 at a defined minimum distance of preferably 1 mm, to the weld seam elevations, which are not shown in detail, which have arisen due to the tube welds in the tube plates 18. This automatically creates a single chamber per heat exchanger tube 2, which can be uniformly sucked through the discharge opening 8.

Abstract

The invention relates to an air-supplied dry cooler for the condensation of water vapor, having at least one direct-current condenser (6) and at least one counter-current condenser (dephlegmator) (1), wherein heat exchanger pipes (2) of the counter-current condenser (1) are connected to an upper suction chamber (3), and wherein a cover (7) reducing the discharge cross-section of at least one heat exchanger pipe (2) is provided with cover orifices (8). The sum of the cross-sectional surfaces of the cover orifices (8) corresponds to no more than the cross-sectional surface of a suction pipe connection to the suction chamber (3).

Description

Die Erfindung betrifft einen luftbeaufschlagten Trockenkühler mit den Merkmalen im Oberbegriff des Patentanspruchs 1. So ein Trockenkühler ist aus DE 44 39 801 bekannt.The invention relates to a luftbeaufschlagten dry cooler with the features in the preamble of claim 1. Such a dry cooler is off DE 44 39 801 known.

Die Verwendung von Luft zur Kondensation von Turbinendampf ist seit langem bekannt. Bei der direkten luftgekühlten Kondensation wird der Turbinendampf in parallel geschalteten Rippenrohr-Elementen (Oberflächenkondensatoren) kondensiert und das Kondensat in den Speisewasserkreislauf zurückgeführt. Die Rippenrohr-Elemente stehen innenseitig unter Vakuum, wobei die nicht kondensierbaren Gase abgesaugt werden. Der Kühlluftstrom wird im Allgemeinen mittels Ventilatoren erzeugt, selten durch natürliche Belüftung. Trockenkühler in Dachbauweise (A-Anordnung) sind weit verbreitet. Hierbei bilden die Rippenrohr-Elemente die Schenkel eines Dreiecks, an dessen Basis die Ventilatoren angeordnet sind.The use of air to condense turbine steam has been known for a long time. In direct air-cooled condensation, the turbine steam is condensed in parallel finned tube elements (surface condensers) and the condensate is returned to the feedwater circuit. The finned tube elements are on the inside under vacuum, whereby the non-condensable gases are sucked off. The cooling air flow is generally generated by fans, rarely by natural ventilation. Dry coolers in roof construction (A-arrangement) are widespread. Here, the finned tube elements form the legs of a triangle, at the base of which the fans are arranged.

Es sind zwei Schaltungsweisen der Oberflächenkondensatoren üblich: Zum einen die Durchfluss-Kondensatorschaltung und zum anderen die Gegenstrom-Kondensatorschaltung (Dephlegmator-Schaltung). Beim Durchflusskondensator strömt der Dampf von einer oben gelegenen Verteilerieitung nach unten in den Durchflusskondensator. Das ebenfalls nach unten fließende Kondensat wird in einer Kondensatsammelleitung aufgefangen. Bei der Gegenstrom-Kondensatorschaltung wird Abdampf von unten in die Kühlrohre eingeleitet und so gegen das abfließende Kondensat geführt. In der Praxis werden Durchflusskondensatoren und Gegenstromkondensatoren miteinander kombiniert. Das so genannte "Kondensationsende" des Dampfes liegt dann im Gegenstromkondensator.Two types of surface capacitor circuits are common: first, the flow-through capacitor circuit and, secondly, the countercurrent capacitor circuit (dephlegmator circuit). With the flow condenser, the steam flows down from an overhead distribution pipe into the water Flow condenser. The also flowing down condensate is collected in a condensate collecting line. In the countercurrent condenser circuit, exhaust steam is introduced from below into the cooling tubes and thus guided against the outflowing condensate. In practice, flow condensers and countercurrent condensers are combined. The so-called "condensation end" of the steam then lies in the countercurrent condenser.

Um eine gleichmäßige Dampfverteilung des in die Dampfverteilerkammmer eines Gegenstromkondensators eingeleiteten Dampfstroms zu erreichen, ist es bekannt, in der Dampfverteilerkammer einen Zwischenboden mit Ausnehmungen vorzusehen (DE-GM 1873644). Hierbei ist der gesamte Strömungsquerschnitt der Ausnehmungen kleiner bemessen als der Gesamtquerschnitt der Kondensatorrohre.In order to achieve a uniform distribution of steam in the steam distribution chamber of a countercurrent condenser introduced steam flow, it is known to provide in the steam distribution chamber an intermediate bottom with recesses (DE-GM 1873644). Here, the entire flow cross-section of the recesses is smaller than the total cross section of the condenser tubes.

Umgekehrt ist es aus der DE 44 39 801 C2 bekannt, dass die überwiegende Mehrzahl der Dephlegmatoren im Bereich ihrer gassammlerseitigen Enden Widerstandselemente aufweisen. Dadurch wirkt dem Abdampf ein Widerstand entgegen, der durch eine Vergleichmäßigung des in die einzelnen Dephlegmatorrohre von unten eintretenden Dampfes erzwungen wird. Diese Vergleichmäßigung führt zu einer weitgehenden Ausnutzung der gesamten Kondensatorfläche für die Kondensation. Der Bildung von "kalten Nestern" bzw. "Totzonen", in denen weder Abdampf noch Kondensat ansteht, wird damit entgegengewirkt. Allerdings kann es unter bestimmten Umständen zu Problemen kommen, wenn sich in der Absaugkammer eine größere Menge des Kondensats bei niedrigen Temperaturen sammelt. Aufgrund des großen Kondensatvolumens kann es zu Unterkühlungen und im Extremfall sogar zum Gefrieren des Kondensats kommen. Diese Gefahr besteht bei Außentemperaturen im Minusbereich, sowohl während des Betriebs, als auch beim Anfahren, da die große Menge gefrorenen Kondensats, welche kurz unter der Blendenöffnung steht ggf. nicht schnell genug durch das Gas-Dampf-Gemisch aufgetaut werden kann, wodurch das neu ausfallende Kondensat schnell gefriert und im Extremfall die Blendenlöcher blockieren könnte.Conversely, it is from the DE 44 39 801 C2 It is known that the vast majority of dephlegmators have resistance elements in the region of their gas collector-side ends. As a result, the exhaust steam counteracts a resistance that is enforced by a homogenization of the entering into the individual dephlegmator from below steam. This homogenization leads to an extensive utilization of the entire capacitor area for the condensation. The formation of "cold nests" or "dead zones", in which neither steam nor condensate is present, is counteracted. However, under certain circumstances, problems can occur when a larger amount of condensate collects in the suction chamber at low temperatures. Due to the large condensate volume, it can lead to hypothermia and in extreme cases even to the freezing of the condensate. This danger is outside temperatures in the negative range, both during operation, as well as when starting, since the large amount of frozen condensate, which is just below the aperture may not be thawed quickly enough by the gas-vapor mixture, causing the new precipitating condensate quickly freezes and in extreme cases could block the aperture holes.

