EP2146887A1 - Wheel sensor - Google Patents
Wheel sensorInfo
- Publication number
- EP2146887A1 EP2146887A1 EP08759474A EP08759474A EP2146887A1 EP 2146887 A1 EP2146887 A1 EP 2146887A1 EP 08759474 A EP08759474 A EP 08759474A EP 08759474 A EP08759474 A EP 08759474A EP 2146887 A1 EP2146887 A1 EP 2146887A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonant circuit
- receiver
- wheel sensor
- transmitter
- inductive components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000001939 inductive effect Effects 0.000 claims abstract description 13
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 2
- 230000011664 signaling Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L1/00—Devices along the route controlled by interaction with the vehicle or train
- B61L1/16—Devices for counting axles; Devices for counting vehicles
- B61L1/167—Circuit details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L1/00—Devices along the route controlled by interaction with the vehicle or train
- B61L1/16—Devices for counting axles; Devices for counting vehicles
- B61L1/163—Detection devices
- B61L1/165—Electrical
Definitions
- the invention relates to a wheel sensor, in particular for a Gleisokomeldeirriated, with two inductively operating sensor channels having separated by a railroad transmitter and receiver.
- Wheel sensors are used in the rail industry for the track vacancy, but also for other switching and reporting tasks. In this case, predominantly the magnetic field influencing effect of the iron wheels of rail vehicles is utilized.
- Two-channel sensors are required to detect the train's direction of travel. When driving a vehicle wheel, the two sensor channels create sequentially offset in time ⁇ Sig nal, which are used for direction detection.
- the operating according to the inductive mode of action wheel sensors can be in addition to the one- or two-channel design in proximity switches that detect the reaction of the iron wheels on a magnetic field generating sensor, and railroad systems encompassing systems with separate transmitter and receiver.
- the invention relates to a two-channel wheel sensor with separate transmitter and receiver.
- a cause of this are rail currents, which are caused by the return ⁇ conductor current of a locomotive, with a harmonic content in the receiver can induce an interference signal in the form of beats.
- This beating that of the receiving voltage is superimposed, it is difficult to separate from the Radbeeinhneung to be detected, because here low-pass filter fail due to the principle.
- Another cause of interference voltages can also be arranged adjacent other sensors or sensor channels, which are operated at the same operating frequency and lead by mutual influence of their transmitter to beats.
- the invention has for its object to provide a gattungsge ⁇ MAESSEN wheel sensor having a simple design, increased interference immunity to interference voltages of different causes.
- the object is achieved in that EMP inductive Bauele ⁇ elements are catch side the sensor channels associated provided whose Empfangsstörliqueen which impressive ⁇ influence, are equal in magnitude and suppressed by external magnetic fields, both components in a series circuit by subtracting become.
- the two integrated in the sensor channels inductors are preferably connected in such a manner in series with one another and in opposite directions overall switched at the same field orientation that their sum output voltage free of interference, affecting both inductive Bauele ⁇ elements equally as common mode signals and thus gens intimacy through the overall a polarity or a winding orientation can be compensated. But it is also possible to achieve the compensation of the interference signals at 180 ° different field orientation and the same direction switching of the inductive components. Thus, at a Radüberfahrt in each channel resulting Radkur same ⁇ venverrent, the practical embodiment of the same construction and equal spacing and angular disposition of the inductive components will rest loading against the railroad rail.
- Compensable disturbances include rail currents, because their coupling into both sensor channels is similarly high, as well as disturbances from other sources, for example as a result of power cables running parallel to the wheel sensor or neighboring sensors.
- the inductive components are according to claim 2 both the two sensor channels associated receiver coils of a single resonant circuit receiver or according to claim 3, the receiver coil ⁇ two in series interconnected separate resonant circuit receiver.
- the two receiver coils or the two resonant circuit receivers form a compact circuit part, at the output of which a sum reception signal is produced which is demodulated and evaluated in a subsequent circuit.
- Each transmitter channel is equipped with its own resonant circuit transmitter according to claim 4, wherein the two resonant circuit transmitter have different operating frequencies. These operating frequencies differ in an order of magnitude in which the beats resulting from the coupling in of the respective other resonant circuit transmitter can be suppressed on the receiving side by a low-pass filter.
- the operating frequencies may be 40 kHz and 45 kHz.
- a wheel sensor for the detection of a wheel influence, in which the different working conditions caused by the resonant circuit transmitters Frequencies induced beats are largely eliminated, is characterized according to claim 5, characterized in that an output side of the inductive components having circuit part resulting Summenempfangssignal is supplied in parallel via synchronous rectifiers, which are acted upon by the resonant circuit transmitters, low-pass filter and signal amplifier of a processing unit for level evaluation.
- the sum receive signal is supplied to two substantially identical signal processing channels and processed in parallel.
- the demodulation of the sum received signal is effected by synchronous rectification, that is, the phase position of the resonant circuit transmitter acts on the synchronous rectifier for phase-synchronous rectification of the received alternating signal.
- the sum received signal is again decomposed into its transmitter-specific frequency components and equal ⁇ directed.
