EP2181563B1 - Induction heating method - Google Patents
Induction heating method Download PDFInfo
- Publication number
- EP2181563B1 EP2181563B1 EP08784690A EP08784690A EP2181563B1 EP 2181563 B1 EP2181563 B1 EP 2181563B1 EP 08784690 A EP08784690 A EP 08784690A EP 08784690 A EP08784690 A EP 08784690A EP 2181563 B1 EP2181563 B1 EP 2181563B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- winding
- billets
- iron core
- billet
- relative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/14—Tools, e.g. nozzles, rollers, calenders
- H05B6/145—Heated rollers
Definitions
- the invention relates to a method for inductive heating of a billet of an electrically conductive material by relative movement, in particular generating a rotation between the billet and a magnetic field, which is generated by means of at least one DC-powered superconducting winding on an iron core.
- a constant-speed cylindrical billet clamped in a rotary-driven jig can be rotated about its cylinder axis in a magnetic field generated by the superconducting winding by means of a constant current.
- a largely constant current is induced in the billet.
- the billet is usually not optimally cylindrical and / or not exactly clamped so that it is not rotated about its cylinder axis.
- the magnetic flux through the billet also changes in terms of amount, so that a corresponding amount of non-constant induction current is induced in the billet.
- rod-shaped billets e.g. With rectangular or oval cross-section, generated by rotation of the billets a constantly alternating induction current, which causes a correspondingly alternating return induction voltage and thus corresponding reverse induction losses.
- the US 3,842,243 proposes to heat an electrically conductive billet in an alternating magnetic field.
- an AC-powered conductor in a U-shaped yoke.
- the section can be driven into magnetic saturation. Therefore, the magnetic flux of the alternating field is no longer complete Billet led, and this is locally heated less in the corresponding area.
- the invention has for its object to reduce the back induction losses in the superconducting winding when carrying out the method mentioned in the introduction.
- At least one billet is moved relative to a magnetic field. It does not matter whether the magnetic field is rotated around the billet or vice versa.
- a direct current is generated and maintained in the superconducting winding with a magnetic flux density in the iron core at least in the region of the winding at which the relative permeability of the material of the iron core is smaller than in the de-energized state the winding is.
- the relative permeability decreases, the back induction and thus the loss in the superconducting winding decreases.
- the magnetic field of the winding leading effect of the iron core is maintained. As a result, the re-induction is reduced.
- the position of the billets relative to one another can be regulated so that subtractively superposing the back induction voltages generated by the alternating induction currents of the billets.
- the magnetic flux through the billet is approximately proportional to the projection surface of the billet on a plane perpendicular to the field lines.
- the position of the billets is controlled to each other so that the two billets are mutually rotated by 45 ° about their parallel longitudinal axes, for then the magnetic flux through one of the two billets increases to the same extent as it decreases by the other billet. If the river has reached its maximum through one billet, it subsequently decreases again, with the flow through the other ticket increasing to the same extent.
- the summed magnetic flux through the billets is ideally constant.
- the relative movement of the billets relative to each other can be controlled so that the reinduction stresses generated by the time varying induction currents of the billets subtract super subtractively (Claim 2).
- this solution is also concerned with rotating the billets in a magnetic field in such a way that their summed projection area is at least largely constant.
- the time-related change in the magnetic flux through the billets, summed up due to changing rotational speeds of the individual billets relative to the magnetic field can be minimized.
- two preferably identical, for example, cylindrical billets rotated about their respective longitudinal axis can be turned in opposite directions and preferably with the same angular velocity in terms of absolute value (claim 3).
- the process can also be carried out with the simultaneous heating of different billets. If the cross sections of the billets have symmetries, these can be exploited in a targeted manner.
- a first of the cylindrical billets of the above example with a square-shaped bar and replace the second cylindrical billet with a regular octahedral cross-section billet.
- the first billet is rotated at double the angular velocity as the second and opposite to this.
- the billets are preferably aligned against each other prior to the start of the rotation so that the magnetic flux either increases initially or decreases initially with the start of the rotational movement through both billets.
- the projection surfaces of the two billets on a plane perpendicular to the magnetic flux are both maximum or both minimum. If the two billets are rotated in the same direction (with unchanged ratio of the angular velocities to each other), the billets are aligned before starting so that with the start of Drehbwegung the magnetic flux decreases by one of the billets initially and increases by the other initially.
- the projection area of a billet is preferably maximum and the projection area of the other billet is minimal.
- the magnetic changes Flow through the two billets in opposite directions, so that the individual billets assigned return induction voltages have different signs and subtractive superpon Schl.
- a band-shaped high-temperature superconductor can be used.
- HTSC band-shaped high-temperature superconductor
- cuprate superconductors are referred to, ie rare earth copper oxides, such as YBa 2 Cu 3 O 7-x .
- the value of the direct current can be kept at least substantially constant by a regulated current source connected to the winding. Due to the low re-induction, this constant current source can have a smaller control range and thus be less expensive than when carrying out the method according to the prior art.
- the device in particular for carrying out any of the above-described methods, has a superconducting winding on an iron core, a DC source for generating a DC current in the winding, at least one chuck for a billet of an electrically conductive material and a rotary drive for generating a relative movement between the coil and the clamping device.
- the value of the DC current generated in the winding by the DC power source is set so that the relative permeability of the iron core is reduced at least in the region of the winding relative to the currentless state of the winding (claim 8).
- the clamping devices can optionally or alternatively be driven in opposite directions and preferably with approximately the same angular velocity in terms of absolute value (claim 9).
- the clamping devices may have correspondingly controlled drive motors.
- at least two jigs can be driven by a common motor.
- a gearbox with drives running in opposite directions and with the same angular velocity in absolute terms transmits the engine power to the clamping devices.
- the apparatus may have means for determining the respective re-induction voltages produced by the time-varying induction currents in the billets.
- the rotary drives of the jigs are controlled so that subtractively superposing the respectively induced by the billets remindindutationshoven (claim 10).
- the position of the billets to each other and / or the relative movement of the billets to each other can be controlled by the controller.
- the iron core used can be a rod in the simplest case. At both ends of the rod, a billet can be moved, in particular rotated, relative to the magnetic field emerging from the rod. The magnetic inference takes place through the free space.
- An at least approximately C-shaped yoke has an air gap between two Pole shoes of the otherwise annular cross-sectionally closed yoke in which the billet can be rotated.
- Such an iron core allows good guidance of the magnetic flux through a billet to be heated. Compared to the rod, the magnetic inference is also due to the iron core.
- the iron core is an approximately E-shaped yoke, each with an air gap between the center leg and the respective end leg for receiving a billet.
- the winding is preferably arranged on the middle leg.
- Such an iron core makes it possible to heat two billets simultaneously with only one winding and also to guide the magnetic return flow through the iron core. For this purpose, in each of the air gaps per a billet is moved relative to the magnetic field, preferably rotated in the air gap.