Ein anderes Problem kann sich ergeben, wenn sich sehr viel Kondensat in der Absaugkammer gesammelt hat, welches durch die gleiche Öffnung in die Dephlegmatorrohre zurückgeleitet werden muss, durch welche das Gas-Dampf-Gemisch in die Absaugkammer eintritt. Aufgrund des Gegenstroms durch das Gas-Dampf-Gemisch kann es zu einem "Verschlucken" im Bereich der einzelnen Öffnungen und somit zu einem zeitweiligen Abriss des Gas-Dampf-Stromes führen. Hieraus können unerwünschte Druckschwankungen innerhalb der einzelnen Dephlegmatorrohre resultieren.Another problem can arise when a lot of condensate has collected in the suction chamber, which through the same opening in the Dephlegmatorrohre must be returned, through which the gas-vapor mixture enters the suction chamber. Due to the counterflow through the gas-vapor mixture, it can lead to a "swallowing" in the region of the individual openings and thus to a temporary demolition of the gas-vapor stream. This can result in undesirable pressure fluctuations within the individual dephlegmator tubes.

Der Erfindung liegt die Aufgabe zu Grunde, einen luftbeaufschlagten Trockenkühler zum Kondensieren von Wasserdampf hinsichtlich der Erreichung eines hohen Gesamtwirkungsgrades noch weiter zu verbessern, wobei ein Einfrieren des Dephlegmators, sowie ein Abreißen des in die Absaugkammer einströmenden Gas-Dampf-Stromes zuverlässig vermieden werden soll.The invention is based on the object to further improve an air-cooled dry cooler for condensing water vapor with respect to achieving a high overall efficiency, with a freezing of the dephlegmator, as well as a tearing off of the gas-steam stream flowing into the suction chamber should be reliably avoided.

Diese Aufgabe ist bei einem Trockenkühler mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved in a dry cooler with the features of claim 1.

Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.Advantageous developments of the inventive concept are the subject of the dependent claims.

Das über eine Blendenöffnung in die Absaugung eintretende Kondensat sammelt sich im Tiefsten der Absaugkammer und ist über eine Gasbarriere in Form von Siphons wieder in ein Wärmetauscherrohr einleitbar. Die Gasbarriere soll sicherstellen, dass der in der Absaugkammer herrschende Sog nicht dazu führt, dass Gas oder Dampf an der Blendenöffnung vorbei in die Absaugkammer gelangt. Über eine Gasbarriere in Form eines Siphons kann dies verhindert werden.The condensate entering the suction via an orifice collects in the deepest part of the suction chamber and can be reintroduced into a heat exchanger tube via a gas barrier in the form of siphons. The gas barrier is to ensure that the suction prevailing in the suction chamber does not lead to gas or steam passing the aperture opening into the suction chamber. This can be prevented by means of a gas barrier in the form of a siphon.

Wesentlich bei der Erfindung ist, dass die Siphonableitung den Gas-Dampf-Strom vom gegenläufigen Kondensatstrom trennt. Es kann nicht mehr zum Verschlucken im Bereich der einzelnen Blendenöffnungen kommen, da das Kondensat über einen getrennten Weg abströmt und unmittelbar wieder in die Wärmetauscherrohre eingeleitet wird. Ein weiterer Vorteil ist, dass sich nur geringe Kondensatmengen im Tiefsten der Absaugkammer ansammeln können. Geringere Kondensatmengen können durch das abgesaugte Gas-Dampf-Gemisch schneller aufgeheizt werden, so dass ein Einfrieren während des laufenden Betriebs ausgeschlossen werden kann. Dadurch wird die Betriebssicherheit erhöht. Zudem werden Druckschwankungen innerhalb der einzelnen Dephlegmatorrohre vermieden, da in jedem Fall sichergestellt ist, dass das Kondensat den Gas-Dampf-Strom nicht behindert.It is essential in the invention that the siphon drain separates the gas-steam stream from the countercurrent condensate stream. It can no longer be swallowed in the region of the individual apertures, since the condensate flows off via a separate path and is immediately introduced back into the heat exchanger tubes. Another advantage is that only small amounts of condensate can accumulate in the deepest of the suction chamber. Lower amounts of condensate can be heated faster by the extracted gas-steam mixture, so that freezing during operation can be excluded. This increases the reliability. In addition, pressure fluctuations avoided within each Dephlegmatorrohre, since in any case it is ensured that the condensate does not hinder the gas-steam flow.

Die Gasbarriere wird von der Blende, einem unterhalb der Blende angeordneten Rohrboden, in welchen die Wärmetauscherrohre geschweißt sind, und dem sich sammelnden Kondensat selbst gebildet. Das Kondensat kann hierbei unmittelbar über die Austrittsöffnungen der am Rohrboden befestigten Wärmetauscherrohre wieder in diese zurückfließen und sich mit dem dort niederschlagenden Kondensat vermischen. Die Blende kann hierbei Bestandteil einer Bodenplatte der Absaugkammer sein. Zum Ableiten des Kondensats sind innerhalb der Gasbarriere Kondensatablauföffnungen in der Blende angeordnet Die Kondensatablauföffnungen befinden sich vorzugsweise in den am Tiefsten gelegenen Bereichen der Blende.The gas barrier is formed by the baffle, a tube plate arranged below the baffle, in which the heat exchanger tubes are welded, and the collecting condensate itself. In this case, the condensate can flow back into the heat exchanger tubes directly above the outlet openings of the heat exchanger tubes fastened to the tubesheet and mix with the condensate that precipitates there. The panel may be part of a bottom plate of the suction chamber. For draining the condensate, condensate discharge openings are arranged in the diaphragm within the gas barrier. The condensate discharge openings are preferably located in the lowest areas of the diaphragm.

Bei in Dachform angeordneten Wärmetauscherelementen ist der die Wärmetauscherrohre halternde Rohrboden gegenüber einer Horizontalen geneigt. Da die einer Austrittsöffnung eines Wärmetauscherrohrs zugeordnete Blendenöffnung einen wesentlich kleineren Querschnitt besitzt als das Wärmetauscherrohr, liegt auf Grund der Neigung des Rohrbodens der tiefste Punkt der Austrittsöffnung unterhalb des tiefsten Punktes der Blendenöffnung. Mit anderen Worten kann in der Absaugkammer anfallendes Kondensat sich nicht so hoch aufstauen bis es die Blendenöffnung erreicht, weil es zuvor über den tiefer liegenden Rand der Austrittsöffnung des Wärmetauscherrohrs abfließt und auf diesem Wege aus der Absaugkammer abgeleitet wird. Auf diese Weise kann es zu keiner Flutung der Absaugkammer kommen. Selbst ein Einfrieren des in der Gasbarriere aufgestauten Kondensats wäre für den Betrieb der Absaugkammer unschädlich, da die Blendenöffnungen höher liegen als die Austrittsöffnungen der Wärmetauscherrohre. Im laufenden Betrieb, d.h. wenn Kondensat über die Blendenöffnungen wieder in die Absaugkammer gelangt, würde etwaiges gefrorenes Kondensat rasch wieder aufgeschmolzen werden und könnte sofort wieder über die Wärmetauscherrohre abfließen.When arranged in roof shape heat exchanger elements of the heat exchanger tubes-retaining tube sheet is inclined relative to a horizontal. Since the aperture of a heat exchanger tube associated aperture has a substantially smaller cross-section than the heat exchanger tube, is due to the inclination of the tube plate, the lowest point of the outlet below the lowest point of the aperture. In other words, accumulating in the suction condensate can not dammed so high until it reaches the aperture, because it previously drains over the lower edge of the outlet opening of the heat exchanger tube and is discharged in this way from the suction. In this way, there may be no flooding of the suction chamber. Even a freezing of the dammed up in the gas barrier condensate would be harmless to the operation of the suction because the apertures are higher than the outlet openings of the heat exchanger tubes. During operation, i. if condensate returns to the suction chamber via the apertures, any frozen condensate would be quickly melted again and could immediately drain off again via the heat exchanger tubes.

