EP2181563B1 - Induction heating method - Google Patents

Induction heating method Download PDF

Info

Publication number
EP2181563B1
EP2181563B1 EP08784690A EP08784690A EP2181563B1 EP 2181563 B1 EP2181563 B1 EP 2181563B1 EP 08784690 A EP08784690 A EP 08784690A EP 08784690 A EP08784690 A EP 08784690A EP 2181563 B1 EP2181563 B1 EP 2181563B1
Authority
EP
European Patent Office
Prior art keywords
winding
billets
iron core
billet
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08784690A
Other languages
German (de)
French (fr)
Other versions
EP2181563A1 (en
Inventor
Carsten BÜHRER
Christoph FÜLBIER
Ingolf Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenergy Power GmbH
Original Assignee
Zenergy Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenergy Power GmbH filed Critical Zenergy Power GmbH
Publication of EP2181563A1 publication Critical patent/EP2181563A1/en
Application granted granted Critical
Publication of EP2181563B1 publication Critical patent/EP2181563B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers

Definitions

  • the invention relates to a method for inductive heating of a billet of an electrically conductive material by relative movement, in particular generating a rotation between the billet and a magnetic field, which is generated by means of at least one DC-powered superconducting winding on an iron core.
  • a constant-speed cylindrical billet clamped in a rotary-driven jig can be rotated about its cylinder axis in a magnetic field generated by the superconducting winding by means of a constant current.
  • a largely constant current is induced in the billet.
  • the billet is usually not optimally cylindrical and / or not exactly clamped so that it is not rotated about its cylinder axis.
  • the magnetic flux through the billet also changes in terms of amount, so that a corresponding amount of non-constant induction current is induced in the billet.
  • rod-shaped billets e.g. With rectangular or oval cross-section, generated by rotation of the billets a constantly alternating induction current, which causes a correspondingly alternating return induction voltage and thus corresponding reverse induction losses.
  • the US 3,842,243 proposes to heat an electrically conductive billet in an alternating magnetic field.
  • an AC-powered conductor in a U-shaped yoke.
  • the section can be driven into magnetic saturation. Therefore, the magnetic flux of the alternating field is no longer complete Billet led, and this is locally heated less in the corresponding area.
  • the invention has for its object to reduce the back induction losses in the superconducting winding when carrying out the method mentioned in the introduction.
  • At least one billet is moved relative to a magnetic field. It does not matter whether the magnetic field is rotated around the billet or vice versa.
  • a direct current is generated and maintained in the superconducting winding with a magnetic flux density in the iron core at least in the region of the winding at which the relative permeability of the material of the iron core is smaller than in the de-energized state the winding is.
  • the relative permeability decreases, the back induction and thus the loss in the superconducting winding decreases.
  • the magnetic field of the winding leading effect of the iron core is maintained. As a result, the re-induction is reduced.
  • the position of the billets relative to one another can be regulated so that subtractively superposing the back induction voltages generated by the alternating induction currents of the billets.
  • the magnetic flux through the billet is approximately proportional to the projection surface of the billet on a plane perpendicular to the field lines.
  • the position of the billets is controlled to each other so that the two billets are mutually rotated by 45 ° about their parallel longitudinal axes, for then the magnetic flux through one of the two billets increases to the same extent as it decreases by the other billet. If the river has reached its maximum through one billet, it subsequently decreases again, with the flow through the other ticket increasing to the same extent.
  • the summed magnetic flux through the billets is ideally constant.
  • the relative movement of the billets relative to each other can be controlled so that the reinduction stresses generated by the time varying induction currents of the billets subtract super subtractively (Claim 2).
  • this solution is also concerned with rotating the billets in a magnetic field in such a way that their summed projection area is at least largely constant.
  • the time-related change in the magnetic flux through the billets, summed up due to changing rotational speeds of the individual billets relative to the magnetic field can be minimized.
  • two preferably identical, for example, cylindrical billets rotated about their respective longitudinal axis can be turned in opposite directions and preferably with the same angular velocity in terms of absolute value (claim 3).
  • the process can also be carried out with the simultaneous heating of different billets. If the cross sections of the billets have symmetries, these can be exploited in a targeted manner.
  • a first of the cylindrical billets of the above example with a square-shaped bar and replace the second cylindrical billet with a regular octahedral cross-section billet.
  • the first billet is rotated at double the angular velocity as the second and opposite to this.
  • the billets are preferably aligned against each other prior to the start of the rotation so that the magnetic flux either increases initially or decreases initially with the start of the rotational movement through both billets.
  • the projection surfaces of the two billets on a plane perpendicular to the magnetic flux are both maximum or both minimum. If the two billets are rotated in the same direction (with unchanged ratio of the angular velocities to each other), the billets are aligned before starting so that with the start of Drehbwegung the magnetic flux decreases by one of the billets initially and increases by the other initially.
  • the projection area of a billet is preferably maximum and the projection area of the other billet is minimal.
  • the magnetic changes Flow through the two billets in opposite directions, so that the individual billets assigned return induction voltages have different signs and subtractive superpon Schl.
  • a band-shaped high-temperature superconductor can be used.
  • HTSC band-shaped high-temperature superconductor
  • cuprate superconductors are referred to, ie rare earth copper oxides, such as YBa 2 Cu 3 O 7-x .
  • the value of the direct current can be kept at least substantially constant by a regulated current source connected to the winding. Due to the low re-induction, this constant current source can have a smaller control range and thus be less expensive than when carrying out the method according to the prior art.
  • the device in particular for carrying out any of the above-described methods, has a superconducting winding on an iron core, a DC source for generating a DC current in the winding, at least one chuck for a billet of an electrically conductive material and a rotary drive for generating a relative movement between the coil and the clamping device.
  • the value of the DC current generated in the winding by the DC power source is set so that the relative permeability of the iron core is reduced at least in the region of the winding relative to the currentless state of the winding (claim 8).
  • the clamping devices can optionally or alternatively be driven in opposite directions and preferably with approximately the same angular velocity in terms of absolute value (claim 9).
  • the clamping devices may have correspondingly controlled drive motors.
  • at least two jigs can be driven by a common motor.
  • a gearbox with drives running in opposite directions and with the same angular velocity in absolute terms transmits the engine power to the clamping devices.
  • the apparatus may have means for determining the respective re-induction voltages produced by the time-varying induction currents in the billets.
  • the rotary drives of the jigs are controlled so that subtractively superposing the respectively induced by the billets remindindutationshoven (claim 10).
  • the position of the billets to each other and / or the relative movement of the billets to each other can be controlled by the controller.
  • the iron core used can be a rod in the simplest case. At both ends of the rod, a billet can be moved, in particular rotated, relative to the magnetic field emerging from the rod. The magnetic inference takes place through the free space.
  • An at least approximately C-shaped yoke has an air gap between two Pole shoes of the otherwise annular cross-sectionally closed yoke in which the billet can be rotated.
  • Such an iron core allows good guidance of the magnetic flux through a billet to be heated. Compared to the rod, the magnetic inference is also due to the iron core.
  • the iron core is an approximately E-shaped yoke, each with an air gap between the center leg and the respective end leg for receiving a billet.
  • the winding is preferably arranged on the middle leg.
  • Such an iron core makes it possible to heat two billets simultaneously with only one winding and also to guide the magnetic return flow through the iron core. For this purpose, in each of the air gaps per a billet is moved relative to the magnetic field, preferably rotated in the air gap.
  • the iron core consists at least partially of layered sheets. This reduces possible eddy currents in the iron core. Correspondingly, the eddy current dissipation power that heats the iron core decreases and the measures for cooling the iron core can be smaller. At the same time, the possible heat input from the iron core to the superconducting winding is reduced.
  • the sheets are at least partially layered approximately orthogonal to the plane in which the current induced in the billet flows for the most part. This allows a good guidance of the magnetic field with low eddy current losses.
  • the cross section in the region of the winding is preferably chosen to be smaller than outside the winding. This further reduces the reinduction.
  • the induction heater in Fig. 1 serves to heat a billet 10 by rotating the billet 10 in a magnetic field generated by a magnetic system 50.
  • the billet 10 is clamped between a right and a left pressure element 2a and 2b of a clamping device and by a motor 1 rotatably driven.
  • a gear 3 connects the motor shaft with the shaft of the movable in the direction of the two-sided arrows jig 2a.
  • the magnet system 50 may, as in Fig. 2a and 2b shown greatly simplified, a DC powered superconducting winding 60 on a rod-shaped iron core 55.2 include. Between the winding 60 and the iron core 55.2 is an insulation element 61, for example a vacuumized cavity, which reduces the heat input into the winding 60 (only Fig. 2b ).
  • the rod-shaped iron core 55.2 carries the magnetic field (not shown) generated by the DC-powered winding 60, which exits the two end faces 56.2, 57.2 of the iron core 55.2 as if from a lens and enters the billets 10 located there via an air gap.
  • the magnetic flux changes relative to the billet 10 and an induction current is induced in the billet 10.
  • the induction current in the billets 10 in turn generates a further magnetic field which superimposes with the magnetic field generated by the winding and induces a voltage in the winding 60 back.
  • ⁇ wi ( t ) 0.
  • the back induction can be reduced by feeding the winding 60 with a direct current which preferably lowers the relative permeability to shortly before the saturation region.
  • the magnet system 50 may consist essentially of a C-shaped iron core 55.3 with a preferably HTSC winding 60 (FIG. Fig. 3a and 3b ).
  • the winding 60 is fed by a regulated DC power source 80.
  • the iron core carries the magnetic field thus generated, which is symbolized by the black arrows (only Fig. 3b ).
  • the magnetic inference is not due to the free space but through the leg 57.3 ( Fig. 3b ).
  • At least one billet 10 to be heated is located between the two legs 56.3, 57.3 of the iron core 55.
  • the billet 10 to be heated is generally not exactly cylindrical and is usually not rotated exactly around its cylinder axis. Accordingly, the surface of the billet 10 penetrated by the magnetic flux and thus the back induction varies, as a result of which the current through the superconducting winding also varies.
  • the back induction is reduced by appropriate selection of the value of the DC current with which the winding 60 is fed.
  • the sectional area of the iron core 55.3 at right angles to the magnetic field symbolized by the black arrows is reduced in the area of the winding 60 in comparison to the corresponding areas of the legs 56.3, 57.3.
  • the reduced thickness d wi of the iron core in the area of the winding compared to the thickness d f of the free legs.
  • the iron core 55.4 as in Fig. 4a and Fig. 4b shown, also be E-shaped. Between the free legs 71 and 72 or 72 and 73 is ever a bag into which a billet 10 is introduced.
  • the iron core 55.4 is comprised of laminated sheets 58 stacked orthogonal to the plane in which the current induced in the billets 10 flows.
  • Fig. 5 shows the calculated reinduction voltage U ind in volts as a function of the winding current I wi from 120 kW heating power by rotation of a billet in the field of a winding on an iron core having 3000 turns, with a uniform change in the rotational frequency of the billet relative to the winding within 1s 8 Hz.
  • the return induction voltage has its maximum value of about 220 V.
  • I wi With increasing current I wi , the reverse induction initially decreases greatly in magnitude.
  • An increase in the current I wi for example, about 15 A to I wi ⁇ 65 A lowers the back-induction voltage U ind magnitude to approximately 100 V.
  • the induction heater is between about 60 A (-180,000 ampere turns) and about 80 A ( ⁇ 240,000 ampere turns), especially at about 70 A ( ⁇ 210,000 ampere turns), because then the relative permeability of the iron core has a value only allows a relatively low re-induction, but at the same time still sufficient so that the iron core leads the magnetic field generated by the superconducting winding to the billet.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

