EP2150630A2 - Zu einer gleitpaarung gehörendes maschinenteil sowie verfahren zu dessen herstellung - Google Patents

Zu einer gleitpaarung gehörendes maschinenteil sowie verfahren zu dessen herstellung

Info

Publication number
EP2150630A2
EP2150630A2 EP08734884A EP08734884A EP2150630A2 EP 2150630 A2 EP2150630 A2 EP 2150630A2 EP 08734884 A EP08734884 A EP 08734884A EP 08734884 A EP08734884 A EP 08734884A EP 2150630 A2 EP2150630 A2 EP 2150630A2
Authority
EP
European Patent Office
Prior art keywords
wear
machine part
resistant structure
inlet support
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08734884A
Other languages
English (en)
French (fr)
Inventor
Michael Eis Benzon
Lech Moczulski
Jesper Weis Fogh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions Filial af MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE
MAN Diesel Filial af MAN Diesel SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE, MAN Diesel Filial af MAN Diesel SE filed Critical MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE
Priority to EP22020179.2A priority Critical patent/EP4063532A1/de
Publication of EP2150630A2 publication Critical patent/EP2150630A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • B23K9/1675Arc welding or cutting making use of shielding gas and of a non-consumable electrode making use of several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/46Coating surfaces by welding, e.g. by using a laser to build a layer