Bei der Erfindung macht man sich zudem zu Nutze, dass die Schweißnahtüberhöhung, über welche die Wärmetauscherrohre mit dem Rohrboden verschweißt sind, im Bereich der Verbindung zwischen Rohrboden und Wärmetauscherrohr gewissermaßen als Abdichtung dient, die auf Grund des vorhandenen Restspaltes von ca. 1-2 mm jedoch nicht der Gefahr der Spaltkorrosion unterliegt. Die Abdichtung ist auf Grund eines Abstandes, der maximal 2 mm beträgt, vorzugsweise aber nicht größer als 1 mm ist, so dicht, dass nicht die Gefahr besteht, dass Dampf oder Gas aus benachbarten, d.h. nicht unmittelbar unter der Blendenöffnung liegenden, Wärmetauscherrohren angesaugt wird. Zudem kann aufgestautes Kondensat im Bereich der Schweißnahtüberhöhungen in die Wärmetauscherrohre übertreten und abfließen. Durch den hinreichenden Abstand zwischen der Austrittsöffnung und dem Bodenblech kann es nicht zu Spaltkorrosion kommen.In the invention, one also makes use of the fact that the weld seam superelevation over which the heat exchanger tubes are connected to the tubesheet are welded, in a sense serves as a seal in the region of the connection between tube plate and heat exchanger tube, which is not subject to the risk of crevice corrosion due to the existing residual gap of about 1-2 mm. The seal is due to a distance which is not more than 2 mm, but preferably not greater than 1 mm, so tight that there is no risk that steam or gas from adjacent, ie not directly under the aperture, heat exchanger tubes is sucked , In addition, dammed condensate in the area of the weld seam elevations can pass into the heat exchanger tubes and drain off. Due to the sufficient distance between the outlet opening and the bottom plate, crevice corrosion can not occur.

Ein besonderer fertigungstechnischer Vorteil ergibt sich, wenn ein Paar von sich in dachförmiger Anordnung gegenüberliegenden Dephlegmatoren an eine gemeinsame Absaugkammer angeschlossen ist. Das heißt nicht, dass die Absaugkammer zweier Dephlegmatoren mit nur einem einzigen Absaugrohr versehen ist, sondern, dass anstelle von zwei getrennt zu fertigenden Absaugkammem eine einzige Absaugkammer an den Dephlegmatoren montiert wird. Bei in Dachform angeordneten Dephlegmatoren liegt der tiefste Punkt des Firstbereichs zwischen den Rohrböden der Dephlegmatoren. In diesem Bereich sammelt sich das Kondensat. In vorteilhafter Ausgestaltung sammelt sich das Kondensat bis zu einer Sperrhöhe, in welcher eine Trennwand eintaucht und als Gasbarriere die Absaugkammer in eine dem ersten Dephlegmator zugeordnete erste Teilkammer und eine dem zweiten Dephlegmator zugeordnete zweite Teilkammer teilt. Jede Teilkammer ist mit einer eigenständigen Absaugung versehen. Die Ableitung des Kondensats aus dem Tiefsten erfolgt über Kondensatablauföffnungen in der Bodenplatte der Absaugkammer.A special manufacturing advantage results when a pair of opposite in a roof-shaped arrangement dephlegmators is connected to a common suction. This does not mean that the suction chamber of two dephlegmators is provided with only a single suction tube, but that, instead of two separate extraction chambers to be produced, a single suction chamber is mounted on the dephlegmators. In dephlegmators arranged in the shape of a roof, the lowest point of the ridge area lies between the tubesheets of the dephlegmators. In this area, the condensate collects. In an advantageous embodiment, the condensate collects up to a barrier height, in which a partition wall dips and shares as a gas barrier, the suction chamber in a first dephlegmator associated first sub-chamber and the second dephlegmator associated second sub-chamber. Each sub-chamber is provided with a separate suction. The discharge of the condensate from the deepest via condensate discharge openings in the bottom plate of the suction.

Als konstruktiv besonders günstig wird es angesehen, wenn die Trennwand der Gasbarriere durch eine die Absaugkammer verschließende Deckelplatte gebildet wird. Die Deckelplatte kann ebenso wie die Bodenplatte aus einer abgekanteten Blechplatine hergestellt werden. Die Platine wird im Bereich der Blendenöffnungen und des Absaugrohrs gelocht. Zusätzlich werden Kondensatablauföffnungen gefertigt. Die gelochte Platine wird entsprechend der Neigung der Rohrböden abgekantet. Zudem können auch die Seitenwände, an welchen die Absaugrohre befestigt werden, einstückig mit der Bodenplatte aus der Platine hergestellt sein. Die Seitenwände und die Bodenplatten bilden gewissermaßen eine Wanne, auf welche die Deckelplatte aufgesetzt wird. Die Deckelplatte braucht grundsätzlich nur ein einziges Mal abgekantet zu werden, und zwar so, dass ihre Abkantung in der Einbaulage tiefer als die tiefsten Bereiche der Austrittsöffnungen der Wärmetauscherrohre liegt, damit eine Gasbarriere gebildet wird. Die Deckelplatte ist somit stärker abgekantet als die Platine zwischen den beiden Bodenplatten.As structurally particularly favorable, it is considered when the partition wall of the gas barrier is formed by a suction plate closing the cover plate. The cover plate can be made as well as the bottom plate of a folded sheet metal blank. The board is perforated in the area of the apertures and the suction tube. In addition, condensate discharge openings are manufactured. The perforated board is according to the inclination of the tube sheets folded. In addition, the side walls to which the suction tubes are attached, can be made in one piece with the bottom plate of the board. The side walls and bottom plates effectively form a trough on which the cover plate is placed. The cover plate basically only needs to be folded once, in such a way that its fold in the installed position is lower than the deepest regions of the outlet openings of the heat exchanger tubes, so that a gas barrier is formed. The cover plate is thus more folded than the board between the two bottom plates.

Die derart vorgefertigte Absaugkammer kann im Bereich ihrer Seitenwände mit Abstandshaltern versehen sein, welche sich auf dem Rohrboden des Wärmetauschers abstützen. Die Abstandshalter dienen zugleich als Vakuumstütze. Sie definieren einen festen Abstand zwischen dem Rohrboden und dem Bodenblech. Im Übergangsbereich zwischen der Seitenwand und der Bodenplatte, kann die Absaugkammer über eine Kehlnaht in schweißtechnischer Ideallage fest mit dem Rohrboden verschweißt werden kann.The thus prefabricated suction can be provided in the region of its side walls with spacers, which are supported on the tube plate of the heat exchanger. The spacers also serve as a vacuum support. They define a fixed distance between the tubesheet and the bottom plate. In the transition region between the side wall and the bottom plate, the suction chamber can be firmly welded to the tube plate via a fillet weld in ideal welding position.

Die im Querschnitt keilförmige Gestaltung der Absaugkammer ist im Hinblick auf den Verlauf der Deckelplatte und der Bodenplatte konstruktiv einfach und zudem strömungstechnisch besonders günstig. Die Deckelplatte kann über Vakuumstützen ausgesteift werden, die in Dreieckform oberhalb der Deckelplatte angeordnet werden.The cross-sectional wedge-shaped design of the suction chamber is structurally simple in terms of the course of the cover plate and the bottom plate and also fluidly particularly favorable. The cover plate can be stiffened by vacuum supports, which are arranged in triangular form above the cover plate.