During induction heating of a billet of an electrically conducting material by rotating the billet relative to a magnetic field that is generated by means of at least one direct-current-carrying superconducting winding on an iron core, the reverse-induction voltage can be reduced when a direct current is generated and maintained in the winding at a value that generates in the iron core at least in the region of the winding a magnetic flux density at which the relative permeability of the material of the iron core is less than in a zero-current state of the winding.

Description

Die Erfindung betrifft ein Verfahren zum induktiven Erwärmen eines Billets aus einem elektrisch leitenden Werkstoff durch Relativbewegung, insbesondere Erzeugen einer Drehung zwischen dem Billet und einem Magnetfeld, das mittels mindestens einer gleichstromgespeisten supraleitenden Wicklung auf einem Eisenkern erzeugt wird.The invention relates to a method for inductive heating of a billet of an electrically conductive material by relative movement, in particular generating a rotation between the billet and a magnetic field, which is generated by means of at least one DC-powered superconducting winding on an iron core.

Ein solches Verfahren zeigt die DE 10 2005 061 670.4 . Zur Durchführung des Verfahrens kann beispielsweise ein in einer drehangetriebenen Einspannvorrichtung eingespanntes zylinderförmiges Billet mit konstanter Drehzahl um seine Zylinderachse in einem Magnetfeld, das mittels eines konstanten Stroms durch die supraleitende Wicklung erzeugt wird, gedreht werden. Dadurch wird in dem Billet ein weitgehend konstanter Strom induziert. In der Realität ist das Billet jedoch in der Regel nicht optimal zylindrisch und/oder nicht exakt eingespannt, so dass es nicht um seine Zylinderachse gedreht wird. Dadurch verändert sich der magnetische Fluss durch das Billet auch betragsmäßig, so dass entsprechend ein betragsmäßig nicht konstanter Induktionsstrom in dem Billet induziert wird. Der Induktionsstrom Iind(t) alterniert mit der Drehfrequenz f, d.h. Iind(t)=Iind(t+f-1). Durch den zeitlich nicht konstanten Induktionsstrom in dem Billet wird ein sich zeitlich entsprechend veränderndes Magnetfeld erzeugt, welches die supraleitende Wicklung durchdringt und dort eine Spannung induziert. Dieser Effekt wird als Rückinduktion und die entsprechende Spannung als Rückinduktionsspannung bezeichnet. Aufgrund dieser sich zeitlich verändernden Rückinduktionsspannung fließt durch die supraleitende Wicklung kein zeitlich konstanter sondern ein zeitlich variabler Strom, der zu unerwünschten Verlusten, sogenannten Rückinduktionsverlusten in der supraleitenden Wicklung führt.Such a procedure shows the DE 10 2005 061 670.4 , For carrying out the method, for example, a constant-speed cylindrical billet clamped in a rotary-driven jig can be rotated about its cylinder axis in a magnetic field generated by the superconducting winding by means of a constant current. As a result, a largely constant current is induced in the billet. In reality, however, the billet is usually not optimally cylindrical and / or not exactly clamped so that it is not rotated about its cylinder axis. As a result, the magnetic flux through the billet also changes in terms of amount, so that a corresponding amount of non-constant induction current is induced in the billet. The induction current I ind (t) alternates with the rotational frequency f, ie I ind (t) = I ind (t + f -1 ). Due to the temporally not constant induction current in the billet, a temporally correspondingly changing magnetic field is generated, which penetrates the superconducting winding and induces a voltage there. This effect is referred to as re-induction and the corresponding voltage as re-induction voltage. Because of this yourself time-varying reverse induction voltage flows through the superconducting winding not temporally constant but a time-variable current, which leads to undesirable losses, so-called reverse induction losses in the superconducting winding.

Ebenso wird bei der Erwärmung nicht zylindrischer, stabförmiger Billets, z.B. mit rechteckigem oder ovalem Querschnitt, durch Drehung der Billets ein ständig alternierender Induktionsstrom erzeugt, der eine entsprechend alternierende Rückinduktionsspannung und damit entsprechende Rückinduktionsverluste bewirkt.Similarly, when heating non-cylindrical, rod-shaped billets, e.g. With rectangular or oval cross-section, generated by rotation of the billets a constantly alternating induction current, which causes a correspondingly alternating return induction voltage and thus corresponding reverse induction losses.

Zeitlich variierende Rückinduktionsspannungen und damit Rückinduktionsverluste treten unabhängig von der Form des Billets insbesondere beim Beginn und am Ende der Induktionserwärmung auf, wenn das Billet in Rotation versetzt bzw. angehalten wird. Grundsätzlich treten die Rückinduktionsverluste bei jeder Änderung der Drehgeschwindigkeit auf.Temporally varying return inductive voltages and thus reverse induction losses occur regardless of the shape of the billet, especially at the beginning and at the end of the induction heating when the billet is set in rotation or stopped. Basically, the reverse induction losses occur every time the rotational speed changes.