- the following lowpass serves to suppress the beats that have developed on the transmitter side.
- a signal amplifier for level adjustment the output signal of which is evaluated by a processing unit, in particular a microprocessor.
- Figure 1 is a block diagram of a first variant of a wheel sensor
- FIG. 2 shows a second variant in a similar presentation ⁇ example as FIG. 1
- Both figures show left and right of a railway track 1, a transmitter assembly 2 and a receiver assembly 3.
- the transmitter assembly 2 has two separate resonant circuit transmitter 4 and 5, the sensor channels A and B are assigned.
- the Both resonant circuit transmitters 4 and 5 are tuned to different operating frequencies, for example 40 kHz and 45 kHz.
- the inductive coupling 6 and 7 changed between the transmitter arrangement 2 and the receiver assembly 3, whereby a sum of the received signal 8 is produced in the form of a so-called roll-off curve ⁇ or bell-shaped curve at the output of the receiver assembly. 3
- This unwinding curve ⁇ is used for wheel detection.
- the total received signal 8 is supplied to two signal processing channels whose essential components synchronous rectifiers ⁇ 9a and 9b, the low-pass filters 10a and 10b and signal amplifier IIa and IIb are.
- the synchronous rectifier 9a is driven by the resonant circuit transmitter 4 of the first sensor channel A and the synchronous rectifier 9b is controlled by the resonant circuit transmitter 5 of the second sensor channel B.
- the phase position 12 or 13 serves for this activation, as a result of which the synchronous rectifiers 9a and 9b can perform a phase-synchronous rectification of the sum reception signal 8 formed as an alternating signal.
- the sum received signal 8 is again split into its senderspezi ⁇ fishing frequency components and rectified.
- the beats caused by the coupling of the other resonant circuit transmitter 4 and 5 can be suppressed.
- This low-pass filtering is possible because of the under defenceli ⁇ Chen transmitter frequencies of the resonant circuit transmitter 4 and 5.
- the low-pass 10a and 10b is connected via the Sig- naive more IIa or IIb, which is used for level adjustment, with inputs U_A or U_b a micropro ⁇ zessors fourteenth
- the microprocessor 14 evaluates the analog signals U_a and U_b with regard to their level with the possi ⁇ possibilities of digital signal processing.
- the embodiments of Figures 1 and 2 differ by the structure of the receiver assembly 3 with respect to a Störtheseskompens Schlierenden mode of operation.
- the receiver arrangement 3 according to FIG. 1 is designed as a resonant circuit receiver 15 with capacitor 16, resistor 17 and two receiver coils 18 and 19.
- the two dalespu ⁇ len 18 and 19 are each associated with one of the two sensor channels A and B and wound in opposite directions so that Störsig ⁇ dimensional affecting as common-mode signals are both receiver coils 18 and 19 are alike, are compensated.
- the receiver coils 18 and 19 are identical as possible to be built identically and ⁇ angeord- net relative to the railroad rail. 1
- the receiver arrangement 3 is equipped with two resonant circuit receivers 20 and 21 belonging to the two sensor channels A and B.
- the two resonant circuit receiver 20 and 21 in such opposite directions in
- the resonant circuit receivers 20 and 21 have the same structure and have the same electrical properties. They are also designed broadband enough, so that the two resonant circuit transmitters 4 and 5, despite different transmitter frequencies induce approximately equally high voltages in the resonant circuit receiver 20 and 21.
- the broadband is indicated in Figure 2 by a resistance damping in the resonant circuit receivers 20 and 21.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
The invention relates to a wheel sensor, in particular for a track clear detection unit, comprising two sensor channels (A, B) that work inductively and have a separate transmitter and receiver that are separated by a railway (1). The aim of the invention is to compensate interference voltages simply and effectively. To achieve this, inductive components assigned to the sensor channels (A, B) are provided on the receiving side, the receiving interference voltages of which, caused by external magnetic fields that affect both components, have equal values and are suppressed by subtraction in a series circuit.
Description
Beschreibungdescription
Radsensorwheel sensor
Die Erfindung betrifft einen Radsensor, insbesondere für eine Gleisfreimeldeeinrichtung, mit zwei induktiv arbeitenden Sensorkanälen, die durch eine Eisenbahnschiene getrennte Sender und Empfänger aufweisen.The invention relates to a wheel sensor, in particular for a Gleisfreimeldeeinrichtung, with two inductively operating sensor channels having separated by a railroad transmitter and receiver.
Radsensoren werden im Bahnwesen für die Gleisfreimeldung, aber auch für andere Schalt- und Meldeaufgaben eingesetzt. Dabei wird überwiegend die Magnetfeld beeinflussende Wirkung der Eisenräder der Schienenfahrzeuge ausgenutzt. Für die Fahrtrichtungserkennung des Zuges werden zweikanalige Senso- ren benötigt. Beim Überfahren eines Fahrzeugrades erzeugen die beiden Sensorkanäle nacheinander zeitlich versetzte Sig¬ nale, die zur Fahrtrichtungserkennung benutzt werden.Wheel sensors are used in the rail industry for the track vacancy, but also for other switching and reporting tasks. In this case, predominantly the magnetic field influencing effect of the iron wheels of rail vehicles is utilized. Two-channel sensors are required to detect the train's direction of travel. When driving a vehicle wheel, the two sensor channels create sequentially offset in time ¬ Sig nal, which are used for direction detection.
