EP2188361A2 - Nettoyants - Google Patents

Nettoyants

Info

Publication number
EP2188361A2
EP2188361A2 EP08774678A EP08774678A EP2188361A2 EP 2188361 A2 EP2188361 A2 EP 2188361A2 EP 08774678 A EP08774678 A EP 08774678A EP 08774678 A EP08774678 A EP 08774678A EP 2188361 A2 EP2188361 A2 EP 2188361A2
Authority
EP
European Patent Office
Prior art keywords
dishwashing detergent
weight
acid
group
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08774678A
Other languages
German (de)
English (en)
Other versions
EP2188361B1 (fr
Inventor
Nadine Warkotsch
Johannes Zipfel
Arnd Kessler
Christian Nitsch
Thomas Holderbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL08774678T priority Critical patent/PL2188361T3/pl
Publication of EP2188361A2 publication Critical patent/EP2188361A2/fr
Application granted granted Critical
Publication of EP2188361B1 publication Critical patent/EP2188361B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present patent application describes detergents, in particular detergents for the machine cleaning of dishes.
  • This application relates in particular to phosphate-free automatic dishwashing detergents which contain phosphate substitutes.
  • Machine-washed dishes are often subject to more stringent requirements today than manually-washed dishes. So the dishes after machine cleaning should not only be completely free of food particles free but also, for example, no whitish, based on water hardness or other mineral salts stains that come from lack of wetting agent from dried water drops.
  • Modern automatic dishwashing detergents meet these requirements by integrating cleansing, caring, water-softening and clear-rinsing active ingredients and are known to the consumer, for example, as “2in1" or "3in1" dishwashing detergents.
  • As essential for the cleaning as for the rinse aid success constituent intended for the private consumer dishwasher automatic dishwashing contain builders. On the one hand, these builders increase the alkalinity of the cleaning liquor, whereby fats and oils are emulsified and saponified with increasing alkalinity, and on the other hand reduce the water hardness of the cleaning liquor by complexing the calcium ions contained in the aqueous liquor.
  • Particularly effective builders have proved to be the alkali metal phosphates which, for this reason, form the main constituent of the vast majority of commercially available automatic dishwashing detergents.
  • phosphates are highly valued for their softening and alkalizing action as a component of automatic dishwashing detergents, their use is considered environmentally problematic since a substantial portion of the phosphate enters the water via the domestic effluent, and particularly in stagnant waters (lakes , Barrages) plays a critical role in their over-fertilization.
  • eutrophication the use of pentasodium triphosphate in laundry detergents in a number of countries, e.g. USA, Canada, Italy, Sweden, Norway, significantly reduced by law and regulations. completely prohibited in Switzerland. In Germany, detergents since 1984 may contain no more than 20% of this builder.
  • nitrilotriacetic acid especially sodium aluminosilicates (zeolites) are used as phosphate substitutes or substitutes in textile detergents.
  • these substances are not suitable for use in automatic dishwashing detergents for various reasons.
  • alkali metal phosphates in automatic dishwashing detergents are therefore in the Literature discussed a number of substitutes, of which the citrates are particularly noteworthy.
  • Phosphate-free automatic dishwashing detergents which, in addition to a citrate, furthermore contain carbonates, bleaches and enzymes are described, for example, in European patents EP 662 117 B1 (Henkel KGaA) and EP 692 020 B1 (Henkel KGaA).
  • the group of complexing agents for water softening which are used with preference in automatic dishwashing detergents, also include the organic phosphonates, as described, for example, in German patent application DE 10 2004 015 41 (Henkel KGaA).
  • the object of the present application was to provide a phosphate-free or phosphate-reduced automatic dishwashing detergent, which is comparable in terms of its cleaning and rinsing performance as well as in terms of its coating inhibition with conventional phosphate-containing cleaning agents or even better ,
  • automatic dishwashing detergents which contain a combination of carboxymethyl inulin and oxygen bleach are suitable for achieving the abovementioned object if the amount of phosphonate used is limited in these automatic dishwashing detergents.
  • a first subject of this application is therefore a phosphate-free automatic dishwashing detergent containing a) Carboxymethylinulin b) oxygen bleach characterized in that the automatic dishwashing agent based on its total weight less than 5 wt .-% phosphonate and the weight ratio of carboxymethyl inulin to phosphonate is greater than 2.
  • the automatic dishwashing compositions according to the invention contain carboxymethyl inulin as their first essential component.
  • Inulin is a polysaccharide of fructose molecules stored in plants such as Jerusalem artichoke, chicory, dahlia, artichoke, dandelion or agave as a reserve substance.
  • the chain length of these polysaccharides is up to 100 molecules.