Diese Rückinduktionsverluste müssen durch eine entsprechend leistungsfähige Stromquelle ausgeglichen werden und erhöhen die für die supraleitende Wicklung notwendige Kühlleistung.These return inductance losses must be compensated by a correspondingly powerful current source and increase the cooling power necessary for the superconducting winding.

Die US 3 842 243 schlägt vor, ein elektrisch leitendes Billet in einem magnetischen Wechselfeld zu erwärmen. Zur Führung des magnetischen Flusses durch das Billet sitzt ein wechselstromgespeister Leiter in einem U-förmigen Joch. Durch eine gleichstromgespeiste Zusatzspule, die auf einem Abschnitt des Jochs sitzt, kann der Abschnitt in die magnetische Sättigung getrieben werden. Deshalb wird der magnetische Fluss des Wechselfeldes nicht mehr vollständig zum Billet geführt, und dieses wird in dem entsprechenden Bereich lokal weniger erwärmt.The US 3,842,243 proposes to heat an electrically conductive billet in an alternating magnetic field. To guide the magnetic flux through the billet sits an AC-powered conductor in a U-shaped yoke. By means of a DC-powered auxiliary coil sitting on a section of the yoke, the section can be driven into magnetic saturation. Therefore, the magnetic flux of the alternating field is no longer complete Billet led, and this is locally heated less in the corresponding area.

Der Erfindung liegt die Aufgabe zugrunde die Rückinduktionsverluste in der supraleitenden Wicklung bei Durchführung des einleitend genannten Verfahrens zu verringern.The invention has for its object to reduce the back induction losses in the superconducting winding when carrying out the method mentioned in the introduction.

Verfahrensmäßig ist diese Aufgabe durch ein Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sind in den abhängigen Ansprüchen 2 bis 7 angegeben. Vorrichtungen insbesondere zur Durchführung der Verfahren sind Gegenstand des Anspruches 8. Weiterbildungen der Vorrichtungen sind in den Anspruchen 9 bis 15 angegeben.Procedurally, this object is achieved by a method according to claim 1. Advantageous embodiments of the method are specified in the dependent claims 2 to 7. Devices in particular for carrying out the methods are the subject of claim 8. Further developments of the devices are specified in the claims 9 to 15.

Bei allen Verfahren wird wenigstens ein Billet relativ zu einem Magnetfeld bewegt. Es kommt dabei nicht darauf an, ob das Magnetfeld um das Billet gedreht wird oder umgekehrt. Gemäß dem Verfahren nach dem Anspruch 1 wird in der supraleitenden Wicklung ein Gleichstrom mit einem Wert erzeugt und aufrecht erhalten, der in dem Eisenkern zumindest im Bereich der Wicklung eine magnetische Flussdichte erzeugt, bei der die relative Permeabilität des Werkstoffes des Eisenkerns kleiner als im stromlosen Zustand der Wicklung ist. Weil sich die relative Permeabilität reduziert, vermindert sich die Rückinduktion und damit der Verlust in der supraleitenden Wicklung. Gleichzeitig bleibt die das Magnetfeld der Wicklung führende Wirkung des Eisenkerns erhalten. Im Ergebnis wird die Rückinduktion verringert.In all methods, at least one billet is moved relative to a magnetic field. It does not matter whether the magnetic field is rotated around the billet or vice versa. According to the method of claim 1, a direct current is generated and maintained in the superconducting winding with a magnetic flux density in the iron core at least in the region of the winding at which the relative permeability of the material of the iron core is smaller than in the de-energized state the winding is. As the relative permeability decreases, the back induction and thus the loss in the superconducting winding decreases. At the same time, the magnetic field of the winding leading effect of the iron core is maintained. As a result, the re-induction is reduced.

Werden zwei oder mehr Billets gleichzeitig in einem von der supraleitenden wicklung erzeugten Magnetfeld gedreht, kann nach einer alternativen oder optionalen Lösung des Problems die Lage der Billets zueinander so geregelt werden, dass die von den alternierenden Induktionsströmen der Billets erzeugten Rückinduktionsspannungen subtraktiv superponieren. Vereinfacht dargestellt, ist unter der Annahme eines im Bereich eines Billets homogenen Magnetfeldes der magnetische Fluss durch das Billet etwa proportional zur Projektionsfläche des Billets auf eine Ebene senkrecht zu den Feldlinien. Bei Erwärmung eines nicht zylindrischen Billets in dem Magnetfeld verändert sich die Projektionsfläche mit jeder Winkeländerung. Der Kern dieser Losung besteht darin, die Lage zweier oder mehrerer Billets zueinander so zu regeln, dass sich die summierte Projektionsfläche aller Billets bei deren Bewegung im Magnetfeld nicht oder nur möglichst wenig ändert. Entsprechend ändert sich dann auch der summierte magnetische Fluss durch die Billets nicht oder nur minimal, was zu einer minimierten Rückinduktionsspannung in der Wicklung führt. Man kann auch sagen, dass die den einzelnen Billets zuzuordnenden, d.h. durch deren jeweilige Änderungen des magnetischen Flusses verursachten Rückinduktionsspannungen subtraktiv superponieren.If two or more billets are simultaneously rotated in a magnetic field generated by the superconducting winding, according to an alternative or optional solution to the problem, the position of the billets relative to one another can be regulated so that subtractively superposing the back induction voltages generated by the alternating induction currents of the billets. Simplified, assuming a homogeneous magnetic field in the area of a billet, the magnetic flux through the billet is approximately proportional to the projection surface of the billet on a plane perpendicular to the field lines. When heating a non-cylindrical billet in the magnetic field, the projection area changes with each angle change. The essence of this solution is to regulate the position of two or more billets to each other so that the summed projection surface of all billets does not or only slightly changes as they move in the magnetic field. Accordingly, the summed magnetic flux through the billets does not change or only minimally, which leads to a minimized re-induction voltage in the winding. It can also be said that the return inductive stresses attributable to the individual billets, that is subtended by their respective changes in the magnetic flux, subtract superficially.

Dazu können beispielsweise zwei identische quaderförmige Billets mit quadratischem Querschnitt, mit gleicher Winkelgeschwindigkeit jeweils um ihre Längsachsen gedreht und mit diesen Längsachsen zumindest etwa orthogonal zu den Feldlinien des von der stromdurchflossenen Wicklung erzeugten Magnetfelds ausgerichtet werden, wobei die Lage der Billets zueinander so geregelt wird, dass die beiden Billets gegeneinander um 45° um ihre parallelen Längsachsen verdreht sind, denn dann nimmt der magnetische Fluß durch das eine der beiden Billets in dem selben Maße zu, wie er durch das andere Billet abnimmt. Hat der Fluss durch das eine Billet sein Maximum erreicht, nimmt er anschließend wieder ab, wobei der Fluss durch das andere Billet im gleichen Maße zunimmt. Der summierte magnetische Fluss durch die Billets ist im Idealfall konstant. Dann löschen sich die den einzelnen Billets zuzuordnenden Rückinduktionsspannungen durch subtraktives Superponieren zumindest teilweise aus. Der gleiche Effekt, wenn auch nicht so ausgeprägt, wird erreicht, wenn z.B. zwei quaderförmige Billets mit nicht kongruenten Querschnittsflächen gleichzeitig erwärmt werden. Dies gilt insbesondere für quaderförmige Billets mit ausgeprägtem Rechteckquerschnitt.For this purpose, for example, two identical rectangular billets with square cross-section, rotated at the same angular velocity in each case about their longitudinal axes and aligned with these longitudinal axes at least approximately orthogonal to the field lines of the magnetic field generated by the current-carrying coil, the position of the billets is controlled to each other so that the two billets are mutually rotated by 45 ° about their parallel longitudinal axes, for then the magnetic flux through one of the two billets increases to the same extent as it decreases by the other billet. If the river has reached its maximum through one billet, it subsequently decreases again, with the flow through the other ticket increasing to the same extent. The summed magnetic flux through the billets is ideally constant. Then, the reinduction stresses attributable to the individual billets are at least partially canceled by subtractive superposition. The same effect, though not so pronounced, is achieved when, for example, two parallelepiped billets with non-congruent cross-sectional areas are heated simultaneously. This is especially true for cuboid billets with pronounced rectangular cross-section.

