EP1288098B1 - Wheel sensor and arrangement - Google Patents

Wheel sensor and arrangement Download PDF

Info

Publication number
EP1288098B1
EP1288098B1 EP02090264A EP02090264A EP1288098B1 EP 1288098 B1 EP1288098 B1 EP 1288098B1 EP 02090264 A EP02090264 A EP 02090264A EP 02090264 A EP02090264 A EP 02090264A EP 1288098 B1 EP1288098 B1 EP 1288098B1
Authority
EP
European Patent Office
Prior art keywords
coils
coil
track
wheel
wheel sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02090264A
Other languages
German (de)
French (fr)
Other versions
EP1288098A1 (en
Inventor
Harald Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1288098A1 publication Critical patent/EP1288098A1/en
Application granted granted Critical
Publication of EP1288098B1 publication Critical patent/EP1288098B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical

Definitions

  • the invention relates to a wheel sensor according to the preamble of claims 1 and 3 and a Radsensoran Aunt according to the preamble of claims 8 and 10. Radsensoren be used in railways for the track vacancy, but also for other switching and reporting tasks.
  • the magnetic field influencing effect of the iron wheels of rail vehicles is predominantly utilized.
  • the retroactivity of the iron wheels can be detected, whereby a wheel pulse is registered with each wheel detection or axle detection.
  • the number of wheel pulses in conjunction with another wheel sensor provides information about the occupancy state of the intermediate track section.
  • This track vacancy is an essential decision criterion for the control of switches and signals.
  • ICE Intercity Express
  • a coil arrangement with a magnetic core is provided. Two coils arranged concentrically to one another are connected in such a way that opposing magnetic fields arise when the current flows together.
  • a magnetic interference field induces interference voltages in both coils, which compensate each other because of the opposing wiring of the two coils.
  • the coil arrangement is part of an inductive sensor for generating a working magnetic field is maintained. The iron mass of a traveling wheel changes the properties of the working magnetic field, which is sensed.
  • a very strong interference magnetic field such as an excited eddy current brake, the coil core so can magnetize that an undesirable response of the sensor is caused.
  • a similar, but coreless coil assembly is from the DE-A1-199 15 597 known.
  • the sensitivity of this generic axle counter is low, since the magnetic field generated for the detection of the wheel does not optimally penetrate the area of the wheel flange of the wheel.
  • wetness on the sensor housing may result in a further reduction in sensor sensitivity at the usually high operating frequencies of coreless coil assemblies.
  • the invention has for its object to overcome these disadvantages and to provide a wheel sensor with inductive sensor whose parameters are optimized in terms of sensitivity and thus in terms of the reliability of the overall system.
  • an optimization is achieved in that the inner coil has an area ratio corresponding to the higher number of turns than the outer coil. In this way, not only a partial compensation of the same, but a complete compensation is achieved in homogeneous interference fields.
  • the special coil dimensioning also has the consequence that the induction occurring in opposite directions when driving in both coils are not the same size and consequently a sufficiently high total induction remains for the detection of a wheel. Since disturbing effects are virtually completely eliminated and the working magnetic field has a very high field strength and optimally passes through the wheel flange of the wheel to be detected Compared to the prior art, a significant improvement in the sensitivity of the sensor and thus increasing the reliability of the overall system.
  • the second coil is preferably arranged centrally within the first coil according to claim 2.
  • the compensation effect is also present when the inner coil is arranged eccentrically.
  • the coil shapes can be very different.
  • the inner coil may have circular turns and be arranged eccentrically within an oval shaped outer coil.
  • Claim 3 characterizes a further solution of the task, wherein in addition to the solution according to claim 1, a simplification is achieved. Coils of different geometry and different number of turns are not required in this alternative solution. Instead, an overlapping in the vertical projection arrangement of similar coils is provided, the winding planes are arranged quasi one above the other. Since the coils are not interdigitated or interpenetrated, the magnetic field generated by one coil passes through the other coil in equal parts with opposing inner and outer magnetic fluxes, that is, the coils are magnetically decoupled from each other.
  • the coils are preferably designed according to claim 4 as a very flat, spirally wound disc coils. In this way, the coils can be easily installed in the housing of a wheel sensor.
  • the winding planes of the coils in both alternative solutions can run parallel to the track plane.
  • both coils are tilted at the same inclination angle to a horizontal surface in the track direction. Magnetic interference fields then pass through both coils in the same intensity and direction and thus cancel each other, even if the field is not parallel to the coil longitudinal axes.
