EP2165130A1 - Réfrigérateur - Google Patents

Réfrigérateur

Info

Publication number
EP2165130A1
EP2165130A1 EP07834226A EP07834226A EP2165130A1 EP 2165130 A1 EP2165130 A1 EP 2165130A1 EP 07834226 A EP07834226 A EP 07834226A EP 07834226 A EP07834226 A EP 07834226A EP 2165130 A1 EP2165130 A1 EP 2165130A1
Authority
EP
European Patent Office
Prior art keywords
refrigerator
cool air
door
freezing chamber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07834226A
Other languages
German (de)
English (en)
Other versions
EP2165130A4 (fr
EP2165130B1 (fr
Inventor
Hyoung-Keun Lim
Min-Kyu Oh
Gye-Young Song
Nam-Gyo Lee
Yang-Gyu Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP2165130A1 publication Critical patent/EP2165130A1/fr
Publication of EP2165130A4 publication Critical patent/EP2165130A4/fr
Application granted granted Critical
Publication of EP2165130B1 publication Critical patent/EP2165130B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/062Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation along the inside of doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0663Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0664Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/06Refrigerators with a vertical mullion

Definitions

  • the present invention relates to a refrigerator, and more particularly, to a method for disposing an evaporator and a cool air channel for a refrigerator.
  • a refrigerator is generally provided with a refrigerating cycle composed of a compressor, a condenser, an expansion valve, and an evaporator, and serves to store food items with a fresh state for a long period by supplying cool air generated from the evaporator to a freezing chamber or a chilling chamber.
  • a side-by-side refrigerator partitioned into right and left chamber by a partition wall that is, a freezing chamber and a chilling chamber
  • a method for separately disposing evaporators at the freezing chamber and the chilling chamber has been disclosed.
  • the two evaporators may be serially connected to one refrigerating cycle, or may be installed at different refrigerating cycles. Also, the two evaporators may be installed at different refrigerating cycles with sharing one compressor.
  • the evaporators are respectively installed at a rear surface of the freezing chamber and a rear surface of the chilling chamber. Accordingly, the freezing chamber and the chilling chamber respectively have a small available capacity and a shallow depth, thereby having a limitation in storing food items. Furthermore, since the evaporators are installed at rear surfaces of the freezing chamber and the chilling chamber, cool air is not uniformly distributed to inside of the refrigerator. Accordingly, food received in a front surface of the refrigerator or food received in a door basket may be easily rotten than food stored in a rear surface of the refrigerator.
  • a refrigerator comprising: a refrigerator body having an inner space opened/closed by a refrigerator door; a partition wall having one or more first cool air channels therein and having a predetermined thickness and area, for partitioning the inner space of the refrigerator body into two ore more spaces; one or more evaporators installed at the first cool air channels, for generating cool air; and one or more fans installed at the first cool air channel, for supplying cool air generated from the evaporator to the corresponding space.
  • a refrigerator comprising: a refrigerator body having a freezing chamber that stores food with a frozen state, and a chilling chamber that stored food with a fresh state, the chambers partitioned from each other by a partition wall; a freezing chamber door and a chilling chamber door coupled to the refrigerator body, for opening and closing the freezing chamber and the chilling chamber; and a freezing chamber evaporator and a chilling chamber evaporator installed at the partition wall of the refrigerator body.
  • FIG. 1 is a perspective view of a refrigerator, which shows a freezing chamber evaporator and a chilling chamber evaporator installed at upper and lower sides of a partition wall according to one embodiment of the present invention
  • FIG. 2 is a sectional view taken along line 'l-l' in FIG. 1 ;
  • FIG. 3 is a cross sectional view of a cool air channel of a refrigerator door of the refrigerator of FIG. 1 ;
  • FIG. 4 is a perspective view of the refrigerator, which shows the freezing chamber evaporator and the chilling chamber evaporator installed at right and left sides of the partition wall according to another embodiment of the present invention