Nach einer weiteren alternativen oder optionalen Lösung kann bei gleichzeitigem induktiven Erwärmen von zwei oder mehr Billets durch Drehen in einem von einer gleichstromgespeisten supraleitenden Wicklung erzeugten Magnetfeld die Relativbewegung der Billets zueinander so geregelt werden, dass die von den zeitlich veränderlichen Induktionsströmen der Billets erzeugten Rückinduktionsspannungen subtraktiv superponieren (Anspruch 2). Auch bei dieser Lösung geht es wie bei den in den beiden vorstehenden Absätzen beschriebenen Verfahren darum, die Billets in einem Magnetfeld so zu drehen, dass deren summierte Projektionsfläche zumindest weitgehend konstant ist. Darüberhinaus kann durch die Regelung der Bewegung der Billets relativ zueinander alternativ oder optional die sich aufgrund ändernder Rotationsgeschwindigkeiten der einzelnen Billets relativ zu dem Magnetfeld summierte zeitliche Änderung des magnetischen Flusses durch die Billets minimiert werden. Beispielsweise können zwei vorzugsweise identische, z.B. zylindrische um ihre jeweilige Längsachse gedrehte Billets gegensinnig und vorzugsweise mit betragsmäßig gleicher Winkelgeschwindigkeit gedreht werden (Anspruch 3). Dadurch haben die den einzelnen Billets zuzuordnenden Rückinduktionen beim Start und am Ende der Erwärmung, d.h. beim Anfahren bzw. beim Stoppen der Drehbwegung, verschiedene Vorzeichen, so dass im Idealfall beim Starten und beim Stoppen eine Auslöschung der effektiven Rückinduktionsspannung in der Wicklung durch subtraktives Superponieren der den einzelnen Billets zuzuordnenden Rückinduktionsspannungen erfolgt.According to a further alternative or optional solution, with simultaneous inductive heating of two or more billets by rotating in a magnetic field generated by a dc superconducting winding, the relative movement of the billets relative to each other can be controlled so that the reinduction stresses generated by the time varying induction currents of the billets subtract super subtractively (Claim 2). As with the methods described in the two preceding paragraphs, this solution is also concerned with rotating the billets in a magnetic field in such a way that their summed projection area is at least largely constant. Moreover, by regulating the movement of the billets relative to one another, alternatively or optionally, the time-related change in the magnetic flux through the billets, summed up due to changing rotational speeds of the individual billets relative to the magnetic field, can be minimized. For example, two preferably identical, for example, cylindrical billets rotated about their respective longitudinal axis can be turned in opposite directions and preferably with the same angular velocity in terms of absolute value (claim 3). As a result, the individual indices to be assigned to the individual billets at the start and at the end of the heating, ie when starting or when stopping the Drehbwegung, different signs, so that in the ideal case when starting and stopping an extinction of the effective Rückinduktionsspannung in the winding by subtractive superposition of the individual billets attributable Rückinduktionsspannungen occurs.

Natürlich lässt sich das Verfahren auch beim gleichzeitigen Erwärmen unterschiedlicher Billets durchführen. Sofern die Querschnitte der Billets Symmetrien besitzen, lassen sich diese gezielt ausnutzen. Beispielsweise kann man ein erstes der zylindrischen Billets aus obigem Beispiel gegen ein stabförmiges mit quadratischem Querschnitt ersetzen und das zweite zylindrische Billet durch ein stabförmiges Billet mit regelmäßigem oktaedrischem Querschnitt ersetzen. Nun wird das erste Billet mit betragsmäßig doppelter Winkelgeschwindigkeit wie das zweite und gegensinnig zu diesem gedreht. Unabhängig von der Form sind die Billets vor dem Start der Drehung vorzugsweise so gegeneinander auszurichten, daß der magnetische Fluß mit Start der Drehbewegung durch beide Billets entweder zunächst zunimmt oder zunächst abnimmt. Vorzugsweise sind beim Start der Drehbewegung die Projektionsflächen der beiden Billets auf eine Ebene senkrecht zum magnetischen Fluss beide maximal oder beide minimal. Werden die beiden Billets gleichsinnig gedreht (bei betragsmäßig unverändertem Verhältnis der Winkelgeschwindigkeiten zueinander), sind die Billets vor dem Start so auszurichten, dass mit dem Start der Drehbwegung der magnetische Fluß durch eines der Billets zunächst abnimmt und durch das andere zunächst zunimmt. In diesem Fall ist beim Start der Drehbewegung die Projektionsfläche eines Billets vorzugsweise maximal und die Projektionsfläche des anderen Billets minimal. In beiden Fällen verändert sich der magnetische Fluß durch die beiden Billets gegenläufig, so dass die den einzelnen Billets zuzuordnenen Rückinduktionsspannungen unterschiedliche Vorzeichen haben und subtraktiv superponieren.Of course, the process can also be carried out with the simultaneous heating of different billets. If the cross sections of the billets have symmetries, these can be exploited in a targeted manner. For example, one may replace a first of the cylindrical billets of the above example with a square-shaped bar and replace the second cylindrical billet with a regular octahedral cross-section billet. Now, the first billet is rotated at double the angular velocity as the second and opposite to this. Regardless of the shape, the billets are preferably aligned against each other prior to the start of the rotation so that the magnetic flux either increases initially or decreases initially with the start of the rotational movement through both billets. Preferably, at the start of the rotational movement, the projection surfaces of the two billets on a plane perpendicular to the magnetic flux are both maximum or both minimum. If the two billets are rotated in the same direction (with unchanged ratio of the angular velocities to each other), the billets are aligned before starting so that with the start of Drehbwegung the magnetic flux decreases by one of the billets initially and increases by the other initially. In this case, at the start of the rotational movement, the projection area of a billet is preferably maximum and the projection area of the other billet is minimal. In both cases, the magnetic changes Flow through the two billets in opposite directions, so that the individual billets assigned return induction voltages have different signs and subtractive superponieren.

Als supraleitende Wicklung kann beispielsweise ein bandförmiger Hochtemperatursupraleiter (HTSL) verwendet werden. Als HTSL werden z.B. Kuprat-Supraleiter bezeichnet, d.h. Seltenerd Kupfer-Oxide, wie z.B. YBa2Cu3O7-x.As a superconducting winding, for example, a band-shaped high-temperature superconductor (HTSC) can be used. As HTSC, for example, cuprate superconductors are referred to, ie rare earth copper oxides, such as YBa 2 Cu 3 O 7-x .

Der Wert des Gleichstroms kann durch eine an die Wicklung angeschlossene, geregelte Stromquelle zumindest im Wesentlichen konstant gehalten werden. Aufgrund der geringen Rückinduktion kann diese Konstantstromquelle einen geringeren Regelungsbereich haben und damit kostengünstiger als bei Durchführung des Verfahrens nach dem Stand der Technik sein.The value of the direct current can be kept at least substantially constant by a regulated current source connected to the winding. Due to the low re-induction, this constant current source can have a smaller control range and thus be less expensive than when carrying out the method according to the prior art.

Die Vorrichtung insbesondere zur Durchführung eines der vorstehend beschriebenen Verfahren hat eine supraleitende Wicklung auf einem Eisenkern, eine Gleichstromquelle zum Erzeugen eines Gleichstroms in der Wicklung, mindestens eine Einspannvorrichtung für ein Billet aus einem elektrisch leitenden Material und einen Drehantrieb zum Erzeugen einer Relativbewegung zwischen der Wicklung und der Einspannvorrichtung. In einer Ausführungsform ist der Wert des in der Wicklung durch die Gleichstromquelle erzeugten Gleichstroms so eingestellt, dass die relative Permeabilität des Eisenkerns zumindest im Bereich der Wicklung gegenüber dem stromlosen Zustand der Wicklung reduziert ist (Anspruch 8).The device, in particular for carrying out any of the above-described methods, has a superconducting winding on an iron core, a DC source for generating a DC current in the winding, at least one chuck for a billet of an electrically conductive material and a rotary drive for generating a relative movement between the coil and the clamping device. In one embodiment, the value of the DC current generated in the winding by the DC power source is set so that the relative permeability of the iron core is reduced at least in the region of the winding relative to the currentless state of the winding (claim 8).