Definitions

  • the invention relates to a machine part, which belongs to a sliding pair with two mutually movable machine parts of a large engine, in particular a two-stroke large diesel engine, and at least in the region of the other machine part side facing a wear-resistant structure with recorded in a metallic matrix particles of relatively hard material and having a rough and uneven surface and which is designed as a piston ring or cylinder liner or piston with at least one piston ring groove or other sliding element of a large engine.
  • the wear protection coating consists of ceramic particles embedded in a matrix formed by a Ni alloy.
  • a thin, consisting only of the matrix material cover layer is provided at the top of the coating.
  • the surface of this cover layer proves, however, as practice has shown, as very rough and uneven, which is unfavorable for a run-in process. It is therefore a machining in the form of a grinding process required. Experience has shown that this is very time consuming and costly.
  • the Ni alloy is in any case unfavorable due to its hardness for intake purposes.
  • Another object is to provide a simple and inexpensive method for producing the inventive machine part.
  • the first part of the object is achieved by applying to the wear-resistant structure a top unevenness and roughness compensating inlet application consisting of a running-in material suitable for wear during an inlet operation, different from the materials of the wear-resistant structure underneath and metallurgically connected to the wear-resistant structure and which is softer than the wear-resistant structure and at most equal wear-resistant as the sliding surface of the respective opposite machine part.
  • a top unevenness and roughness compensating inlet application consisting of a running-in material suitable for wear during an inlet operation, different from the materials of the wear-resistant structure underneath and metallurgically connected to the wear-resistant structure and which is softer than the wear-resistant structure and at most equal wear-resistant as the sliding surface of the respective opposite machine part.
  • the inlet support consists of inlet material, good shrinkage properties are to be expected. Since the inlet support compensates for the roughness and unevenness of the underlying, wear-resistant structure, an abrasive machining is unnecessary dispensable. In addition, this ensures that even in the upper zones are located, hard particles of the wear-resistant structure even then find a reliable stop when their surface is exposed towards the end of the inlet process, so that breaking of these particles is not to be feared. The unpolished surface results in an advantageous manner from the beginning to a gas-tight system, which is very desirable especially for sliding mating between the piston ring and cylinder liner.
  • Another advantage of the measures according to the invention is the fact that, as a result of the metallurgical connection of the inlet support, a reliable hold of the inlet support on the underlying, wear-resistant structure is ensured, so that peeling is safely avoided.
  • the inlet support may suitably have a hardness of 100 to 200 HV.
  • a particularly good run-in behavior is to be expected. Nevertheless, sufficient durability is guaranteed to ensure a sufficiently long break-in period to make sure.
  • a further development of the parent action may consist in that the material forming the running-in rest has a melting temperature of below 1050 0 C 1, preferably from 600 ° C to 800 ° C.
  • This measure advantageously allows a simple production of the inlet support, in which only the material of the inlet support is melted and the material of the underlying, wear-resistant structure remains in the solidified state. This ensures that very thin, the metallurgical connection of the inlet support to the underlying, wear-resistant structure causing boundary layers can be achieved. The brittleness which is frequently to be expected in these boundary layers therefore advantageously has only a slight effect on the overall result.
  • the inlet support in the new state an average thickness of 50 to 300 microns (microns) have.
  • a thickness is sufficient for an inflow time of 1000 to 2000 hours, whereby the abrasiveness of the opposite sliding surface can be accommodated by adjusting the thickness.
  • a further development of the superordinate measures may consist in that the inlet support in the new state has a surface roughness of 1 to 20 Ra. This makes post-processing completely unnecessary and still ensures a particularly good seal from the beginning.
  • a particularly expedient development of the higher-level measures may be that, in contrast, harder particles, preferably of ceramic material, such as Al 2 O 3 and / or CrO and / or Cr 3 C 2 , are incorporated into the inlet material on which the inlet support is based.
  • harder particles preferably of ceramic material, such as Al 2 O 3 and / or CrO and / or Cr 3 C 2
  • the proportion of the deposited particles in the total volume of the inlet support in the range between 5 to 30% by volume. This ensures that the embedded particles do not unduly impair the run-in behavior can.
  • the inlet material underlying the inlet support at least copper (Cu) and / or tin (Sn) included. This allows an optimization of the desired inlet properties depending on the individual case.
  • a particularly advantageous embodiment may consist in that the inlet support contains about 70% copper (Cu) and about 30% tin (Sn). Such a material is advantageously usable in many cases. It is also conceivable to add an additional component of antimony (Sb). This creates a so-called. White metal, which finds use in practice as a bearing metal and therefore is available at low cost.
  • the wear-resistant structure accommodating the run-in support may expediently comprise a matrix formed by a Ni alloy, in which particles consisting of ceramic material are embedded, wherein the volume fraction of the ceramic material in the total volume of the wear-resistant structure may be more than 60%, preferably 85% , These measures result in a particularly high load-bearing capacity and wear resistance.
  • the melting temperature of the matrix can be lowered below the melting temperature of cast iron, etc., which can facilitate the application of the inlet support to the wear-resistant structure and / or this on a base body.
  • the object relating to the method is achieved according to the invention in that the machine part having a wear-resistant structure is coated with an inlet support covering the wear-resistant structure, so much energy being supplied during the coating process of the wear-resistant structure and / or the material forming the inlet support there is a desired metallurgical connection of the inlet support to the wear-resistant structure. If a thick boundary layer between wear-resistant structure and inlet support is desired, so much energy is supplied that the inlet support is alloyed. On the other hand, where this is not desired, the energy supply is reduced so much that the inlet support is diffused. there Only so much energy is needed that only the material forming the inlet support melts and the wear-resistant structure underneath remains in the solidified state. As a result, comparatively thin boundary layers are achieved in this case. In addition, damage to the supporting structure is excluded.
  • a relative to this relatively movable, on this one Walkerfleck generating heater can be used for coating the wear-resistant structure, wherein the inlet material forming the inlet material is fed into the Schufleck or a directly adjacent this area.
  • This allows a simple construction of the coating apparatus, as well as a controlled supply of energy within narrow limits.
  • the material supplied to the heating spot or to a region directly adjacent to it can be supplied in powder form and / or in the form of a wire or ribbon.
  • Figure 1 shows an application example in the form of a cooperating with a cylinder liner, provided with a supporting structure and arranged thereupon inlet piston ring in section;
  • Figure 2 shows a detail of the inlet support with adjacent region of the wear-resistant structure
  • Figure 3 shows a detail of a with embedded ceramic particles provided inlet pad
  • Figure 4 shows a coating device with two laser guns, each with associated feed device for the wear-resistant structure forming material and the inlet support forming material and
  • Figure 5 shows a variant of Figure 4 with a laser gun and a two-channel
  • the invention is applicable with advantage everywhere where sliding bearings with a long service life require a certain inlet, e.g. in machines of the metallurgical industry, mill industry, food industry, engines, etc.
  • a particularly preferred field of application are large engines, in particular two-stroke large diesel engines and in particular the piston rings cooperating with a cylinder liner and associated piston ring grooves.
  • FIG. 1 shows a schematically indicated portion of a cylinder liner 1, in which an up and down piston 2 is arranged. This is provided with circumferential piston ring grooves 3, in each of which an associated, with its peripheral surface on the inside of the cylinder liner 1 abutting piston ring 4 is received.
  • the piston ring 4 consists of a base made of cast steel 5 and has in the region of its opposite component, here the cylinder liner 1 side facing a wear-resistant structure 6, here in the form of an applied to the base part 5 protective layer. It would of course also be conceivable that the wear-resistant structure is already based on the base part.
  • the wear-resistant structure 6 is circumferentially provided with a running surface of the cylinder liner 1 facing inlet support 7.
  • the wear-resistant structure 6 consists, as can be seen from FIG. 2, of particles 9 of hard material embedded in a matrix 8.
  • This may be ceramic material, such as tungsten carbide (WC) with a hardness of 3000 HV to 5000 HV act.
  • a nickel alloy with phosphorus (P) and / or silicon (Si) is expediently provided. These materials are non-toxic, which allows their use also in the food sector.
  • the nickel alloy can be 1 to 15% by volume, preferably 3.65% by volume P, 1 to 6% by volume, Preferably, 2.15 vol% Si and balance Ni.
  • the volume fraction of the ceramic particles in the total volume of the wear-resistant structure 6 is greater than 60% and may preferably be up to 85%.
  • the embedded ceramic particles 9 suitably have a spherical configuration with a diameter of 40 to 160 microns (microns).
  • the thickness of the coating formed by the wear-resistant structure 6 can be adapted to the conditions of the individual case. In the case of piston rings of the type present here, the coating formed by the wear-resistant structure 6 can have a thickness of 0.2 to 2 mm.
  • the radial surface of the wear-resistant structure 6 is comparatively rough and uneven, before attachment of the inlet support 7, as shown in FIG. This results in elevations 10 and between these located valleys 1 1, which would be detrimental to an inlet process.
  • the applied to the wear-resistant structure 6 inlet support 7 therefore has the task to compensate for the roughness of the surface of the wear-resistant structure 6 and fill the valleys 1 1, so that towards the end of an inlet operation in Figure 2 indicated by a broken line 12 surface without protruding edges and corners. Since the valleys 11 are filled, also the valleys 11 laterally bounding, upwardly projecting hard particles 9 are reliably embedded in surrounding material, so that a breaking is not to be feared.