  • the linear fructose chains of inulins which are usually linked by ß (2-1) bonds, are usually closed by a glucose unit.
  • the fructose units within the chain carry 3 hydroxyl groups, which can be carboxyalkylated with ether formation.
  • the hydrogen of the hydroxyl group is replaced by a carboxyalkyl group, in the case of the carboxymethylinulines used according to the invention by a carboxymethyl group.
  • Preferred carboxymethylinulines are characterized in that 0.5 to 3 hydroxyl groups, preferably 1, 0 to 3 hydroxyl groups and in particular 2.0 to 3.0 hydroxyl groups are carboxymethylated per fructose molecule on average.
  • Preferred carboxymethylinulines have a molecular weight in the range from 1000 to 10,000, preferably from 1200 to 7000, preferably from 1400 to 4000 and in particular from 1500 to 3000.
  • the weight fraction of carboxymethylinulin in the total weight of preferred automatic dishwashing agent is, based on the total weight of the automatic dishwashing detergent, 2.0 to 40 wt.%, Preferably 2.0 to 20 wt.% And in particular 4.0 to 10 wt. ,
  • the automatic dishwasher detergents according to the invention preferably additionally contain builders for reducing the water hardness.
  • the builders include in particular silicates, carbonates and organic co-builders such as citrates.
  • preferred machine dishwashing detergents contain as builder crystalline layered silicates of general formula NaMSi x O 2x + I ⁇ y H 2 O wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1, 9-4 where particularly preferred values for x are 2, 3 or 4 and y is a number from 0 to 33, preferably from 0 to 20. It is also possible to use amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which preferably delayed release and have secondary washing properties.
  • Machine dishwashing detergents preferred in the context of the present invention comprise from 2 to 15% by weight, preferably from 3 to 12% by weight and in particular from 4 to 8% by weight, of silicate (s).
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric carboxylates, aspartic acid, polyacetals, dextrins and organic cobuilders. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • Particularly preferred machine dishwasher detergents according to the invention are characterized in that the dishwasher detergent, based in each case on the total weight of the dishwashing detergent, 5 to 60 wt .-%, preferably 10 to 60 wt .-% and in particular 25 to 60 wt .-% of builders from the group containing silicates, carbonates and citrates.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of 500 to 70,000 g / mol.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, this group may in turn, the short-chain polyacrylates, the molar masses of 2000 to 10,000 g / mol, and more preferably from 3000 to 5000 g / mol, have to be preferred.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the content of preferred automatic dishwashing agents on (co) polymeric polycarboxylates is preferably 0.5 to 20% by weight and in particular 3 to 10% by weight, in each case based on the total weight of the automatic dishwashing detergent.
  • dishwasher detergents according to the invention contain an oxygen bleaching agent.
  • an oxygen bleaching agent Among the compounds which serve as bleaching agents in water H 2 O 2 , sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloimino peracid or diperdodecanedioic acid.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred phosphate-free automatic dishwasher detergents are characterized in that the dishwashing agent, based in each case on the total weight of the dishwashing agent, 1, 0 to 20 wt .-%, preferably 4.0 to 18 wt .-% and in particular 8 to 15 wt .-% of a Oxygen bleaching agent, preferably 1, 0 to 20 wt .-%, preferably 4.0 to 18 wt .-% and in particular 8 to 15 wt .-% sodium percarbonate.
  • a Oxygen bleaching agent preferably 1, 0 to 20 wt .-%, preferably 4.0 to 18 wt .-% and in particular 8 to 15 wt .-% sodium percarbonate.
  • the automatic dishwasher detergents according to the invention may additionally contain bleach activators.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • Preference is given to polyacylated alkylenediamines, with tetraacetylethylenediamine (TAED) having proven particularly suitable.
  • TAED tetraacetylethylenediamine
  • bleach activators in particular TAED, are preferably used in amounts of up to 10% by weight, in particular 0.1% by weight to 8% by weight, especially 2 to 8% by weight and more preferably 2 to 6% by weight. , in each case based on the total weight of the bleach activator-containing agents used.
  • bleach catalysts can also be used.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • complexes of manganese in the oxidation state II, III, IV or IV are used, which preferably contain one or more macrocyclic ligand (s) with the donor functions N, NR, PR, O and / or S.
  • ligands are used which have nitrogen donor functions.
  • bleach catalyst (s) in the compositions of the invention, which as macromolecular ligands 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN), 1, 4,7-triazacyclononane (TACN ), 1, 5,9-trimethyl-1, 5,9-triazacyclododecane (Me-TACD), 2-methyl-1, 4,7-trimethyl-1, 4,7-triazacyclononane (Me / Me-TACN) and or 2-methyl-1, 4,7-triazacyclononane (Me / TACN).