- the iron core consists at least partially of layered sheets. This reduces possible eddy currents in the iron core. Correspondingly, the eddy current dissipation power that heats the iron core decreases and the measures for cooling the iron core can be smaller. At the same time, the possible heat input from the iron core to the superconducting winding is reduced.
- the sheets are at least partially layered approximately orthogonal to the plane in which the current induced in the billet flows for the most part. This allows a good guidance of the magnetic field with low eddy current losses.
- the cross section in the region of the winding is preferably chosen to be smaller than outside the winding. This further reduces the reinduction.
- the induction heater in Fig. 1 serves to heat a billet 10 by rotating the billet 10 in a magnetic field generated by a magnetic system 50.
- the billet 10 is clamped between a right and a left pressure element 2a and 2b of a clamping device and by a motor 1 rotatably driven.
- a gear 3 connects the motor shaft with the shaft of the movable in the direction of the two-sided arrows jig 2a.
- the magnet system 50 may, as in Fig. 2a and 2b shown greatly simplified, a DC powered superconducting winding 60 on a rod-shaped iron core 55.2 include. Between the winding 60 and the iron core 55.2 is an insulation element 61, for example a vacuumized cavity, which reduces the heat input into the winding 60 (only Fig. 2b ).
- the rod-shaped iron core 55.2 carries the magnetic field (not shown) generated by the DC-powered winding 60, which exits the two end faces 56.2, 57.2 of the iron core 55.2 as if from a lens and enters the billets 10 located there via an air gap.
- the magnetic flux changes relative to the billet 10 and an induction current is induced in the billet 10.
- the induction current in the billets 10 in turn generates a further magnetic field which superimposes with the magnetic field generated by the winding and induces a voltage in the winding 60 back.
- ⁇ wi ( t ) 0.
- the back induction can be reduced by feeding the winding 60 with a direct current which preferably lowers the relative permeability to shortly before the saturation region.
- the magnet system 50 may consist essentially of a C-shaped iron core 55.3 with a preferably HTSC winding 60 (FIG. Fig. 3a and 3b ).
- the winding 60 is fed by a regulated DC power source 80.
- the iron core carries the magnetic field thus generated, which is symbolized by the black arrows (only Fig. 3b ).
- the magnetic inference is not due to the free space but through the leg 57.3 ( Fig. 3b ).
- At least one billet 10 to be heated is located between the two legs 56.3, 57.3 of the iron core 55.
- the billet 10 to be heated is generally not exactly cylindrical and is usually not rotated exactly around its cylinder axis. Accordingly, the surface of the billet 10 penetrated by the magnetic flux and thus the back induction varies, as a result of which the current through the superconducting winding also varies.
- the back induction is reduced by appropriate selection of the value of the DC current with which the winding 60 is fed.
- the sectional area of the iron core 55.3 at right angles to the magnetic field symbolized by the black arrows is reduced in the area of the winding 60 in comparison to the corresponding areas of the legs 56.3, 57.3.
- the reduced thickness d wi of the iron core in the area of the winding compared to the thickness d f of the free legs.
- the iron core 55.4 as in Fig. 4a and Fig. 4b shown, also be E-shaped. Between the free legs 71 and 72 or 72 and 73 is ever a bag into which a billet 10 is introduced.
- the iron core 55.4 is comprised of laminated sheets 58 stacked orthogonal to the plane in which the current induced in the billets 10 flows.
- Fig. 5 shows the calculated reinduction voltage U ind in volts as a function of the winding current I wi from 120 kW heating power by rotation of a billet in the field of a winding on an iron core having 3000 turns, with a uniform change in the rotational frequency of the billet relative to the winding within 1s 8 Hz.
- the return induction voltage has its maximum value of about 220 V.
- I wi With increasing current I wi , the reverse induction initially decreases greatly in magnitude.
- An increase in the current I wi for example, about 15 A to I wi ⁇ 65 A lowers the back-induction voltage U ind magnitude to approximately 100 V.
- the induction heater is between about 60 A (-180,000 ampere turns) and about 80 A ( ⁇ 240,000 ampere turns), especially at about 70 A ( ⁇ 210,000 ampere turns), because then the relative permeability of the iron core has a value only allows a relatively low re-induction, but at the same time still sufficient so that the iron core leads the magnetic field generated by the superconducting winding to the billet.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum induktiven Erwärmen eines Billets aus einem elektrisch leitenden Werkstoff durch Relativbewegung, insbesondere Erzeugen einer Drehung zwischen dem Billet und einem Magnetfeld, das mittels mindestens einer gleichstromgespeisten supraleitenden Wicklung auf einem Eisenkern erzeugt wird.The invention relates to a method for inductive heating of a billet of an electrically conductive material by relative movement, in particular generating a rotation between the billet and a magnetic field, which is generated by means of at least one DC-powered superconducting winding on an iron core.
Ein solches Verfahren zeigt die
Ebenso wird bei der Erwärmung nicht zylindrischer, stabförmiger Billets, z.B. mit rechteckigem oder ovalem Querschnitt, durch Drehung der Billets ein ständig alternierender Induktionsstrom erzeugt, der eine entsprechend alternierende Rückinduktionsspannung und damit entsprechende Rückinduktionsverluste bewirkt.Similarly, when heating non-cylindrical, rod-shaped billets, e.g. With rectangular or oval cross-section, generated by rotation of the billets a constantly alternating induction current, which causes a correspondingly alternating return induction voltage and thus corresponding reverse induction losses.
Zeitlich variierende Rückinduktionsspannungen und damit Rückinduktionsverluste treten unabhängig von der Form des Billets insbesondere beim Beginn und am Ende der Induktionserwärmung auf, wenn das Billet in Rotation versetzt bzw. angehalten wird. Grundsätzlich treten die Rückinduktionsverluste bei jeder Änderung der Drehgeschwindigkeit auf.Temporally varying return inductive voltages and thus reverse induction losses occur regardless of the shape of the billet, especially at the beginning and at the end of the induction heating when the billet is set in rotation or stopped. Basically, the reverse induction losses occur every time the rotational speed changes.
Diese Rückinduktionsverluste müssen durch eine entsprechend leistungsfähige Stromquelle ausgeglichen werden und erhöhen die für die supraleitende Wicklung notwendige Kühlleistung.These return inductance losses must be compensated by a correspondingly powerful current source and increase the cooling power necessary for the superconducting winding.
Die
Der Erfindung liegt die Aufgabe zugrunde die Rückinduktionsverluste in der supraleitenden Wicklung bei Durchführung des einleitend genannten Verfahrens zu verringern.The invention has for its object to reduce the back induction losses in the superconducting winding when carrying out the method mentioned in the introduction.