  • the inlet support 7 makes a processing of the wear-resistant structure 6 unnecessary.
  • low roughness In the production of the inlet support 7 results in a surface 13 with a direction indicated in Figure 2, low roughness. This is suitably 1 to 20 Ra. This roughness allows a gas-tight contact of the piston ring 4 at the associated running surface of the cylinder liner. 1 An additional processing is not required.
  • the inlet support 7 may consist of any suitable inlet material, which is slowly removed during the running-in phase and disappears. In large engines such as two-stroke large diesel engines, as used for marine propulsion, the run-in period amounts to about 1000 to 2000 hours of operation.
  • the thickness of the inlet support 7 is expediently 50 to 300 micrometers ( ⁇ m).
  • the inlet pad 7 underlying inlet material should be much softer than the underneath, wear-resistant structure 6 and certainly not harder, preferably also slightly softer than the opposite sliding surface, here be the sliding surface of the cylinder liner 1.
  • the inlet support 7 has a hardness of 100 to 200 HV.
  • a metal containing copper (Cu) and / or tin (Sn) may be used.
  • Cu copper
  • Sn tin
  • white metal which, in addition to copper and tin, also contains antimony (Sb) and / or zinc (Zn) with the proportions customary for white metal.
  • the melting point of such materials is in the range between 600 and 900 ° C, which facilitates the coating process.
  • the inlet support 7 can be provided with embedded, hard particles 14 as indicated in FIG. 3.
  • it may expediently be ceramic particles, preferably with a spherical structure and with a diameter of up to 50 micrometers ( ⁇ m).
  • the ceramic material Al 3 O 2 , CrO, Cr 3 C 2 or the like can be used.
  • the proportion of hard particles 14 in the total volume of the inlet support 7 may be 5 to 30% by volume depending on the desired service life of the inlet support 7.
  • the coating forming the inlet layer 7 is applied to the wearable structure 6 such that a metallurgical bond between the wear-resistant structure 6 and the inlet support 7 results in the boundary region.
  • This metallurgical compound appears in the form of a boundary layer 15 indicated in FIG. 2 for the boundary region between the wear-resistant structure 6 and the inlet support 7, which is formed from elements of both adjoining layers.
  • the boundary layer 15 is indicated only by a broken line.
  • the barrier layer 15 may be formed by forming an alloy or causing a diffusion process. In the first case, the inlet support 7 to the wear-resistant structure 6 and this alloyed to the base body 5, and diffused in the second case.
  • a boundary layer formed as an alloy zone or diffusion zone is formed, which is indicated only in FIG. 1 by a broken line.
  • the boundary layer When alloying results in a comparatively large thickness of the boundary layer 15, which ensures a very good mutual connection. In many cases, however, very brittle crystals form in the boundary layer, which increases the risk of brittle fracture. This danger can be avoided by designing the boundary layer as a diffusion layer.
  • a diffusion layer has only one of the diffusion depth corresponding thickness, which on the one hand, the volume fraction of brittle crystals is kept within narrow limits and on the other hand, the still ensures a good metallurgical connection.
  • more or less energy is supplied during the application process.
  • alloying both the coating material and an upper portion of the underlying material are melted. When diffusing, only the coating material is melted. The underlying material is heated, but remains in the solidified state.
  • Ceramic material in the form of carbides can decompose at higher temperatures or convert into other carbides with other geometric shapes. If the hard particles 9 of the wear-resistant structure 6 are formed by carbides, the inlet support 7 is expediently applied to protect these carbides so that the wear-resistant structure 6 is not heated above the decomposition temperature of the carbides. The same naturally also applies to the application of the wear-resistant structure 6 to the base body 5. It is expedient for the heat transfer to be coated on the surface to be coated and for the coating material supplied to carry out a coating process to take place in such a controlled manner that only the coating material is completely coated melts and the underlying material remains completely in the solidified state, which then leads according to the above explanations to a Diffunsions Kunststoff.
  • the coating operations may be carried out by spraying the coating material, melting the coating material or sintering the coating material.
  • a heating spot which generates a heating spot and is relatively movable with respect to the surface to be coated.
  • PTA Plasma Transfer Are
  • the wear-resistant structure and the inlet support can be applied in separate operations or in a single operation. In any case, this can be done expedient in the same way, so that for applying a wear-resistant structure 6 forming coating and for applying the inlet support 7, the same device or an apparatus of the same design is or are used.
  • the wear-resistant structure 6 forming coating and / or the inlet support 7 can, as already mentioned, be alloyed or diffused to the respective associated base.
  • a melt forming a transition region is produced which contains both the constituents of the receiving layer and the layer to be applied thereto.
  • both the applied material and a near-surface zone of the substrate are heated so far that a transition into the liquid phase takes place. For diffusing only the material to be applied is transferred into the liquid phase.
  • Suitable devices are indicated in Figures 4 and 5.
  • the wear-resistant structure 6 in the form of a coating applied to a base body 5 and the inlet support 7 in the form of a further coating on the wear-resistant structure 6.
  • two energy sources arranged one behind the other are provided in the form of two laser cannons 16, 17 arranged one behind the other, each generating a laser beam 16a, 17a.
  • a laser gun could also be a PTA (plasma transfer arc burner) burner and / or an induction coil or the like may be provided.
  • Each energy source or each energy transmission beam is assigned a material supply device 18 or 19 which has a supply input 18a, 19a and effects a material supply to the energy transfer beam indicated as material transfer radiation 18b or 19b.
  • the respective coating material can be supplied to the surface to be coated in the form of a round or square wire, a tape or in powder form.
  • powdered material is to be processed.
  • the supply devices 18, 19 are supplied via the inputs 18a, 19a with corresponding powdered material and emit a material flow 18b or 19b leading to powder material.
  • the powder is suitably transported by inert gas, which protects against oxidation.
  • the energy transfer beam 16a or 17a in the example shown in the form of a laser beam, a Walkerfleck is generated on the substrate to be coated.
  • the respective assigned material transfer beam 18b or 19b is aligned so that the coating material is fed directly into the Schufleck or directly adjacent to this area.
  • the supplied material is struck by the associated energy transmission beam and therefore, in the molten state, impinges on the respective associated substrate, which is likewise heated by the residual energy.
  • the energy source 16 or 17 is adjusted so that the energy supplied is sufficient to melt both the coating material and a near-surface zone of the substrate.
  • the energy source 16 or 17 is adjusted so that only the coating material melts completely and the respective associated base remains in the solidified state.
  • the envisaged in Figure 4 energy sources 16, 17, each with associated material transfer means 18, 19 are arranged at a distance one behind the other. This distance can be chosen so that the wear-resistant structure 6 already is completely solidified before the inlet support 7 is applied or that the wear-resistant structure 6 is not yet solidified at least at the top, when the inlet support 7 is applied.
  • both the wear-resistant structure 6 and the inlet support 7 by diffusion with connected to the respective associated pad.
  • the abovementioned distance between the energy generating devices 16, 17 is therefore chosen so that the wear-resistant structure 6 that is initially produced is already completely solidified before the inlet support 7 is applied.
  • the energy transfer is, as already mentioned above, controlled so that only the respective material to be applied is melted and the respective pad remains in the solidified state.
  • a third energy transmission beam 20 is indicated, which is arranged downstream of the second energy transmission beam 17a.
  • the downstream energy transmission beam 20 With the aid of the downstream energy transmission beam 20, only so much energy is transferred that the surface of the inlet support 7 is smoothed and made suitable for an intake process.
  • the energy sources 16, 17 and the associated material feeders 18, 19 and the energy source beam generating the downstream energy source 20 are stationary. Accordingly, the base body 5 is moved to produce the desired coating according to arrow v. However, it would also be conceivable to arrange the base body 5 stationary and to move the coating devices. In this case, all power generation devices with optionally associated material supply means can be combined to form a uniformly movable assembly forming coating head.
  • only one energy source 21 in the form of a laser gun is provided which generates an energy transmission beam 21a.
  • This two material jets to form a first, the wear-resistant structure 6 forming coating and a second, the inlet support 7 forming coating is supplied.
  • two material supply means may be provided.
  • only one material feed device 22 is provided, which is designed with two channels. Accordingly, the material supply device 22 with two material inputs 22a and 22a 1 for the wear-resistant structure 6 forming material or the inlet pad 7 forming material is provided.
  • the Materiaizucht Rhein 22 also generates two in the coating direction downstream of each other material transfer beams 22b, 22b 1 for the wear-resistant structure 6 forming or the inlet liner 7 forming material.
  • the material transfer beams 22b, 22b ' are positioned so that first the material transferring beam 22b forming the wear-resistant structure 6 impinges on the not yet coated surface of the base body 5 and subsequently the material transferring beam 22b' forming the infeed support 7 hits the upper side of the beam 22b already generated, wear-resistant structure 6 impinges.
  • the distance between the beams 22b, 22b ' may be so low in the present case that the already applied, the wear-resistant structure 6 forming layer can still deliver enough energy to melt the material applied to form the inlet support 7 material.
  • a trailing energy transfer jet 20 can also be used, as in the embodiment according to FIG. With respect to the construction as a unitary assembly or the movement of the base part 5 or coating head also applies the same as above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Powder Metallurgy (AREA)