  • macromolecular ligands 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN), 1, 4,7-triazacyclononane (TACN ), 1, 5,9-trimethyl-1, 5,9-triazacyclododecane (Me-TACD), 2-methyl-1, 4,7-trimethyl-1, 4,7-triazacyclononane (Me / Me-TACN)
  • Automatic dishwashing detergent characterized in that it further comprises a bleach catalyst selected from the group of bleach-enhancing transition metal salts and transition metal complexes, preferably from the group of complexes of manganese with 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me 3 -TACN) or 1, 2, 4,7-tetramethyl-1, 4,7-triazacyclononane (Me 4 -TACN) are preferred according to the invention, since in particular the cleaning result can be significantly improved by the aforementioned bleach catalysts.
  • a bleach catalyst selected from the group of bleach-enhancing transition metal salts and transition metal complexes, preferably from the group of complexes of manganese with 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me 3 -TACN) or 1, 2, 4,7-tetramethyl-1, 4,7-triazacyclononane (Me 4 -TACN) are preferred according to the invention, since in particular the cleaning result can be significantly improved by the aforementioned bleach catalysts.
  • the abovementioned bleach-enhancing transition metal complexes are used in customary amounts, preferably in an amount of up to 5% by weight, in particular of 0.0025% by weight to 1% by weight and more preferably of 0, 01 wt .-% to 0.30 wt .-%, each based on the total weight of the bleach catalyst-containing agents used. In special cases, however, more bleach catalyst can be used.
  • the automatic dishwashing agents according to the invention are further characterized in that they contain less than 5% by weight of phosphonate, the weight ratio of carboxymethyl inulin to phosphonate being greater than 2. Surprisingly, it was possible to improve the cleaning and rinsing action as well as the scale inhibition of the agents according to the invention by limiting the amounts of phosphonate added to amounts below 5% by weight, provided that the weight ratio of carboxymethylinulin to phosphonate in these automatic dishwashing detergents is set to values above 2.
  • the complexing phosphonates comprise a number of different compounds such as 1-hydroxyethane-1, 1-diphosphonic acid (HEDP) or diethylene triamine penta (ethylene phosphonic acid) (DTPMP).
  • Hydroxyalkane or aminoalkane phosphonates are particularly preferred in this application.
  • the 1-hydroxyethane-1,1-di-phosphonate (HEDP) is of particular importance as a co-builder. It is preferably used as the sodium salt, the disodium salt neutral and the tetrasodium salt alkaline (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediamine tetramethylene phosphonate (EDTMP), diethylene triamine pentamethylene phosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B. as the hexasodium salt of EDTMP or as hepta- and octa-sodium salt of DTPMP used.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the weight fraction of the phosphonate (s) b) in the total weight of the automatic dishwashing agent is less than 3 wt .-%, preferably less than 2 wt .-%, preferably less than 1 wt .-% and in particular less than 0.1% by weight.
  • Particularly preferred machine dishwasher detergents according to the invention contain no phosphonate.
  • Preferred phosphate-free automatic dishwasher detergents according to the invention contain as further
  • Component of a copolymer comprising i) monomers containing sulfonic acid groups, ii) further ionic and / or nonionic monomer (s).
  • the proportion by weight of the copolymer in the total weight of the automatic dishwashing agent is preferably 0.5 to 20 wt .-%, preferably 4 to 18 wt .-%, particularly preferably 6 to 15 wt .-% and in particular 6 to 12 wt .-%.
  • copolymers which comprise at least one other ionic or nonionic monomer in addition to a sulfonic acid group-containing monomer, may have two, three, four or more different monomer units.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate , 3-sulfopropyl methacrylate, sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred automatic dishwashing detergents are characterized in that the copolymers have molar masses of from 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1, and in particular from 5000 to 15,000 gmol -1 .
  • the copolymers further comprise at least one ionic monomer in addition to at least one sulfonic acid group-containing monomer.
  • Phosphate-free automatic dishwashing compositions containing a) carboxymethylinulin b) oxygen bleaches c) copolymer comprising i) monomers containing sulfonic acid groups)) further ionic monomers. characterized in that the automatic dishwashing agent contains less than 5 wt .-% of phosphonate based on its total weight and the weight ratio of carboxymethyl inulin to phosphonate is greater than 2, are preferred according to the invention.
  • carboxyl-containing monomers are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, methylenemalonic acid, sorbic acid, cinnamic acid or mixtures thereof.
  • the copolymers further comprise at least one nonionic, preferably hydrophobic monomer in addition to at least one sulfonic acid-containing monomer.