Die nach dem induktiven Wirkprinzip arbeitenden Radsensoren lassen sich neben der ein- oder zweikanaligen Bauweise auch in Näherungsschalter, die die Rückwirkung der Eisenräder auf einen ein Magnetfeld erzeugenden Sensor erfassen, und die Eisenbahnschienen umgreifende Systeme mit getrenntem Sender und Empfänger einteilen. Die Erfindung bezieht sich auf einen zweikanaligen Radsensor mit getrenntem Sender und Empfänger.The operating according to the inductive mode of action wheel sensors can be in addition to the one- or two-channel design in proximity switches that detect the reaction of the iron wheels on a magnetic field generating sensor, and railroad systems encompassing systems with separate transmitter and receiver. The invention relates to a two-channel wheel sensor with separate transmitter and receiver.
Allen induktiv arbeitenden Sensoren ist dabei gemeinsam, dass sie störempfindlich sind gegenüber induktiv eingekoppelten Störspannungen im Bereich der Arbeitfrequenz.All inductively operating sensors have in common that they are susceptible to interference with inductively coupled interference voltages in the range of the working frequency.
Eine Ursache dafür sind Schienenströme, die durch den Rück¬ leiterstrom einer Lokomotive entstehen, wobei ein Oberwellenanteil im Empfänger ein Störsignal in Form von Schwebungen induzieren kann. Diese Schwebung, die der Empfangsspannung
überlagert ist, lässt sich nur schwer von der zu detektieren- den Radbeeinflussung trennen, weil hier Tiefpassfilter prinzipbedingt versagen.A cause of this are rail currents, which are caused by the return ¬ conductor current of a locomotive, with a harmonic content in the receiver can induce an interference signal in the form of beats. This beating, that of the receiving voltage is superimposed, it is difficult to separate from the Radbeeinflussung to be detected, because here low-pass filter fail due to the principle.
Eine weitere Ursache von Störspannungen können auch benachbart angeordnete weitere Sensoren oder Sensorkanäle sein, die mit gleicher Arbeitsfrequenz betrieben werden und durch gegenseitige Beeinflussung ihrer Sender zu Schwebungen führen.Another cause of interference voltages can also be arranged adjacent other sensors or sensor channels, which are operated at the same operating frequency and lead by mutual influence of their transmitter to beats.
Neben einem Dauerstörpegel auf Arbeitsfrequenz können aber auch hohe Kommutierungsstromflanken von bis zu 1 kA/μs auftreten, die impulsartig stören. Störsignale dieser Art werden vor allem von vorbeifahrenden Zügen durch deren Leitungen und Transformatoren induziert.In addition to a Dauerstörpegel on working frequency but can also high Kommutierungsstromflanken of up to 1 kA / microseconds occur that disturb impulsively. Interference signals of this kind are mainly induced by passing trains through their lines and transformers.
Um die Störfestigkeit der Sensoren gegenüber diesen Störgrößen zu erhöhen, sind verschiedene sensorbauartspezifische Lösungsansätze bekannt.In order to increase the interference immunity of the sensors with respect to these disturbances, various sensor-type-specific approaches are known.
Für die Sensorbauart mit nur einer auf die Eisenmasse des Ra¬ des reagierenden Schwingkreisspule pro Kanal, das heißt für Näherungsschalter, kann eine weitgehende Kompensation der induzierten Störspannungen durch die Aufteilung der Schwingkreisspule in mindestens zwei Teilspulen mit gegensinniger Wicklung erreicht werden, wie in der DE 19 915 597 Al und der DE 10 137 519 Al beschrieben.For the sensor design with only one of the iron mass of Ra ¬ the reacting resonant circuit coil per channel, ie for proximity switches, a substantial compensation of the induced noise voltages can be achieved by dividing the resonant circuit coil in at least two partial coils with opposite directions, as in DE 19 915 597 Al and DE 10 137 519 Al described.
Bei gattungsgemäßen Radsensoren mit getrennten Sender und Empfängerschwingkreisen wird gemäß der DE 10 122 980 Al vor- geschlagen, die Resonanzfrequenz des Empfängerschwingkreises gegenüber der Senderfrequenz zu verändern, um insbesondere den Störeinfluss einer Wirbelstrombremse zu unterdrücken.
Aus der DE 4 240 478 Al ist ein zweikanaliger Radsensor bekannt, bei dem die beiden Sender mit gleicher Frequenz, aber mit 90° Phasenversatz betrieben werden, um die gegenseitige Beeinflussung der Sender zu reduzieren.In generic wheel sensors with separate transmitters and receiver resonant circuits, it is proposed, according to DE 10 122 980 A1, to change the resonant frequency of the receiver resonant circuit relative to the transmitter frequency in order to suppress in particular the interference effect of an eddy current brake. From DE 4 240 478 A1, a two-channel wheel sensor is known in which the two transmitters are operated at the same frequency, but with a 90 ° phase shift, in order to reduce the mutual influence of the transmitters.