Abstract

Bei einem zu einer Gleitpaarung gehörenden Maschinenteil (4), das zumindest im Bereich der dem hiermit zusammenwirkenden Maschinenteil zugewandten Seite eine verschleißfeste Struktur (6) mit in einer metallischen Matrix aufgenommenen, vergleichsweise harten Partikeln und mit rauer und unebener Oberfläche aufweist, lassen sich dadurch der Herstellungsaufwand senken und ein gutes Einlaufverhalten erreichen, dass auf die verschleißfeste Struktur (6) eine deren obere Unebenheit und Rauheit ausgleichende Einlaufauflage (7) aufgebracht wird, die aus einem für Verschleiß während eines Einlaufvorgangs geeigneten Einlaufmaterial besteht, das vom Material der darunter sich befindenden, verschleißfesten Struktur (6) verschieden und metallurgisch hiermit verbunden ist und das weicher als die verschleißfeste Struktur (6) und höchstens gleich verschleißfest wie die Gleitfläche des jeweils gegenüberliegenden Maschinenteils ist.

Description

Zu einer Gleitpaarung gehörendes Maschinenteil sowie Verfahren zu dessen Herstellung
Die Erfindung betrifft ein Maschinenteil, das zu einer Gleitpaarung mit zwei gegeneinander bewegbaren Maschinenteilen eines Großmotors gehört, insbesondere eines Zweitakt-Großdieselmotors, und zumindest im Bereich der dem jeweils anderen Maschinenteil zugewandten Seite eine verschleißfeste Struktur mit in einer metallischen Matrix aufgenommenen Partikeln aus vergleichsweise hartem Material und mit rauer und unebener Oberfläche aufweist und das als Kolbenring oder Zylinderbüchse oder Kolben mit wenigstens einer Kolbenringnut oder anderes Gleitelement eines Großmotors ausgebildet ist.
Aus der DE 10 2006 023 396 (nicht vorveröffentlicht) ergibt sich ein eine verschleißfeste Struktur in Form einer Verschleißschutzbeschichtung aufweisendes Maschinenteil eines Großmotors. Die Verschleißschutzbeschichtung besteht dabei aus in eine durch eine Ni-Legierung gebildete Matrix eingelagerten Keramikpartikeln. Dabei ist an der Oberseite der Beschichtung eine dünne, nur aus dem Matrixmaterial bestehende Deckschicht vorgesehen. Die Oberfläche dieser Deckschicht erweist sich jedoch, wie die Praxis gezeigt hat, als sehr rau und uneben, was für einen Einlaufvorgang ungünstig ist. Es ist daher eine Bearbeitung in Form eines Schleifvorgangs erforderlich. Die Erfahrung hat gezeigt, dass dieser sehr zeitaufwendig und kostspielig ist. Hinzu kommt, dass die Ni-Legierung in Folge ihrer Härte für Einlaufzwecke ohnehin ungünstig ist.
Hiervon ausgehend ist es daher die Aufgabe der vorliegenden Erfindung, eine Anordnung eingangs erwähnter Art so zu verbessern, dass der Herstellungsaufwand gesenkt und ein gutes Einlaufverhalten erreicht werden. Eine weitere Aufgabe geht auf ein einfaches und kostengünstiges Verfahren zur Herstellung des erfindungsgemäßen Maschinenteils.
Der erste Teil der Aufgabe wird erfindungsgemäß dadurch gelöst, dass auf die verschleißfeste Struktur ein deren obere Unebenheit und Rauheit ausgleichender Einlaufauftrag aufgebracht ist, der aus einem für Verschleiß während eines Einlaufvorgangs geeigneten Einlaufmaterial besteht, das von den Materialien der darunter sich befindenden, verschleißfesten Struktur verschieden und metallurgisch mit der verschleißfesten Struktur verbunden ist und das weicher als die verschleißfeste Struktur und höchstens gleich verschleißfest wie die Gleitfläche des jeweils gegenüberliegenden Maschinenteils ist.
Hiermit werden die oben geschilderten Nachteile der bekannten Anordnung vollständig beseitigt. Da die Einlaufauflage aus Einlaufmaterial besteht, sind gute Einlaufeigenschaften zu erwarten. Da die Einlaufauflage die Rauheit und Unebenheit der darunter sich befindenden, verschleißfesten Struktur ausgleicht, ist in vorteilhafter Weise eine Schleif bearbeitung entbehrlich. Außerdem wird hierdurch sicher gestellt, dass auch die in den oberen Zonen sich befindenden, harten Teilchen der verschleißfesten Struktur auch dann noch einen zuverlässigen Halt finden, wenn ihre Oberfläche gegen Ende des Einlaufvorgangs freigelegt wird, so dass ein Ausbrechen dieser Teilchen nicht zu befürchten ist. Die ungeschliffene Oberfläche ergibt in vorteilhafter Weise auch von Anfang an eine gasdichte Anlage, was insbesondere bei Gleitpaarungen zwischen Kolbenring und Zylinderbüchse sehr erwünscht ist. Ein weiterer Vorteil der erfindungsgemäßen Maßnahmen ist darin zu sehen, dass in Folge der metallurgischen Anbindung der Einlaufauflage ein zuverlässiger Halt der Einlaufauflage auf der darunter sich befindenden, verschleißfesten Struktur gewährleistet ist, womit ein Abschälen sicher vermieden wird.
Vorteilhafte Ausgestaltungen und zweckmäßige Fortbildungen der übergeordneten Maßnahmen sind in den Unteransprüchen angegeben.
So kann die Einlaufauflage zweckmäßig eine Härte von 100 bis 200 HV aufweisen. Hierbei ist ein besonders gutes Einlaufverhalten zu erwarten. Dennoch ist eine ausreichende Beständigkeit gewährleistet, um eine ausreichend lange Einlaufzeit sicher zu stellen.
Eine weitere Fortbildung der übergeordneten Maßnahmen kann darin bestehen, dass das die Einlaufauflage bildende Material eine Schmelztemperatur von unter 10500 C1 vorzugsweise von 600° C bis 800° C aufweist. Diese Maßnahme ermöglicht in vorteilhafter Weise eine einfache Herstellung der Einlaufauflage, bei der nur das Material der Einlaufauflage geschmolzen wird und das Material der darunter sich befindenden, verschleißfesten Struktur im erstarrten Zustand bleibt. Hierdurch wird sicher gestellt, dass sehr dünne, die metallurgische Anbindung der Einlaufauflage an die darunter sich befindende, verschleißfeste Struktur bewirkende Grenzschichten erreicht werden können. Die in diesen Grenzschichten vielfach zu erwartende Sprödheit wirkt sich daher in vorteilhafter Weise nur geringfügig auf das Gesamtergebnis aus.
Vorteilhaft kann die Einlaufauflage im Neuzustand eine durchschnittliche Dicke von 50 bis 300 Mikrometer (μm) aufweisen. Eine derartige Dicke reicht erfahrungsgemäß für eine Einlaufzeit von 1000 bis 2000 Stunden aus, wobei der Abrasivität der gegen überliegenden Gleitfläche durch Anpassung der Dicke Rechnung getragen werden kann. Je abrasiver die gegenüberliegende Gleitfläche ist, desto dicker kann die Einlaufauflage sein.
Eine weitere Fortbildung der übergeordneten Maßnahmen kann darin bestehen, dass die Einlaufauflage im Neuzustand eine Oberflächenrauheit von 1 bis 20 Ra aufweist. Dies macht eine Nachbearbeitung völlig entbehrlich und gewährleistet dennoch von Anfang an eine besonders gute Abdichtung.
Eine besonders zweckmäßige Fortbildung der übergeordneten Maßnahmen kann darin bestehen, dass in das der Einlaufauflage zugrunde liegende Einlaufmaterial demgegenüber härtere Teilchen, vorzugsweise aus keramischem Material, wie AI2O3 und/oder CrO und/oder Cr3C2, eingelagert sind. Hierdurch kann die Standzeit der Einlaufauflage und damit die Einlaufzeit verlängert werden. Zweckmäßig kann der Anteil der eingelagerten Teilchen am Gesamtvolumen der Einlaufauflage im Bereich zwischen 5 bis 30 Vol% betragen. Hierdurch wird sichergestellt, dass die eingelagerten Teilchen das Einlaufverhalten nicht unzulässig stark beeinträchtigen können.
Vorteilhaft kann das der Einlaufauflage zugrunde liegende Einlaufmaterial zumindest Kupfer (Cu) und/oder Zinn (Sn) enthalten. Dies gestattet eine Optimierung der gewünschten Einlaufeigenschaften je nach Einzelfall.
Eine besonders vorteilhafte Ausgestaltung kann dabei darin bestehen, dass die Einlaufauflage ca. 70 % Kupfer (Cu) und ca. 30 % Zinn (Sn) enthält. Ein derartiges Material ist in vorteilhafter Weise für viele Fälle verwendbar. Es ist auch denkbar, zusätzlich noch einen Bestandteil an Antimon (Sb) hinzuzufügen. Dabei entsteht ein sog. Weißmetall, das in der Praxis als Lagermetall Verwendung findet und daher günstig erhältlich ist.
Die die Einlaufauflage aufnehmende, verschleißfeste Struktur kann zweckmäßig eine durch eine Ni-Legierung gebildete Matrix enthalten, in die aus keramischem Material bestehende Partikel eingelagert sind, wobei der Volumenanteil des keramischen Materials am Gesamtvolumen der verschleißfesten Struktur mehr als 60 %, vorzugsweise 85 % betragen kann. Diese Maßnahmen ergeben eine besonders hohe Tragfestigkeit und Verschleißfestigkeit. Durch kleinere Zusätze von Phosphor (P) und/oder Silizium (Si) lässt sich die Schmelztemperatur der Matrix unter die Schmelztemperatur von Gusseisen etc. absenken, was die Aufbringung der Einlaufauflage auf die verschleißfeste Struktur und/oder dieser auf einen Basiskörper erleichtern kann.
Die auf das Verfahren sich beziehende Aufgabe wird erfindungsgemäß dadurch gelöst, dass das eine verschleißfeste Struktur aufweisende Maschinenteil mit einer die verschleißfeste Struktur überdeckenden Einlaufauflage beschichtet wird, wobei beim Beschichtungsvorgang der verschleißfesten Struktur und/oder dem die Einlaufauflage bildenden Material so viel Energie zugeführt wird, dass sich eine gewünschte metallurgische Anbindung der Einlaufauflage an die verschleißfeste Struktur ergibt. Sofern eine dicke Grenzschicht zwischen verschleißfester Struktur und Einlaufauflage erwünscht ist, wird so viel Energie zugeführt, dass die Einlaufauflage anlegiert wird. Wo dies nicht erwünscht ist, wird die Energiezufuhr demgegenüber so weit reduziert, dass die Einlaufauflage andiffundiert wird. Dabei wird nur so viel Energie benötigt, dass lediglich das die Einlaufauflage bildende Material schmilzt und die darunter sich befindende verschleißfeste Struktur im erstarrten Zustand bleibt. Infolgedessen werden hierbei vergleichsweise dünne Grenzschichten erreicht. Zudem ist eine Schädigung der tragenden Struktur ausgeschlossen.