  • FIG. 5 is a sectional view taken along line 1 II-N' in FIG. 4;
  • FIG. 6 is a perspective view of the refrigerator, which shows the freezing chamber evaporator and the chilling chamber evaporator installed at the same position of the partition wall according to still another embodiment of the present invention
  • FIG. 7 is a sectional view taken along line 'IM-IM' in FIG. 6;
  • FIG. 8 is a cross sectional view of the refrigerator, which shows the freezing chamber evaporator and the chilling chamber evaporator installed at one cool air channel formed at the partition wall according to yet still another embodiment of the present invention.
  • a refrigerator according to the present invention comprises a refrigerator body 100 having a freezing chamber 110 and a chilling chamber 120 partitioned from each other by a partition wall 130, a freezing chamber door 200 and a chilling chamber door 300 for opening and closing the freezing chamber 110 and the chilling chamber 120 of the refrigerator body 100, and a refrigerant compression type-refrigerating cycle device 400 installed at the refrigerator body 100 and generating cool air.
  • the freezing chamber 110 and the chilling chamber 120 are disposed at right and left sides, and are partitioned from each other by the partition wall 130 vertically disposed between the freezing chamber 110 and the chilling chamber 120. As shown in FIG. 1 , when the refrigerator is a side-by-side type one, the freezing chamber 110 and the chilling chamber 120 are disposed at right and left sides, and are partitioned from each other by the partition wall 130 vertically disposed between the freezing chamber 110 and the chilling chamber 120. As shown in FIG. 1 , when the refrigerator is a side-by-side type one, the freezing chamber 110 and the chilling chamber 120 are disposed at right and left sides, and are partitioned from each other by the partition wall 130 vertically disposed between the freezing chamber 110 and the chilling chamber 120. As shown in FIG.
  • a freezing chamber channel 131 (hereinafter, will be referred to as a 'first refrigerator channel') and a chilling chamber channel 132 (hereinafter, a 'second refrigerator channel') respectively having a freezing chamber evaporator (hereinafter, a 'first evaporator') 440 and a chilling chamber evaporator (hereinafter, a 'second evaporator') 460 thereby implementing a first cool air channel.
  • One or more freezing chamber cool air outlet (hereinafter, a 'first refrigerator outlet) 131a and one or more chilling chamber cool air outlet (hereinafter, a 'second refrigerator outlet') 132a are formed along each height direction of the first refrigerator channel 131 and the second refrigerator channel 132.
  • a freezing chamber door guide channel (hereinafter, a 'first guide channel') 131b and a chilling chamber door guide channel (hereinafter, a 'second guide channel') 132b respectively for guiding cool air inside the first refrigerator channel 131 and the second refrigerator channel 132 to a cool air channel for a freezing chamber door 200 (hereinafter, a 'first door channel') 211 and a cool air channel for a chilling chamber door 300 (hereinafter, a 'second door channel') 311.
  • the first door channel 211 and the second door channel 311 are respectively formed at the freezing chamber door 200 and the chilling chamber door 300 so as to be communicated with the first guide channel 131b and the second guide channel 132b of the partition wall 130.
  • One or more first door outlets 211a and one or more second door outlets 311a may be formed at the first door channel 211 and the second door channel 311 in each height direction.
  • cool air inlets (not shown) are formed at the freezing chamber 110 and the chilling chamber 120 of the refrigerator body 100, cool air can be introduced into the first and second door channels 211 and 311 through the cool air inlets even if additional cool air inlets are not provided at the freezing chamber door 200 and the chilling chamber door 300.