Der erfindungsgemäße Trockenkühler optimiert die Konstruktion der Absaugkammer, weil in einfacher Weise das mit Blendenöffnungen versehene Bodenblech Bestandteil einer komplett werksseitig vorfertigbaren Kammer ist. Durch die Biegeradien bei der Herstellung der Kammer entstehen automatisch die Anschweißphasen für das spätere Verschweißen mit den Rohrböden. Hierdurch werden im Ganzen Kosten reduziert.The dry cooler according to the invention optimizes the construction of the suction chamber, because in a simple manner provided with apertures bottom plate is part of a completely factory pre-finished chamber. Due to the bending radii during the production of the chamber, the welding phases for the subsequent welding with the tubesheets are created automatically. This reduces costs as a whole.

Ein wesentlicher Vorteil der erfindungsgemäß ausgestalteten Absaugkammer ist, dass zwischen Gegenstrom- und Gleichstromkondensatoren im Hinblick auf die Gestaltung der einzelnen Rohrbündel kein wesentlicher Unterschied mehr besteht. Das ist in erster Linie ein logistischer Vorteil, da auf der Baustelle nicht auf die Reihenfolge der zu installierenden Kondensatoren geachtet werden muss, sondern zunächst die Kondensatoren unabhängig von ihrer Beschaltung aufgestellt werden können und anschließend die Beschaltung als Gegenstromkondensator oder Gleichstromkondensator bestimmen kann. Erst nach dem gasdichten Verschweißen der Rohrböden werden die werkseitig komplett vorgefertigten Absaugkammem auf die einzelnen, im Gegenstrom betriebenen Wärmetauscherelemente aufgesetzt und mit den Rohrböden verbunden.A significant advantage of the suction chamber designed according to the invention is that there is no significant difference between countercurrent and DC capacitors with regard to the design of the individual tube bundles. This is primarily a logistical advantage, since on the construction site not on the Care must be taken to ensure the order of the capacitors to be installed, but first the capacitors can be placed independently of their wiring and then determine the wiring as a countercurrent condenser or DC capacitor. Only after the gas-tight welding of the tubesheets are the factory-made completely prefabricated Absaugkammem mounted on the individual, operated in countercurrent heat exchanger elements and connected to the tube sheets.

Vorzugsweise ist die Summe der Querschnittsflächen der Blendenöffnungen, welche den einzelnen Wärmetauscherrohren zugeordnet sind, maximal der Querschnittsfläche eines an die Absaugkammer angeschlossenen Absaugrohrs.Preferably, the sum of the cross-sectional areas of the apertures, which are associated with the individual heat exchanger tubes, at most the cross-sectional area of a suction pipe connected to the suction chamber.

Es hat sich überraschend gezeigt, dass die Querschnittsfläche der Blendenöffnung in einem unmittelbaren Verhältnis zur Querschnittsfläche des Absaugrohrs steht, was bislang nicht in dieser Form erkannt worden ist. Die Anpassung der Querschnittsflächen ermöglicht es, auf Grund der relativ kleinen Blendenöffnungen Absaugrohre mit ebenfalls relativ kleinen Querschnitten zu verwenden, wobei als besonders vorteilhaft anzuführen ist, dass je Dephlegmator nur noch ein einziges Absaugrohr an die Absaugkammer angeschlossen werden muss. Dies führt zu einer erheblichen Reduzierung der bislang erforderlichen Schweißarbeiten. Hierbei ist zu berücksichtigen, dass Gegenstromkondensatoren, die zur Kondensation von Wasserdampf eines Kraftwerks eingesetzt werden, regelmäßig eine Breite von über 2 m je Rohrbündel haben, so dass bislang über die Breite des Rohrbündels verteilt drei Absaugrohre an jeweilige Absaugkammem angeschlossen wurden. Die Absaugkammem waren hierbei gasdicht voneinander getrennt. Es ist montagetechnisch bislang ausgesprochen aufwendig gewesen, die einzelnen Absaugkammem über eine Vielzahl von einzelnen Absaugstutzen mit einer Sammelleitung zu verbinden, da hierzu eine Vielzahl von Schweißnähten erforderlich ist. Mit der Anzahl der Schweißnähte steigt allerdings das Risiko von Leckagen. Erschwerend kommt hinzu, dass die Schweißnähte vor Ort teilweise in Überkopfposition geschweißt werden müssen, so dass der Schweißvorgang sehr aufwändig und zeitraubend ist.It has surprisingly been found that the cross-sectional area of the aperture is in direct proportion to the cross-sectional area of the suction tube, which has not hitherto been recognized in this form. The adaptation of the cross-sectional areas makes it possible to use due to the relatively small aperture suction tubes with also relatively small cross-sections, which is particularly advantageous to note that each Dephlegmator only a single suction pipe must be connected to the suction. This leads to a significant reduction of the previously required welding. It should be noted that countercurrent condensers, which are used for the condensation of steam of a power plant, regularly have a width of about 2 m per tube bundle, so far distributed over the width of the tube bundle three suction tubes were connected to respective Absaugkammem. The Absaugkammem were here separated gas-tight. It has been installation technology extremely complicated to connect the individual Absaugkammem over a variety of individual extraction with a manifold, as this is a variety of welds required. However, the number of welds increases the risk of leaks. To make matters worse, that the welds must be partially welded on site in the overhead position, so that the welding process is very complex and time consuming.

Durch die aufeinander abgestimmten Querschnittsflächen ist es im Rahmen der Erfindung nunmehr möglich, auf drei einzelne, voneinander getrennte Absaugkammem je Dephlegmator zu verzichten und nur eine einzige Absaugkammer mit nur einer zentralen Absaugung vorzusehen. Dadurch wird die Anzahl der Schweißnähte signifikant reduziert und das Risiko von Leckagen verringert. Entscheidend bei der Bemessung der einzelnen Querschnitte ist, dass eine gleichmäßige Absaugung von Gas und/oder Dampf aus den einzelnen Wärmetauscherrohren erfolgt. Zu diesem Zweck kann der Querschnitt der einzelnen Blendenöffnungen variieren, und zwar zum Randbereich, d.h. in den von dem Absaugrohr weiter entfernten Bereichen, hin zunehmen und zum mittleren Bereich, welcher der Absaugung unmittelbar benachbart ist, kleiner sein. Die Durchmesserveränderungen können kontinuierlich oder in Stufen erfolgen. Beispielsweise ist eine Drittelung der Abstufung denkbar, d.h. im mittleren, dem Absaugrohr benachbarten Bereich befinden sich die Blendenöffnungen mit den kleinsten Querschnittsflächen. In einem randseitigen Bereich befinden sich die Blendenöffnungen mit den größten Querschnittsflächen und jeweils dazwischen Blendenöffnungen mit mittleren Querschnittsflächen.Due to the coordinated cross-sectional areas, it is now possible within the scope of the invention to dispense with three separate, separate Absaugkammem each Dephlegmator and provide only a single suction with only one central suction. This significantly reduces the number of welds and reduces the risk of leaks. Decisive in the dimensioning of the individual cross-sections is that there is a uniform extraction of gas and / or steam from the individual heat exchanger tubes. For this purpose, the cross section of the individual apertures may vary, to the edge region, i. in the areas farther from the suction tube, increase and be smaller towards the central area immediately adjacent to the suction. The diameter changes can be continuous or in stages. For example, one-third of the gradation is conceivable, i. in the middle, the suction pipe adjacent area are the apertures with the smallest cross-sectional areas. In an edge area are the apertures with the largest cross-sectional areas and in each case between apertures with average cross-sectional areas.

Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
einen Längsschnitt durch eine Absaugkammer im oberen Bereich eines Gegenstromkondensators;
Figur 2
eine perspektivische Ansicht auf die Absaugkammer der Figur 1 im geöffneten und geschlossenen Zustand;
Figur 3
eine vergrößerte Darstellung der Figur 2;
Figur 4
die Absaugkammer der Figuren 1 bis 3 im Querschnitt.
The invention will be explained in more detail with reference to an embodiment shown in the drawings. Show it:
FIG. 1
a longitudinal section through a suction in the upper part of a countercurrent condenser;
FIG. 2
a perspective view of the suction of the FIG. 1 in the open and closed state;
FIG. 3
an enlarged view of FIG. 2 ;
FIG. 4
the suction chamber of FIGS. 1 to 3 in cross section.

Figur 1 zeigt den oberen Bereich eines Gleichstromkondensators (Dephlegmator) 1 eines in seiner Gesamtheit nicht näher dargestellten luftbeaufschlagten Trockenkühlers zum Kondensieren von Wasserdampf. Die Strömungsrichtung des Dampfes wird durch die eingezeichneten Pfeile P verdeutlicht. Der Dampf steigt innerhalb von parallel zueinander verlaufenden Wärmetauscherrohren 2 nach oben und tritt in eine Absaugkammer 3 ein. An die Absaugkammer 3 ist mittig ein Absaugrohr 4 angeschlossen, über welches das Dampf-Gas-Gemisch aus dem Dephlegmator 1 abgesaugt wird. Anhand der perspektivischen Darstellung der Figur 2 ist zu erkennen, dass jeweils zwei der Absaugkammem 3 an eine zentrale Absaugung 5 angeschlossen sind. FIG. 1 shows the upper portion of a DC capacitor (dephlegmator) 1 of a not shown in its entirety airborne dry cooler for condensing water vapor. The flow direction of the steam is illustrated by the arrows P shown. The steam rises inside of mutually parallel heat exchanger tubes 2 upwards and enters a suction chamber 3 a. To the suction chamber 3, a suction pipe 4 is centrally connected, via which the vapor-gas mixture is sucked out of the dephlegmator 1. Based on the perspective view of FIG. 2 it can be seen that in each case two of the Absaugkammem 3 are connected to a central suction 5.

Aus Figur 1 ist ferner zu erkennen, dass in der Bildebene ganz rechts ein Teil eines Gleichstromkondensators 6 dargestellt ist. Der Gleichstromkondensator 6 ist nicht mit einer Absaugkammer 4 versehen, da der Dampf von oben nach unten strömt. Allerdings besitzen die Wärmetauscherrohre 2 den gleichen Querschnitt wie die des Dephlegmators 1. Es ist deutlich zu erkennen, dass in der Absaugkammer 3 wesentlich kleinere Öffnungen für den Übertritt des Dampf-Gas-Gemisches vorhanden sind. Dies ist darauf zurückzuführen, dass eine den Austrittsquerschnitt der Wärmetauscherrohre 2 reduzierende Blende 7 mit Blendenöffnungen 8 oberhalb der Austrittsöffnungen 9 der einzelnen Wärmetauscherrohre 2 angeordnet ist. Die Blende 7 ist Bestandteil einer Bodenplatte 10 der Absaugkammer 3. Die einzelnen Blendenöffnungen 8 besitzen in ihrer Summe eine Querschnittsfläche, die nicht größer ist als die Querschnittsfläche des an die Absaugkammer 3 angeschlossenen Absaugrohrs 4. Hierdurch wird eine besonders gleichmäßige Absaugung des Dampf-Gas-Gemisches ermöglicht. Hierdurch werden Kaltzonen innerhalb der Wärmetauscherrohre 2 des Dephlegmators 1 weitestgehend vermieden. Insbesondere ist es bei dieser besonderen Abstimmung der Querschnitte möglich, nur eine Absaugkammer 3 je Dephlegmatoreinheit vorzusehen, wobei anzumerken ist, dass ein als Dephlegmator 1 ausgestaltetes Rohrbündel eine Breite von vorzugsweise ca. 2,20 m hat.Out FIG. 1 It can also be seen that a part of a DC capacitor 6 is shown in the right-most picture plane. The DC capacitor 6 is not provided with a suction chamber 4 because the steam flows from top to bottom. However, the heat exchanger tubes 2 have the same cross section as that of the dephlegmator 1. It can be clearly seen that in the suction chamber 3 much smaller openings for the passage of the vapor-gas mixture are present. This is due to the fact that an aperture 7 reducing the outlet cross section of the heat exchanger tubes 2 is arranged with aperture openings 8 above the outlet openings 9 of the individual heat exchanger tubes 2. The aperture 7 is part of a bottom plate 10 of the suction chamber 3. The individual apertures 8 have in their sum a cross-sectional area which is not greater than the cross-sectional area of the suction tube 4 connected to the suction chamber 4. This results in a particularly uniform extraction of steam-gas Mixture possible. As a result, cold zones within the heat exchanger tubes 2 of the dephlegmator 1 are largely avoided. In particular, with this particular tuning of the cross sections, it is possible to provide only one suction chamber 3 per dephlegmator unit, wherein it should be noted that a tube bundle configured as a dephlegmator 1 has a width of preferably approximately 2.20 m.

Anhand der perspektivischen Darstellung der Figur 2 ist der Aufbau der Absaugkammem 3 noch deutlicher zu erkennen. Die in der Bildebene linke Absaugkammer 3 ist mit einer Deckelplatte 12 verschlossen, bei welcher es sich um ein V-förmig abgekantetes Blech handelt. Diese Deckelplatte 12 wird mit einem Unterteil 11 der Absaugkammer 3 verschweißt. Das Unterteil 11 wird von den Bodenplatten 10 und den um 90° gegenüber den Bodenplatten 10 abgewinkelten Seitenwänden 13 gebildet. Die Deckelplatte 12 wird randseitig mit den Seitenwänden 13 verschweißt und über zusätzliche, dreieckförmige Vakuumstützen 14 ausgesteift. Ferner sind an den Seitenwänden 13 in regelmäßigen Abständen Abstandshalter 15 angeordnet, die nachfolgend noch näher beschrieben werden. Die Abstandshalter 15 befinden sich in der gleichen räumlichen Ebene wie die Vakuumstützen 14.Based on the perspective view of FIG. 2 is the structure of Absaugkammem 3 even more clearly visible. The left in the image plane suction chamber 3 is closed with a cover plate 12, in which it is a V-shaped beveled sheet. This cover plate 12 is welded to a lower part 11 of the suction chamber 3. The lower part 11 is formed by the bottom plates 10 and the angled 90 ° relative to the bottom plates 10 side walls 13. The cover plate 12 is edge with the side walls 13 welded and stiffened over additional triangular vacuum supports 14. Furthermore, spacers 15 are arranged on the side walls 13 at regular intervals, which will be described in more detail below. The spacers 15 are located in the same spatial plane as the vacuum supports 14.

Es ist ferner zu erkennen, dass sich der Querschnitt der Absaugkammer 3 zur Mitte hin verjüngt, d.h. dort am geringsten ist, wo die Abkantung zwischen den Bodenplatten 10 erfolgt. In diesem Bereich der Abkantung befindet sich der am tiefsten gelegene Punkt der Absaugkammer 3. Dieser Bereich wird als das Tiefste 16 bezeichnet und ist in regelmäßigen Abständen mit Kondensatablauföffnungen 17 versehen. Bei den Kondensatablauföffnungen 17 handelt es sich um Länglöcher, so dass sie sich beiderseits der Abkantung erstrecken, wie anhand der vergrößerten Darstellung der Figur 3 zu erkennen ist.It can also be seen that the cross-section of the suction chamber 3 tapers towards the middle, that is to say it is lowest where the fold occurs between the base plates 10. In this area of the fold is the lowest point of the suction chamber 3. This area is referred to as the lowest 16 and is provided at regular intervals with condensate discharge openings 17. The condensate discharge openings 17 are elongated holes, so that they extend on both sides of the fold, as shown by the enlarged view of FIG. 3 can be seen.