  • two wheel sensors are arranged one behind the other. In this way, the direction of travel of a rail vehicle passing over the two wheel sensors can be determined on the basis of the time interval of the wheel pulse registration.
  • roof-shaped inclined winding planes of the coil pairs are provided.
  • Claim 10 characterizes a Doppelradsensoran extract in which also overlap the adjacent coils of the two wheel sensors.
  • the magnetic decoupling according to claim 3 also has an effect in this area.
  • the advantage of this arrangement is that the geometric overlapping of the wheel sensors has a longer overlapping phase of the influence exerted by a wheel on both sensors.
  • FIG. 1 schematically illustrates the operation of an inductive sensor with interference field compensation according to the prior art.
  • the sensor consists essentially of an oscillator 1 and a resonant circuit 2 with a capacitor C and two coils L1 and L2.
  • the two coils L1 and L2 in the LC resonant circuit 2 are connected in such a way that the interference voltages U StörL1 and U StörL2 are opposite in direction for the same absolute value and thus cancel each other out.
  • a voltage applied by the oscillator 1 to the LC resonant circuit 2 working voltage U oszL1 or U oszL2 for generating a working magnetic field is hardly affected by this arrangement.
  • FIG. 2 shows a track body 3 in perspective view with a first embodiment of a coil arrangement according to the invention for interference magnetic field compensation. It is seen that a noise magnetic field ⁇ s of a rail current I s is generated.
  • the two coils L1 and L2 connected in series are formed as inner coil Li and outer coil La, wherein the winding orientations of the two coils Li and La are opposite to each other, like the FIGS. 3a and 4 show symbolized by arrows.
  • the number of turns n Li of the inner coil Li is greater than the number of turns n La of the outer coil La.
  • the compensation effect is present even if, as in FIG. 4 , the inner coil Li is not arranged centrically in the outer coil La.
  • the coils Li and La can be of almost any shape, such as circular, square, rectangular or oval.
  • exact compliance with the above-mentioned dimensioning rule, namely the reverse proportionality of the number of turns to the coil surfaces an almost complete compensation of disturbing homogeneous magnetic fields can be achieved.
  • differences between the interference voltages of the coils Li and La can occur as a result of the different coil dimensions.
  • the effectively remaining total noise voltage is always smaller than that of a single coil, so that at least partially compensating effect is guaranteed.
  • FIGS. 5 to 10 refer to a further embodiment according to the invention of an interference field compensating coil arrangement. Opposite in the FIGS. 2 to 4 illustrated variant, this embodiment differs in particular in that the coils used L1 and L2, in contrast to the coils Li and La have similar geometry. This results in a reduction of the effort or costs.
  • FIG. 5 shows in an analogous representation FIG. 2 in that two mutually offset and partially overlapping coils L1 and L2 of the same geometry and number of turns are provided. Since both coils L1 and L2 are identical, the disturbance magnetic field ⁇ s induces in both coils L1 and L2 the same interference voltage U StörL1 and U StörL2 ( FIG. 1 ). For compensation, the coils L1 and L2, as for FIG. 1 executed, interconnected.
  • Each coil L1 and L2 generates a magnetic field as a single coil, since the magnetic decoupling no mutual interference occurs. Therefore, it has no influence that the magnetic fields B L1 and B L2 of both coils L1 and L2 are directed in oscillator operation. Both coils L1 and L2 contribute in equal parts to the detection of a wheel, because their magnetic fields B L1 and B L2 from the flange 4 ( FIG. 8 ) of a wheel are influenced in the same way. Compared to an arrangement with only one sensor coil, that is, without including this single coil in a coil majority for interference field compensation, the Einwirk Scheme of the wheel extends approximately to the lateral offset X of the two coils L1 and L2.
  • FIG. 8 shows the coils L1_1, L2_1 and L2_2 two wheel sensors relative to the track body 3.
  • the coils L1_1, L2_1 and L2_2 and L1_2 are such, for example, within a sensor housing, mounted so that their centers have a constant height to the horizontal base surface of the track body 3 , wherein the winding planes are inclined to the track plane.
  • Magnetic interference fields then pass through the two coils L1_1 and L2_1 or L2_2 and L1_2 in the same intensity and direction and thus cancel each other, even if the Interference field is not parallel to the coil longitudinal axes.
  • the in FIG. 8 shown double sensor is run over by the wheel flange 4 of the wheel in a specific time sequence, so that it can be concluded from the signal sequence on the direction of travel of the rail vehicle.
  • FIG. 9 a preferred coil form for wheel sensors is shown.
  • the coils L1 and L2 are disc-shaped and wound in spirals.
  • the height of the disk coils corresponds to the diameter of the winding wire and is therefore so small that the two overlapping coils L1 and L2 can be installed without inclination in the housing of a wheel sensor.
  • FIG. 10 illustrates a dual sensor with disk coils L1_Sys1 and L2_Sys1 and L1_Sys1 and L2_Sys2, with the adjacent coils L2_Sys1 and L1_Sys2 of the two sensor systems overlap Sys1 and Sys2