Vorteilhaft kann zur Beschichtung der verschleißfesten Struktur eine gegenüber dieser relativ bewegbare, auf dieser einen Heizfleck erzeugende Heizeinrichtung Verwendung finden, wobei das die Einlaufauflage bildende Material in den Heizfleck oder einen diesem direkt benachbarten Bereich zugeführt wird. Dies ermöglicht einen einfachen Aufbau der Beschichtungsvorrichtung, sowie eine kontrollierte Energiezufuhr in engen Grenzen. Das dem Heizfleck oder einem diesem direkt benachbarten Bereich zugeführte Material kann dabei in Pulverform und/oder in Form eines Drahts oder Bands zugeführt werden.
Besonders vorteilhaft ist es, wenn bei als Beschichtung eines Basismaterials ausgebildeter verschleißfester Struktur diese und die Einlaufauflage in gleicher Weise auf die jeweils zugeordnete Unterlage aufgebracht werden. Dies ist gleichzeitig oder mit zeitlichem Abstand möglich. In jedem Fall wird der gerätetechnische Aufwand gering gehalten.
Weitere vorteilhafte Ausgestaltungen und zweckmäßige Fortbildungen der übergeordneten Maßnahmen sind in den restlichen Unteransprüchen angegeben und aus der nachstehenden Beispielsbeschreibung anhand der Zeichnung näher entnehmbar.
In der nachstehend beschriebenen Zeichnung zeigen:
Figur 1 ein Anwendungsbeispiel in Form eines mit einer Zylinderbüchse zusammenwirkenden, mit einer tragenden Struktur und hierauf angeordneter Einlaufauflage versehenen Kolbenrings im Schnitt;
Figur 2 einen Ausschnitt aus der Einlaufauflage mit angrenzendem Bereich der verschleißfesten Struktur;
Figur 3 einen Ausschnitt aus einer mit eingelagerten Keramikteilchen versehenen Einlaufauflage;
Figur 4 eine Beschichtungsvorrichtung mit zwei Laserkanonen mit jeweils zugeordneter Zuführeinrichtung für die verschleißfeste Struktur bildendes Material und die Einlaufauflage bildendes Material und Figur 5 eine Variante zu Figur 4 mit einer Laserkanone und einer zweikanaligen
Zuführeinrichtung.
Die Erfindung ist überall dort mit Vorteil anwendbar, wo Gleitpaarungen mit hohen Standzeiten einen gewissen Einlauf benötigen, z.B. bei Maschinen der Hüttenindustrie, Mühlenindustrie, Nahrungsmittelindustrie, Motoren etc. Ein besonders bevorzugtes Anwendungsgebiet sind Großmotoren, insbesondere Zweitakt-Großdieselmotoren und hier insbesondere die mit einer Zylinderbüchse und zugeordneten Kolbenringnuten zusammenwirkenden Kolbenringe.
Die Figur 1 zeigt einen schematisch angedeuteten Abschnitt einer Zylinderbüchse 1 , in der ein auf- und abgehender Kolben 2 angeordnet ist. Dieser ist mit umfangsseitigen Kolbenringnuten 3 versehen, in denen jeweils ein zugeordneter, mit seiner Umfangsfläche an der Innenseite der Zylinderbüchse 1 anliegender Kolbenring 4 aufgenommen ist. In Figur 1 sind lediglich eine Kolbenringnut 3 und ein Kolbenring 4 angedeutet. Der Kolbenring 4 besteht aus einem aus Stahlguss hergestellten Basisteil 5 und besitzt im Bereich seiner dem gegenüberliegenden Bauteil, hier der Zylinderbüchse 1 zugewandten Seite eine verschleißfeste Struktur 6, hier in Form einer auf das Basisteil 5 aufgebrachten Schutzschicht. Es wäre selbstverständlich auch denkbar, dass die verschleissfeste Struktur auch bereits dem Basisteil zugrunde liegt. Die verschleissfeste Struktur 6 ist umfangsseitig mit einer der Lauffläche der Zylinderbüchse 1 zugewandten Einlaufauflage 7 versehen.
Die verschleissfeste Struktur 6 besteht, wie aus Figur 2 ersichtlich ist, aus in eine Matrix 8 eingelagerten Partikeln 9 aus hartem Material. Dabei kann es sich um keramisches Material, wie Wolframkarbid (WC) mit einer Härte von 3000 HV bis 5000 HV handeln. Zur Bildung der Matrix 8 ist zweckmäßig eine Nickellegierung mit Phosphor (P) und/oder Silizium (Si) vorgesehen. Diese Materialien sind nicht toxisch, was einen Einsatz auch im Lebensmittelsektor ermöglicht. Zweckmäßig kann die Nickellegierung 1 bis 15 Vol%, vorzugsweise 3,65 Vol% P, 1 bis 6 Vol%, vorzugsweise 2,15 Vol% Si und Rest Ni enthalten. Der Volumenanteil der keramischen Teilchen am Gesamtvolumen der verschleißfesten Struktur 6 ist größer als 60 % und kann vorzugsweise bis zu 85 % betragen. Die eingelagerten keramischen Teilchen 9 besitzen zweckmäßig eine kugelförmige Konfiguration mit einem Durchmesser von 40 bis 160 Mikrometer (μm). Die Dicke der durch die verschleißfeste Struktur 6 gebildeten Beschichtung kann an die Verhältnisse des Einzelfalls angepasst werden. Bei Kolbenringen hier vorliegender Art kann die durch die verschleißfeste Struktur 6 gebildete Beschichtung eine Dicke von 0,2 bis 2 mm aufweisen.
Die radiale Oberfläche der verschleißfesten Struktur 6 ist vor Anbringung der Einlaufauflage 7, wie Fig. 2 erkennen lässt, vergleichsweise rau und uneben, d.h. es ergeben sich Erhebungen 10 und zwischen diesen sich befindende Täler 1 1 , was für einen Einlaufvorgang schädlich wäre. Die auf der verschleißfesten Struktur 6 aufgebrachte Einlaufauflage 7 hat daher die Aufgabe, die Rauheit der Oberfläche der verschleißfesten Struktur 6 auszugleichen und die Täler 1 1 aufzufüllen, so dass gegen Ende eines Einlaufvorgangs eine in Figur 2 durch eine unterbrochene Linie 12 angedeutete Oberfläche ohne vorspringende Kanten und Ecken vorliegt. Da die Täler 11 aufgefüllt sind, sind auch die die Täler 11 seitlich begrenzenden, nach oben vorspringenden harten Teilchen 9 zuverlässig in sie umgebendes Material eingebettet, so dass ein Ausbrechen nicht zu befürchten ist. Die Einlaufauflage 7 macht eine Bearbeitung der verschleißfesten Struktur 6 entbehrlich. Bei der Herstellung der Einlaufauflage 7 ergibt sich eine Oberfläche 13 mit einer in Figur 2 angedeuteten, geringen Rauheit. Diese beträgt zweckmäßig 1 bis 20 Ra. Diese Rauheit ermöglicht eine gasdichte Anlage des Kolbenrings 4 an der zugeordneten Lauffläche der Zylinderbüchse 1 . Eine zusätzliche Bearbeitung ist dabei nicht erforderlich.
Die Einlaufauflage 7 kann aus jedem geeigneten Einlaufmaterial bestehen, das während der Einlaufphase langsam abgetragen wird und verschwindet. Bei Großmotoren wie Zweitakt-Großdieselmotoren, wie sie für Schiffsantriebe Verwendung finden, beläuft sich die Einlaufphase auf ca. 1000 bis 2000 Betriebsstunden. Hierzu beträgt die Dicke der Einlaufauflage 7 zweckmäßig 50 bis 300 Mikrometer (μm). Das der Einlaufauflage 7 zugrunde liegende Einlaufmaterial soll wesentlich weicher als die darunter sich befindende, verschleißfeste Struktur 6 und jedenfalls nicht härter, vorzugsweise ebenfalls etwas weicher als die gegenüberliegende Gleitfläche, hier die Gleitfläche der Zylinderbüchse 1 sein. Zweckmäßig besitzt die Einlaufauflage 7 eine Härte von 100 bis 200 HV.
Zur Bildung der Einlaufauflage 7 kann ein Kupfer (Cu) und/oder Zinn (Sn) enthaltendes Metall Verwendung finden. Mit einer Bronze in Form einer Cu-Sn- Legierung mit 70 % Cu und 30 %Sn konnten bei Versuchen gute Ergebnisse erreicht werden. Denkbar wäre auch die Verwendung von Weißmetall, das zusätzlich zu Kupfer und Zinn noch Antimon (Sb) und/oder Zink (Zn) mit den bei Weißmetall üblichen Anteilen enthält. Der Schmelzpunkt derartiger Materialien liegt im Bereich zwischen 600 und 900° C, was den Beschichtungsvorgang erleichtert. Die untere Grenze der Schmelztemperatur der Einlaufauflage 7 200° C, nicht unterschreiten.
Um die Einlaufzeit zu verlängern, d.h. die Standzeit der Einlaufauflage 7 zu vergrößern, kann diese wie in Fig. 3 angedeutet ist, mit eingelagerten, harten Teilchen 14 versehen sein. Dabei kann es sich zweckmäßig um Keramikteilchen vorzugsweise mit kugelförmiger Struktur und mit einem Durchmesser bis zu 50 Mikrometer (μm) handeln. Als keramisches Material kann AI3O2, CrO, Cr3C2 oder dergleichen Verwendung finden. Der Anteil der harten Teilchen 14 am Gesamtvolumen der Einlaufauflage 7 kann je nach gewünschter Standzeit der Einlaufauflage 7 5 bis 30 Vol% betragen.
Die die Einlauflage 7 bildende Beschichtung wird so auf die verschleißbare Struktur 6 aufgebracht, dass sich im Grenzbereich eine metallurgische Verbindung zwischen der verschleißfesten Struktur 6 und der Einlaufauflage 7 ergibt. Diese metallurgische Verbindung tritt in Form einer in Figur 2 für den Grenzbereich zwischen der verschleißfesten Struktur 6 und der Einlaufauflage 7 angedeuteten Grenzschicht 15 in Erscheinung, die aus Elementen beider angrenzenden Schichten gebildet wird. In Figur 1 ist die Grenzschicht 15 lediglich durch eine unterbrochene Linie angedeutet. Die Grenzschicht 15 kann durch Bildung einer Legierung oder Herbeiführung eines Diffusionsvorgangs gebildet werden. Im ersten Fall werden die Einlaufauflage 7 an die verschleißfeste Struktur 6 bzw. diese an den Basiskörper 5 anlegiert, im zweiten Fall andiffundiert. Dasselbe gilt für die Anbindung der die verschleißfeste Struktur 6 bildenden Beschichtung an den Basiskörper 5. Auch hier wird eine als Legierungszone oder Diffusionszone ausgebildete Grenzschicht gebildet, die nur in Figur 1 durch eine unterbrochene Linie angedeutet ist. Beim Anlegieren ergibt sich eine vergleichsweise große Dicke der Grenzschicht 15, was eine sehr gute gegenseitige Verbindung gewährleistet. Vielfach bilden sich in der Grenzschicht jedoch sehr spröde Kristalle, was die Gefahr von Sprödbruch erhöht. Diese Gefahr lässt sich dadurch vermeiden, dass die Grenzschicht als Diffusionsschicht ausgebildet wird. Eine Diffunsionsschicht besitzt lediglich eine der Diffusionstiefe entsprechende Dicke, wodurch einerseits der Volumenanteil an spröden Kristallen in engen Grenzen gehalten wird und andererseits den noch eine gute metallurgische Verbindung gewährleistet wird. Je nach Art der gewünschten Aufbringung wird beim Aufbringvorgang mehr oder weniger Energie zugeführt. Beim Anlegieren werden sowohl das Beschichtungsmaterial als auch ein oberer Bereich des darunter sich befindende Materials geschmolzen. Beim Andiffundieren wird lediglich das Beschichtungsmaterial geschmolzen. Das darunter sich befindende Material wird erwärmt, verbleibt aber im erstarrten Zustand.