  • nonionic monomers are butene, isobutene, pentene, 3-methylbutene, 2-methylbutene, cyclopentene, hexene, hexene-1, 2-methylpentene-1, 3-methylpentene-1, cyclohexene, methylcyclopentene, cycloheptene, methylcyclohexene, 2,4 , 4-trimethylpentene-1, 2,4,4-trimethylpentene-2,3,3-dimethylhexene-1, 2,4-dimethylhexene-1, 2,5-dimethlyhexene-1,3,5-dimethylhexene-1 , 4,4-Dimehtylhexan-1, ethylcyclohexyn, 1-octene, ⁇ -olefins having 10 or more carbon atoms such as 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene
  • copolymers which, in addition to the monomers containing sulfonic acid groups, furthermore contain both ionic and nonionic monomers.
  • Phosphate-free automatic dishwashing detergents characterized in that the copolymer c) i) monomers containing sulfonic acid groups ii) monomers containing carboxyl groups iii) further nonionic monomers are preferred according to the invention.
  • Some exemplary formulations for preferred phosphate-free automatic dishwashing detergents can be the
  • Copolymer comprising i) monomers containing sulfonic acid groups ii) carboxyl-containing monomers iii) other nonionic monomers
  • the formation of deposits and the rinse-off result can be markedly improved in comparison to conventional polymeric or copolymeric acrylates without a sulfonic acid group.
  • compositions according to the invention may furthermore contain surfactants.
  • the group of surfactants includes nonionic, anionic, cationic and amphoteric surfactants.
  • the automatic dishwashing detergents contain nonionic surfactant (s), the weight fraction of the nonionic surfactant (s) in the total weight of the automatic dishwashing agent preferably being from 1 to 10% by weight, preferably from 2 to 8% by weight. and in particular 3 to 6 wt .-% is.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be used be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • washing or cleaning agents in particular automatic dishwashing detergents, contain nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, C t2 - U - alcohols with 3 EO or 4 EO, C 9 n-alcohol with 7 EO, C-ms alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 12 -i 8 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -i 4 -alcohol with 3 EO and C 12 -i 8 -alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • NRE narrow rank ethoxylates
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • ethoxylated nonionic surfactant selected from C 6 - alkanols 2 o-monohydroxy or C 6 - 2 o-alkyl phenols or C 6 - 2 o-fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide per mole of alcohol were used.
  • a particularly preferred nonionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-2 alcohol), preferably a C 18 alcohol obtained and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • C 16-2 alcohol straight chain fatty alcohol having 16 to 20 carbon atoms
  • C 18 alcohol preferably a C 18 alcohol obtained and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • the so-called “narrow ranks ethoxylates" are particularly preferred.
  • nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If nonionic surfactants are used which are highly viscous at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Also, nonionic surfactants having waxy consistency at room temperature are preferred depending on their purpose.
  • Nonionic surfactants from the group of alkoxylated alcohols are also used with particular preference.
  • the nonionic surfactant solid at room temperature preferably has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol content of such nonionic surfactant molecules preferably makes up more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight, of the total molecular weight of such nonionic surfactants.
  • Preferred agents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic Make up surfactants.
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25 % By weight of a block A copolymer of polyoxyethylene and polyoxypropylene, initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane contains.
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6 - 24 represents alkyl or alkenyl; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as usually present in oxo alcohol radicals.
  • nonionic surfactants in which R 1 in the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 Carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 -CH 3 or -CH (CH 3 ) 2 are suitable.
  • Nonionic surfactants are particularly preferred
  • the 9 have a C .i 5 alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • R 1 -CH (OH) CH 2 O- (AO) w - (A'O) x - (A "O) y - (A '" O) z -R 2 in which R 1 and R 2 are each independently a straight-chain or branched, saturated or mono- or polyunsaturated C 2-4 o alkyl or alkenyl radical;
  • A, A ', A "and A'” independently represent a radical from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 -CH (CH 3 ), -CH 2 -CH 2 -CH 2 - CH 2 , -CH 2 -CH (CHs) -CH 2 -, -CH 2 -CH (CH 2 -CH 3 ); and
  • w, x, y and z are values between 0.5 and 90, where x, y and / or z can also be 0 are preferred according to the invention.