Gemäß der EP 1 541 440 Bl wird eine Phasenmodulation eines elektromagnetischen Schwingkreises für Radsensoren vorgeschlagen .According to EP 1 541 440 B1, a phase modulation of an electromagnetic resonant circuit for wheel sensors is proposed.
Der Erfindung liegt die Aufgabe zugrunde, einen gattungsge¬ mäßen Radsensor anzugeben, der bei einfachem Aufbau eine erhöhte Störsicherheit gegenüber Störspannungen verschiedener Ursachen aufweist.The invention has for its object to provide a gattungsge ¬ MAESSEN wheel sensor having a simple design, increased interference immunity to interference voltages of different causes.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass emp- fangsseitig den Sensorkanälen zugeordnete induktive Bauele¬ mente vorgesehen sind, deren Empfangsstörspannungen durch äußere magnetische Felder, welche beide Bauelemente beein¬ flussen, vom Betrag her gleich hoch sind und in einer Reihen- Schaltung durch Subtraktion unterdrückt werden.According to the invention, the object is achieved in that EMP inductive Bauele ¬ elements are catch side the sensor channels associated provided whose Empfangsstörspannungen which impressive ¬ influence, are equal in magnitude and suppressed by external magnetic fields, both components in a series circuit by subtracting become.
Die beiden in die Sensorkanäle integrierten induktiven Bauelemente sind dabei vorzugsweise derart in Reihe miteinander verbunden und bei gleicher Feldausrichtung gegensinnig ge- schaltet, dass ihre Summenausgangsspannung frei ist von Störsignalen, die als Gleichtaktsignale beide induktiven Bauele¬ mente gleichermaßen beeinflussen und folglich durch die Ge- gensinnigkeit einer Polung oder einer Wicklungsorientierung kompensiert werden. Es ist aber auch möglich, die Kompensa- tion der Störsignale bei um 180° verschiedener Feldausrichtung und gleichsinniger Schaltung der induktiven Bauelemente zu erreichen.
Damit bei einer Radüberfahrt in jedem Kanal gleiche Radkur¬ venverläufe resultieren, wird die praktische Ausführung auf gleichem Aufbau und gleicher Beabstandung und Winkelanordnung der induktiven Bauelemente gegenüber der Eisenbahnschiene be- ruhen.The two integrated in the sensor channels inductors are preferably connected in such a manner in series with one another and in opposite directions overall switched at the same field orientation that their sum output voltage free of interference, affecting both inductive Bauele ¬ elements equally as common mode signals and thus gens intimacy through the overall a polarity or a winding orientation can be compensated. But it is also possible to achieve the compensation of the interference signals at 180 ° different field orientation and the same direction switching of the inductive components. Thus, at a Radüberfahrt in each channel resulting Radkur same ¬ venverläufe, the practical embodiment of the same construction and equal spacing and angular disposition of the inductive components will rest loading against the railroad rail.
Zu den kompensierbaren Störeinflüssen gehören Schienenströme, da deren Einkopplung in beide Sensorkanäle ähnlich hoch ist, sowie Störgrößen anderer Quellen, beispielsweise infolge pa- rallel zum Radsensor verlaufender Stromkabel oder benachbarter Sensoren.Compensable disturbances include rail currents, because their coupling into both sensor channels is similarly high, as well as disturbances from other sources, for example as a result of power cables running parallel to the wheel sensor or neighboring sensors.
Die induktiven Bauelemente sind gemäß Anspruch 2 beide den zwei Sensorkanälen zugehörige Empfängerspulen eines einzigen Schwingkreis-Empfängers oder gemäß Anspruch 3 die Empfänger¬ spulen zweier in Reihe miteinander verbundener separater Schwingkreis-Empfänger. Durch die Reihenschaltung bilden die beiden Empfängerspulen oder die beiden Schwingkreis-Empfänger einen kompakten Schaltungsteil, an dessen Ausgang ein Summen- empfangssignal entsteht, das in einer nachfolgenden Schaltung demoduliert und ausgewertet wird.The inductive components are according to claim 2 both the two sensor channels associated receiver coils of a single resonant circuit receiver or according to claim 3, the receiver coil ¬ two in series interconnected separate resonant circuit receiver. As a result of the series connection, the two receiver coils or the two resonant circuit receivers form a compact circuit part, at the output of which a sum reception signal is produced which is demodulated and evaluated in a subsequent circuit.