Hat die Vorrichtung mindestens eine weitere drehangetriebene Einspannvorrichtung, so können die Einspannvorrichtungen optional oder alternativ gegensinnig und vorzugsweise mit betragsmäßig etwa gleicher Winkelgeschwindigkeit angetrieben sein (Anspruch 9). Beispielsweise können die Einspannvorrichtungen über entsprechend geregelte Antriebsmotoren verfügen. Alternativ können auch mindestens zwei Einspannvorrichtungen mit einem gemeinsamen Motor angetrieben werden. Ein Getriebe mit gegensinnig und mit betragsmäßig gleicher Winkelgeschwindigkeit laufenden Abtrieben überträgt die Motorleistung auf die Einspannvorrichtungen.If the device has at least one further rotationally driven clamping device, then the clamping devices can optionally or alternatively be driven in opposite directions and preferably with approximately the same angular velocity in terms of absolute value (claim 9). For example, the clamping devices may have correspondingly controlled drive motors. Alternatively, at least two jigs can be driven by a common motor. A gearbox with drives running in opposite directions and with the same angular velocity in absolute terms transmits the engine power to the clamping devices.

Alternativ oder zusätzlich kann die Vorrichtung Mittel zum Bestimmen der von den zeitlich variierenden Induktionsströmen in den Billets jeweils hervorgerufenen Rückinduktionsspannungen haben. Durch eine Steuerung, welche die zuvor bestimmten Rückinduktionsspannungen auswertet, werden die Drehantriebe der Einspannvorrichtungen so gesteuert, dass die jeweils von den Billets hervorgerufenen Rückinduktionsspannungen subtraktiv superponieren (Anspruch 10). Beispielsweise kann die Lage der Billets zueinander und/oder die Relativbewegung der Billets zueinander durch die Steuerung geregelt werden.Alternatively or additionally, the apparatus may have means for determining the respective re-induction voltages produced by the time-varying induction currents in the billets. By a control, which evaluates the previously determined return inductive voltages, the rotary drives of the jigs are controlled so that subtractively superposing the respectively induced by the billets Rückinduktionsspannungen (claim 10). For example, the position of the billets to each other and / or the relative movement of the billets to each other can be controlled by the controller.

Der verwendete Eisenkern kann im einfachsten Fall ein Stab sein. An beiden Enden des Stabes kann ein Billet relativ zu dem aus dem Stab austretenden Magnetfeld bewegt, insbesondere gedreht werden. Der magnetische Rückschluss erfolgt durch den freien Raum.The iron core used can be a rod in the simplest case. At both ends of the rod, a billet can be moved, in particular rotated, relative to the magnetic field emerging from the rod. The magnetic inference takes place through the free space.

Besser kann der verwendete Eisenkern ein zumindest näherungsweise C-förmiges Joch sein. Ein zumindest näherungsweise C-förmiges Joch hat einen Luftspalt zwischen zwei Polschuhen des ansonsten im Querschnitt ringförmig geschlossenen Jochs in dem das Billet gedreht werden kann. Ein solcher Eisenkern ermöglicht eine gute Führung des magnetischen Flusses durch ein zu erwärmendes Billet. Im Vergleich zum Stab erfolgt auch der magnetische Rückschluss durch den Eisenkern.Better the iron core used can be an at least approximately C-shaped yoke. An at least approximately C-shaped yoke has an air gap between two Pole shoes of the otherwise annular cross-sectionally closed yoke in which the billet can be rotated. Such an iron core allows good guidance of the magnetic flux through a billet to be heated. Compared to the rod, the magnetic inference is also due to the iron core.

Nach einer bevorzugten Ausführungsform ist der Eisenkern ein etwa E-förmiges Joch mit je einem Luftspalt zwischen dem Mittelschenkel und dem jeweiligen Endschenkel zur Aufnahme je eines Billets. Die Wicklung ist vorzugsweise auf dem Mittelschenkel angeordnet. Ein solcher Eisenkern ermöglicht mit nur einer Wicklung gleichzeitig zwei Billets zu erwärmen und auch den magnetischen Rückfluss durch den Eisenkern zu führen. Dazu wird in jedem der Luftspalte je ein Billet relativ zum Magnetfeld bewegt, vorzugsweise in dem Luftspalt gedreht.According to a preferred embodiment, the iron core is an approximately E-shaped yoke, each with an air gap between the center leg and the respective end leg for receiving a billet. The winding is preferably arranged on the middle leg. Such an iron core makes it possible to heat two billets simultaneously with only one winding and also to guide the magnetic return flow through the iron core. For this purpose, in each of the air gaps per a billet is moved relative to the magnetic field, preferably rotated in the air gap.

Vorzugsweise besteht der Eisenkern zumindest teilweise aus geschichteten Blechen. Dadurch werden mögliche Wirbelströme in dem Eisenkern reduziert. Entsprechend sinkt die den Eisenkern erwärmende Wirbelstromverlustleistung und die Maßnahmen zur Kühlung des Eisenkerns können geringer ausfallen. Gleichzeitig wird der mögliche Wärmeeintrag vom Eisenkern auf die supraleitende Wicklung reduziert.Preferably, the iron core consists at least partially of layered sheets. This reduces possible eddy currents in the iron core. Correspondingly, the eddy current dissipation power that heats the iron core decreases and the measures for cooling the iron core can be smaller. At the same time, the possible heat input from the iron core to the superconducting winding is reduced.

Besonders bevorzugt sind die Bleche zumindest teilweise etwa orthogonal zu der Ebene geschichtet, in der der in dem Billet induzierte Strom zum überwiegenden Teil fließt. Dies ermöglicht eine gute Führung des Magnetfeldes bei geringen Wirbelstromverlusten.Particularly preferably, the sheets are at least partially layered approximately orthogonal to the plane in which the current induced in the billet flows for the most part. This allows a good guidance of the magnetic field with low eddy current losses.

Vorzugsweise wird der Querschnitt im Bereich der Wicklung kleiner als außerhalb der Wicklung gewählt. Dadurch wird die Rückinduktion nochmals verringert.The cross section in the region of the winding is preferably chosen to be smaller than outside the winding. This further reduces the reinduction.

Anhand der Zeichnung wird die Erfindung weiter erläutert. Es zeigt jeweils schematisch vereinfacht und beispielhaft:

Fig. 1
die Ansicht eines Induktionsheizers,
Fig. 2a
ein Magnetsystem eines Induktionsheizers mit einem stabförmigen Eisenkern,
Fig. 2b
eine Seitenansicht des Magnetsystems aus Fig. 2a,
Fig. 3a
ein Magnetsystem mit einem C-förmigen Joch als Eisenkern,
Fig. 3b
das Magnetsystem aus Fig. 3a in der Frontansicht,
Fig. 4a
ein Magnetsystem mit einem E-förmigen Joch als Eisenkern,
Fig. 4b
das Magnetsystem aus Fig. 4a in der Frontansicht und
Fig. 5
ein Beispiel der Rückinduktionsspannung als Funktion des Wicklungsstroms.
Reference to the drawings, the invention will be further explained. It shows in each case schematically simplified and by way of example:
Fig. 1
the view of an induction heater,
Fig. 2a
a magnet system of an induction heater with a rod-shaped iron core,
Fig. 2b
a side view of the magnet system Fig. 2a .
Fig. 3a
a magnet system with a C-shaped yoke as the iron core,
Fig. 3b
the magnet system off Fig. 3a in the front view,
Fig. 4a
a magnet system with an E-shaped yoke as iron core,
Fig. 4b
the magnet system off Fig. 4a in front view and
Fig. 5
an example of the return induction voltage as a function of the winding current.

Der Induktionsheizer in Fig. 1 dient zum Erwärmen eines Billets 10 durch Drehen des Billets 10 in einem durch ein Magnetsystem 50 erzeugten Magnetfeld. Dazu ist das Billet 10 zwischen einem rechten und einem linken Andruckelement 2a bzw. 2b einer Einspannvorrichtung eingespannt und durch einen Motor 1 drehangetrieben. Ein Getriebe 3 verbindet die Motorwelle mit der Welle der in Richtung der beidseitigen Pfeile verschiebbaren Einspannvorrichtung 2a.The induction heater in Fig. 1 serves to heat a billet 10 by rotating the billet 10 in a magnetic field generated by a magnetic system 50. For this purpose, the billet 10 is clamped between a right and a left pressure element 2a and 2b of a clamping device and by a motor 1 rotatably driven. A gear 3 connects the motor shaft with the shaft of the movable in the direction of the two-sided arrows jig 2a.