Verfahrensmäßig ist diese Aufgabe durch ein Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sind in den abhängigen Ansprüchen 2 bis 7 angegeben. Vorrichtungen insbesondere zur Durchführung der Verfahren sind Gegenstand des Anspruches 8. Weiterbildungen der Vorrichtungen sind in den Anspruchen 9 bis 15 angegeben.Procedurally, this object is achieved by a method according to
Bei allen Verfahren wird wenigstens ein Billet relativ zu einem Magnetfeld bewegt. Es kommt dabei nicht darauf an, ob das Magnetfeld um das Billet gedreht wird oder umgekehrt. Gemäß dem Verfahren nach dem Anspruch 1 wird in der supraleitenden Wicklung ein Gleichstrom mit einem Wert erzeugt und aufrecht erhalten, der in dem Eisenkern zumindest im Bereich der Wicklung eine magnetische Flussdichte erzeugt, bei der die relative Permeabilität des Werkstoffes des Eisenkerns kleiner als im stromlosen Zustand der Wicklung ist. Weil sich die relative Permeabilität reduziert, vermindert sich die Rückinduktion und damit der Verlust in der supraleitenden Wicklung. Gleichzeitig bleibt die das Magnetfeld der Wicklung führende Wirkung des Eisenkerns erhalten. Im Ergebnis wird die Rückinduktion verringert.In all methods, at least one billet is moved relative to a magnetic field. It does not matter whether the magnetic field is rotated around the billet or vice versa. According to the method of
Werden zwei oder mehr Billets gleichzeitig in einem von der supraleitenden wicklung erzeugten Magnetfeld gedreht, kann nach einer alternativen oder optionalen Lösung des Problems die Lage der Billets zueinander so geregelt werden, dass die von den alternierenden Induktionsströmen der Billets erzeugten Rückinduktionsspannungen subtraktiv superponieren. Vereinfacht dargestellt, ist unter der Annahme eines im Bereich eines Billets homogenen Magnetfeldes der magnetische Fluss durch das Billet etwa proportional zur Projektionsfläche des Billets auf eine Ebene senkrecht zu den Feldlinien. Bei Erwärmung eines nicht zylindrischen Billets in dem Magnetfeld verändert sich die Projektionsfläche mit jeder Winkeländerung. Der Kern dieser Losung besteht darin, die Lage zweier oder mehrerer Billets zueinander so zu regeln, dass sich die summierte Projektionsfläche aller Billets bei deren Bewegung im Magnetfeld nicht oder nur möglichst wenig ändert. Entsprechend ändert sich dann auch der summierte magnetische Fluss durch die Billets nicht oder nur minimal, was zu einer minimierten Rückinduktionsspannung in der Wicklung führt. Man kann auch sagen, dass die den einzelnen Billets zuzuordnenden, d.h. durch deren jeweilige Änderungen des magnetischen Flusses verursachten Rückinduktionsspannungen subtraktiv superponieren.If two or more billets are simultaneously rotated in a magnetic field generated by the superconducting winding, according to an alternative or optional solution to the problem, the position of the billets relative to one another can be regulated so that subtractively superposing the back induction voltages generated by the alternating induction currents of the billets. Simplified, assuming a homogeneous magnetic field in the area of a billet, the magnetic flux through the billet is approximately proportional to the projection surface of the billet on a plane perpendicular to the field lines. When heating a non-cylindrical billet in the magnetic field, the projection area changes with each angle change. The essence of this solution is to regulate the position of two or more billets to each other so that the summed projection surface of all billets does not or only slightly changes as they move in the magnetic field. Accordingly, the summed magnetic flux through the billets does not change or only minimally, which leads to a minimized re-induction voltage in the winding. It can also be said that the return inductive stresses attributable to the individual billets, that is subtended by their respective changes in the magnetic flux, subtract superficially.
Dazu können beispielsweise zwei identische quaderförmige Billets mit quadratischem Querschnitt, mit gleicher Winkelgeschwindigkeit jeweils um ihre Längsachsen gedreht und mit diesen Längsachsen zumindest etwa orthogonal zu den Feldlinien des von der stromdurchflossenen Wicklung erzeugten Magnetfelds ausgerichtet werden, wobei die Lage der Billets zueinander so geregelt wird, dass die beiden Billets gegeneinander um 45° um ihre parallelen Längsachsen verdreht sind, denn dann nimmt der magnetische Fluß durch das eine der beiden Billets in dem selben Maße zu, wie er durch das andere Billet abnimmt. Hat der Fluss durch das eine Billet sein Maximum erreicht, nimmt er anschließend wieder ab, wobei der Fluss durch das andere Billet im gleichen Maße zunimmt. Der summierte magnetische Fluss durch die Billets ist im Idealfall konstant. Dann löschen sich die den einzelnen Billets zuzuordnenden Rückinduktionsspannungen durch subtraktives Superponieren zumindest teilweise aus. Der gleiche Effekt, wenn auch nicht so ausgeprägt, wird erreicht, wenn z.B. zwei quaderförmige Billets mit nicht kongruenten Querschnittsflächen gleichzeitig erwärmt werden. Dies gilt insbesondere für quaderförmige Billets mit ausgeprägtem Rechteckquerschnitt.For this purpose, for example, two identical rectangular billets with square cross-section, rotated at the same angular velocity in each case about their longitudinal axes and aligned with these longitudinal axes at least approximately orthogonal to the field lines of the magnetic field generated by the current-carrying coil, the position of the billets is controlled to each other so that the two billets are mutually rotated by 45 ° about their parallel longitudinal axes, for then the magnetic flux through one of the two billets increases to the same extent as it decreases by the other billet. If the river has reached its maximum through one billet, it subsequently decreases again, with the flow through the other ticket increasing to the same extent. The summed magnetic flux through the billets is ideally constant. Then, the reinduction stresses attributable to the individual billets are at least partially canceled by subtractive superposition. The same effect, though not so pronounced, is achieved when, for example, two parallelepiped billets with non-congruent cross-sectional areas are heated simultaneously. This is especially true for cuboid billets with pronounced rectangular cross-section.