  • end-capped poly (oxyalkylated) nonionic surfactants which, in accordance with the formula R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2 , in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 2 to 30 carbon atoms, preferably having from 4 to 22 carbon atoms, furthermore having a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having from 1 to 30 carbon atoms, where x is from 1 to 30 carbon atoms 90, preferably for values between 30 and 80 and in particular for values between 30 and 60.
  • surfactants of the formula R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y CH 2 CH (OH) R 2 in which R 1 denotes a linear or branched aliphatic hydrocarbon radical 4 to 18 carbon atoms or mixtures thereof, R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x stands for values between 0.5 and 1, 5 and y for a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 P] x [CH 2 I k CH (OH) [CH 2 ] PR 2 in which R 1 and R 2 R 1 is H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above R 1 and R 2 are preferably linear or branched, saturated or unsaturated, R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 .
  • aliphatic or aromatic hydrocarbon radicals having from 6 to 22 carbon atoms, radicals having from 8 to 18 carbon atoms being particularly preferred, and the radical R 3 being H, -CH 3 or CH 2 CH 3 is particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1, R 2 and R 3 are as defined above and x represents numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • particularly preferred are surfactants wherein where the radicals R 1 and R 2 have 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants.
  • Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas ,
  • preferred automatic dishwashing contain other ingredients, preferably active ingredients from the group of washing and cleaning active polymers, enzymes, corrosion inhibitors, fragrances or dyes.
  • the group of washing- or cleaning-active polymers includes, for example, the rinse aid polymers and / or polymers which act as softeners, in particular the cationic or amphoteric polymers.
  • “Cationic polymers” for the purposes of the present invention are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of Acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino acrylate and methacrylate, the vinylpyrrolidone-Methoimidazoliniumchlorid copolymers, the quaternized polyvinyl alcohols or under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 given polymers.
  • amphoteric polymers further comprise, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms;
  • R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group;
  • x and y independently represent integers between 1 and 3.
  • X represents a counterion, preferably a counterion selected from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, laurylsulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures thereof.
  • a counterion selected from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, laurylsulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate
  • Preferred radicals R 1 and R 4 in the above formula are selected from -CH 3, -CH 2 -CH 3, - CH 2 -CH 2 -CH 3, -CH (CH 3) -CH 3, -CH 2 -OH , -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • cationic or amphoteric polymers contain a monomer unit of the general formula
  • R1 HC CR2-C (O) -NH- (CH 2) -N + R3R4R5
  • X " in the R 1 , R 2 , R 3 , R 4 and R 5 are independently of one another a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from CH 3, -CH 2 -CH 3, -CH 2 -CH 2 - CH 3, -CH (CH 3) -CH 3, -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 3 , and - (CH 2 CH 2 -O) n is H and x is an integer between 1 and 6.
  • H 2 C C (CHS) -C (O) -NH- (CH 2 ) X-N + (C HS) 3
  • X " in the case of X " chloride also referred to as MAPTAC (Methyaciylamidopropyl trimethylammonium chloride).
  • amphoteric polymers have not only cationic groups but also anionic groups or monomer units.
  • anionic monomer units are derived, for example, from the group of linear or branched, saturated or unsaturated carboxylates, linear or branched, saturated or unsaturated phosphonates, linear or branched, saturated or unsaturated sulfates or linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acrylic acid, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacrylic acid, vinylessingic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and their derivatives, the allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred amphoteric polymers which can be used are from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers which cationically derivatized alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethyl methacrylate / alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids unsaturated carboxylic acids and optionally further ionic or nonionic monomers
  • Preferred zwitterionic polymers are from the group of acrylamidoalkyltri alkylammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the methacroylethylbetaine / methacrylate copolymers.
  • amphoteric polymers which comprise, in addition to one or more anionic monomers as cationic monomers, methacrylamidoalkyltrialkylammonium chloride and dimethyl (diallyl) ammonium chloride.
  • amphoteric polymers are selected from the group of methacrylamidoalkyl trialkyl ammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidoalkyl trialkyl ammonium chloride / dimethyl (diallyl) ammonium chloride / methacrylic acid copolymers and the Methacrylamidoalkyltrialkylammoniumchlorid / DimethyKdiallyOammoniumchlorid / alkyl (meth) acrylic acid copolymers and their alkali metal and ammonium salts.