Keramisches Material in Form von Karbiden kann bei höheren Temperaturen zerfallen bzw. sich in andere Karbide mit anderen geometrischen Formen umwandeln. Sofern die harten Teilchen 9 der verschleißfesten Struktur 6 durch Karbide gebildet werden, wird die Einlaufauflage 7 zur Schonung dieser Karbide zweckmäßig so aufgebracht, dass die verschleißfeste Struktur 6 nicht über die Zerfallstemperatur der Karbide erwärmt wird. Dasselbe gilt natürlich auch für die Aufbringung der verschleißfesten Struktur 6 auf den Basiskörper 5. Zweckmäßig wird dabei so vorgegangen, dass die zur Durchführung eines Beschichtungsvorgangs erfolgende Wärmeübertragung auf die zu beschichtende Oberfläche und auf das dieser zugeführte Beschichtungsmaterial so kontrolliert erfolgt, dass nur das Beschichtungsmaterial vollständig schmilzt und das darunter sich befindende Material vollständig im erstarrten Zustand bleibt, was dann gemäß obigen Erläuterungen zu einer Diffunsionsbindung führt.
Die Beschichtungsvorgänge können durch Aufsprühen des Beschichtungsmaterials, Aufschmelzen des Beschichtungsmaterials oder Aufsintern des Beschichtungsmaterials erfolgen. Zum Aufbringen der verschleißfesten Struktur 6 auf den Basiskörper 5 sowie zum Aufbringen der Einlaufauflage 7 auf die verschleißfeste Struktur 6 kann zweckmäßig eine einen Heizfleck erzeugende, gegenüber der zu beschichtenden Oberfläche relativ bewegliche Heizeinrichtung Verwendung finden. Zur Bildung der Heizeinrichtung kann zweckmäßig wenigstens eine einen Laserstrahl erzeugende Laserkanone und/oder wenigstens eine Induktionsspule Verwendung finden. Anstelle eines Laserstrahls kann auch ein sog. Plasma Transfer Are (PTA) Verwendung finden. Dabei können die verschleißfeste Struktur und die Einlaufauflage in getrennten Arbeitsgängen oder in einem gemeinsamen Arbeitsgang aufgebracht werden. In jedem Fall kann dies zweckmäßig in derselben Weise erfolgen, so dass zum Aufbringen einer die verschleißfähige Struktur 6 bildenden Beschichtung und zum Aufbringen der Einlaufauflage 7 dieselbe Vorrichtung bzw. eine gleich aufgebaute Vorrichtung verwendbar ist bzw. sind.
Die eine verschleißfähige Struktur 6 bildende Beschichtung und/oder die Einlaufauflage 7 können, wie schon erwähnt, an die jeweils zugeordnete Unterlage anlegiert oder andiffundiert werden. Zum Anlegieren wird eine einen Übergangsbereich bildende Schmelze erzeugt, welche sowohl die Bestandteile der aufnehmenden Schicht als auch der auf diese aufzubringenden Schicht enthält. Hierzu werden sowohl das aufzubringende Material als auch eine oberflächennahe Zone der Unterlage so weit erhitzt, dass ein Übergang in die flüssige Phase erfolgt. Zum Andiffundieren wird lediglich das jeweils aufzubringende Material in die flüssige Phase überführt.
Geeignete Vorrichtungen sind in den Figuren 4 und 5 angedeutet. In beiden Fällen werden die verschleißfeste Struktur 6 in Form einer Beschichtung auf einen Basiskörper 5 und die Einlaufauflage 7 in Form einer weiteren Beschichtung auf die verschleißfeste Struktur 6 aufgebracht.
Bei der Ausführung gemäß Figur 4 sind zwei hintereinander angeordnete Energiequellen in Form von zwei hintereinander angeordneten Laserkanonen 16, 17 vorgesehen, die jeweils einen Laserstrahl 16a, 17a erzeugen. Anstelle einer Laserkanone könnte auch ein PTA-Brenner ( Plasma Transfer Are-Brenner) und/oder eine Induktionsspule oder dergleichen vorgesehen sein. Jeder Energiequelle bzw. jedem Energieübertragungsstrahl ist eine Materialzuführeinrichtung 18 bzw. 19 zugeordnet, die einen Versorgungseingang 18a, 19a aufweist und eine als Materialübertragungsstrahlen 18b bzw. 19b angedeutete Materialzuführung zum Energieübertragungsstrahl bewirkt.
Das jeweilige Beschichtungsmaterial kann der zu beschichtenden Oberfläche in Form eines runden oder eckigen Drahts, eines Bands oder in Pulverform zugeführt werden. Im dargestellten Beispiel soll pulverförmiges Material verarbeitet werden. Dem entsprechend werden die Versorgungseinrichtungen 18, 19 über die Eingänge 18a, 19a mit entsprechendem pulverförmigem Material versorgt und geben einen pulverförmiges Material führenden Materialstrom 18b bzw. 19b ab. Das Pulver wird dabei zweckmäßig durch Schutzgas transportiert, das gegen Oxydation schützt.
Durch den Energieübertragungsstrahl 16a bzw. 17a, im dargestellten Beispiel jeweils in Form eines Laserstrahls, wird auf der zu beschichtenden Unterlage ein Heizfleck erzeugt. Der jeweils zugeordnete Materialübertragungsstrahl 18b bzw. 19b ist dabei so ausgerichtet, dass das Beschichtungsmaterial direkt in den Heizfleck oder einem diesem direkt benachbarten Bereich zugeführt wird. Im ersten Fall wird das zugeführte Material vom zugeordneten Energieübertragungsstrahl getroffen und trifft daher im geschmolzenen Zustand auf die jeweils zugeordnete Unterlage auf, die durch die Restenergie ebenfalls erwärmt wird. So fern eine durch eine Legierung gebildete Grenzschicht 15 gewünscht wird, wird die Energiequelle 16 bzw. 17 so eingestellt, dass die zugeführte Energie ausreicht, um sowohl das Beschichtungsmaterial als auch eine oberflächennahe Zone der Unterlage zu schmelzen. Sofern die Zwischenschicht 15 lediglich als Diffusionsschicht ausgebildet werden soll, wird die Energiequelle 16 bzw. 17 so eingestellt, dass nur das Beschichtungsmaterial vollständig schmilzt und die jeweils zugeordnete Unterlage im erstarrten Zustand verbleibt. Bei Verwendung einer Laserkanone ist dabei eine exakte Kontrolle der Energiezufuhr auf einfache Weise möglich.
Die in Figur 4 vorgesehenen Energiequellen 16, 17 mit jeweils zugeordneter Materialübertragungseinrichtung 18, 19 sind mit Abstand hintereinander angeordnet. Dieser Abstand kann so gewählt werden, dass die verschleißfeste Struktur 6 bereits vollständig erstarrt ist, bevor die Einlaufauflage 7 aufgebracht wird oder dass die verschleißfeste Struktur 6 zumindest an der Oberseite noch nicht erstarrt ist, wenn die Einlaufauflage 7 aufgebracht wird.
Im vorliegenden Beispiel mit einer auf einen eisenhaltigen Basiskörper 5 aufgebrachten, aus einer Nickellegierung mit eingelagerten Keramikpartikeln bestehenden, verschleißfesten Struktur 6 und mit einer durch eine Kupfer und Zinn enthaltende Bronze gebildeten Einlaufauflage 7 werden sowohl die verschleißfeste Struktur 6 als auch die Einlaufauflage 7 durch Diffusion mit der jeweils zugeordneten Unterlage verbunden. Der oben genannte Abstand zwischen den Energieerzeugungseinrichtungen 16, 17 wird daher so gewählt, dass die zunächst erzeugte verschleißfeste Struktur 6 bereits vollständig erstarrt ist, bevor die Einlaufauflage 7 aufgebracht wird. Die Energieübertragung wird dabei, wie oben bereits erwähnt, so gesteuert, dass nur das jeweils aufzubringende Material geschmolzen wird und die jeweilige Unterlage im erstarrten Zustand bleibt.
In Figur 4 ist ein dritter Energieübertragungsstrahl 20 angedeutet, der dem zweiten Energieübertragungsstrahl 17a nachgeordnet ist. Mit Hilfe des nachgeordneten Energieübertragungsstrahls 20 wird nur so viel Energie übertragen, dass die Oberfläche der Einlaufauflage 7 geglättet und für einen Einlaufvorgang geeignet gemacht wird. Anstelle der Verwendung eines eigenen, zur Glättung vorgesehenen Energieübertragungsstrahls 20 wäre es auch denkbar, nach erfolgter Beschichtung mit Hilfe des Energieübertragungsstrahls 16a und/oder 17a ohne entsprechende Materialzuführung eine Glättung zu bewirken.
Im dargestellten Beispiel sind die Energiequellen 16, 17 sowie die diesen zugeordneten Materialzuführeinrichtungen 18, 19 und die den nachgeordneten Energieübertragungsstrahl 20 erzeugende Energiequelle stationär angeordnet. Dementsprechend wird der Basiskörper 5 zur Herstellung der gewünschten Beschichtung entsprechend Pfeil v bewegt. Es wäre aber auch denkbar, den Basiskörper 5 stationär anzuordnen und die Beschichtungseinrichtungen zu bewegen. Dabei können sämtliche Energieerzeugungseinrichtungen mit gegebenenfalls zugeordneter Materialzuführeinrichtung zu einem eine einheitlich bewegbare Baugruppe bildenden Beschichtungskopf zusammengefasst werden. Bei der Ausführung gemäß Figur 5 ist lediglich eine Energiequelle 21 in Form einer Laserkanone vorgesehen, die einen Energieübertragungsstrahl 21 a erzeugt. Diesem werden zwei Materialstrahlen zur Bildung einer ersten, die verschleißfeste Struktur 6 bildenden Beschichtung und einer zweiten, die Einlaufauflage 7 bildenden Beschichtung zugeführt wird. Hierzu können zwei Materialzuführeinrichtungen vorgesehen sein. Im dargestellten Beispiel ist lediglich eine Materialzuführeinrichtung 22 vorgesehen, die zweikanalig ausgebildet ist. Dementsprechend ist die Materialzufuhreinrichtung 22 mit zwei Materialeingängen 22a bzw. 22a1 für das die verschleißfeste Struktur 6 bildende Material bzw. das die Einlaufauflage 7 bildende Material versehen. Die Materiaizufuhreinrichtung 22 erzeugt auch zwei in Beschichtungsrichtung einander nachgeordnete Materialübertragungsstrahlen 22b, 22b1 für das die verschleißfeste Struktur 6 bildende bzw. das die Einlaufeinlage 7 bildende Material.
Die Materialübertragungsstrahlen 22b, 22b' sind so positioniert, dass zunächst der das die verschleißfeste Struktur 6 bildende Materialübertragungsstrahl 22b auf die noch nicht beschichtete Oberfläche des Basiskörpers 5 auftrifft und anschließend der das die Einlaufauflage 7 bildende Materialübertragungsstrahl 22b' auf die Oberseite der mittels des Strahls 22b bereits erzeugten, verschleißfesten Struktur 6 auftrifft. Der Abstand zwischen den Strahlen 22b, 22b' kann im vorliegenden Fall so gering sein, dass die bereits aufgebrachte, die verschleißfeste Struktur 6 bildende Schicht noch genügend Energie abgeben kann, um das zur Bildung der Einlaufauflage 7 aufgebrachte Material zu schmelzen.
Zur Erzeugung einer für Einlaufzwecke gut geeigneten Oberfläche kann wie bei der Ausführung gemäß Figur 4 ebenfalls ein nachlaufender Energieübertragungsstrahl 20 Verwendung finden. Bezüglich der Bauweise als einheitliche Baugruppe bzw. der Bewegung von Basisteil 5 bzw. Beschichtungskopf gilt ebenfalls dasselbe wie oben.