Das Magnetsystem 50 kann, wie in Fig. 2a und 2b stark vereinfacht gezeigt, eine gleichstromgespeiste supraleitende Wicklung 60 auf einem stabförmigen Eisenkern 55.2 umfassen. Zwischen der Wicklung 60 und dem Eisenkern 55.2 ist ein Isolationselement 61, z.B. ein vakuumierter Hohlraum, welches den Wärmeeintrag in die Wicklung 60 reduziert (nur Fig. 2b). Der stabförmige Eisenkern 55.2 führt das durch die gleichstromgespeiste Wicklung 60 erzeugte Magnetfeld (nicht dargestellt), welches an den beiden Stirnflächen 56.2, 57.2 des Eisenkerns 55.2 wie aus einer Linse austritt und über einen Luftspalt in die dort befindlichen Billets 10 eintritt. Werden die Billets 10 in dem Magnetfeld bewegt, z.B. gedreht, so verändert sich der magnetische Fluss relativ zum Billet 10 und es wird ein Induktionsstrom in dem Billet 10 induziert. Der Induktionsstrom in den Billets 10 wiederum erzeugt ein weiteres Magnetfeld, welches mit dem von der Wicklung erzeugten Magnetfeld superponiert und eine Spannung in der Wicklung 60 rückinduziert. Um die supraleitende Wicklung 60 mit optimalem Wirkungsgrad zu betreiben, ist die zeitliche Variation des durch die Wicklung 60 fließenden Stromes vorzugsweise Null, d.h. wi (t) = 0. Durch die zeitlich in der Regel nicht konstante rückinduzierte Spannung gilt jedoch wi (t) ≠ 0. Die Rückinduktion kann reduziert werden, in dem die Wicklung 60 mit einem Gleichstrom gespeist wird, der die relative Permeabilität vorzugsweise bis kurz vor den Sättigungsbereich senkt. Wenn dann das von dem Induktionsstrom erzeugte Magnetfeld mit dem von der Wicklung 60 erzeugten Magnetfeld additiv superponiert, wird die zusätzliche Feldstärke aufgrund der geringen relativen Permeabilität des Eisenkerns 55.2 nicht oder nur schlecht von dem Eisenkern 55.2 zu der Wicklung 60 geführt, sondern breitet sich im Wesentlichen "ungeführt" aus. Entsprechend kleiner ist die Änderung des magnetischen Flusses durch die Wicklung 60 und somit die rückinduzierte Spannung.The magnet system 50 may, as in Fig. 2a and 2b shown greatly simplified, a DC powered superconducting winding 60 on a rod-shaped iron core 55.2 include. Between the winding 60 and the iron core 55.2 is an insulation element 61, for example a vacuumized cavity, which reduces the heat input into the winding 60 (only Fig. 2b ). The rod-shaped iron core 55.2 carries the magnetic field (not shown) generated by the DC-powered winding 60, which exits the two end faces 56.2, 57.2 of the iron core 55.2 as if from a lens and enters the billets 10 located there via an air gap. When the billets 10 are moved in the magnetic field, eg rotated, the magnetic flux changes relative to the billet 10 and an induction current is induced in the billet 10. The induction current in the billets 10 in turn generates a further magnetic field which superimposes with the magnetic field generated by the winding and induces a voltage in the winding 60 back. In order to operate the superconducting winding 60 with optimum efficiency, the time variation of the current flowing through the winding 60 is preferably zero, ie, w wi ( t ) = 0. However, due to the time-invariant back-induced voltage, İ wi ( t ) ≠ 0. The back induction can be reduced by feeding the winding 60 with a direct current which preferably lowers the relative permeability to shortly before the saturation region. Then, when the magnetic field generated by the induction current superimposed additively with the magnetic field generated by the winding 60, the additional field strength due The low relative permeability of the iron core 55.2 is not or only poorly guided by the iron core 55.2 to the winding 60, but extends substantially "unguided" from. Correspondingly smaller is the change in the magnetic flux through the winding 60 and thus the back-induced voltage.

In einer anderen Ausführungsform kann das Magnetsystem 50 im Wesentlichen aus einem C-förmigen Eisenkern 55.3 mit einer vorzugsweise HTSL-Wicklung 60 bestehen (Fig. 3a und 3b) .In another embodiment, the magnet system 50 may consist essentially of a C-shaped iron core 55.3 with a preferably HTSC winding 60 (FIG. Fig. 3a and 3b ).

Die Wicklung 60 wird von einer geregelten Gleichstromquelle 80 gespeist. Der Eisenkern führt das so erzeugte Magnetfeld, das durch die schwarzen Pfeile symbolisiert wird (nur Fig. 3b). Anders als bei der Ausführungsform nach Fig. 2 erfolgt der magnetische Rückschluss nicht durch den freien Raum sondern durch den Schenkel 57.3 (Fig. 3b). Zwischen den beiden Schenkeln 56.3, 57.3 des Eisenkerns 55 befindet sich mindestens ein zu erwärmendes Billet 10. Anders als dargestellt, ist das zu erwärmende Billet 10 in der Regel nicht exakt zylindrisch und wird meist auch nicht exakt um seine Zylinderachse gedreht. Entsprechend variiert die vom magnetischen Fluss durchsetzte Fläche des Billets 10 und damit die Rückinduktion, wodurch auch der Strom durch die supraleitende Wicklung variiert. Wie schon zuvor beschrieben, wird die Rückinduktion durch entsprechende Wahl des Wertes des Gleichstroms, mit dem die Wicklung 60 gespeist wird, reduziert. Die Schnittfläche des Eisenkerns 55.3 rechtwinklig zu dem durch die schwarzen Pfeile symbolisierten Magnetfeld ist im Bereich der Wicklung 60 im Vergleich zu den entsprechenden Flächen der Schenkel 56.3, 57.3 reduziert. Zu erkennen ist die verringerte Dicke dwi des Eisenkerns im Bereich der Wicklung im Vergleich zur Dicke df der freien Schenkel. Dadurch wird die relative Permeabilität des Eisenkerns im Bereich der Wicklung nochmals reduziert. Alternativ kann der Eisenkern 55.4, wie in Fig. 4a und Fig. 4b gezeigt, auch E-förmig sein. Zwischen den freien Schenkeln 71 und 72 bzw. 72 und 73 ist je eine Tasche, in die ein Billet 10 eingebracht ist. Auf dem mittleren freien Schenkel 72 sitzt eine Spule mit einer HTSL-Wicklung 60, die von einer nur in Fig. 4b dargestellten geregelten Gleichstromquelle 80 gespeist wird. Im Wesentlichen besteht der Eisenkern 55.4 aus geschichteten Blechen 58, die orthogonal zu der Ebene geschichtet sind, in der der in den Billets 10 induzierte Strom fließt.The winding 60 is fed by a regulated DC power source 80. The iron core carries the magnetic field thus generated, which is symbolized by the black arrows (only Fig. 3b ). Unlike the embodiment according to Fig. 2 the magnetic inference is not due to the free space but through the leg 57.3 ( Fig. 3b ). At least one billet 10 to be heated is located between the two legs 56.3, 57.3 of the iron core 55. Differently than illustrated, the billet 10 to be heated is generally not exactly cylindrical and is usually not rotated exactly around its cylinder axis. Accordingly, the surface of the billet 10 penetrated by the magnetic flux and thus the back induction varies, as a result of which the current through the superconducting winding also varies. As previously described, the back induction is reduced by appropriate selection of the value of the DC current with which the winding 60 is fed. The sectional area of the iron core 55.3 at right angles to the magnetic field symbolized by the black arrows is reduced in the area of the winding 60 in comparison to the corresponding areas of the legs 56.3, 57.3. Evident is the reduced thickness d wi of the iron core in the area of the winding compared to the thickness d f of the free legs. This further reduces the relative permeability of the iron core in the region of the winding. Alternatively, the iron core 55.4, as in Fig. 4a and Fig. 4b shown, also be E-shaped. Between the free legs 71 and 72 or 72 and 73 is ever a bag into which a billet 10 is introduced. On the middle free leg 72 sits a coil with a HTSC winding 60, of a only in Fig. 4b is shown fed regulated DC power source 80. Essentially, the iron core 55.4 is comprised of laminated sheets 58 stacked orthogonal to the plane in which the current induced in the billets 10 flows.