Abstract

An inductive sensor on a railway line detects a change in a magnetic field as the iron wheels of a railway vehicle pass over a rail. A system with first (La) and second (Li) coreless coils compensates for interfering magnetic fields (\=Fs). The first coreless coil optimizes this compensating effect along with the second coreless coil that fits inside the first coreless coil and generates a magnetic field in an opposite direction during a combined supply of current.

Description

Die Erfindung betrifft einen Radsensor gemäß dem Oberbegriff der Ansprüche 1 und 3 sowie eine Radsensoranordnung gemäß dem Oberbegriff der Ansprüche 8 und 10. Radsensoren werden im Bahnwesen für die Gleisfreimeldung, aber auch für andere Schalt- und Meldeaufgaben eingesetzt. Dabei wird überwiegend die magnetfeldbeeinflussende Wirkung der Eisenräder der Schienenfahrzeuge ausgenutzt. Mittels am Gleiskörper angebrachter induktiver Sensoren, die ein spezifisches Magnetfeld erzeugen, lässt sich die Rückwirkung der Eisenräder erfassen, wobei mit jeder Raderfassung bzw. Achsenerfassung ein Radimpuls registriert wird. Die Anzahl der Radimpulse gibt im Zusammenwirken mit einem weiteren Radsensor Auskunft über den Belegungszustand des dazwischenliegenden Gleisabschnittes. Diese Gleisfreimeldung stellt ein wesentliches Entscheidungskriterium für die Steuerung von Weichen und Signalen dar. Anhand des Belegungszustandes von Gleisabschnitten wird die Entscheidung getroffen, ob ein Schienenfahrzeug in diesem Gleisabschnitt einfahren darf oder nicht. Folglich müssen die Meldesignale der Achszähler extrem hohen Zuverlässigkeitsanforderungen genügen. Es ist sicherzustellen, dass nur die die Sensoren überfahrenden Eisenräder der Schienenfahrzeuge von den Sensoren erfasst werden und Störmagnetfelder anderer Herkunft ignoriert werden. Das betrifft beispielsweise Magnetfelder, die bei elektrischer Traktion durch Schienenströme und durch Fahrzeugkomponenten wie Transformatoren, Drosseln und elektronische Schienenbremsen entstehen. Letztere stellen ein besonderes Problem dar, da die erzeugten Magnetfelder sehr stark sind. Das betrifft insbesondere die für den ICE (Intercity Express) entwickelte Wirbelstrombremse, welche in erregtem Zustand ein Störmagnetfeld erzeugt, das das Arbeitsmagnetfeld des induktiven Sensors sehr stark überlagert.The invention relates to a wheel sensor according to the preamble of claims 1 and 3 and a Radsensoranordnung according to the preamble of claims 8 and 10. Radsensoren be used in railways for the track vacancy, but also for other switching and reporting tasks. In this case, the magnetic field influencing effect of the iron wheels of rail vehicles is predominantly utilized. By means of inductive sensors mounted on the track, which generate a specific magnetic field, the retroactivity of the iron wheels can be detected, whereby a wheel pulse is registered with each wheel detection or axle detection. The number of wheel pulses in conjunction with another wheel sensor provides information about the occupancy state of the intermediate track section. This track vacancy is an essential decision criterion for the control of switches and signals. Based on the occupancy state of track sections, the decision is made whether a rail vehicle may enter this track section or not. Consequently, the alarm signals of the axle counters must meet extremely high reliability requirements. It must be ensured that only the iron wheels of the rail vehicles passing over the sensors are detected by the sensors and interference magnetic fields of other origin are ignored. This applies, for example, magnetic fields that arise in electric traction through rail currents and by vehicle components such as transformers, chokes and electronic rail brakes. The latter pose a particular problem because the magnetic fields generated are very strong. This is especially true for the ICE (Intercity Express) developed eddy current brake, which generates a fault magnetic field in the excited state, which greatly overlaps the working magnetic field of the inductive sensor.