Nach einer weiteren alternativen oder optionalen Lösung kann bei gleichzeitigem induktiven Erwärmen von zwei oder mehr Billets durch Drehen in einem von einer gleichstromgespeisten supraleitenden Wicklung erzeugten Magnetfeld die Relativbewegung der Billets zueinander so geregelt werden, dass die von den zeitlich veränderlichen Induktionsströmen der Billets erzeugten Rückinduktionsspannungen subtraktiv superponieren (Anspruch 2). Auch bei dieser Lösung geht es wie bei den in den beiden vorstehenden Absätzen beschriebenen Verfahren darum, die Billets in einem Magnetfeld so zu drehen, dass deren summierte Projektionsfläche zumindest weitgehend konstant ist. Darüberhinaus kann durch die Regelung der Bewegung der Billets relativ zueinander alternativ oder optional die sich aufgrund ändernder Rotationsgeschwindigkeiten der einzelnen Billets relativ zu dem Magnetfeld summierte zeitliche Änderung des magnetischen Flusses durch die Billets minimiert werden. Beispielsweise können zwei vorzugsweise identische, z.B. zylindrische um ihre jeweilige Längsachse gedrehte Billets gegensinnig und vorzugsweise mit betragsmäßig gleicher Winkelgeschwindigkeit gedreht werden (Anspruch 3). Dadurch haben die den einzelnen Billets zuzuordnenden Rückinduktionen beim Start und am Ende der Erwärmung, d.h. beim Anfahren bzw. beim Stoppen der Drehbwegung, verschiedene Vorzeichen, so dass im Idealfall beim Starten und beim Stoppen eine Auslöschung der effektiven Rückinduktionsspannung in der Wicklung durch subtraktives Superponieren der den einzelnen Billets zuzuordnenden Rückinduktionsspannungen erfolgt.According to a further alternative or optional solution, with simultaneous inductive heating of two or more billets by rotating in a magnetic field generated by a dc superconducting winding, the relative movement of the billets relative to each other can be controlled so that the reinduction stresses generated by the time varying induction currents of the billets subtract super subtractively (Claim 2). As with the methods described in the two preceding paragraphs, this solution is also concerned with rotating the billets in a magnetic field in such a way that their summed projection area is at least largely constant. Moreover, by regulating the movement of the billets relative to one another, alternatively or optionally, the time-related change in the magnetic flux through the billets, summed up due to changing rotational speeds of the individual billets relative to the magnetic field, can be minimized. For example, two preferably identical, for example, cylindrical billets rotated about their respective longitudinal axis can be turned in opposite directions and preferably with the same angular velocity in terms of absolute value (claim 3). As a result, the individual indices to be assigned to the individual billets at the start and at the end of the heating, ie when starting or when stopping the Drehbwegung, different signs, so that in the ideal case when starting and stopping an extinction of the effective Rückinduktionsspannung in the winding by subtractive superposition of the individual billets attributable Rückinduktionsspannungen occurs.
Natürlich lässt sich das Verfahren auch beim gleichzeitigen Erwärmen unterschiedlicher Billets durchführen. Sofern die Querschnitte der Billets Symmetrien besitzen, lassen sich diese gezielt ausnutzen. Beispielsweise kann man ein erstes der zylindrischen Billets aus obigem Beispiel gegen ein stabförmiges mit quadratischem Querschnitt ersetzen und das zweite zylindrische Billet durch ein stabförmiges Billet mit regelmäßigem oktaedrischem Querschnitt ersetzen. Nun wird das erste Billet mit betragsmäßig doppelter Winkelgeschwindigkeit wie das zweite und gegensinnig zu diesem gedreht. Unabhängig von der Form sind die Billets vor dem Start der Drehung vorzugsweise so gegeneinander auszurichten, daß der magnetische Fluß mit Start der Drehbewegung durch beide Billets entweder zunächst zunimmt oder zunächst abnimmt. Vorzugsweise sind beim Start der Drehbewegung die Projektionsflächen der beiden Billets auf eine Ebene senkrecht zum magnetischen Fluss beide maximal oder beide minimal. Werden die beiden Billets gleichsinnig gedreht (bei betragsmäßig unverändertem Verhältnis der Winkelgeschwindigkeiten zueinander), sind die Billets vor dem Start so auszurichten, dass mit dem Start der Drehbwegung der magnetische Fluß durch eines der Billets zunächst abnimmt und durch das andere zunächst zunimmt. In diesem Fall ist beim Start der Drehbewegung die Projektionsfläche eines Billets vorzugsweise maximal und die Projektionsfläche des anderen Billets minimal. In beiden Fällen verändert sich der magnetische Fluß durch die beiden Billets gegenläufig, so dass die den einzelnen Billets zuzuordnenen Rückinduktionsspannungen unterschiedliche Vorzeichen haben und subtraktiv superponieren.Of course, the process can also be carried out with the simultaneous heating of different billets. If the cross sections of the billets have symmetries, these can be exploited in a targeted manner. For example, one may replace a first of the cylindrical billets of the above example with a square-shaped bar and replace the second cylindrical billet with a regular octahedral cross-section billet. Now, the first billet is rotated at double the angular velocity as the second and opposite to this. Regardless of the shape, the billets are preferably aligned against each other prior to the start of the rotation so that the magnetic flux either increases initially or decreases initially with the start of the rotational movement through both billets. Preferably, at the start of the rotational movement, the projection surfaces of the two billets on a plane perpendicular to the magnetic flux are both maximum or both minimum. If the two billets are rotated in the same direction (with unchanged ratio of the angular velocities to each other), the billets are aligned before starting so that with the start of Drehbwegung the magnetic flux decreases by one of the billets initially and increases by the other initially. In this case, at the start of the rotational movement, the projection area of a billet is preferably maximum and the projection area of the other billet is minimal. In both cases, the magnetic changes Flow through the two billets in opposite directions, so that the individual billets assigned return induction voltages have different signs and subtractive superponieren.
Als supraleitende Wicklung kann beispielsweise ein bandförmiger Hochtemperatursupraleiter (HTSL) verwendet werden. Als HTSL werden z.B. Kuprat-Supraleiter bezeichnet, d.h. Seltenerd Kupfer-Oxide, wie z.B. YBa2Cu3O7-x.As a superconducting winding, for example, a band-shaped high-temperature superconductor (HTSC) can be used. As HTSC, for example, cuprate superconductors are referred to, ie rare earth copper oxides, such as YBa 2 Cu 3 O 7-x .
Der Wert des Gleichstroms kann durch eine an die Wicklung angeschlossene, geregelte Stromquelle zumindest im Wesentlichen konstant gehalten werden. Aufgrund der geringen Rückinduktion kann diese Konstantstromquelle einen geringeren Regelungsbereich haben und damit kostengünstiger als bei Durchführung des Verfahrens nach dem Stand der Technik sein.The value of the direct current can be kept at least substantially constant by a regulated current source connected to the winding. Due to the low re-induction, this constant current source can have a smaller control range and thus be less expensive than when carrying out the method according to the prior art.