Claims

ANSPRÜCHE
1. Maschinenteil, das zu einer Gleitpaarung mit zwei gegeneinander bewegbaren Maschinenteilen eines Großmotors gehört und zumindest im Bereich der dem jeweils anderen Maschinenteil zugewandten Seite eine verschleißfeste Struktur (6) mit in einer metallischen Matrix (8) aufgenommenen Partikeln (9) aus vergleichsweise hartem Material und mit rauer und unebener Oberfläche aufweist, und das als Kolbenring (4) oder Zylinderbüchse (1 ) oder Kolben (2) mit wenigstens einer Kolbenringnut (3) oder anderes Gleitelement eines Großmotors ausgebildet ist, dadurch gekennzeichnet, dass auf die verschleißfeste Struktur (6) eine deren obere Unebenheit und Rauheit ausgleichende Einlaufauflage (7) aufgebracht ist, die aus einem für Verschleiß während eines Einlaufvorgangs geeigneten Einlaufmaterial besteht, das vom Material der darunter sich befindenden verschleißfesten Struktur (6) verschieden und metallurgisch hiermit verbunden ist und das weicher als die verschleißfeste Struktur (6) und höchstens gleich verschleißfest wie die Gleitfläche des jeweils gegenüberliegenden Maschinenteils ist.
2. Maschinenteil nach Anspruch 1 , dadurch gekennzeichnet, dass die
Einlaufauflage (7) eine Härte von 100 bis 200 HV aufweist.
3. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das die Einlaufauflage (7) bildende Material eine Schmelztemperatur von höchstens 10500 C aufweist.
4. Maschinenteil nach Anspruch 3, dadurch gekennzeichnet, dass das die
Einlaufauflage (7) bildende Material eine Schmelztemperatur von 6000 C bis 800° C aufweist.
5. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlaufauflage (7) im Neuzustand eine durchschnittliche Dicke von 50 bis 300 Mikrometer (μm) aufweist.
6. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlaufauflage (7) im Neuzustand eine Oberflächenrauheit von 1 bis 20 Ra aufweist.
7. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in das Einlaufmaterial der Einlaufauflage (7) Teilchen (14) aus härterem Material eingelagert sind.
8. Maschinenteil nach Anspruch 7, dadurch gekennzeichnet, dass die eingelagerten Teilchen (14) aus keramischem Material bestehen.
9. Maschinenteil nach Anspruch 8, dadurch gekennzeichnet, dass die eingelagerten Teilchen (14) aus AI2O3, und/oder CrO und/oder Cr3C2 bestehen.
10. Maschinenteil nach einem der vorhergehenden Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Anteil der eingelagerten Teilchen (14) am Gesamtvolumen der Einlaufauflage (7) 5 bis 30 Vol% beträgt.
1 1. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das der Einlaufauflage (7) zugrunde liegende Einlaufmaterial zumindest Kupfer und/oder Zinn enthält.
12. Maschinenteil nach Anspruch 1 1 , dadurch gekennzeichnet, dass das der
Einlaufauflage (7) zugrunde liegende Einlaufmaterial als Bronze mit 70 % Cu und 30 % Sn ausgebildet ist.
13. Maschinenteil nach Anspruch 11 , dadurch gekennzeichnet, dass das
Einlaufmaterial der Einlaufauflage (7) durch Weißmetall gebildet wird, das neben Kupfer und Zinn Antimon (Sb) enthält.
14. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die die Einlaufauflage (7) aufnehmende, verschleißfeste Struktur (6) eine Ni-Legierung als Matrix (8) enthält, in die Partikel (9) aus keramischem Material eingelagert sind.
15. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die die Einlaufauflage (7) aufnehmende, verschleißfeste Struktur (6) als Beschichtung eines metallischen, vorzugsweise aus Eisenwerkstoff bestehenden Basiskörpers (5) ausgebildet ist.
16. Maschinenteil nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die die Matrix (8) bildende Ni-Legierung 1 bis 15 Vol% P, 1 bis 6 Vol% Si, und Rest Ni enthält.
17. Maschinenteil nach Anspruch 16, dadurch gekennzeichnet, dass die die Matrix (8) bildende Ni-Legierung 3,65 Vol% P1 und 2,15 Vol% Si1 sowie Rest Ni enthält.
18. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Volumenanteil der keramischen Partikel (9) am Gesamtvolumen der die Einlaufauflage aufnehmenden verschleißfesten Struktur (6) mehr als 60 Vol%, vorzugsweise bis zu 85 Vol% oder 85 Vol% beträgt.
19. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die keramischen Partikel (9) der verschleißfesten Struktur (6) zumindest teilweise aus Wolframkarbid (WC) bestehen und eine Härte von 3000 bis 5000 HV aufweisen.
20. Maschinenteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vorzugsweise keramischen Partikel (19) der verschleißfesten Struktur (6) kugelförmig sind und vorzugsweise einen Durchmesser von 40 bis 160 Mikrometer (μm) aufweisen.
21. Maschinenteil nach einem der Ansprüche 7 bis 20, dadurch gekennzeichnet, dass die in die Einlaufauflage (7) eingelagerten vorzugsweise keramischen Teilchen (14) kugelförmig sind und vorzugsweise einen Durchmesser von 20 bis 50 Mikrometer (μm) aufweisen.
22. Maschinenteil nach Anspruch 1 , dadurch gekennzeichnet, dass es zu einer Gleitpaarung eines Zweitakt-Großdieselmotors gehört.
23. Maschinenteil nach Anspruch 22, dadurch gekennzeichnet, dass es als
Kolbenring (4) ausgebildet ist.
24. Maschinenteil nach Anspruch 22, dadurch gekennzeichnet, dass es als
Zylinderbüchse (1) ausgebildet ist.
25. Maschinenteil nach Anspruch 22, dadurch gekennzeichnet, dass es als wenigstens eine Kolbenringnut (3) aufweisender Kolben (2) ausgebildet ist.
26. Verfahren zur Herstellung eines Maschinenteils nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das eine verschleißfeste Struktur (6) aufweisende Maschinenteil mit einer die verschleißfeste Struktur (6) überdeckenden Einlaufauflage (7) beschichtet wird, wobei beim Beschichtungsvorganga so viel Energie zugeführt wird, dass sich eine metallurgische Anbindung der Einlaufauflage (7) an die verschleißfeste Struktur
(6) ergibt.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass die Einlaufauflage
(7) an die verschleißfeste Struktur (6) anlegiert wird.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass die Einlaufauflage (7) an die verschleißfeste Struktur (6) andiffundiert wird, wobei beim Beschichtungsvorgang nur so viel Energie zur Verfügung gestellt wird, dass nur das dem Einlaufauftrag (7) zugrunde liegende Einlaufmaterial schmilzt und das darunter sich befindende Material der verschleißfesten Struktur (6) im erstarrten Zustand bleibt.
29. Verfahren nach einem der vorhergehenden Ansprüche 26 bis 28, dadurch gekennzeichnet, dass die Einlaufauflage (7) auf die verschleißfeste Struktur (6) aufgesprüht wird.
30. Verfahren nach einem der vorhergehenden Ansprüche 26 bis 28, dadurch gekennzeichnet, dass die Einlaufauflage (7) auf die verschleißfeste Struktur (6) aufgeschmolzen wird.
31. Verfahren nach einem der vorhergehenden Ansprüche 26 bis 30, dadurch gekennzeichnet, dass zur Beschichtung der verschleißfesten Struktur (6) mit der Einlaufauflage (7) eine gegenüber der verschleißfesten Struktur (6) relativ bewegbare, auf dieser einen Heizfleck erzeugende Heizeinrichtung (17; 21) Verwendung findet und dass das die Einlaufauflage (7) bildende Material in den Heizfleck oder einen diesem direkt benachbarten Bereich zugeführt wird.
32. Verfahren nach Anspruch 31 , dadurch gekennzeichnet, dass zur Erzeugung des Heizflecks eine Laserkanone oder ein PTA-Brenner Verwendung findet.
33. Verfahren nach Anspruch 31 oder 32, dadurch gekennzeichnet, dass das die
Einlaufauflage (7) bildende Material als Pulver, Draht oder Band dem Heizfleck zugeführt wird.
34. Verfahren nach einem der vorhergehenden Ansprüche 26 bis 33, dadurch gekennzeichnet, dass bei als Beschichtung eines Basiskörpers (5) ausgebildeter, verschleißfester Struktur (6) diese und die auf dieser aufgenommene Einlaufauflage (7) in gleicher Weise auf die jeweils zugeordnete Unterlage aufgebracht werden.
35. Verfahren nach Anspruch 34, dadurch gekennzeichnet, dass die verschleißfeste Struktur (6) und die Einlaufauflage (7) in einem Arbeitsgang hergestellt werden.
EP08734884A 2007-04-25 2008-03-29 Zu einer gleitpaarung gehörendes maschinenteil sowie verfahren zu dessen herstellung Withdrawn EP2150630A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22020179.2A EP4063532A1 (de) 2007-04-25 2008-03-29 Grossmotor mit einem zu einer gleitpaarung gehörendes maschinenteil sowie derartiges maschinenteil und verfahren zu dessen herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019510A DE102007019510B3 (de) 2007-04-25 2007-04-25 Zu einer Gleitpaarung gehörendes Maschinenteil sowie Verfahren zu dessen Herstellung
PCT/EP2008/002520 WO2008131837A2 (de) 2007-04-25 2008-03-29 Zu einer gleitpaarung gehörendes maschinenteil sowie verfahren zu dessen herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP22020179.2A Division EP4063532A1 (de) 2007-04-25 2008-03-29 Grossmotor mit einem zu einer gleitpaarung gehörendes maschinenteil sowie derartiges maschinenteil und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
EP2150630A2 true EP2150630A2 (de) 2010-02-10

Family

ID=39400403

Family Applications (2)