Ein Lösungsansatz, der darauf beruht, die Arbeitsfrequenzen der Sensoren in vermeintlich störfeldfrequenzfreie Größenordnungen zu legen, kann keinen dauerhaften Erfolg garantieren, da durch die Entwicklung neuer Fahrzeugkomponenten ständig neue Störfelder mit teilweise sehr hohen Frequenzen hinzukommen. Durch Frequenzwahl lässt sich außerdem nicht vermeiden, dass Störfelder Frequenzanteile im Bereich der Arbeitsfrequenz des induktiven Sensors enthalten. Üblicher Weise liegen die Arbeitsfrequenzen im Bereich von 30 kHz bis 1 MHz, während Störfelder durchaus auch Frequenzen bis zu 2 MHz erreichen können.An approach that relies on placing the operating frequencies of the sensors in seemingly harmonic frequency-free magnitudes, can not guarantee lasting success, since the development of new vehicle components constantly new interference fields with sometimes very high frequencies added. Frequency selection also makes it impossible to avoid interference fields containing frequency components in the range of the operating frequency of the inductive sensor. Usually, the operating frequencies are in the range of 30 kHz to 1 MHz, while interference fields can certainly reach frequencies up to 2 MHz.

Ein anderer Lösungsansatz basiert auf Kompensationsbestrebungen der Art, dass das Störmagnetfeld durch Aufbau eines gegensinnigen Feldes quasi neutralisiert wird. Gemäß der DE-A1-197 09 844 ist dazu eine Spulenanordnung mit einem magnetischen Kern vorgesehen. Zwei konzentrisch zueinander angeordnete Spulen sind derart geschaltet, dass bei gemeinsamer Beströmung gegensinnige Magnetfelder entstehen. Ein magnetisches Störfeld induziert hingegen in beiden Spulen Störspannungen, die sich wegen der gegensinnigen Beschaltung der beiden Spulen kompensieren. -Die Spulenanordnung ist Teil eines induktiven Sensors zum Erzeugen eines Arbeitsmagnetfeldes erhalten bleibt. Die Eisenmasse eines überfahrenden Rades verändert die Eigenschaften des Arbeitsmagnetfeldes, was sensorisch erfasst wird. Problematisch bei diesem Lösungsansatz ist jedoch, dass ein sehr starkes Störmagnetfeld, beispielsweise das einer erregten Wirbelstrombremse, den Spulenkern so magnetisieren kann, dass ein unerwünschtes Ansprechen des Sensors verursacht wird.Another approach is based on compensation efforts of the kind that the disturbance magnetic field is quasi neutralized by building an opposing field. According to the DE-A1-197 09 844 For this purpose, a coil arrangement with a magnetic core is provided. Two coils arranged concentrically to one another are connected in such a way that opposing magnetic fields arise when the current flows together. On the other hand, a magnetic interference field induces interference voltages in both coils, which compensate each other because of the opposing wiring of the two coils. The coil arrangement is part of an inductive sensor for generating a working magnetic field is maintained. The iron mass of a traveling wheel changes the properties of the working magnetic field, which is sensed. The problem with this approach, however, is that a very strong interference magnetic field, such as an excited eddy current brake, the coil core so can magnetize that an undesirable response of the sensor is caused.