Senderseitig ist gemäß Anspruch 4 jeder Sensorkanal mit einem eigenen Schwingkreis-Sender ausgestattet, wobei die beiden Schwingkreis-Sender unterschiedliche Arbeitsfrequenzen aufweisen. Diese Arbeitsfrequenzen unterscheiden sich in einer Größenordnung, bei der die durch die Einkopplung des jeweils anderen Schwingkreis-Senders entstehenden Schwebungen emp- fangsseitig durch einen Tiefpassfilter unterdrückbar sind. Beispielsweise können die Arbeitsfrequenzen 40 kHz und 45 kHz betragen .Each transmitter channel is equipped with its own resonant circuit transmitter according to claim 4, wherein the two resonant circuit transmitter have different operating frequencies. These operating frequencies differ in an order of magnitude in which the beats resulting from the coupling in of the respective other resonant circuit transmitter can be suppressed on the receiving side by a low-pass filter. For example, the operating frequencies may be 40 kHz and 45 kHz.
Ein Radsensor zur Detektion einer Radbeeinflussung, bei der die durch die Schwingkreis-Sender unterschiedlicher Arbeits-
frequenzen induzierten Schwebungen weitgehend eliminiert sind, ist gemäß Anspruch 5 dadurch gekennzeichnet, dass ein ausgangsseitig eines die induktiven Bauelemente aufweisenden Schaltungsteiles entstehendes Summenempfangssignal parallel über Synchrongleichrichter, die von den Schwingkreis-Sendern beaufschlagt sind, Tiefpassfilter und Signalverstärker einer Verarbeitungseinheit zur Pegelauswertung zugeführt ist. Das Summenempfangssignal wird zwei im Wesentlichen identischen Signalverarbeitungskanälen zugeführt und parallel weiterver- arbeitet. Die Demodulation des Summenempfangssignals erfolgt durch Synchrongleichrichtung, das heißt, die Phasenlage des Schwingkreis-Senders beaufschlagt den Synchrongleichrichter zur phasensynchronen Gleichrichtung des empfangenen Wechselsignals. Dadurch wird das Summenempfangssignal wieder in seine senderspezifischen Frequenzanteile zerlegt und gleich¬ gerichtet. Der nachfolgende Tiefpass dient der Unterdrückung der senderseitig entstandenen Schwebungen. Nach dem Tiefpassfilter folgt ein Signalverstärker zur Pegelanpassung, dessen Ausgangssignal von einer Verarbeitungseinheit, insbesondere einem Mikroprozessor, ausgewertet wird.A wheel sensor for the detection of a wheel influence, in which the different working conditions caused by the resonant circuit transmitters Frequencies induced beats are largely eliminated, is characterized according to claim 5, characterized in that an output side of the inductive components having circuit part resulting Summenempfangssignal is supplied in parallel via synchronous rectifiers, which are acted upon by the resonant circuit transmitters, low-pass filter and signal amplifier of a processing unit for level evaluation. The sum receive signal is supplied to two substantially identical signal processing channels and processed in parallel. The demodulation of the sum received signal is effected by synchronous rectification, that is, the phase position of the resonant circuit transmitter acts on the synchronous rectifier for phase-synchronous rectification of the received alternating signal. As a result, the sum received signal is again decomposed into its transmitter-specific frequency components and equal ¬ directed. The following lowpass serves to suppress the beats that have developed on the transmitter side. After the low-pass filter is followed by a signal amplifier for level adjustment, the output signal of which is evaluated by a processing unit, in particular a microprocessor.
Nachfolgend wird die Erfindung anhand figürlicher Ausführungsbeispiele näher dargestellt. Es zeigen:The invention is illustrated in more detail with reference to figürlicher embodiments. Show it:
Figur 1 ein Blockschaltbild einer ersten Variante eines Radsensors undFigure 1 is a block diagram of a first variant of a wheel sensor and
Figur 2 eine zweite Variante in gleichartiger Darstellungs¬ weise wie Figur 1.2 shows a second variant in a similar presentation ¬ example as FIG. 1
Beide Figuren zeigen links und rechts einer Eisenbahnschiene 1 eine Senderanordnung 2 und eine Empfängeranordnung 3. Die Senderanordnung 2 weist zwei separate Schwingkreis-Sender 4 und 5 auf, die Sensorkanälen A und B zugeordnet sind. Die
beiden Schwingkreis-Sender 4 und 5 sind auf unterschiedliche Arbeitsfrequenzen, zum Beispiel 40 kHz und 45 kHz, abgestimmt. Bei einer Radüberfahrt verändert sich die induktive Kopplung 6 beziehungsweise 7 zwischen der Senderanordnung 2 und der Empfängeranordnung 3, wodurch am Ausgang der Empfängeranordnung 3 ein Summenempfangssignal 8 in Form einer soge¬ nannten Abrollkurve oder Glockenkurve entsteht. Diese Abroll¬ kurve wird zur Raderkennung benutzt. Durch das Überfahren beider Sensorkanäle A und B entstehen zwei zeitlich versetzte Signale, die zur Richtungserkennung genutzt werden. Das Summenempfangssignal 8 wird in zwei Signalverarbeitungskanäle eingespeist, deren wesentliche Bestandteile Synchrongleich¬ richter 9a und 9b, Tiefpassfilter 10a und 10b und Signalverstärker IIa und IIb sind. Der Synchrongleichrichter 9a wird von dem Schwingkreis-Sender 4 des ersten Sensorkanals A angesteuert und der Synchrongleichrichter 9b wird von dem Schwingkreis-Sender 5 des zweiten Sensorkanals B angesteuert. Zu dieser Ansteuerung dient die Phasenlage 12 beziehungsweise 13, wodurch die Synchrongleichrichter 9a und 9b eine phasen- synchrone Gleichrichtung des als Wechselsignal gebildeten Summenempfangssignals 8 ausführen können. Auf diese Weise wird das Summenempfangssignal 8 wieder in seine senderspezi¬ fischen Frequenzanteile zerlegt und gleichgerichtet. Im nach¬ folgenden Tiefpassfilter 10a beziehungsweise 10b werden die durch die Einkopplung des jeweils anderen Schwingkreis-Senders 4 beziehungsweise 5 entstandenen Schwebungen unterdrückt. Diese Tiefpassfilterung ist wegen der unterschiedli¬ chen Senderfrequenzen der Schwingkreis-Sender 4 und 5 möglich. Der Tiefpass 10a beziehungsweise 10b ist über den Sig- naiverstärker IIa beziehungsweise IIb, der der Pegelanpassung dient, mit Eingängen U_a beziehungsweise U_b eines Mikropro¬ zessors 14 verbunden. Der Mikroprozessor 14 bewertet die Analogsignale U_a und U_b hinsichtlich ihres Pegels mit den Mög¬ lichkeiten der digitalen Signalverarbeitung.