  • the refrigerating cycle device 400 includes one compressor 410; one condenser 420 connected to the compressor 410, for condensing a refrigerant discharged from the compressor 410 with a high temperature and a high pressure; a freezing chamber expansion valve (hereinafter, a 'first expansion valve') 430 installed at a freezing chamber refrigerating cycle (hereinafter, a 'first cycle' C1) diverged from an exit of the condenser 420, for expanding the refrigerant with a high temperature and a high pressure in correspondence with a preset temperature of the freezing chamber 110; a first evaporator 440 connected to the first expansion valve 430 and installed at the first refrigerator channel 131 , for evaporating a refrigerant of a low temperature and a low pressure; a chilling chamber expansion valve (hereinafter, a 'second expansion valve') 450 installed at a chilling chamber refrigerating cycle (hereinafter, a 'second cycle' C2) diverged from an exit of
  • a freezing chamber fan hereinafter, a 'first fan'
  • a chilling chamber fan hereinafter, a 'second fan'
  • a refrigerant conversion valve 490 for selectively circulating a refrigerant having passed through the condenser 420 to one of the first cycle (C1) and the second cycle (C2) is installed at the exit of the condenser 420.
  • the refrigerant conversion valve 490 may be implemented as a 3-way valve installed at a diverge point between the first cycle (C1 ) and the second cycle (C2), or as a 2-way valve individually installed at the first cycle (C1) and the second cycle (C2).
  • the 3-way is operated to totally close the condenser 420 and the first and second cycles (C1 and C2), or to connect the condenser 420 and the first cycle (C1 ) with each other, or to connect the condenser 420 and the second cycle (C2) with each other when the refrigerator is driven.
  • the first and second evaporators 440 and 460 may be installed on a nearly same plane in the partition wall 130.
  • the first and second evaporators 440 and 460 may be installed at the same depth so as to be separated from each other by a certain distance therebetween at upper and lower sides of the partition wall 130.
  • the first and second evaporators 440 and 460 may be installed at the same height so as to be separated from each other by a certain distance therebetween in a depth direction.
  • the first and second evaporators 440 and 460 may be installed at the same height and at the same depth.
  • the first and second evaporators 440 and 460 When the first and second evaporators 440 and 460 are disposed in upper and lower directions, the first and second evaporators 440 and 460 can have a long horizontal length and can be installed at a deep position inside the refrigerator, respectively. When the first and second evaporators 440 and 460 are disposed in a depth direction, the first and second evaporators 440 and 460 can be disposed at upper sides of the refrigerator. When the first and second evaporators 440 and 460 are disposed at the same height and at the same depth, the first and second evaporators 440 and 460 can have a long horizontal length and can be installed at an upper side of the refrigerator, respectively.
  • Unexplained reference numerals 220 and 320 denote door baskets. Operation and effects of the refrigerator according to the present invention will be explained as follows.
  • the compressor 410 When a load is generated as food items are received in the freezing chamber 110 or the chilling chamber 120 of the refrigerator, the compressor 410 starts to operate thus to compress a refrigerant. Then, the compressed refrigerant is moved to the first cycle (C1 ) via the condenser 420, and then is introduced into the compressor 410 via the first expansion valve 430 and the first evaporator 440. The compressed refrigerant is moved to the second cycle (C2) via the condenser 420, and then is introduced into the compressor 410 via the second expansion valve 450 and the second evaporator 460. These processes are repeatedly performed.
  • cool air generated from the first evaporator 440 and the second evaporator 460 may be supplied to the freezing chamber 110 by the first fan 470 through the first refrigerator channel 131 and the first refrigerator outlet 131a, or may be supplied to the chilling chamber 120 by the second fan 480 through the second refrigerator channel 132 and the second refrigerator outlet 132a. Accordingly, food items stored in the freezing chamber 110 and the chilling chamber 120 can be maintained with a frozen status or a cool status.
