EP2168698A1 - Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte - Google Patents

Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte Download PDF

Info

Publication number
EP2168698A1
EP2168698A1 EP09006241A EP09006241A EP2168698A1 EP 2168698 A1 EP2168698 A1 EP 2168698A1 EP 09006241 A EP09006241 A EP 09006241A EP 09006241 A EP09006241 A EP 09006241A EP 2168698 A1 EP2168698 A1 EP 2168698A1
Authority
EP
European Patent Office
Prior art keywords
module
webs
modules
ceramic
molded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09006241A
Other languages
German (de)
English (en)
Inventor
Fathi Ahmad
Hans-Thomas Dr. Bolms
Uwe Dr. Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09006241A priority Critical patent/EP2168698A1/fr
Priority to EP09782603A priority patent/EP2340137A1/fr
Priority to PCT/EP2009/061449 priority patent/WO2010034606A1/fr
Publication of EP2168698A1 publication Critical patent/EP2168698A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the invention relates to a molded part, which includes a separate module for the molding of webs, a method for producing a casting mold, a ceramic casting mold and a casting.
  • the interior of cooled turbine blades is very important for the heat distribution and heat transfers for the internal flow of the cooling medium and for some mechanical properties.
  • heat transfer bridges at the blade exit edge which cool the flow edge but also generate pressure losses in order to control the internal cooling liquid flow. They also provide the mechanical strength of the thin vane wall portions of the flow edge.
  • These transitions are also part of a molded part used during casting for molded parts. Due to the inflow of ceramic material, the corresponding pins are subject to a certain abrasion, which can no longer be tolerated to a certain extent. The cost of these moldings are high.
  • the object is achieved by a molding according to claim 1, a method according to claim 13, a ceramic casting mold according to claim 15 and a casting according to claim 16.
  • FIG. 1 a component 1, preferably a turbine blade 120, 130 is shown, which has a cavity 2 and walls 7, 7 '.
  • Such complex components 1, 120, 130 are produced by casting, wherein modular molded parts 10 '(FIG. Fig. 2 ) can be used to make the appropriate mold or casting core.
  • the mold parts 10 represent the corresponding negative of the molds for the component 1, 120, 130.
  • FIG. 2 shows a module 10 'according to the prior art.
  • Webs 24, 24 ' wear faster than the walls of the modules 13', 16 ', as they are flowed around by the ceramic material for the mold.
  • FIG. 3 an inventive modular molding 10 is shown.
  • the molded part 10 ( Fig. 3-6 ) is used in particular for the production of cast cores.
  • the molded part 10 has a first module 13 and a second module 16, whose inner walls enclose a cavity 11 at least partially, in the material, preferably ceramic, introduced under high pressure, preferably pressed, is.
  • the second module 16 has passages 17, 17 ', through which protuberances 25, 25' of a separate exchange module 19 pass, and which 25, 25 'reach the inner surface of the opposite first module 13.
  • the replacement module 19 has a block 20 disposed outboard of the second module 16 (i.e., not in the cavity 11). At the block 20, the webs 25, 25 'are arranged.
  • the projections 25, 25 When introducing material, preferably ceramic, into the cavity 11, the projections 25, 25 'prevent material from getting there.
  • the modules 13, 16 have no integrally connected projections (not in a cast, non-detachable, ...), which form the webs.
  • the first or second module 13, 16 is chosen arbitrarily, ie the separate replacement module 19 can also be applied to the first module 13.
  • a recess 18, 18 ' (indicated by dashed lines) may be present, in which the end 26, 26' of the projection 25, 25 'come in, so that the projection 25, 25' not on the surface in Cavity 11 of the wall 13 is present.
  • FIG. 4 another separate first module 13 or second module 16 is shown.
  • a recess (not shown, similar to in FIG Fig. 3 ), in which the end of the projection 25, 25 'comes in, so that the projection 25, 25' does not rest on the surface in the cavity 11 of the wall 13.
  • FIG. 5 shows a further embodiment of a separate exchange module 21, in which on the inside 29 of the module 16 (ie in the cavity 11), a further exchange module 21 is present, the corresponding projections 25, 25 'has.
  • the surface of the separate replacement module 21 then represents the boundary surface to the cavity 11 here.
  • the module 16 represents the reinforcement for the separate replacement module 21.
  • the separate module is made correspondingly thinner and because of low material synonymous cheaper and thus cheaper to exchange.
  • the first 13 or the second 16 module is divided into two parts.
  • a recess 18, 18 ' (indicated by dashed lines) may be present, in which the end of the projection 25, 25' in, so that the projection 25, 25 'not on the surface in the cavity 11 of the wall 13 is present.
  • FIG. 6 shows a further embodiment of the invention. Based on the design according to FIG. 3 Both the first module 13 and the second module 16 passages 17, 17 ', 17 ", 17''', through the webs 25, 25 'of another exchange module 27 and webs 25", 25''' through openings of a second exchange module 28 get into the interior 11 and completely bridge this.
  • the webs 25, 25 ', 25' ', 25' '' also releasably interchangeable at the exchange modules 27, 28 may be present.
  • FIG. 7 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality Coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality Coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 8 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i. the whole workpiece consists of a single crystal.
  • a columnar grain structure columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure i. the whole workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10A1-0,4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a recoating occurs of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 9 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around a rotation axis 102 in the circumferential direction open into a common combustion chamber space 154, which generate flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 is known from the EP 0 486 489 B1 .
  • a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP09006241A 2008-09-26 2009-05-07 Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte Withdrawn EP2168698A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09006241A EP2168698A1 (fr) 2008-09-26 2009-05-07 Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte
EP09782603A EP2340137A1 (fr) 2008-09-26 2009-09-04 Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée
PCT/EP2009/061449 WO2010034606A1 (fr) 2008-09-26 2009-09-04 Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08017039 2008-09-26
EP09006241A EP2168698A1 (fr) 2008-09-26 2009-05-07 Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte

Publications (1)

Publication Number Publication Date
EP2168698A1 true EP2168698A1 (fr) 2010-03-31

Family

ID=41055232

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09006241A Withdrawn EP2168698A1 (fr) 2008-09-26 2009-05-07 Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte
EP09782603A Withdrawn EP2340137A1 (fr) 2008-09-26 2009-09-04 Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09782603A Withdrawn EP2340137A1 (fr) 2008-09-26 2009-09-04 Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée

Country Status (2)

Country Link
EP (2) EP2168698A1 (fr)
WO (1) WO2010034606A1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1195910B (de) * 1959-01-22 1965-07-01 Gen Motors Corp Verfahren zur Herstellung von gegossenen hohlen Turbinenschaufeln
JPH0198234A (ja) * 1987-10-12 1989-04-17 Nec Corp 半導体樹脂封止用金型
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
DE10129975A1 (de) * 2000-12-27 2002-07-04 Alstom Switzerland Ltd Giessform für den Kern einer Gasturbinenschaufel oder dergleichen
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20060292005A1 (en) * 2005-06-23 2006-12-28 United Technologies Corporation Method for forming turbine blade with angled internal ribs
US20070277954A1 (en) * 2006-06-06 2007-12-06 Siemens Power Generation, Inc. Modular mold system with ceramic inserts

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1195910B (de) * 1959-01-22 1965-07-01 Gen Motors Corp Verfahren zur Herstellung von gegossenen hohlen Turbinenschaufeln
JPH0198234A (ja) * 1987-10-12 1989-04-17 Nec Corp 半導体樹脂封止用金型
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
DE10129975A1 (de) * 2000-12-27 2002-07-04 Alstom Switzerland Ltd Giessform für den Kern einer Gasturbinenschaufel oder dergleichen
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20060292005A1 (en) * 2005-06-23 2006-12-28 United Technologies Corporation Method for forming turbine blade with angled internal ribs
US20070277954A1 (en) * 2006-06-06 2007-12-06 Siemens Power Generation, Inc. Modular mold system with ceramic inserts

Also Published As

Publication number Publication date
WO2010034606A1 (fr) 2010-04-01
EP2340137A1 (fr) 2011-07-06

Similar Documents

Publication Publication Date Title
EP2414127B1 (fr) Methode de soudage d'un evidement dans un composant par le depot de cordons de soudure a l'exterieur ou autour du contour ; composant correspondant
EP2593582B1 (fr) Système stratifié céramique poreux
EP1952931A1 (fr) Mechtrode ayant une alimentation en poudre et procédé d'utilisation de cette mechtrode
EP2733310A1 (fr) Surface modifiée autour d'un trou
EP2450465A1 (fr) Système de couche poreux doté d'une couche intérieure poreuse
EP2373824B1 (fr) Procédé de revêtement d'un composant à trous de refroidissement par film et composant
WO2015086344A1 (fr) Revêtement calorifuge d'une aube de turbine
WO2010084036A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
EP2365106A1 (fr) Système de couche d'isolation thermique en céramique doté d'une couche de raccordement modifiée
EP2138258A1 (fr) Procédé de soudage à profil de température à plusieurs niveaux
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
EP2597259A1 (fr) Surface modifiée autour d'un trou
DE102016218317A1 (de) Heißgaskomponente und Verfahren zur Fügung von Heißgaskomponenten-Segmenten
EP2463043A1 (fr) Pièce de formage coulée en céramique dotée de différents facteurs de rétrécissement et procédé de coulée
EP2168698A1 (fr) Pièce de formage dotée d'un module séparé pour âmes, procédé de fabrication d'un moule en fonte, moule en fonte céramique et pièce en fonte
EP2539476B1 (fr) Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi
EP2441537A1 (fr) Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau
EP2463044A1 (fr) Noyau de fonderie en céramique modulaire et procédé de coulée
EP2452775A1 (fr) Procédé de forage raccourci d'un trou
EP2241391A1 (fr) Procédé de fabrication d'un moule négatif destiné à couler une aube de turbine et moule de fabrication d'un modèle en cire d'une aube de turbine
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique
EP2589681A1 (fr) Combinaison de structures colonnaires et globulaires
EP2322683A1 (fr) Procédé de revêtement d'un composant doté d'un orifice partiellement fermé et procédé d'ouverture de l'orifice

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101001