  • amphoteric polymers from the group of the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers and the methacrylamidopropyltrimethylammonium chloride / dimethyldiallylammonium - Chloride / alkyl (meth) acrylic acid Copolynnere and their alkali metal and ammonium salts.
  • the polymers are present in prefabricated form.
  • the encapsulation of the polymers by means of water-soluble or water-dispersible coating compositions, preferably by means of water-soluble or water-dispersible natural or synthetic polymers; the encapsulation of the polymers by means of water-insoluble, meltable coating compositions, preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 0 C; the co-granulation of the polymers with inert carrier materials, preferably with carrier materials from the group of washing- or cleaning-active substances, more preferably from the group of builders or cobuilders.
  • Detergents or cleaning agents contain the aforementioned cationic and / or amphoteric polymers preferably in amounts of between 0.01 and 10 wt .-%, each based on the total weight of the detergent or cleaning agent.
  • detergents or cleaners enzymes can be used. These include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents or cleaning agents, which are preferably used accordingly.
  • Detergents or cleaning agents contain enzymes preferably in total amounts of 1 ⁇ 10 -6 to 5 wt .-% based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • proteases those of the subtilisin type are preferable.
  • subtilisins BPN 'and Carlsberg and their further developed forms examples of these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae, as well as improved for use in detergents and cleaners further developments of the aforementioned amylases. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention.
  • these include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L.
  • the cutinases can be used, which were originally isolated from Fusahum solani pisi and Humicola insolens. It is also possible to use lipases, or cutinases, whose initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • the enzymes can be used in any form known in the art. These include, for example, those obtained by granulation, extrusion or lyophilization solid preparations or, in particular in the case of liquid or gel-form compositions, solutions of the enzymes, advantageously as concentrated as possible, sparingly mixed with water and / or with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • a preferred machine dishwashing detergent contains, for example, a) 4 to 35% by weight of carboxymethyl inulin b) 2 to 15% by weight of sodium percarbonate c) 2 to 8% by weight of nonionic surfactant (s) d) 0.5 to 25 % By weight of copolymer (s) comprising i) acid group-containing monomer (s) ii) further ionic and / or nonionic monomer (s) e) 1, 0 to 6 wt .-% enzyme, and is free of phosphonate.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and zinc salts and magnesium and zinc complexes.
  • the spectrum of the preferred zinc salts according to the invention ranges from salts which are difficult or insoluble in water, ie a solubility below 100 mg / l, preferably below 10 mg / l, in particular especially below 0.01 mg / l, to those salts which have a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and especially above 5 g / l (all Solubilities at 2O 0 C water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate, and the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • the glass corrosion inhibitor at least one zinc salt of an organic carboxylic acid, more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and Zinkeitrat used.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of zinc salt in detergents or cleaners is preferably between 0.1 and 5% by weight, preferably between 0.2 and 4% by weight and in particular between 0.4 and 3% by weight.
  • the content of zinc in oxidized form (calculated as Zn 2+ ) between 0.01 to 1 wt .-%, preferably between 0.02 to 0.5 wt .-% and in particular between 0.04 to 0, 5 wt .-%, each based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art.
  • silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particular preference is given to using benzotriazole and / or alkylaminotriazole.
  • 3-amino-5-alkyl-1,2,4-triazoles or their physiologically tolerated salts preference is given to using 3-amino-5-alkyl-1,2,4-triazoles or their physiologically tolerated salts, these substances being particularly preferably present in a concentration of 0.001 to 10% by weight, preferably 0.0025 to 2 Wt .-%, particularly preferably 0.01 to 0.04 wt .-% are used.
  • perfume oils or perfumes within the scope of the present invention, individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, Citrus, Jasmine, Patchouly, Rose or Ylang-Ylang oil.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers, by a slower release of fragrance for long-lasting fragrance to care.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the compositions and to light and no pronounced substantivity to the substrates to be treated with the dye-containing agents such as textiles, glass, ceramics or plastic dishes, so as not to stain them.