  • Cool air inside the first and second refrigerator channels 131 , 132 is introduced into the first and second door channels 211 , 311 provided at the freezing chamber door 200 and the chilling chamber door 300 through the first and second guide channels 131b, 132b communicated with each side surface of the first and second refrigerator channels 131 , 132. Also, the cool air is directly supplied to the door baskets 220, 320 of the freezing chamber door 200 and the chilling chamber door 300 through the first and second door outlets 211a, 311a. Accordingly, food or beverage items stored in the door baskets 220, 320 can be freshly maintained with a frozen state or a cool state.
  • the freezing chamber 110 and the chilling chamber 120 In order to receive a large amount of food items and to store food items with a fresh state by smoothly supplying cool air, the freezing chamber 110 and the chilling chamber 120 have to have large available capacities. However, when the first and second evaporators are installed at rear surfaces of the freezing chamber 110 and the chilling chamber 120, the available capacities of the freezing chamber and the chilling chamber are decreased. To solve the problem, in the present invention, the first and second evaporators 440, 460 are installed inside the partition wall 130 that partitions the freezing chamber 110 and the chilling chamber 120 from each other.
  • the freezing chamber 110 and the chilling chamber can have a deep depth and a large available capacity, respectively. Furthermore, cool air generated from the first and second evaporators 440, 460 can be directly supplied to the door baskets 220, 320 of the freezing chamber door 200 and the chilling chamber door 300 through the first and second door channels 211 , 311 formed at the freezing chamber door 200 and the chilling chamber door 300. In this case, each temperature difference between the freezing chamber 110 and the door basket 220, and between the chilling chamber 120 and the door basket 320 can be solved, thereby freshly storing food or beverage items received in the door baskets 220, 320.
  • the refrigerator of the present invention may have other embodiment.
  • one refrigerator channel 133 having a first cool air channel may be formed in the partition wall 130.
  • a first refrigerator outlet 133a and a second refrigerator outlet 133b may be formed at both sides of the refrigerator channel 133, that is, a side surface of the freezing chamber and a side surface of the chilling chamber.
  • one or more evaporators 440, 460 may be installed at the one refrigerator channel 133.
  • the freezing chamber fan 470 and the chilling chamber fan 480 may be installed at each periphery of the first and second refrigerator outlets 133a, 133b.
  • one fan may be installed at rear sides of the evaporators 440, 460, thereby guiding cool air discharged from the fan to be respectively supplied to the freezing chamber 110 and the chilling chamber 120.
  • the evaporators 440, 460 are installed at the partition wall 130 positioned at a side surface of the refrigerator not a rear surface of the refrigerator, an available capacity inside the refrigerator can be increased.
  • the first and second door channels 211 , 311 and the first and second door outlets 211a, 311a are respectively connected to the freezing chamber door 200 and the chilling chamber door 300, food items received in the first and second door baskets 220, 320 can be stored with a fresh state.
  • the refrigerator according to another embodiment of the present invention has the same effects and configurations as the aforementioned refrigerator, and thus its detailed explanation will be omitted.
  • the refrigerator according to the present invention has the following advantages. Since the freezing chamber evaporator and the chilling chamber evaporator are installed at an inner side of the partition wall that partitions inside of the refrigerator into the freezing chamber and the chilling chamber, each depth of the freezing chamber and the chilling chamber becomes deep. Accordingly, each available capacity of the freezing chamber and the chilling chamber can be increased, and thus a large amount of food items can be stored in the refrigerator with a fresh state.
  • the cool air channel is connected to the freezing chamber door and the chilling chamber door, thereby not causing a temperature difference between the refrigerator body and the door basket. Accordingly, food items or beverage items received in the door basket can be stored with a fresh state.
  • the refrigerator according to the present invention can be applied not only to a side-by-side type, but also to any refrigerator having a partition wall therein. It will also be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