Die Ausführungsbeispiele der Figuren 1 und 2 unterscheiden sich durch den Aufbau der Empfängeranordnung 3 hinsichtlich einer störspannungskompensierenden Funktionsweise.Both figures show left and right of a railway track 1, a transmitter assembly 2 and a receiver assembly 3. The transmitter assembly 2 has two separate resonant circuit transmitter 4 and 5, the sensor channels A and B are assigned. The Both resonant circuit transmitters 4 and 5 are tuned to different operating frequencies, for example 40 kHz and 45 kHz. In a Radüberfahrt the inductive coupling 6 and 7 changed between the transmitter arrangement 2 and the receiver assembly 3, whereby a sum of the received signal 8 is produced in the form of a so-called roll-off curve ¬ or bell-shaped curve at the output of the receiver assembly. 3 This unwinding curve ¬ is used for wheel detection. By driving over both sensor channels A and B, two time-shifted signals are generated, which are used for direction detection. The total received signal 8 is supplied to two signal processing channels whose essential components synchronous rectifiers ¬ 9a and 9b, the low-pass filters 10a and 10b and signal amplifier IIa and IIb are. The synchronous rectifier 9a is driven by the resonant circuit transmitter 4 of the first sensor channel A and the synchronous rectifier 9b is controlled by the resonant circuit transmitter 5 of the second sensor channel B. The phase position 12 or 13 serves for this activation, as a result of which the synchronous rectifiers 9a and 9b can perform a phase-synchronous rectification of the sum reception signal 8 formed as an alternating signal. Thus, the sum received signal 8 is again split into its senderspezi ¬ fishing frequency components and rectified. In ¬ by following low-pass filter 10a or 10b, the beats caused by the coupling of the other resonant circuit transmitter 4 and 5 can be suppressed. This low-pass filtering is possible because of the unterschiedli ¬ Chen transmitter frequencies of the resonant circuit transmitter 4 and 5. The low-pass 10a and 10b is connected via the Sig- naive more IIa or IIb, which is used for level adjustment, with inputs U_A or U_b a micropro ¬ zessors fourteenth The microprocessor 14 evaluates the analog signals U_a and U_b with regard to their level with the possi ¬ possibilities of digital signal processing. The embodiments of Figures 1 and 2 differ by the structure of the receiver assembly 3 with respect to a Störspannungskompensierenden mode of operation.
Die Empfängeranordnung 3 gemäß Figur 1 ist als Schwingkreis- Empfänger 15 mit Kondensator 16, Widerstand 17 und zwei Empfängerspulen 18 und 19 ausgebildet. Die beiden Empfängerspu¬ len 18 und 19 sind jeweils einem der beiden Sensorkanäle A und B zugeordnet und gegensinnig gewickelt, so dass Störsig¬ nale, die als Gleichtaktsignale beide Empfängerspulen 18 und 19 gleichermaßen beeinflussen, kompensiert werden. Die Empfängerspulen 18 und 19 sind dazu möglichst identisch aufge¬ baut und relativ zur Eisenbahnschiene 1 gleichartig angeord- net.The receiver arrangement 3 according to FIG. 1 is designed as a resonant circuit receiver 15 with capacitor 16, resistor 17 and two receiver coils 18 and 19. The two Empfängerspu ¬ len 18 and 19 are each associated with one of the two sensor channels A and B and wound in opposite directions so that Störsig ¬ dimensional affecting as common-mode signals are both receiver coils 18 and 19 are alike, are compensated. The receiver coils 18 and 19 are identical as possible to be built identically and ¬ angeord- net relative to the railroad rail. 1
Gemäß Figur 2 ist die Empfängeranordnung 3 dagegen mit zwei den beiden Sensorkanälen A und B zugehörigen Schwingkreis- Empfängern 20 und 21 ausgestattet. Hier sind die beiden Schwingkreis-Empfänger 20 und 21 derartig gegensinnig inIn contrast, according to FIG. 2, the receiver arrangement 3 is equipped with two resonant circuit receivers 20 and 21 belonging to the two sensor channels A and B. Here are the two resonant circuit receiver 20 and 21 in such opposite directions in
Reihe geschaltet, dass das Summenempfangssignal 8 frei ist von Störsignalen. Die Schwingkreis-Empfänger 20 und 21 sind gleich aufgebaut und haben die gleichen elektrischen Eigenschaften. Sie sind außerdem breitbandig genug ausgelegt, so dass die beiden Schwingkreis-Sender 4 und 5 trotz unterschiedlicher Senderfrequenzen annähernd gleich hohe Spannungen in die Schwingkreis-Empfänger 20 und 21 induzieren. Die Breitbandigkeit ist in Figur 2 durch eine Widerstandsdämpfung in den Schwingkreis-Empfängern 20 und 21 angedeutet.