  • the automatic dishwashing compositions according to the invention can be formulated in solid or liquid form but can also be present, for example, as a combination of solid and liquid forms.
  • Powder, granules, extrudates or compactates, in particular tablets, are particularly suitable as firm supply forms.
  • the liquid supply forms based on water and / or organic solvents may be thickened, in the form of gels.
  • Inventive agents can be formulated as single-phase or multi-phase products.
  • automatic dishwashing detergents with one, two, three or four phases are preferred.
  • Machine dishwashing detergents characterized in that they are in the form of a prefabricated dosing unit with two or more phases, are particularly preferred.
  • the individual phases of multiphase agents may have the same or different states of matter.
  • Machine dishwashing detergents which have at least two different solid phases and / or at least two liquid phases and / or at least one solid and at least one liquid phase are preferred.
  • Automatic dishwasher detergents according to the invention are preferably prefabricated to form metering units. These metering units preferably comprise the necessary for a cleaning cycle amount of washing or cleaning-active substances. Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 15 and 22 g.
  • the volume of the aforementioned metering units and their spatial form are selected with particular preference so that a metering of the prefabricated units is ensured via the metering chamber of a dishwasher.
  • the volume of the dosing unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml and in particular between 15 and 25 ml.
  • the automatic dishwasher detergents according to the invention in particular the prefabricated metering units, have a water-soluble coating, with particular preference.
  • disintegration aids so-called tablet disintegrants
  • disintegration aids in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration aid-containing agent.
  • Preferred disintegrating agents are cellulosic disintegrating agents, so that preferred washing or cleaning agents comprise such cellulose-based disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight. % contain.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • Preferred disintegration aids preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, are present in the desintegration agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6 wt .-%, each based on the total weight of the desintegration agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a single substance that releases a gas upon contact with water. Among these compounds, mention should be made in particular of magnesium peroxide, which liberates oxygen on contact with water.
  • preferred effervescent systems consist of at least two components which react with one another to form gas, for example alkali metal carbonate and / or bicarbonate and an acidifier which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • an acidifier which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • acidifier which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • acidifier which release carbon dioxide from the alkali metal salts in aqueous solution
  • the present application further relates to a method for cleaning dishes in a dishwasher using phosphate-free automatic dishwashing detergent according to the invention, wherein the automatic dishwashing agents are preferably metered into the interior of a dishwasher during the passage of a dishwashing program, before the main wash cycle or during the main wash cycle ,
  • the metering or entry of the agent according to the invention into the interior of the dishwasher can be done manually, but preferably the agent is metered into the interior of the dishwasher by means of the metering chamber of the dishwasher.
  • no additional water softener and no additional rinse aid is dosed into the interior of the dishwasher.
  • a kit for a dishwasher comprising a) a phosphate-free automatic dishwashing detergent according to the invention; (b) instructions instructing the consumer to use the automatic dishwashing detergent without the addition of a rinse aid and / or a softening salt are another subject of this application.
  • compositions according to the invention are distinguished from conventional automatic dishwashing agents by an improved rinsing action.
  • An object of the present application is therefore further the use of a phosphate-free automatic dishwasher according to the invention as a rinse aid in automatic dishwashing. Examples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne des détergents pour lave-vaisselle sans phosphate, composés a) d'inuline de carboxyméthyle, b) d'un produit de blanchiment oxygéné. L'invention se caractérise en ce que le détergent pour lave-vaisselle contient moins de 5 % en masse de phosphonate et le rapport massique inuline de carboxyméthyle a)/phosphonate b) est supérieur à 2. Les détergents selon l'invention se distinguent par de bons résultats en matière de nettoyage et de rinçage.
EP08774678.0A 2007-09-17 2008-07-03 Nettoyants Active EP2188361B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08774678T PL2188361T3 (pl) 2007-09-17 2008-07-03 Środki czyszczące