Die Vorrichtung insbesondere zur Durchführung eines der vorstehend beschriebenen Verfahren hat eine supraleitende Wicklung auf einem Eisenkern, eine Gleichstromquelle zum Erzeugen eines Gleichstroms in der Wicklung, mindestens eine Einspannvorrichtung für ein Billet aus einem elektrisch leitenden Material und einen Drehantrieb zum Erzeugen einer Relativbewegung zwischen der Wicklung und der Einspannvorrichtung. In einer Ausführungsform ist der Wert des in der Wicklung durch die Gleichstromquelle erzeugten Gleichstroms so eingestellt, dass die relative Permeabilität des Eisenkerns zumindest im Bereich der Wicklung gegenüber dem stromlosen Zustand der Wicklung reduziert ist (Anspruch 8).The device, in particular for carrying out any of the above-described methods, has a superconducting winding on an iron core, a DC source for generating a DC current in the winding, at least one chuck for a billet of an electrically conductive material and a rotary drive for generating a relative movement between the coil and the clamping device. In one embodiment, the value of the DC current generated in the winding by the DC power source is set so that the relative permeability of the iron core is reduced at least in the region of the winding relative to the currentless state of the winding (claim 8).
Hat die Vorrichtung mindestens eine weitere drehangetriebene Einspannvorrichtung, so können die Einspannvorrichtungen optional oder alternativ gegensinnig und vorzugsweise mit betragsmäßig etwa gleicher Winkelgeschwindigkeit angetrieben sein (Anspruch 9). Beispielsweise können die Einspannvorrichtungen über entsprechend geregelte Antriebsmotoren verfügen. Alternativ können auch mindestens zwei Einspannvorrichtungen mit einem gemeinsamen Motor angetrieben werden. Ein Getriebe mit gegensinnig und mit betragsmäßig gleicher Winkelgeschwindigkeit laufenden Abtrieben überträgt die Motorleistung auf die Einspannvorrichtungen.If the device has at least one further rotationally driven clamping device, then the clamping devices can optionally or alternatively be driven in opposite directions and preferably with approximately the same angular velocity in terms of absolute value (claim 9). For example, the clamping devices may have correspondingly controlled drive motors. Alternatively, at least two jigs can be driven by a common motor. A gearbox with drives running in opposite directions and with the same angular velocity in absolute terms transmits the engine power to the clamping devices.
Alternativ oder zusätzlich kann die Vorrichtung Mittel zum Bestimmen der von den zeitlich variierenden Induktionsströmen in den Billets jeweils hervorgerufenen Rückinduktionsspannungen haben. Durch eine Steuerung, welche die zuvor bestimmten Rückinduktionsspannungen auswertet, werden die Drehantriebe der Einspannvorrichtungen so gesteuert, dass die jeweils von den Billets hervorgerufenen Rückinduktionsspannungen subtraktiv superponieren (Anspruch 10). Beispielsweise kann die Lage der Billets zueinander und/oder die Relativbewegung der Billets zueinander durch die Steuerung geregelt werden.Alternatively or additionally, the apparatus may have means for determining the respective re-induction voltages produced by the time-varying induction currents in the billets. By a control, which evaluates the previously determined return inductive voltages, the rotary drives of the jigs are controlled so that subtractively superposing the respectively induced by the billets Rückinduktionsspannungen (claim 10). For example, the position of the billets to each other and / or the relative movement of the billets to each other can be controlled by the controller.
Der verwendete Eisenkern kann im einfachsten Fall ein Stab sein. An beiden Enden des Stabes kann ein Billet relativ zu dem aus dem Stab austretenden Magnetfeld bewegt, insbesondere gedreht werden. Der magnetische Rückschluss erfolgt durch den freien Raum.The iron core used can be a rod in the simplest case. At both ends of the rod, a billet can be moved, in particular rotated, relative to the magnetic field emerging from the rod. The magnetic inference takes place through the free space.
Besser kann der verwendete Eisenkern ein zumindest näherungsweise C-förmiges Joch sein. Ein zumindest näherungsweise C-förmiges Joch hat einen Luftspalt zwischen zwei Polschuhen des ansonsten im Querschnitt ringförmig geschlossenen Jochs in dem das Billet gedreht werden kann. Ein solcher Eisenkern ermöglicht eine gute Führung des magnetischen Flusses durch ein zu erwärmendes Billet. Im Vergleich zum Stab erfolgt auch der magnetische Rückschluss durch den Eisenkern.Better the iron core used can be an at least approximately C-shaped yoke. An at least approximately C-shaped yoke has an air gap between two Pole shoes of the otherwise annular cross-sectionally closed yoke in which the billet can be rotated. Such an iron core allows good guidance of the magnetic flux through a billet to be heated. Compared to the rod, the magnetic inference is also due to the iron core.
Nach einer bevorzugten Ausführungsform ist der Eisenkern ein etwa E-förmiges Joch mit je einem Luftspalt zwischen dem Mittelschenkel und dem jeweiligen Endschenkel zur Aufnahme je eines Billets. Die Wicklung ist vorzugsweise auf dem Mittelschenkel angeordnet. Ein solcher Eisenkern ermöglicht mit nur einer Wicklung gleichzeitig zwei Billets zu erwärmen und auch den magnetischen Rückfluss durch den Eisenkern zu führen. Dazu wird in jedem der Luftspalte je ein Billet relativ zum Magnetfeld bewegt, vorzugsweise in dem Luftspalt gedreht.According to a preferred embodiment, the iron core is an approximately E-shaped yoke, each with an air gap between the center leg and the respective end leg for receiving a billet. The winding is preferably arranged on the middle leg. Such an iron core makes it possible to heat two billets simultaneously with only one winding and also to guide the magnetic return flow through the iron core. For this purpose, in each of the air gaps per a billet is moved relative to the magnetic field, preferably rotated in the air gap.
Vorzugsweise besteht der Eisenkern zumindest teilweise aus geschichteten Blechen. Dadurch werden mögliche Wirbelströme in dem Eisenkern reduziert. Entsprechend sinkt die den Eisenkern erwärmende Wirbelstromverlustleistung und die Maßnahmen zur Kühlung des Eisenkerns können geringer ausfallen. Gleichzeitig wird der mögliche Wärmeeintrag vom Eisenkern auf die supraleitende Wicklung reduziert.Preferably, the iron core consists at least partially of layered sheets. This reduces possible eddy currents in the iron core. Correspondingly, the eddy current dissipation power that heats the iron core decreases and the measures for cooling the iron core can be smaller. At the same time, the possible heat input from the iron core to the superconducting winding is reduced.
Besonders bevorzugt sind die Bleche zumindest teilweise etwa orthogonal zu der Ebene geschichtet, in der der in dem Billet induzierte Strom zum überwiegenden Teil fließt. Dies ermöglicht eine gute Führung des Magnetfeldes bei geringen Wirbelstromverlusten.Particularly preferably, the sheets are at least partially layered approximately orthogonal to the plane in which the current induced in the billet flows for the most part. This allows a good guidance of the magnetic field with low eddy current losses.
Vorzugsweise wird der Querschnitt im Bereich der Wicklung kleiner als außerhalb der Wicklung gewählt. Dadurch wird die Rückinduktion nochmals verringert.The cross section in the region of the winding is preferably chosen to be smaller than outside the winding. This further reduces the reinduction.