Die Absaugkammer 3 gliedert sich in eine dem jeweiligen Dephlegmator 1 zugeordnete erste Teilkammer 19 und eine von dieser gasdicht getrennten zweiten Teilkammer 19a. Die Teilkammern 19, 19a sind spiegelsymmetrisch bzw. die Absaugkammer 3 ist symmetrisch ausgebildet und mit einem nicht näher dargestellten Absaugrohr gekoppelt. Es ist zu erkennen, dass aus den Wärmetauscherrohren 2 ein Dampf-Gas-Gemisch entsprechend der Pfeile P nach oben steigt, wobei sich innerhalb des Wärmetauscherrohrs 2 Kondensattropfen T bilden, die sich an der Wand des Wärmetauscherrohrs 2 niederschlagen und als Kondensat K einer nicht näher dargestellten Kondensatleitung im Fußbereich der Dephlegmatoren 1 zugeführt werden. Es ist zu erkennen, dass der Querschnitt der Blendenöffnungen 8 wesentlich geringer ist als die Querschnittsfläche der Austrittsöffnung 9 der Wärmetauscherrohre 2.The suction chamber 3 is divided into a respective first dephlegmator 1 associated first sub-chamber 19 and a gas-tight separated from this second sub-chamber 19a. The sub-chambers 19, 19a are mirror-symmetrical or the suction chamber 3 is symmetrical and coupled to a suction pipe, not shown. It can be seen that from the heat exchanger tubes 2, a vapor-gas mixture corresponding to the arrows P rises, forming within the heat exchanger tube 2 condensate drops T, which are reflected on the wall of the heat exchanger tube 2 and condensate K one not closer shown condensate line in the foot of the dephlegmators 1 are supplied. It can be seen that the cross-section of the apertures 8 is substantially smaller than the cross-sectional area of the outlet opening 9 of the heat exchanger tubes 2.

Das durch die Blendenöffnung 8 durchtretende Dampf-Gas-Gemisch wird zumindest anteilig kondensiert, wobei Gas in Richtung der Pfeile P1 nach oben, d.h. in Richtung des Absaugrohrs 4, abgesaugt wird, während sich Kondensattropfen T durch die Schwerkraft nach unten bewegen und sich im Tiefsten 16 der Absaugkammer 3 sammeln. Das Kondensat K tritt durch die Kondensatablauföffnung 17, die in Figur 4 lediglich als Unterbrechung in der Bodenplatte 10 dargestellt sind, und sammelt sich oberhalb eines die Wärmetauscherrohre 2 halternden Rohrbodens 18. Die Rohrböden 18 der beiden Dephlegmatoren sind gasdicht miteinander verschweißt. Das Kondensat K gelangt durch die Kondensatablauföffnungen 17 unter die jeweiligen Bodenplatten 10, die sich in einem geringen Abstand zu den Rohrböden 18 befinden. Dieser zwingend erforderliche Abstand wird über die Abstandshalter 15 definiert, welche sich ebenfalls auf den Rohrböden 18 abstützen. Durch den dadurch entstehenden Spalt kann das Kondensat nach oben steigen, und zwar bis zu der Füllstandshöhe, die mit der Linie der unterbrochenen Linie F gekennzeichnet ist. Die Füllstandshöhe F entspricht der Höhenlage der tiefsten Bereiche der Austrittsöffnungen 9. Mit anderen Worten kann das Kondensat K so weit ansteigen bis es zwischen den Bodenplatten 10 und den Rohrböden 18 hindurch wieder über die Austrittsöffnungen 9 in die Wärmetauscherrohre 2 fließen kann und sich mit dem übrigen Kondensatstrom vermischt.The vapor-gas mixture passing through the aperture 8 is at least partially condensed, with gas being sucked up in the direction of the arrows P1, ie in the direction of the suction tube 4, while condensate drops T move downward by gravity and in the lowest 16 of the suction chamber 3 collect. The condensate K passes through the condensate drain opening 17, which in FIG. 4 are shown only as an interruption in the bottom plate 10, and collects above a heat exchanger tubes 2 supporting tube bottom 18. Die Tube plates 18 of the two dephlegmators are gas-tight welded together. The condensate K passes through the condensate discharge openings 17 under the respective bottom plates 10, which are located at a small distance from the tube sheets 18. This mandatory distance is defined by the spacers 15, which are also supported on the tubesheets 18. By the resulting gap, the condensate can rise up to the level height, which is marked with the line of the broken line F. The filling level height F corresponds to the altitude of the deepest regions of the outlet openings 9. In other words, the condensate K can rise until it can flow between the bottom plates 10 and the tube plates 18 again through the outlet openings 9 in the heat exchanger tubes 2 and with the rest Condensate flow mixed.

Die Besonderheit ist, dass die Deckelplatte 12 bis unter die Füllstandslinie F reicht und in das sich aufstauende Kondensat eintaucht. Dadurch wird von dem Bodenblech 10 bzw. von der Blende 7, dem unterhalb des Bodenblechs 10 angeordneten Rohrboden 18 sowie dem Kondensat K eine Gasbarriere 20 gebildet, so dass kein Dampf-Gas-Gemisch von der linken Teilkammer 19 in die rechte Teilkammer 19a übertreten kann. Zudem wird durch das Abfließen des Kondensats K gewährleistet, dass sich die Blendenöffnungen 8 nicht unterhalb der Füllstandslinie F befinden, so dass der Weg für den Eintritt des Dampf-Gas-Gemisches in die Absaugkammer 3 ein anderer Weg ist als derjenige, der für die Ableitung des Kondensats K vorgesehen ist. Dadurch wird ein so genanntes "Verschlucken" des ablaufenden Kondensats mit dem im Gegenstrom abgesaugten Dampf-Gas-Gemisch verhindert.The peculiarity is that the cover plate 12 extends below the level line F and immersed in the accumulating condensate. As a result, a gas barrier 20 is formed by the bottom plate 10 or by the diaphragm 7, the tube plate 18 arranged underneath the bottom plate 10 and the condensate K so that no vapor-gas mixture can pass from the left partial chamber 19 into the right partial chamber 19a , In addition, it is ensured by the outflow of the condensate K that the apertures 8 are not below the level line F, so that the way for the entry of the vapor-gas mixture in the suction chamber 3 is a different way than the one for the derivative the condensate K is provided. As a result, a so-called "swallowing" of the effluent condensate is prevented with the extracted in countercurrent vapor-gas mixture.

Die werkseitig vorgefertigte Absaugkammer 3 wird als komplette Baugruppe über eine in schweißtechnischer Ideallage zu ziehende Kehlnaht 21 mit den Rohrböden 18 verschweißt. Dabei wird die Absaugkammer 3 durch die Abstandshalter 15 auf einem definierten Minimalabstand von vorzugsweise 1 mm, zu den nicht näher dargestellten Schweißnahtüberhöhungen, welche auf Grund der Rohreinschweißungen in den Rohrböden 18 entstanden sind, gehalten. Hierdurch entsteht automatisch eine Einzelkammer je Wärmetauscherrohr 2, welche durch die Absauföffnung 8 gleichmäßig abgesaugt werden kann.The factory prefabricated suction chamber 3 is welded as a complete assembly via a weldable in ideal position to be pulled fillet weld 21 with the tube plates 18. In this case, the suction chamber 3 is held by the spacers 15 at a defined minimum distance of preferably 1 mm, to the weld seam elevations, which are not shown in detail, which have arisen due to the tube welds in the tube plates 18. This automatically creates a single chamber per heat exchanger tube 2, which can be uniformly sucked through the discharge opening 8.