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044418A DE102007044418A1 (de) 2007-09-17 2007-09-17 Reinigungsmittel
PCT/EP2008/058550 WO2009037013A2 (fr) 2007-09-17 2008-07-03 Nettoyants

Publications (2)

Publication Number Publication Date
EP2188361A2 true EP2188361A2 (fr) 2010-05-26
EP2188361B1 EP2188361B1 (fr) 2014-09-17

Family

ID=39810172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08774678.0A Active EP2188361B1 (fr) 2007-09-17 2008-07-03 Nettoyants

Country Status (5)

Country Link
EP (1) EP2188361B1 (fr)
DE (1) DE102007044418A1 (fr)
ES (1) ES2523920T3 (fr)
PL (1) PL2188361T3 (fr)
WO (1) WO2009037013A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343904B2 (en) 2008-01-22 2013-01-01 Access Business Group International Llc Phosphate and phosphonate-free automatic gel dishwashing detergent providing improved spotting and filming performance
DE102009017822A1 (de) 2009-04-20 2010-10-21 Evonik Degussa Gmbh Wässrige Silansysteme basierend auf Tris(alkoxysilylalkyl)aminen und deren Verwendung
ES2548772T3 (es) * 2009-12-10 2015-10-20 The Procter & Gamble Company Producto para lavavajillas y uso del mismo
EP2700704B1 (fr) * 2012-08-24 2018-05-09 The Procter and Gamble Company Procédé pour laver la vaisselle
ES2677702T3 (es) 2012-08-24 2018-08-06 The Procter & Gamble Company Método de lavado de vajillas
EP3257929B1 (fr) 2016-06-17 2022-03-09 The Procter & Gamble Company Composition de détergent de lave-vaisselle automatique
DE102016212248A1 (de) * 2016-07-05 2018-01-11 Henkel Ag & Co. Kgaa Geschirrspülmittel enthaltend Zuckersäure und Aminocarbonsäure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232170C2 (de) 1992-09-25 1999-09-16 Henkel Kgaa Schwachalkalische Geschirreinigungsmittel
DE4315048A1 (de) 1993-04-01 1994-10-06 Henkel Kgaa Verfahren zur Herstellung stabiler, bifunktioneller, phosphat-, metasilikat- und polymerfreier niederalkalischer Reinigungsmitteltabletten für das maschinelle Geschirrspülen
NL9302163A (nl) * 1993-12-10 1995-07-03 Univ Delft Tech Gecarboxymethyleerde oligo- en polysacchariden als kristallisatie inhibitors.
EP1408103A1 (fr) 2002-10-10 2004-04-14 N.V. Solutia Europe S.A. Composition détergente avec détachage amélioré
DE102004001541A1 (de) 2003-01-23 2004-07-29 Zf Sachs Ag Übertragungsanordnung zur Momentenübertragung zwischen einer Antriebswelle und einer Kupplungsanordnung sowie Kraftfahrzeugantriebsstrang umfassend eine solche Übertragungsanordnung
DE102004015401A1 (de) 2004-03-26 2005-10-20 Henkel Kgaa Maschinelles Geschirrspülmittel
DE102004044411A1 (de) * 2004-09-14 2006-03-30 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophob modifizierte Polycarboxylate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009037013A2 *

Also Published As

Publication number Publication date
WO2009037013A3 (fr) 2009-05-14
PL2188361T3 (pl) 2015-02-27
DE102007044418A1 (de) 2009-03-19
WO2009037013A2 (fr) 2009-03-26
ES2523920T3 (es) 2014-12-02
EP2188361B1 (fr) 2014-09-17

Similar Documents

Publication Publication Date Title
EP2118254B1 (fr) Détergents
EP2115112B1 (fr) Détergents
EP2118255B1 (fr) Composition detergente
EP2115113B1 (fr) Détergents
EP2235153B1 (fr) Détergents
EP2358853B1 (fr) Détergents pour lave-vaisselle
EP2364351B1 (fr) Détergents
DE102007039655A1 (de) Reinigungsmittel
EP2188361B1 (fr) Nettoyants
WO2011032868A1 (fr) Détergent pour lave-vaisselle
WO2008095554A2 (fr) Détergents
EP2480648A1 (fr) Détergent pour lave-vaisselle
WO2009037012A2 (fr) Nettoyants
EP2718414A1 (fr) Détergent vaisselle protégeant l'argenterie
DE102009029636A1 (de) Maschine Geschirrspülmittel
EP2115109A2 (fr) Détergents
EP2723844B1 (fr) Détergents pour vaisselle avec protection de décor améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091210

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110520

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 687723

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012225

Country of ref document: DE

Effective date: 20141030

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2523920

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012225

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

26N No opposition filed

Effective date: 20150618

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024089

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160726

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160721

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 687723

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170703

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180518

Year of fee payment: 16

Ref country code: TR

Payment date: 20180703

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200703

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

Ref country code: ES

Payment date: 20230926

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16