Fig. 5 zeigt die berechnete Rückinduktionsspannung Uind in Volt als Funktion des Wicklungsstromes Iwi ausgehend von 120 kW Heizleistung durch Drehung eines Billets im Feld einer Wicklung auf einem Eisenkern, die 3000 Windungen hat, bei einer gleichmäßigen Änderung der Drehfrequenz des Billets relativ zur Wicklung innerhalb 1s um 8Hz. Für kleine Ströme (z.B. Iwi ≈ 50 A) hat die Rückinduktionsspannung ihr betragsmäßiges Maximum von etwa 220 V. Mit zunehmendem Strom Iwi nimmt die Rückinduktion zunächst betragsmäßig stark ab. Eine Erhöhung des Stroms Iwi um beispielsweise etwa 15 A auf Iwi ≈ 65 A verringert die Rückinduktionsspannung Uind betragsmäßig um rund 100 V. Fig. 5 shows the calculated reinduction voltage U ind in volts as a function of the winding current I wi from 120 kW heating power by rotation of a billet in the field of a winding on an iron core having 3000 turns, with a uniform change in the rotational frequency of the billet relative to the winding within 1s 8 Hz. For small currents (eg, I wi ≈ 50 A), the return induction voltage has its maximum value of about 220 V. With increasing current I wi , the reverse induction initially decreases greatly in magnitude. An increase in the current I wi for example, about 15 A to I wi ≈ 65 A lowers the back-induction voltage U ind magnitude to approximately 100 V.

Oberhalb von etwa 80 A bewirkt eine weitere Erhöhung des Stroms nur eine vergleichsweise geringe Verringerung der Rückinduktionsspannung Uind. Beispielsweise bewirkt eine Erhöhung des Stroms Iwi von etwa 80 A auf etwa 100 A lediglich eine Verringerung der Rückinduktionsspannung um ca. 20 V. Der optimale Betriebsbereich für den Induktionsheizer liegt zwischen etwa 60 A (- 180.000 Amperewindungen) und etwa 80 A (∼ 240.000 Amperewindungen) insbesondere bei etwa 70 A (∼ 210.000 Amperewindungen), denn dann hat die relative Permeabilität des Eisenkerns einen Wert, der nur noch eine vergleichsweise geringe Rückinduktion zulässt, aber gleichzeitig noch ausreicht damit der Eisenkern das von der supraleitenden Wicklung erzeugte Magnetfeld zu dem Billet führt.Above about 80 A causes a further increase in the current only a relatively small reduction of the return induction voltage U ind . For example, increasing the current I wi from about 80 A to about 100 A merely reduces the reinduction voltage by about 20 V. The optimum operating range for the induction heater is between about 60 A (-180,000 ampere turns) and about 80 A (~ 240,000 ampere turns), especially at about 70 A (~ 210,000 ampere turns), because then the relative permeability of the iron core has a value only allows a relatively low re-induction, but at the same time still sufficient so that the iron core leads the magnetic field generated by the superconducting winding to the billet.

Claims (15)

  1. A method for inductive heating of a billet (10) made of an electrically conductive material by rotating the billet (10) relative to a magnetic field which is generated by means of at least one superconducting winding (60) which is supplied with direct current and disposed on an iron core (55.2, 55.3, 55.4), characterized in that the winding (60) is supplied with a direct current which has a value which generates a magnetic flux density in the iron core (55.2, 55.3, 55.4) at least in the region of the winding (60) in which the relatively permeability of the material of the iron core (55.2, 55.3, 55.4) is lower than in the current-free state of the winding (60).
  2. A method according to claim 1, in which at least two electrically conductive billets (10) are heated by rotation of the billets (10) relative to the magnetic field which is generated by at least superconducting winding (60) on an iron core (55.4), which winding is supplied with direct current, with a temporally varying induction current being generated in each billet (10) which causes one back-induction voltage each in the winding (60), characterized in that the movement of the billets (10) relative to one another is controlled in such a way that back-induction voltages superpose in a subtractive manner.
  3. A method according to claim 2, characterized in that the billets (10) are rotated in opposite directions with respect to each other.
  4. A method according to claim 2, characterized in that the position of the billets (10) relative to one another is controlled in such a way that the back-induction voltages superpose in a subtractive manner.
  5. A method according to claim 2, claim 3 or claim 4, characterized in that the billets (10) are rotated with an angular velocity which is approximately the same according to the amount.
  6. A method according to one of the claims 1 to 5, characterized in that the value of the direct current is controlled by the winding (60) to a substantially constant value.
  7. A method according to one of the claims 1 to 6, characterized in that the cross section of the iron core (55.2, 55.3, 55.4) is chosen smaller in the region of the winding (60) than outside of the winding (60).
  8. An apparatus for the inductive heating of at least one billet (10) made of an electrically conductive material, comprising at least one superconducting winding (60) on an iron core (55.2, 55.3, 55.4), a direct-current source (80) for generating a direct current in the winding (60) and at least one clamping apparatus for the billet (10) which is rotatably driven relative to the winding (60), characterized in that the value of the direct current generated in the winding (60) by the direct current source (80) is set in such a way that the relative permeability of the iron core (55.2, 55.3, 55.4) is reduced at least in the region of the winding (60) relative to the current-free state of winding (60).
  9. An apparatus according to claim a for the inductive heating of at least two billets (10) made of an electrically conductive material, comprising at last two clamping apparatuses which are rotatably driven relative to the winding (60), in which one of the billets (10) can be clamped, characterized in that the clamping apparatuses are driven in opposite directions.
  10. An apparatus according to claim 8 or 9 for the inductive heating of at least two billets (10) made of an electrically conductive material, comprising at last two clamping apparatuses which are rotatably driven relative to the winding (60), in which one of the billets (10) can be clamped, characterized in that the apparatus comprises means for determining the back-induction voltages each caused by temporally varying induction currents in the billets (10), and the apparatus comprises a control device which controls the rotary drives of the clamping apparatuses in such a way that the respectively caused back-induction voltages are superposed in a subtractive manner.
  11. An apparatus according to claim 9 or 10, characterized in that the clamping apparatuses are rotated with an angular velocity which is approximately the same according to the amount.
  12. An apparatus according to one of the claims 8 to 11, characterized in that the iron core (55.3) is an approximately C-shaped yoke.
  13. An apparatus according to one of the claims 8 to 12, characterized in that the iron core (55.4) is an approximately E-shaped yoke with an air gap each for receiving one billet each between the middle leg and the respective end leg.
  14. An apparatus according to one of the claims 8 to 13, characterized in that the iron core (55.4) consists at least partly of layered sheets (58).
  15. An apparatus according to one of the claims 8 to 14, characterized in that the iron core (55.3) has a smaller cross section in the region of the winding (60) than outside of the winding (60).
EP08784690A 2007-07-26 2008-07-10 Induction heating method Not-in-force EP2181563B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007034970A DE102007034970B4 (en) 2007-07-26 2007-07-26 Method and device for inductive heating of at least one billet
PCT/EP2008/005647 WO2009012896A1 (en) 2007-07-26 2008-07-10 Induction heating method

Publications (2)

Publication Number Publication Date
EP2181563A1 EP2181563A1 (en) 2010-05-05
EP2181563B1 true EP2181563B1 (en) 2010-08-25

Family

ID=39876587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08784690A Not-in-force EP2181563B1 (en) 2007-07-26 2008-07-10 Induction heating method

Country Status (14)