Bezugszeichen:Reference numerals:

1 -1 -
Gegenstromkondensator (Dephlegmator)Countercurrent condenser (Dephlegmator)
2 -2 -
Wärmetauscherrohrheat exchanger tube
3 -3 -
Absaugkammersuction
4 -4 -
Absaugrohrsuction tube
5 -5 -
Absaugungsuction
6 -6 -
GleichstromkondensatorDC capacitor
7 -7 -
Blendecover
8 -8th -
Blendenöffnungaperture
9 -9 -
Austrittsöffnungoutlet opening
10 -10 -
Bodenplattebaseplate
11 -11 -
Unterteillower part
12 -12 -
Deckelplattecover plate
13 -13 -
SeitenwandSide wall
14 -14 -
Vakuumstützevacuum support
15 -15 -
Abstandshalterspacer
16 -16 -
Tiefstelowest
17 -17 -
KondensatablauföffnungCondensate drain opening
18 -18 -
Rohrbodentube sheet
19 -19 -
Teilkammermember chamber
19a -19a -
Teilkammermember chamber
20 -20 -
Gasbarrieregas barrier
21 -21 -
SchweißnahtWeld
F -F -
Füllstandslinie/SperrhöheFill line / barrier height
K -K -
Kondensatcondensate
P -P -
Pfeilarrow
T -T -
Kondensattropfencondensate drops

Claims (13)

  1. Air-generated dry cooler for the condensation of water vapour with at least one direct current condenser (6) and at least one reverse current condenser (dephlegmator) (1), whereby heat exchanger pipes (2) of the reverse current condenser(1) are connected to an upper suction chamber (3) and whereby a screen (7) with screen openings (8) is provided, which reduces the cross section of the outlet of at least one heat exchanger pipe (2), characterized in that condensate (K) that enters into the suction chamber (3) through the condensate flow openings (17) arranged in the screen (7) and is collected together in the depths (16) of the suction chamber (3) above a tube sheet (18) that holds the heat exchanger pipes (2) and which can be fed again into a heat exchanger pipe (2) via a gas barrier (20) in the form of a siphon, whereby the gas barrier (20) is formed by the screen (7), by the tube sheet (18) that is arranged below the screen (7) and by the condensate (k) that is collected together, whereby the condensate (k) that is collected together can be fed into the outlet openings (9) of the heat exchanger pipes (2) that are mounted on the tube sheet (18).
  2. Dry cooler as per Claim 1, characterized in that the screen (7) has, at least in terms of its section, a maximum clearance of 2 mm with respect to the outlet opening (9) of the heat exchanger pipe (2).
  3. Dry cooler as per Claim 2, characterized in that the clearance is not greater than 1 mm.
  4. Dry cooler as per Claims 2 or 3, characterized in that the outlet opening (9) is enclosed by a weld reinforcement, whereby the clearance is measured with respect to the weld reinforcement.
  5. Dry cooler as per one of the Claims 1 to 4, characterized in that the screen (7) is a component part of a base plate (10) of the suction chamber (3).
  6. Dry cooler as per one of the Claims 1 to 5, characterized in that a pair of dephlegmators (1), which are arranged in a roof-like shape opposite each other, are connected to a common suction chamber (3).
  7. Dry cooler as per Claim 6, characterized in that condensate (K) collects together up to a trap seal depth (F) in the depths (16) of the suction chamber (3) between the dephlegmators (1), into which a bulkhead is immersed and as a gas barrier (20) divides the suction chamber (2) into a first sectional chamber (19) allocated to the first dephlegmator (1) and a second sectional chamber (19a) allocated to the second dephlegmator (1).
  8. Dry cooler as per Claim 7, characterized in that the bulkhead is formed by a cover plate (12) that seals the suction chamber (3)
  9. Dry cooler as per Claim 5 , characterized in that the base plate (10) that forms the screen (7) is produced as one-piece from a perforated plate, which is chamfered in accordance with the incline/pitch of the tube sheet (18) in the area of the outlet openings (9), of the condensate flow openings (17) and of the suction pipe (4).
  10. Dry cooler as per one of the Claims 1 to 9, characterized in that a sidewall (13) of the suction chamber (3) is produced from the plate as one-piece with the base plate (10).
  11. Dry cooler as per Claim 10, characterized in that a spacer (15) that is fixed to the tube sheet (10) is located on the side wall (13).
  12. Dry cooler as per one of the Claims 1 to 11, characterized in that a prefabricated suction chamber (3) is welded gas-tight onto the edge of the tube sheet (18).
  13. Dry cooler as per one of the Claims 1 to 10, characterized in that a suction chamber (3) that extends over the complete width of a dephlegmator (1) has a single suction pipe (4).
EP08831373A 2007-09-18 2008-08-12 Air-supplied dry cooler Not-in-force EP2188581B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044658A DE102007044658B3 (en) 2007-09-18 2007-09-18 Air-cooled dry radiator for condensing turbine steam, has suction chamber with troughs into which condensate enters and collected to be discharged into heat exchanger pipe over gas barrier in siphon form
PCT/DE2008/001325 WO2009036719A2 (en) 2007-09-18 2008-08-12 Air-supplied dry cooler

Publications (2)

Publication Number Publication Date
EP2188581A2 EP2188581A2 (en) 2010-05-26
EP2188581B1 true EP2188581B1 (en) 2011-03-02

Family

ID=39917641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08831373A Not-in-force EP2188581B1 (en) 2007-09-18 2008-08-12 Air-supplied dry cooler

Country Status (9)

Country Link
US (1) US8726975B2 (en)
EP (1) EP2188581B1 (en)
CN (1) CN101796363A (en)
AR (1) AR068459A1 (en)
AT (1) ATE500482T1 (en)
DE (2) DE102007044658B3 (en)
ES (1) ES2361898T3 (en)
TW (1) TW200930968A (en)
WO (1) WO2009036719A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044658B3 (en) 2007-09-18 2008-12-04 Gea Energietechnik Gmbh Air-cooled dry radiator for condensing turbine steam, has suction chamber with troughs into which condensate enters and collected to be discharged into heat exchanger pipe over gas barrier in siphon form
US11199361B2 (en) 2019-02-19 2021-12-14 Gas Technology Institute Method and apparatus for net zero-water power plant cooling and heat recovery