Anhand der Zeichnung wird die Erfindung weiter erläutert. Es zeigt jeweils schematisch vereinfacht und beispielhaft:
- Fig. 1
- die Ansicht eines Induktionsheizers,
- Fig. 2a
- ein Magnetsystem eines Induktionsheizers mit einem stabförmigen Eisenkern,
- Fig. 2b
- eine Seitenansicht des Magnetsystems aus
Fig. 2a , - Fig. 3a
- ein Magnetsystem mit einem C-förmigen Joch als Eisenkern,
- Fig. 3b
- das Magnetsystem aus
Fig. 3a in der Frontansicht, - Fig. 4a
- ein Magnetsystem mit einem E-förmigen Joch als Eisenkern,
- Fig. 4b
- das Magnetsystem aus
Fig. 4a in der Frontansicht und - Fig. 5
- ein Beispiel der Rückinduktionsspannung als Funktion des Wicklungsstroms.
- Fig. 1
- the view of an induction heater,
- Fig. 2a
- a magnet system of an induction heater with a rod-shaped iron core,
- Fig. 2b
- a side view of the magnet system
Fig. 2a . - Fig. 3a
- a magnet system with a C-shaped yoke as the iron core,
- Fig. 3b
- the magnet system off
Fig. 3a in the front view, - Fig. 4a
- a magnet system with an E-shaped yoke as iron core,
- Fig. 4b
- the magnet system off
Fig. 4a in front view and - Fig. 5
- an example of the return induction voltage as a function of the winding current.
Der Induktionsheizer in
Das Magnetsystem 50 kann, wie in
In einer anderen Ausführungsform kann das Magnetsystem 50 im Wesentlichen aus einem C-förmigen Eisenkern 55.3 mit einer vorzugsweise HTSL-Wicklung 60 bestehen (
Die Wicklung 60 wird von einer geregelten Gleichstromquelle 80 gespeist. Der Eisenkern führt das so erzeugte Magnetfeld, das durch die schwarzen Pfeile symbolisiert wird (nur
Oberhalb von etwa 80 A bewirkt eine weitere Erhöhung des Stroms nur eine vergleichsweise geringe Verringerung der Rückinduktionsspannung Uind. Beispielsweise bewirkt eine Erhöhung des Stroms Iwi von etwa 80 A auf etwa 100 A lediglich eine Verringerung der Rückinduktionsspannung um ca. 20 V. Der optimale Betriebsbereich für den Induktionsheizer liegt zwischen etwa 60 A (- 180.000 Amperewindungen) und etwa 80 A (∼ 240.000 Amperewindungen) insbesondere bei etwa 70 A (∼ 210.000 Amperewindungen), denn dann hat die relative Permeabilität des Eisenkerns einen Wert, der nur noch eine vergleichsweise geringe Rückinduktion zulässt, aber gleichzeitig noch ausreicht damit der Eisenkern das von der supraleitenden Wicklung erzeugte Magnetfeld zu dem Billet führt.Above about 80 A causes a further increase in the current only a relatively small reduction of the return induction voltage U ind . For example, increasing the current I wi from about 80 A to about 100 A merely reduces the reinduction voltage by about 20 V. The optimum operating range for the induction heater is between about 60 A (-180,000 ampere turns) and about 80 A (~ 240,000 ampere turns), especially at about 70 A (~ 210,000 ampere turns), because then the relative permeability of the iron core has a value only allows a relatively low re-induction, but at the same time still sufficient so that the iron core leads the magnetic field generated by the superconducting winding to the billet.
Claims (15)
- A method for inductive heating of a billet (10) made of an electrically conductive material by rotating the billet (10) relative to a magnetic field which is generated by means of at least one superconducting winding (60) which is supplied with direct current and disposed on an iron core (55.2, 55.3, 55.4), characterized in that the winding (60) is supplied with a direct current which has a value which generates a magnetic flux density in the iron core (55.2, 55.3, 55.4) at least in the region of the winding (60) in which the relatively permeability of the material of the iron core (55.2, 55.3, 55.4) is lower than in the current-free state of the winding (60).
- A method according to claim 1, in which at least two electrically conductive billets (10) are heated by rotation of the billets (10) relative to the magnetic field which is generated by at least superconducting winding (60) on an iron core (55.4), which winding is supplied with direct current, with a temporally varying induction current being generated in each billet (10) which causes one back-induction voltage each in the winding (60), characterized in that the movement of the billets (10) relative to one another is controlled in such a way that back-induction voltages superpose in a subtractive manner.
- A method according to claim 2, characterized in that the billets (10) are rotated in opposite directions with respect to each other.
- A method according to claim 2, characterized in that the position of the billets (10) relative to one another is controlled in such a way that the back-induction voltages superpose in a subtractive manner.
- A method according to claim 2, claim 3 or claim 4, characterized in that the billets (10) are rotated with an angular velocity which is approximately the same according to the amount.
- A method according to one of the claims 1 to 5, characterized in that the value of the direct current is controlled by the winding (60) to a substantially constant value.
- A method according to one of the claims 1 to 6, characterized in that the cross section of the iron core (55.2, 55.3, 55.4) is chosen smaller in the region of the winding (60) than outside of the winding (60).
- An apparatus for the inductive heating of at least one billet (10) made of an electrically conductive material, comprising at least one superconducting winding (60) on an iron core (55.2, 55.3, 55.4), a direct-current source (80) for generating a direct current in the winding (60) and at least one clamping apparatus for the billet (10) which is rotatably driven relative to the winding (60), characterized in that the value of the direct current generated in the winding (60) by the direct current source (80) is set in such a way that the relative permeability of the iron core (55.2, 55.3, 55.4) is reduced at least in the region of the winding (60) relative to the current-free state of winding (60).
- An apparatus according to claim a for the inductive heating of at least two billets (10) made of an electrically conductive material, comprising at last two clamping apparatuses which are rotatably driven relative to the winding (60), in which one of the billets (10) can be clamped, characterized in that the clamping apparatuses are driven in opposite directions.
- An apparatus according to claim 8 or 9 for the inductive heating of at least two billets (10) made of an electrically conductive material, comprising at last two clamping apparatuses which are rotatably driven relative to the winding (60), in which one of the billets (10) can be clamped, characterized in that the apparatus comprises means for determining the back-induction voltages each caused by temporally varying induction currents in the billets (10), and the apparatus comprises a control device which controls the rotary drives of the clamping apparatuses in such a way that the respectively caused back-induction voltages are superposed in a subtractive manner.
- An apparatus according to claim 9 or 10, characterized in that the clamping apparatuses are rotated with an angular velocity which is approximately the same according to the amount.
- An apparatus according to one of the claims 8 to 11, characterized in that the iron core (55.3) is an approximately C-shaped yoke.