L'invention concerne un réfrigérateur. Un évaporateur de chambre de congélation et un évaporateur de chambre de réfrigération sont installés côté interne d'une paroi de séparation séparant une chambre de congélation et une chambre de réfrigération. Par conséquent, la chambre de congélation et la chambre de réfrigération sont très profondes et ont de grandes capacités de rangement disponibles, ce qui leur permet de contenir au frais une grande quantité de produits alimentaires. Par ailleurs, un passage d'air frais est formé dans la porte des chambres de congélation et de réfrigération de manière à être raccordé à un passage d'air frais de la paroi de séparation. De ce fait, il ne se produit pas de différence de température entre un espace interne et une étagère de porte, ce qui permet de stocker et de conserver dans un état frais des aliments ou des boissons dans une étagère de porte.
EP07834226.8A 2007-05-25 2007-11-22 Réfrigérateur Active EP2165130B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070051092A KR101386469B1 (ko) 2007-05-25 2007-05-25 냉장고
PCT/KR2007/005926 WO2008146999A1 (fr) 2007-05-25 2007-11-22 Réfrigérateur

Publications (3)

Publication Number Publication Date
EP2165130A1 true EP2165130A1 (fr) 2010-03-24
EP2165130A4 EP2165130A4 (fr) 2015-06-10
EP2165130B1 EP2165130B1 (fr) 2018-08-08

Family

ID=40075206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07834226.8A Active EP2165130B1 (fr) 2007-05-25 2007-11-22 Réfrigérateur

Country Status (4)

Country Link
US (1) US20100154461A1 (fr)
EP (1) EP2165130B1 (fr)
KR (1) KR101386469B1 (fr)
WO (1) WO2008146999A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132554B1 (ko) * 2010-01-20 2012-04-03 엘지전자 주식회사 냉장고
KR101132551B1 (ko) * 2010-01-19 2012-04-02 엘지전자 주식회사 냉장고
KR101048222B1 (ko) * 2010-01-06 2011-07-08 엘지전자 주식회사 냉장고
US20130086936A1 (en) * 2009-12-31 2013-04-11 Lg Electronics Inc. Refrigerator
WO2011081499A2 (fr) * 2009-12-31 2011-07-07 Lg Electronics Inc. Réfrigérateur et procédé de commande de celui-ci
KR101132540B1 (ko) * 2010-01-21 2012-04-03 엘지전자 주식회사 냉장고
US20120285193A1 (en) * 2009-12-31 2012-11-15 Bongjun Choi Refrigerator
CN102221280B (zh) * 2011-06-16 2014-02-26 合肥美的电冰箱有限公司 冰箱
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US20130257257A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US20140216095A1 (en) * 2013-02-04 2014-08-07 Whirlpool Corporation In-the-door compact cooling system for domestic refrigerators
US9097454B2 (en) * 2013-02-04 2015-08-04 Whirlpool Corporation In-the-door compact cooling system for domestic refrigerators
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP6564252B2 (ja) * 2015-06-16 2019-08-21 ホシザキ株式会社 冷却貯蔵庫
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
CN105222463A (zh) * 2015-10-26 2016-01-06 海信(山东)冰箱有限公司 一种多系统风冷冰箱
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443285B1 (fr) 2016-04-15 2021-03-10 Whirlpool Corporation Armoire de réfrigérateur à isolation sous vide
EP3443284B1 (fr) 2016-04-15 2020-11-18 Whirlpool Corporation Structure de réfrigérateur à isolation sous vide, dotée de caractéristiques tridimensionnelles
WO2018022007A1 (fr) 2016-07-26 2018-02-01 Whirlpool Corporation Coupe-garniture à structure isolée sous vide
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
KR102261134B1 (ko) * 2017-03-10 2021-06-07 엘지전자 주식회사 냉장고
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
CN110793252B (zh) * 2018-08-02 2022-11-25 青岛海尔特种电冰柜有限公司 风冷式自提柜
CN110793254B (zh) * 2018-08-02 2022-10-04 青岛海尔特种电冰柜有限公司 风冷式快递柜
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
CN110145913B (zh) * 2019-05-31 2024-05-28 海信容声(扬州)冰箱有限公司 一种冰箱
CN111664637B (zh) * 2020-06-18 2022-03-15 长虹美菱股份有限公司 一种基于双风道的冰箱风冷系统
CN111664636B (zh) * 2020-06-18 2022-02-25 长虹美菱股份有限公司 一种用于冰箱的风冷系统
CN111664638A (zh) * 2020-06-18 2020-09-15 长虹美菱股份有限公司 一种用于冰箱的双风道风冷系统
CN113237272A (zh) * 2021-04-14 2021-08-10 长虹美菱股份有限公司 一种风冷冰箱