Application Number Title Priority Date Filing Date
EP22020179.2A Withdrawn EP4063532A1 (de) 2007-04-25 2008-03-29 Grossmotor mit einem zu einer gleitpaarung gehörendes maschinenteil sowie derartiges maschinenteil und verfahren zu dessen herstellung
EP08734884A Withdrawn EP2150630A2 (de) 2007-04-25 2008-03-29 Zu einer gleitpaarung gehörendes maschinenteil sowie verfahren zu dessen herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP22020179.2A Withdrawn EP4063532A1 (de) 2007-04-25 2008-03-29 Grossmotor mit einem zu einer gleitpaarung gehörendes maschinenteil sowie derartiges maschinenteil und verfahren zu dessen herstellung

Country Status (9)

Country Link
EP (2) EP4063532A1 (de)
JP (1) JP4589458B2 (de)
KR (1) KR101131165B1 (de)
CN (1) CN101680073B (de)
DE (1) DE102007019510B3 (de)
MY (1) MY166942A (de)
RU (1) RU2433206C2 (de)
TW (1) TW200905095A (de)
WO (1) WO2008131837A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028504C5 (de) * 2009-08-13 2014-10-30 Federal-Mogul Burscheid Gmbh Kolbenring mit einer Beschichtung
DE102009046281B3 (de) 2009-11-02 2010-11-25 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, und Kombination eines Gleitelements mit einem Laufpartner
DE102010029256A1 (de) * 2010-05-25 2011-12-01 Federal-Mogul Burscheid Gmbh Gleitelement
DE102010043527A1 (de) * 2010-11-08 2012-05-10 Bayerische Motoren Werke Aktiengesellschaft Zylinderlaufbahn mit einer Verschleißschutzschicht
EP2772562B1 (de) 2011-10-25 2018-06-13 IHI Corporation Kolbenring
CN104136651A (zh) * 2011-12-09 2014-11-05 乔治费歇尔汽车产品(苏州)有限公司 用于对基质进行涂覆的方法
DE102012204927B3 (de) * 2012-03-27 2013-07-04 Thomas Ammersbach Auftraggeschweißtes Werkstück und Verfahren zur Herstellung eines auftraggeschweißten Werkstückes
EP2669399B1 (de) * 2012-06-01 2016-10-12 Oerlikon Metco AG, Wohlen Lagerteil, sowie thermisches Spritzverfahren
BR102012016283A2 (pt) * 2012-06-29 2014-08-12 Mahle Metal Leve Sa Elemento deslizante e motor de combustão interna
DE102012107896A1 (de) * 2012-08-28 2014-03-06 Reinhausen Plasma Gmbh Verfahren und Vorrichtung zum Verbinden von Leitern mit Substraten
AT516877B1 (de) * 2015-02-19 2016-12-15 Miba Gleitlager Austria Gmbh Gleitlagerelement
EP3308045A4 (de) * 2015-06-15 2018-06-27 McDanel Advanced Ceramic Technologies Feuerfestes lager
CN107849699A (zh) * 2015-08-06 2018-03-27 日产自动车株式会社 滑动构件及其制造方法
CN107904542A (zh) * 2017-12-08 2018-04-13 青岛铸辉铜业有限公司 一种金属铜表面高耐磨涂层及其制备方法
JP7092636B2 (ja) * 2018-10-22 2022-06-28 大同メタル工業株式会社 摺動部材及びこれを用いる軸受装置
DE102020106823A1 (de) * 2020-03-12 2021-09-16 HPL Technologies GmbH Vorrichtung und Verfahren zum Herstellung und ggf. Nachbearbeiten von Schichten aufgetragen durch Laserauftragschweißen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK16494A (da) * 1994-02-08 1995-08-09 Man B & W Diesel Gmbh Fremgangsmåde til fremstilling af en cylinderforing samt en sådan foring
JP3558469B2 (ja) * 1996-11-08 2004-08-25 石川島播磨重工業株式会社 アブレーダブルコーティング方法
DK174241B1 (da) * 1996-12-05 2002-10-14 Man B & W Diesel As Cylinderelement, såsom en cylinderforing, et stempel, et stempelskørt eller en stempelring, i en forbrændingsmotor af dieseltypen samt en stempelring til en sådan motor.
DE19900942C2 (de) * 1999-01-13 2003-04-10 Man B & W Diesel As Kopenhagen Verfahren zur Erzeugung eines Schutzbelags sowie Maschine mit wenigstens einem derartigen Schutzbelag
DE19908107C2 (de) * 1999-02-25 2003-04-10 Man B & W Diesel As Kopenhagen Verfahren zur Erzeugung einer verschleißfesten Oberfläche bei aus Stahl bestehenden Bauteilen sowie Maschine mit wenigstens einem derartigen Bauteil
JP2001240925A (ja) * 2000-02-29 2001-09-04 Daido Metal Co Ltd 銅系摺動材料
JP2008024000A (ja) * 2000-04-10 2008-02-07 Konica Minolta Holdings Inc 光学素子成形用金型、光学素子の製造方法及び光学素子
DE10046956C2 (de) * 2000-09-21 2002-07-25 Federal Mogul Burscheid Gmbh Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern
JP2005023344A (ja) * 2003-06-30 2005-01-27 Daido Metal Co Ltd 摺動部材
AT413034B (de) * 2003-10-08 2005-10-15 Miba Gleitlager Gmbh Legierung, insbesondere für eine gleitschicht
US7094474B2 (en) * 2004-06-17 2006-08-22 Caterpillar, Inc. Composite powder and gall-resistant coating
US7229699B2 (en) * 2004-12-07 2007-06-12 Federal-Mogul Worldwide, Inc. Bearing having embedded hard particle layer and overlay and method of manufacture
DE102006023396B4 (de) * 2006-05-17 2009-04-16 Man B&W Diesel A/S Verschleißschutzbeschichtung sowie Verwendung und Verfahren zur Herstellung einer solchen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102007019510B3 (de) 2008-09-04
WO2008131837A2 (de) 2008-11-06
TWI342929B (de) 2011-06-01
CN101680073B (zh) 2012-10-03
JP2010525222A (ja) 2010-07-22
KR20100007902A (ko) 2010-01-22
JP4589458B2 (ja) 2010-12-01
TW200905095A (en) 2009-02-01
RU2009143528A (ru) 2011-05-27
WO2008131837A3 (de) 2009-05-07
KR101131165B1 (ko) 2012-03-28
EP4063532A1 (de) 2022-09-28
MY166942A (en) 2018-07-25
CN101680073A (zh) 2010-03-24
RU2433206C2 (ru) 2011-11-10

Similar Documents

Publication Publication Date Title
DE102007019510B3 (de) Zu einer Gleitpaarung gehörendes Maschinenteil sowie Verfahren zu dessen Herstellung
EP2019927B1 (de) Gleitlager, verfahren zur herstellung sowie verwendung eines derartigen gleitlagers
DE102006023397B4 (de) Gleitlager, Verfahren zur Herstellung sowie Verwendung eines derartigen Gleitlagers
EP2707621B1 (de) Bremsscheibe und verfahren zum herstellen einer bremsscheibe
EP0300993A1 (de) Hochbelastbares Gleitlager
DE102005008569A1 (de) Reibelement und Verfahren zu dessen Herstellung
EP2021526B1 (de) Verschleissschutzeinrichtung und verfahren zur herstellung einer solchen
DE102020112100A1 (de) Bauteil einer Bremse für ein Fahrzeug und Verfahren zu seiner Herstellung
DE19900942C2 (de) Verfahren zur Erzeugung eines Schutzbelags sowie Maschine mit wenigstens einem derartigen Schutzbelag
CH667412A5 (de) Verfahren zur herstellung einer kokille fuer stahlstranggiessanlagen.
AT510190A1 (de) Verfahren zum herstellen eines mehrschichtigen gleitlagers
DE3721008A1 (de) Schichtwerkstoff oder schichtwerkstoffelement sowie verfahren zu seiner herstellung durch vakuum-plasma-spritzen
DE102006023398B4 (de) Kurbelwellen-Hauptlager von Großmotoren und Verfahren zu seiner Herstellung
WO2019076677A1 (de) Verfahren zur herstellung eines gleitlagers sowie ein mit dem verfahren hergestelltes gleitlager
DE2624469B2 (de) Schrumpf- oder Klemmverband sowie Verfahren zu seiner Herstellung, vorzugsweise zur Verbindung einer Wickelkopfkappe des Rotors eines Generators mit einem Rotorkörper
DE821902C (de) Verfahren zum Aufspritzen von metallischen UEberzuegen
EP0894206B1 (de) Schichtverbundwerkstoff und verfahren zur verbesserung der oberflächenhärte von schichtverbundwerkstoffen
DE102020211521A1 (de) Getriebe
AT400726B (de) Metallischer bauteil zur verwendung in einem metallbad
EP1618323B1 (de) Kolben für einen grossmotor sowie verfahren zur herstellung einer verschleissschutzschicht bei einem derartigen kolben
EP0130175B1 (de) Verfahren zum Herstellen eines Gleitlagers
DE3212214C2 (de) Kolbenring und Verfahren zu dessen Herstellung
DE102023204087B3 (de) Bremskörper für ein Kraftfahrzeug sowie Verfahren zur Herstellung eines Bremskörpers
DE102022209965A1 (de) Verfahren zum Herstellen oder Aufbereiten einer Bremsscheibe für ein Fahrzeug sowie Bremsscheibe
DE102012109651A1 (de) Gießwalze zum Gießen von metallischem Band und mit einer solchen Gießwalze ausgestattete Zweiwalzengießvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS, FILIAL AF MAN ENERGY SOLUTIO

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220420