- An apparatus according to one of the claims 8 to 12, characterized in that the iron core (55.4) is an approximately E-shaped yoke with an air gap each for receiving one billet each between the middle leg and the respective end leg.
- An apparatus according to one of the claims 8 to 13, characterized in that the iron core (55.4) consists at least partly of layered sheets (58).
- An apparatus according to one of the claims 8 to 14, characterized in that the iron core (55.3) has a smaller cross section in the region of the winding (60) than outside of the winding (60).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007034970A DE102007034970B4 (en) | 2007-07-26 | 2007-07-26 | Method and device for inductive heating of at least one billet |
PCT/EP2008/005647 WO2009012896A1 (en) | 2007-07-26 | 2008-07-10 | Induction heating method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2181563A1 EP2181563A1 (en) | 2010-05-05 |
EP2181563B1 true EP2181563B1 (en) | 2010-08-25 |
Family
ID=39876587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08784690A Not-in-force EP2181563B1 (en) | 2007-07-26 | 2008-07-10 | Induction heating method |
Country Status (14)
Country | Link |
---|---|
US (1) | US20090255923A1 (en) |
EP (1) | EP2181563B1 (en) |
JP (1) | JP5025797B2 (en) |
KR (1) | KR20100039355A (en) |
CN (1) | CN101803453A (en) |
AT (1) | ATE479314T1 (en) |
AU (1) | AU2008280489A1 (en) |
BR (1) | BRPI0814393A2 (en) |
CA (1) | CA2688075C (en) |
DE (2) | DE102007034970B4 (en) |
ES (1) | ES2351182T3 (en) |
RU (1) | RU2462001C2 (en) |
TW (1) | TW200922382A (en) |
WO (1) | WO2009012896A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010024883A1 (en) * | 2010-06-24 | 2011-12-29 | Zenergy Power Gmbh | Device for melting metal pieces |
DE102010053284A1 (en) * | 2010-12-02 | 2012-06-06 | Zenergy Power Gmbh | Method and induction heater for heating a billet |
RU2595971C2 (en) | 2011-09-06 | 2016-08-27 | Бритиш Америкэн Тобэкко (Инвестментс) Лимитед | Heating smoking material |
DE102011053535B4 (en) | 2011-09-12 | 2024-08-14 | Bl Chemie Gmbh & Co. Kg | Device for inductive heating of metal bodies or metal-containing bodies |
WO2013128241A1 (en) * | 2012-03-01 | 2013-09-06 | Inova Lab S.R.L. | Device for induction heating of a billet |
GB201217067D0 (en) | 2012-09-25 | 2012-11-07 | British American Tobacco Co | Heating smokable material |
CN103916054B (en) * | 2014-02-18 | 2016-06-15 | 上海超导科技股份有限公司 | Heating motor starting device and method thereof is sensed based on the direct supercurrent taking off magnetic |
CN103916055B (en) * | 2014-02-18 | 2016-03-30 | 上海超导科技股份有限公司 | Based on direct supercurrent induction heating motor starting device and the method thereof of reduction box |
KR101658727B1 (en) * | 2015-03-11 | 2016-09-21 | 창원대학교 산학협력단 | Superconducting magnet apparatus using movement and Induction heating apparatus thereof |
US20170055584A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US11924930B2 (en) * | 2015-08-31 | 2024-03-05 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US20170055575A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Material for use with apparatus for heating smokable material |
US20170119047A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for Use with Apparatus for Heating Smokable Material |
US20170119046A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Apparatus for Heating Smokable Material |
KR101877118B1 (en) * | 2016-06-14 | 2018-07-10 | 창원대학교 산학협력단 | Superconducting dc induction heating apparatus using magnetic field displacement |
BR112019009137A2 (en) | 2016-11-10 | 2019-07-16 | British American Tobacco Investments Ltd | composition, device, cartridge and method for generating an inhalable medium |
KR101922688B1 (en) * | 2017-02-20 | 2018-11-27 | 수퍼코일 (주) | Dc induction heating apparatus capable of rotating the supercondcting magnet |
IT201700031443A1 (en) * | 2017-03-22 | 2018-09-22 | Univ Bologna Alma Mater Studiorum | Induction heating apparatus and method |
CN107846740B (en) * | 2017-11-10 | 2021-02-23 | 中国航发贵州黎阳航空动力有限公司 | Heating device for thermal state sealing test of fuel oil main pipe |
KR102084111B1 (en) * | 2019-03-26 | 2020-03-03 | 이명옥 | Rotatable cooking device for induction heating and induction heating system comprising the same |
KR102040696B1 (en) * | 2019-03-26 | 2019-11-05 | 이명옥 | Induction heating cooking device |
KR102676202B1 (en) * | 2019-09-06 | 2024-06-19 | 주식회사 엘지에너지솔루션 | A device for inducing an internal short of the battery and methods using the same |
KR102408264B1 (en) * | 2019-10-01 | 2022-06-13 | 주식회사 피에스텍 | Stacked Core and Induction Heating Apparatus Using the Same |
CN111010756B (en) * | 2019-11-26 | 2021-04-16 | 江西联创光电超导应用有限公司 | Method and apparatus for heating conductor blank |
CN111225465B (en) * | 2020-02-17 | 2022-02-01 | 中国科学院电工研究所 | Superconducting induction heating device with mixed magnetic circuit |
KR102235546B1 (en) * | 2020-09-02 | 2021-04-05 | 고등기술연구원연구조합 | Billet heating appratus using permanet magnet and rotation speed control methid thereof |
CN112423416A (en) * | 2020-11-23 | 2021-02-26 | 江西联创光电超导应用有限公司 | Novel high-temperature superconducting induction heating device |
CN112588974B (en) * | 2020-11-23 | 2022-10-18 | 江西联创光电超导应用有限公司 | Aluminum alloy heating equipment and operation method |
CN112165743B (en) * | 2020-11-30 | 2021-03-16 | 江西联创光电超导应用有限公司 | Non-magnetic low vortex positioning device |
CN112203371B (en) * | 2020-12-02 | 2021-04-02 | 江西联创光电超导应用有限公司 | Magnetic shielding device of superconducting induction heating device |
CN113727482A (en) * | 2021-08-31 | 2021-11-30 | 南京邮电大学 | Superconducting linear induction heating device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU383224A1 (en) * | 1971-06-07 | 1973-05-25 | DEVICE FOR HIGH FREQUENCY HEATING | |
DE2133345A1 (en) * | 1971-07-05 | 1973-01-18 | Aeg Elotherm Gmbh | WORKING METHOD FOR WARMING UP LONG DISTURBED WORKPIECES |
US3883712A (en) * | 1973-10-01 | 1975-05-13 | Illinois Tool Works | Induction heating system |
US3842234A (en) * | 1974-01-10 | 1974-10-15 | Park Ohio Industries Inc | Inductor for inductively heating metal workpieces |
SU1107348A1 (en) * | 1983-06-06 | 1984-08-07 | Уфимский Ордена Ленина Авиационный Институт Им.Серго Орджоникидзе | Induction heating device |
DE3438375A1 (en) * | 1984-10-19 | 1986-04-24 | Küsters, Eduard, 4150 Krefeld | Device for the inductive heating of rollers |
US4761527A (en) * | 1985-10-04 | 1988-08-02 | Mohr Glenn R | Magnetic flux induction heating |
JPH0687447B2 (en) * | 1988-07-27 | 1994-11-02 | 三菱電機株式会社 | Superconducting magnet device |