Series switched that the sum reception signal 8 is free of interference signals. The resonant circuit receivers 20 and 21 have the same structure and have the same electrical properties. They are also designed broadband enough, so that the two resonant circuit transmitters 4 and 5, despite different transmitter frequencies induce approximately equally high voltages in the resonant circuit receiver 20 and 21. The broadband is indicated in Figure 2 by a resistance damping in the resonant circuit receivers 20 and 21.
Claims
1. Radsensor, insbesondere für eine Gleisfreimeldeeinrichtung, mit zwei induktiv arbeitenden Sensorkanälen (A, B), die durch eine Eisenbahnschiene (1) getrennte Sender und Empfän¬ ger aufweisen, d a d u r c h g e k e n n z e i c h n e t , dass empfangsseitig den Sensorkanälen (A, B) zugeordnete induktive Bauelemente vorgesehen sind, deren Empfangsstörspannungen durch äußere magnetische Felder, welche beide Bauelemente be¬ einflussen, vom Betrag her gleich hoch sind und in einer Reihenschaltung durch Subtraktion unterdrückt werden.1. Wheel sensor, in particular for a track-free signaling device, having two inductively operating sensor channels (A, B), comprising by a railway rail (1) separate transmitter and receptions and seminars ¬ ger, characterized in that the receiving end of the sensor channels (A, B) associated with inductive components provided are whose Empfangsstörspannungen by external magnetic fields, which affect both components be ¬ , the amount of equal are the same and are suppressed in a series circuit by subtraction.
2. Radsensor nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die beiden induktiven Bauelemente als Empfängerspulen (18,19) eines gemeinsamen Schwingkreis-Empfängers (15) ausgebildet sind.2. Wheel sensor according to claim 1, characterized in that the two inductive components as receiver coils (18,19) of a common resonant circuit receiver (15) are formed.
3. Radsensor nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die beiden induktiven Bauelemente als Empfängerspulen separater Schwingkreis-Empfänger (20,21) ausgebildet sind.3. Wheel sensor according to claim 1, characterized in that the two inductive components as receiver coils of separate resonant circuit receiver (20,21) are formed.
4. Radsensor nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass den Sensorkanälen (A, B) Schwingkreis-Sender (4,5) zugeordnet sind, die unterschiedliche Arbeitsfrequenzen aufweisen.4. Wheel sensor according to one of the preceding claims, characterized in that the sensor channels (A, B) are associated with resonant circuit transmitter (4,5) having different operating frequencies.
5. Radsensor nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass ein ausgangsseitig einer die induktiven Bauelemente aufwei¬ senden Empfängeranordnung (3) entstehendes Summenempfangssig¬ nal (8) parallel über Synchrongleichrichter (9a, 9b), die von den Schwingkreis-Sendern (4,5) beaufschlagt sind, Tiefpass¬ filter (10a, 10b) und Signalverstärker (IIa, IIb) einer Verarbeitungseinheit zur Pegelauswertung zugeführt ist. 5. Wheel sensor according to claim 4, characterized in that an output side of a inductive components aufwei ¬ send the receiver arrangement (3) resulting Summenempfangssig ¬ signal (8) in parallel via synchronous rectifiers (9a, 9b), the the resonant circuit transmitters (4,5) are acted upon, low-pass filter ¬ (10a, 10b) and signal amplifier (IIa, IIb) is fed to a processing unit for level evaluation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710023476 DE102007023476B4 (en) | 2007-05-15 | 2007-05-15 | wheel sensor |
PCT/EP2008/055697 WO2008138860A1 (en) | 2007-05-15 | 2008-05-08 | Wheel sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2146887A1 true EP2146887A1 (en) | 2010-01-27 |
Family
ID=39705172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08759474A Withdrawn EP2146887A1 (en) | 2007-05-15 | 2008-05-08 | Wheel sensor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2146887A1 (en) |
DE (1) | DE102007023476B4 (en) |
WO (1) | WO2008138860A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016211354A1 (en) * | 2016-06-24 | 2017-12-28 | Siemens Aktiengesellschaft | Transmitter device, sensor device and method for detecting a magnetic field change |
DE102022201840A1 (en) | 2022-02-22 | 2023-08-24 | Gts Deutschland Gmbh | Axle counting method and axle counting system |