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982115A (en) * 1958-09-23 1961-05-02 Gen Motors Corp Refrigerating apparatus
US3135316A (en) * 1960-09-02 1964-06-02 Foster Refrigerator Corp Convertible heating and cooling food storage cabinet
US3164970A (en) * 1962-07-23 1965-01-12 Whirlpool Co Defrost control
DE3324623A1 (de) * 1982-07-12 1984-01-12 Gold Star Co Kuehlvorrichtung mit einem verschliessbaren kuehlfach
KR970070883A (ko) * 1996-04-29 1997-11-07 구자홍 냉장고
DE69832212T2 (de) 1997-05-28 2006-07-20 Lg Electronics Inc. Kühlschrank
DE19957719A1 (de) * 1999-11-30 2001-05-31 Bsh Bosch Siemens Hausgeraete Kältegerät
JP3576092B2 (ja) * 2000-11-10 2004-10-13 松下冷機株式会社 冷蔵庫
KR100525401B1 (ko) * 2002-12-24 2005-11-02 엘지전자 주식회사 냉장고
KR100525398B1 (ko) * 2002-12-24 2005-11-02 엘지전자 주식회사 냉장고
KR100525399B1 (ko) * 2002-12-24 2005-11-02 엘지전자 주식회사 냉장고
US7377124B2 (en) * 2004-04-02 2008-05-27 Lg Electronics Inc. Refrigerator
KR100764267B1 (ko) * 2004-06-28 2007-10-05 엘지전자 주식회사 냉장고 및 그 운전제어방법
KR100597300B1 (ko) * 2004-11-02 2006-07-05 엘지전자 주식회사 냉장고의 냉기순환구조

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008146999A1 *

Also Published As

Publication number Publication date
KR20080103845A (ko) 2008-11-28
US20100154461A1 (en) 2010-06-24
WO2008146999A1 (fr) 2008-12-04
EP2165130A4 (fr) 2015-06-10
KR101386469B1 (ko) 2014-04-21
EP2165130B1 (fr) 2018-08-08

Similar Documents

Publication Publication Date Title
EP2165130B1 (fr) Réfrigérateur
US7377124B2 (en) Refrigerator
KR20100088231A (ko) 냉장고
KR20100066663A (ko) 냉장고
EP2165131B1 (fr) Réfrigérateur
US8789387B2 (en) Refrigerator
WO2009017283A1 (fr) Réfrigérateur avec évaporateur installé dans la porte
JP6389075B2 (ja) 冷蔵庫
US11698217B2 (en) Refrigerator
WO2008147001A1 (fr) Réfrigérateur
KR101696893B1 (ko) 냉장고 및 그 제빙방법
KR20100092277A (ko) 냉장고
KR102295156B1 (ko) 냉장고
US20230098256A1 (en) Refrigerator
KR100763152B1 (ko) 사이드 바이 사이드 타입 냉장고의 냉기 공급장치
KR100763151B1 (ko) 사이드 바이 사이드 타입 냉장고의 냉기 공급장치
JPH09138050A (ja) 冷蔵庫
KR101483591B1 (ko) 냉장고
KR100763150B1 (ko) 사이드 바이 사이드 타입 냉장고의 냉기 공급장치
KR100498385B1 (ko) 냉장고의 냉기공급장치
KR102150058B1 (ko) 냉장고
KR20210157018A (ko) 냉장고
KR19990017353A (ko) 냉장고
KR20160094745A (ko) 성에 방지를 위한 냉기순환구조를 가지는 냉장고

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 17/06 20060101ALI20150209BHEP

Ipc: F25D 19/00 20060101AFI20150209BHEP

Ipc: F25D 23/06 20060101ALI20150209BHEP

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150511

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 19/00 20060101AFI20150505BHEP

Ipc: F25D 23/06 20060101ALI20150505BHEP

Ipc: F25D 17/06 20060101ALI20150505BHEP

17Q First examination report despatched

Effective date: 20160825

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180319

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LG ELECTRONICS INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1027472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007055688

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1027472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007055688

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211012

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231006

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231005

Year of fee payment: 17