JPH0831671A (en) * | 1994-07-11 | 1996-02-02 | Nissin Electric Co Ltd | Superconducting induction apparatus |
NO995504A (en) * | 1999-11-11 | 2000-11-20 | Sintef Energiforskning As | Device for induction heating |
NO317391B1 (en) * | 2003-01-24 | 2004-10-18 | Sintef Energiforskning As | Apparatus and method for induction heating of electrically conductive and non-magnetic material |
DE102005061670B4 (en) * | 2005-12-22 | 2008-08-07 | Trithor Gmbh | Method for inductive heating of a workpiece |
-
2007
- 2007-07-26 DE DE102007034970A patent/DE102007034970B4/en not_active Expired - Fee Related
-
2008
- 2008-07-10 RU RU2010106391/07A patent/RU2462001C2/en not_active IP Right Cessation
- 2008-07-10 AT AT08784690T patent/ATE479314T1/en active
- 2008-07-10 KR KR1020107001650A patent/KR20100039355A/en not_active Application Discontinuation
- 2008-07-10 CN CN200880100216A patent/CN101803453A/en active Pending
- 2008-07-10 ES ES08784690T patent/ES2351182T3/en active Active
- 2008-07-10 WO PCT/EP2008/005647 patent/WO2009012896A1/en active Application Filing
- 2008-07-10 BR BRPI0814393A patent/BRPI0814393A2/en not_active IP Right Cessation
- 2008-07-10 JP JP2010517291A patent/JP5025797B2/en not_active Expired - Fee Related
- 2008-07-10 CA CA2688075A patent/CA2688075C/en not_active Expired - Fee Related
- 2008-07-10 DE DE502008001221T patent/DE502008001221D1/en active Active
- 2008-07-10 EP EP08784690A patent/EP2181563B1/en not_active Not-in-force
- 2008-07-10 AU AU2008280489A patent/AU2008280489A1/en not_active Abandoned
- 2008-07-25 TW TW097128533A patent/TW200922382A/en unknown
-
2009
- 2009-06-04 US US12/478,033 patent/US20090255923A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE502008001221D1 (en) | 2010-10-07 |
TW200922382A (en) | 2009-05-16 |
RU2462001C2 (en) | 2012-09-20 |
AU2008280489A1 (en) | 2009-01-29 |
US20090255923A1 (en) | 2009-10-15 |
CA2688075A1 (en) | 2009-01-29 |
ES2351182T3 (en) | 2011-02-01 |
JP5025797B2 (en) | 2012-09-12 |
KR20100039355A (en) | 2010-04-15 |
WO2009012896A1 (en) | 2009-01-29 |
EP2181563A1 (en) | 2010-05-05 |
CA2688075C (en) | 2010-10-05 |
CN101803453A (en) | 2010-08-11 |
RU2010106391A (en) | 2011-09-10 |
DE102007034970A1 (en) | 2009-02-05 |
ATE479314T1 (en) | 2010-09-15 |
JP2010534905A (en) | 2010-11-11 |
DE102007034970B4 (en) | 2010-05-12 |
BRPI0814393A2 (en) | 2018-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2181563B1 (en) | Induction heating method | |
DE102007039888B4 (en) | Method and device for induction heating of a metallic workpiece | |
DE102005061670B4 (en) | Method for inductive heating of a workpiece | |
WO2007098990A1 (en) | Linear drive with a reduced axial force component, as well as a linear compressor and refrigerator | |
DE1660330A1 (en) | Heating device | |
DE102007051144B4 (en) | Induction heater and method for adjusting the width of the wells of such induction heater | |
DE69112208T2 (en) | METHOD AND DEVICE FOR INDUCTINGLY HEATING A MOVING LONG OBJECT. | |
DE102010031908A1 (en) | Method and device for heating a flat material | |
EP3451516B1 (en) | Eddy-current brake with variable effect, with a magnet array and induction assembly and magnet assembly and induction assembly for same | |
EP0647494A1 (en) | Multi-layer soldered metal tubes producing apparatus | |
DE202007014930U1 (en) | induction heater | |
DE19629026C2 (en) | Process for winding an electrical steel strip into a large coil | |
DE1902733A1 (en) | Roller table for the transport of ferromagnetic products | |
DE909240C (en) | Process for glowing or warming or keeping workpieces made of magnetizable materials in magnetic frequency current fields and the device used for this purpose | |
DE1274256B (en) | Switchable permanent magnet device | |
DE102009022423B4 (en) | Alternating field excitation by direct currents for energy conversion | |
DE10135876A1 (en) | Method and device for applying compressive and / or tensile forces to essentially rod-shaped workpieces made of electrically conductive and / or magnetizable material | |
DE2025813C3 (en) | Method and device for induction heating of flat bodies | |
DE2941890A1 (en) | DC motor with moving yoke and brushes - has stationary armature commutator and field and interpoles may not be required | |
DE102021121383A1 (en) | Switched reluctance machine | |
DE911989C (en) | Resistance regulator | |
DE1074781B (en) | Device for heating and separating rolling stock in motion | |
DE1280400B (en) | Inductive adjusting device | |
DE960831C (en) | Electric remote control arrangement | |
DE569871C (en) | Control device for monitoring the relative synchronism in continuous rolling lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090326 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: LUCHS & PARTNER PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502008001221 Country of ref document: DE Date of ref document: 20101007 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101225 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101125 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008001221 Country of ref document: DE Effective date: 20110526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110729 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110728 Year of fee payment: 4 Ref country code: SE Payment date: 20110721 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110725 Year of fee payment: 4 Ref country code: IT Payment date: 20110731 Year of fee payment: 4 Ref country code: NL Payment date: 20110728 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008001221 Country of ref document: DE Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008001221 Country of ref document: DE Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008001221 Country of ref document: DE Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008001221 Country of ref document: DE Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120927 Year of fee payment: 5 |
|
BERE | Be: lapsed |
Owner name: ZENERGY POWER G.M.B.H. Effective date: 20120731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120710 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120711 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120710 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120711 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008001221 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 479314 Country of ref document: AT Kind code of ref document: T Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130710 |