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE17433E (en) * 1929-09-17 Ooooooooooooooo
US1662186A (en) * 1926-11-10 1928-03-13 Worthington Pump & Mach Corp Condenser
US1772807A (en) * 1928-12-12 1930-08-12 Worthington Pump & Mach Corp Surface condenser
US1855390A (en) * 1930-04-28 1932-04-26 Raymond N Ehrhart Surface condenser
US1855231A (en) * 1931-11-19 1932-04-26 Worthington Pump & Mach Corp Surface condenser
US2181704A (en) * 1935-11-26 1939-11-28 Andale Co Heat transfer apparatus
CH361018A (en) 1956-02-15 1962-03-31 Gea Luftkuehler Ges Mbh Air-cooled surface condenser
US3073575A (en) * 1957-09-05 1963-01-15 Gea Luftkuhler Ges M B H Air-cooled surface condenser
DE1873644U (en) * 1961-11-04 1963-06-12 Gea Luftkuehler Happel Gmbh CONDENSER ELEMENT FOR AIR-COOLED CONDENSERS.
US3262489A (en) * 1964-02-11 1966-07-26 Aerofin Corp Heat exchanger
DE1776130A1 (en) * 1968-09-25 1970-10-01 Borsig Gmbh Air-cooled condenser
US3710854A (en) * 1971-02-17 1973-01-16 Gen Electric Condenser
US3938588A (en) * 1973-10-18 1976-02-17 Westinghouse Electric Corporation Deaerating feedwater heater
US4129180A (en) * 1976-12-06 1978-12-12 Hudson Products Corporation Vapor condensing apparatus
US4168742A (en) * 1978-03-27 1979-09-25 Hudson Products Corporation Tube bundle
US4220194A (en) * 1978-07-24 1980-09-02 General Electric Company Scavenging of throttled MSR tube bundles
GB2029250B (en) * 1978-09-05 1982-10-27 Apv Spiro Gills Ltd Water chilling plant
JPS5844198B2 (en) * 1978-10-05 1983-10-01 株式会社日立製作所 Shell-and-tube heat exchanger
CH640631A5 (en) * 1979-06-20 1984-01-13 Bbc Brown Boveri & Cie HEAT EXCHANGER.
US4815296A (en) * 1988-03-14 1989-03-28 Ormat Turbines (1965), Ltd. Heat exchanger for condensing vapor containing non-condensable gases
US4878535A (en) * 1988-04-27 1989-11-07 Rosenblad Corporation Selective condensation apparatus
US4903491A (en) * 1988-06-13 1990-02-27 Larinoff Michael W Air-cooled vacuum steam condenser
US5139083A (en) * 1990-10-10 1992-08-18 Larinoff Michael W Air cooled vacuum steam condenser with flow-equalized mini-bundles
DE4039292A1 (en) * 1990-12-08 1992-06-11 Gea Luftkuehler Happel Gmbh METHOD FOR PRODUCING A HEAT EXCHANGER AND DEVICE FOR CARRYING OUT THE METHOD
DE4439801C2 (en) * 1994-11-08 1996-10-31 Gea Power Cooling Systems Inc Air-cooled dry cooler
US5787970A (en) * 1994-12-06 1998-08-04 Larinoff; Michael W. Air-cooled vacuum steam condenser with mixed flow bundle
US5653281A (en) * 1995-12-20 1997-08-05 Hudson Products Corporation Steam condensing module with integral, stacked vent condenser
HU9700240D0 (en) * 1997-01-27 1997-03-28 Energiagazdalkodasi Intezet Air-cooled steam condenser
HU9701654D0 (en) * 1997-10-16 1997-12-29 Gabor Csaba Direct air cooling condensor
US5950717A (en) * 1998-04-09 1999-09-14 Gea Power Cooling Systems Inc. Air-cooled surface condenser
US6588499B1 (en) * 1998-11-13 2003-07-08 Pacificorp Air ejector vacuum control valve
DE19937800B4 (en) * 1999-08-10 2005-06-16 Gea Energietechnik Gmbh Plant for the condensation of steam
WO2006047209A1 (en) * 2004-10-21 2006-05-04 Gea Power Cooling Systems, Inc. Air-cooled condensing system and method
US7237600B2 (en) * 2005-01-26 2007-07-03 Edward Joseph Tippmann Support surface for heating or cooling food articles and method of making the same
US7926555B2 (en) * 2006-06-27 2011-04-19 Gea Power Cooling, Inc. Series-parallel condensing system
DE102006029773B3 (en) * 2006-06-27 2007-07-12 Gea Energietechnik Gmbh Construction of condensation installation for power stations comprises placing tubular bundles with their sheet metal bases holding heat exchanger tubes in supports on a stepped strut or a pre-assembled part
DE102007044658B3 (en) 2007-09-18 2008-12-04 Gea Energietechnik Gmbh Air-cooled dry radiator for condensing turbine steam, has suction chamber with troughs into which condensate enters and collected to be discharged into heat exchanger pipe over gas barrier in siphon form
US8490506B2 (en) * 2009-01-12 2013-07-23 Aa Holdings, Ltd. In-situ gas analyzer probe
CN102472589B (en) * 2009-07-22 2014-01-22 江森自控科技公司 Compact evaporator for chillers

Also Published As

Publication number Publication date
DE102007044658B3 (en) 2008-12-04
ATE500482T1 (en) 2011-03-15
WO2009036719A3 (en) 2009-06-04
TW200930968A (en) 2009-07-16
WO2009036719A2 (en) 2009-03-26
DE502008002758D1 (en) 2011-04-14
EP2188581A2 (en) 2010-05-26
US20100206530A1 (en) 2010-08-19
CN101796363A (en) 2010-08-04
US8726975B2 (en) 2014-05-20
AR068459A1 (en) 2009-11-18
ES2361898T3 (en) 2011-06-24

Similar Documents

Publication Publication Date Title
DE1551489A1 (en) Heat exchanger
DE19817972C2 (en) Air-cooled surface condenser
DE3507981A1 (en) HEAT EXCHANGER WITH ISOLATED EVAPORATION AND CONDENSATION ZONES
DE2309937A1 (en) HEAT EXCHANGER
DE102006018681A1 (en) Heat exchanger for a vehicle
EP0131270A1 (en) Absorber using a solid for an absorption cycle
DE2619372A1 (en) BODY OF A HEAT EXCHANGER WITH A SYSTEM OF CHANNELS FOR THE TRANSPORT OF A HEAT TRANSFER MEDIUM
DE102013203222A1 (en) Heat exchanger
EP3728975B1 (en) Air-cooled condenser installation
EP1640684A1 (en) heat exchanger with flat tubes and corrugated fins
EP2188581B1 (en) Air-supplied dry cooler
DE102009016643B4 (en) Pipe and guide element for installation in a pipe
EP1812768B1 (en) Heat exchanger channel, comb profile for producing the same, and corresponding heat exchanger
DE102014112707A1 (en) Plant for the condensation of steam
WO2011018128A1 (en) Heat exchanger in a flow channel
DE102015000385B4 (en) Heat exchangers, in particular for absorbing geothermal energy
EP2694178A1 (en) Device and method for condensing steam in a vessel
DE19513201C1 (en) Decentralised air conditioning system for industrial halls
DE1939245C3 (en) Air-cooled condenser for the top product of a distilling or rectifying column
DE2414295C2 (en) Heat exchanger for the condensation of steam
DE147656C (en)
DE19944426C2 (en) Plate heat exchangers and evaporators
DE2754340A1 (en) Boiler flue gas heat recuperator - has baffles forming zigzag flow path for hot gases, fan and condensate separator
DE19719263A1 (en) Flat tube evaporator with vertical longitudinal direction of the flat tubes in motor vehicles
DE102015015349A1 (en) Element for heat recovery, which consists of a heat exchanger formed by a capillary tube mat, and a shower channel for installation in the floor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100114

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008002758

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008002758

Country of ref document: DE

Effective date: 20110414

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361898

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110624

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111205

BERE Be: lapsed

Owner name: GEA ENERGIETECHNIK G.M.B.H.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002758

Country of ref document: DE

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008002758

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 500482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150819

Year of fee payment: 8

Ref country code: ES

Payment date: 20150827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150824

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160813

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128