CN117246375B (en) * | 2023-10-07 | 2024-04-26 | 温州市铁路与轨道交通投资集团有限公司 | Electromagnetic interference filtering method and device for axle counting equipment and axle counting equipment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES256178A1 (en) * | 1959-03-06 | 1960-08-01 | Ind De Liaisons Electr Soc | Apparatus for detecting displacement of a metallic part |
DE1530409A1 (en) * | 1965-10-12 | 1969-10-16 | Standard Elek K Lorenz Ag | Electromagnetic track device for railway safety systems |
DE3302883A1 (en) * | 1983-01-28 | 1984-08-02 | Siemens AG, 1000 Berlin und 8000 München | Circuit arrangement for generating axle counting pulses for axle counting systems |
DE4240478A1 (en) | 1992-12-02 | 1994-06-09 | Sel Alcatel Ag | Axle counting and travel direction detection system at specific railway track point - has at least two sensors displaced relative to each other and fixed at one rail or two rails of track as well as one generator and two transmitters and two receivers |
DE9420736U1 (en) * | 1994-12-13 | 1995-02-09 | Siemens AG, 80333 München | Device for avoiding mis-counting in the axle counting in the railway system |
DE19709840C2 (en) * | 1997-02-28 | 2001-10-04 | Siemens Ag | Axle counting device to distinguish between wheel influences and non-wheel influences |
AT406139B (en) | 1998-04-08 | 2000-02-25 | Frauscher Josef | WHEEL SENSOR |
DE10122980A1 (en) | 2001-05-11 | 2002-11-14 | Alcatel Sa | Wheel sensor device (rail contact) in track systems, with means for protection against electromagnetic interference |
DE10137519A1 (en) | 2001-07-30 | 2003-02-13 | Siemens Ag | Wheel sensor for a unit signaling a clear railway line has an inductive sensor on a railway line to detect a change in a magnetic field as the iron wheels of a railway vehicle pass over a rail |
DE10221577B3 (en) * | 2002-05-08 | 2004-03-18 | Siemens Ag | Magnetic wheel sensor |
EP1541440B1 (en) | 2003-12-08 | 2006-02-15 | Alcatel | Method of phase modulation of an electrical and electromagnetic resonance circuit, in particular for axle counters |
DE102005034641B3 (en) * | 2005-07-20 | 2007-03-08 | Siemens Ag | Circuit arrangement for monitoring the occupancy state of a switch or a track area |
-
2007
- 2007-05-15 DE DE200710023476 patent/DE102007023476B4/en not_active Expired - Fee Related
-
2008
- 2008-05-08 WO PCT/EP2008/055697 patent/WO2008138860A1/en active Application Filing
- 2008-05-08 EP EP08759474A patent/EP2146887A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2008138860A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102007023476A1 (en) | 2008-11-20 |
DE102007023476B4 (en) | 2009-07-09 |
WO2008138860A1 (en) | 2008-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2146886B1 (en) | Wheel sensor | |
EP2496459B1 (en) | Wheel sensor | |
DE102012212939A1 (en) | Wheel sensor, particularly for train detection system, has inductive sensor for detecting magnetic field change as result of iron wheels of rail vehicle, where inductive sensor is arranged at side of rail of track | |
WO2012004251A1 (en) | Inductive sensor device and inductive proximity sensor with an inductive sensor device | |
EP3107791B1 (en) | Sensor device for detecting a change in a magnetic field and track-bound transportation system having at least one such sensor device | |
WO2010052081A1 (en) | Wheel sensor | |
EP2146887A1 (en) | Wheel sensor | |
EP1288098B1 (en) | Wheel sensor and arrangement | |
DE102011018633B4 (en) | System for inductive energy transmission to a consumer | |
DE2951124C2 (en) | Electrical separation joint for track circuits fed with alternating current in railway systems | |
WO2023161239A1 (en) | Axle counting method and axle counting system | |
EP2797802B1 (en) | Sensor device for detecting a wheel which moves along a travel rail | |
EP3294608B1 (en) | Sensor device for detecting a wheel moving along a rail | |
DE1909423C3 (en) | Circuit arrangement for track circuits fed with alternating current in points and crossing areas of railway systems | |
DE102007031139A1 (en) | Method for increasing the interference immunity of a wheel sensor and wheel sensor for carrying out the method | |
EP2240357B1 (en) | Method for increasing the interference resistance of a wheel sensor and wheel sensor for carrying out the method | |
DE102021212809A1 (en) | Sensor device and method for detecting a change in magnetic field | |
DE3842882A1 (en) | METHOD AND ARRANGEMENT FOR SUPPRESSING THE INTERFERENCE OF MAGNETIC BRAKES ON MAGNETIC AXLE COUNTERS | |
EP2100793A2 (en) | Method and device for continuous evaluation of receipt signals in railway electricity circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100309 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100720 |