Country Link
US (1) US20090255923A1 (en)
EP (1) EP2181563B1 (en)
JP (1) JP5025797B2 (en)
KR (1) KR20100039355A (en)
CN (1) CN101803453A (en)
AT (1) ATE479314T1 (en)
AU (1) AU2008280489A1 (en)
BR (1) BRPI0814393A2 (en)
CA (1) CA2688075C (en)
DE (2) DE102007034970B4 (en)
ES (1) ES2351182T3 (en)
RU (1) RU2462001C2 (en)
TW (1) TW200922382A (en)
WO (1) WO2009012896A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024883A1 (en) * 2010-06-24 2011-12-29 Zenergy Power Gmbh Device for melting metal pieces
DE102010053284A1 (en) * 2010-12-02 2012-06-06 Zenergy Power Gmbh Method and induction heater for heating a billet
RU2595971C2 (en) 2011-09-06 2016-08-27 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Heating smoking material
DE102011053535B4 (en) 2011-09-12 2024-08-14 Bl Chemie Gmbh & Co. Kg Device for inductive heating of metal bodies or metal-containing bodies
WO2013128241A1 (en) * 2012-03-01 2013-09-06 Inova Lab S.R.L. Device for induction heating of a billet
GB201217067D0 (en) 2012-09-25 2012-11-07 British American Tobacco Co Heating smokable material
CN103916054B (en) * 2014-02-18 2016-06-15 上海超导科技股份有限公司 Heating motor starting device and method thereof is sensed based on the direct supercurrent taking off magnetic
CN103916055B (en) * 2014-02-18 2016-03-30 上海超导科技股份有限公司 Based on direct supercurrent induction heating motor starting device and the method thereof of reduction box
KR101658727B1 (en) * 2015-03-11 2016-09-21 창원대학교 산학협력단 Superconducting magnet apparatus using movement and Induction heating apparatus thereof
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) * 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170055575A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US20170119047A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
KR101877118B1 (en) * 2016-06-14 2018-07-10 창원대학교 산학협력단 Superconducting dc induction heating apparatus using magnetic field displacement
BR112019009137A2 (en) 2016-11-10 2019-07-16 British American Tobacco Investments Ltd composition, device, cartridge and method for generating an inhalable medium
KR101922688B1 (en) * 2017-02-20 2018-11-27 수퍼코일 (주) Dc induction heating apparatus capable of rotating the supercondcting magnet
IT201700031443A1 (en) * 2017-03-22 2018-09-22 Univ Bologna Alma Mater Studiorum Induction heating apparatus and method
CN107846740B (en) * 2017-11-10 2021-02-23 中国航发贵州黎阳航空动力有限公司 Heating device for thermal state sealing test of fuel oil main pipe
KR102084111B1 (en) * 2019-03-26 2020-03-03 이명옥 Rotatable cooking device for induction heating and induction heating system comprising the same
KR102040696B1 (en) * 2019-03-26 2019-11-05 이명옥 Induction heating cooking device
KR102676202B1 (en) * 2019-09-06 2024-06-19 주식회사 엘지에너지솔루션 A device for inducing an internal short of the battery and methods using the same
KR102408264B1 (en) * 2019-10-01 2022-06-13 주식회사 피에스텍 Stacked Core and Induction Heating Apparatus Using the Same
CN111010756B (en) * 2019-11-26 2021-04-16 江西联创光电超导应用有限公司 Method and apparatus for heating conductor blank
CN111225465B (en) * 2020-02-17 2022-02-01 中国科学院电工研究所 Superconducting induction heating device with mixed magnetic circuit
KR102235546B1 (en) * 2020-09-02 2021-04-05 고등기술연구원연구조합 Billet heating appratus using permanet magnet and rotation speed control methid thereof
CN112423416A (en) * 2020-11-23 2021-02-26 江西联创光电超导应用有限公司 Novel high-temperature superconducting induction heating device
CN112588974B (en) * 2020-11-23 2022-10-18 江西联创光电超导应用有限公司 Aluminum alloy heating equipment and operation method
CN112165743B (en) * 2020-11-30 2021-03-16 江西联创光电超导应用有限公司 Non-magnetic low vortex positioning device
CN112203371B (en) * 2020-12-02 2021-04-02 江西联创光电超导应用有限公司 Magnetic shielding device of superconducting induction heating device
CN113727482A (en) * 2021-08-31 2021-11-30 南京邮电大学 Superconducting linear induction heating device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU383224A1 (en) * 1971-06-07 1973-05-25 DEVICE FOR HIGH FREQUENCY HEATING
DE2133345A1 (en) * 1971-07-05 1973-01-18 Aeg Elotherm Gmbh WORKING METHOD FOR WARMING UP LONG DISTURBED WORKPIECES
US3883712A (en) * 1973-10-01 1975-05-13 Illinois Tool Works Induction heating system
US3842234A (en) * 1974-01-10 1974-10-15 Park Ohio Industries Inc Inductor for inductively heating metal workpieces
SU1107348A1 (en) * 1983-06-06 1984-08-07 Уфимский Ордена Ленина Авиационный Институт Им.Серго Орджоникидзе Induction heating device
DE3438375A1 (en) * 1984-10-19 1986-04-24 Küsters, Eduard, 4150 Krefeld Device for the inductive heating of rollers
US4761527A (en) * 1985-10-04 1988-08-02 Mohr Glenn R Magnetic flux induction heating
JPH0687447B2 (en) * 1988-07-27 1994-11-02 三菱電機株式会社 Superconducting magnet device
JPH0831671A (en) * 1994-07-11 1996-02-02 Nissin Electric Co Ltd Superconducting induction apparatus
NO995504A (en) * 1999-11-11 2000-11-20 Sintef Energiforskning As Device for induction heating
NO317391B1 (en) * 2003-01-24 2004-10-18 Sintef Energiforskning As Apparatus and method for induction heating of electrically conductive and non-magnetic material
DE102005061670B4 (en) * 2005-12-22 2008-08-07 Trithor Gmbh Method for inductive heating of a workpiece

Also Published As

Publication number Publication date
DE502008001221D1 (en) 2010-10-07
TW200922382A (en) 2009-05-16
RU2462001C2 (en) 2012-09-20
AU2008280489A1 (en) 2009-01-29
US20090255923A1 (en) 2009-10-15
CA2688075A1 (en) 2009-01-29
ES2351182T3 (en) 2011-02-01
JP5025797B2 (en) 2012-09-12
KR20100039355A (en) 2010-04-15
WO2009012896A1 (en) 2009-01-29
EP2181563A1 (en) 2010-05-05
CA2688075C (en) 2010-10-05
CN101803453A (en) 2010-08-11
RU2010106391A (en) 2011-09-10
DE102007034970A1 (en) 2009-02-05
ATE479314T1 (en) 2010-09-15
JP2010534905A (en) 2010-11-11
DE102007034970B4 (en) 2010-05-12
BRPI0814393A2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
EP2181563B1 (en) Induction heating method
DE102007039888B4 (en) Method and device for induction heating of a metallic workpiece
DE102005061670B4 (en) Method for inductive heating of a workpiece
WO2007098990A1 (en) Linear drive with a reduced axial force component, as well as a linear compressor and refrigerator
DE1660330A1 (en) Heating device
DE102007051144B4 (en) Induction heater and method for adjusting the width of the wells of such induction heater
DE69112208T2 (en) METHOD AND DEVICE FOR INDUCTINGLY HEATING A MOVING LONG OBJECT.
DE102010031908A1 (en) Method and device for heating a flat material
EP3451516B1 (en) Eddy-current brake with variable effect, with a magnet array and induction assembly and magnet assembly and induction assembly for same
EP0647494A1 (en) Multi-layer soldered metal tubes producing apparatus
DE202007014930U1 (en) induction heater
DE19629026C2 (en) Process for winding an electrical steel strip into a large coil
DE1902733A1 (en) Roller table for the transport of ferromagnetic products
DE909240C (en) Process for glowing or warming or keeping workpieces made of magnetizable materials in magnetic frequency current fields and the device used for this purpose
DE1274256B (en) Switchable permanent magnet device
DE102009022423B4 (en) Alternating field excitation by direct currents for energy conversion
DE10135876A1 (en) Method and device for applying compressive and / or tensile forces to essentially rod-shaped workpieces made of electrically conductive and / or magnetizable material
DE2025813C3 (en) Method and device for induction heating of flat bodies
DE2941890A1 (en) DC motor with moving yoke and brushes - has stationary armature commutator and field and interpoles may not be required
DE102021121383A1 (en) Switched reluctance machine
DE911989C (en) Resistance regulator
DE1074781B (en) Device for heating and separating rolling stock in motion
DE1280400B (en) Inductive adjusting device
DE960831C (en) Electric remote control arrangement
DE569871C (en) Control device for monitoring the relative synchronism in continuous rolling lines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001221

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001221

Country of ref document: DE

Effective date: 20110526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110728

Year of fee payment: 4

Ref country code: SE

Payment date: 20110721

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110725

Year of fee payment: 4

Ref country code: IT

Payment date: 20110731

Year of fee payment: 4

Ref country code: NL

Payment date: 20110728

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008001221

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008001221

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008001221

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008001221

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120927

Year of fee payment: 5

BERE Be: lapsed

Owner name: ZENERGY POWER G.M.B.H.

Effective date: 20120731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120710

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120710

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120711

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001221

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 479314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130710