Eine ähnliche, aber kernlose Spulenanordnung ist aus der DE-A1-199 15 597 bekannt. Die Empfindlichkeit dieses gattungsbildenden Achszählers ist jedoch gering, da das zur Detektion des Rades erzeugte Magnetfeld den Bereich des Spurkranzes des Rades nicht optimal durchsetzt. Außerdem kann Nässe am Sensorgehäuse bei den üblicherweise hohen Arbeitsfrequenzen kernloser Spulenanordnungen zu einer weiteren Herabsetzung der Sensorempfindlichkeit führen.A similar, but coreless coil assembly is from the DE-A1-199 15 597 known. However, the sensitivity of this generic axle counter is low, since the magnetic field generated for the detection of the wheel does not optimally penetrate the area of the wheel flange of the wheel. In addition, wetness on the sensor housing may result in a further reduction in sensor sensitivity at the usually high operating frequencies of coreless coil assemblies.

Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu beseitigen und einen Radsensor mit induktivem Sensor anzugeben, dessen Parameter hinsichtlich der Empfindlichkeit und damit hinsichtlich der Zuverlässigkeit des Gesamtsystems optimiert sind.The invention has for its object to overcome these disadvantages and to provide a wheel sensor with inductive sensor whose parameters are optimized in terms of sensitivity and thus in terms of the reliability of the overall system.

Die Aufgabe wird alternativ durch die Merkmale der Ansprüche 1 und 3 gelöst. Gemäß Anspruch 1 wird eine Optimierung erreicht, indem die innere Spule eine dem Flächenverhältnis entsprechende höhere Windungszahl als die äußere Spule aufweist. Auf diese Weise wird bei homogenen Störfeldern nicht nur eine Teilkompensation derselben, sondern eine vollständige Kompensation erreicht. Die spezielle Spulendimensionierung hat außerdem zur Folge, dass die beim Befahren in beiden Spulen entgegengesetzt auftretenden Induktionen nicht gleich groß sind und folglich eine ausreichend hohe Gesamtinduktion zur Detektion eines Rades verbleibt. Da Störeffekte quasi vollständig eliminiert sind und das Arbeitsmagnetfeld eine sehr hohe Feldstärke aufweist und den Spurkranz des zu detektierenden Rades optimal durchsetzt, ergibt sich gegenüber dem Stand der Technik eine wesentliche Verbesserung der Empfindlichkeit der Sensorik und somit eine Erhöhung der Zuverlässigkeit des Gesamtsystems. Ist das Störmagnetfeld inhomogen, können Differenzen zwischen den Störspannungen der Teilspulen Infolge der unterschiedlichen Spulenabmessungen auftreten. In diesem Fall ist eine teilkompensierende Wirkung vorhanden, wobei die effektiv verbleibende Gesamtstörspannung äußerst gering und letztlich zu vernachlässigen ist.The object is achieved alternatively by the features of claims 1 and 3. According to claim 1, an optimization is achieved in that the inner coil has an area ratio corresponding to the higher number of turns than the outer coil. In this way, not only a partial compensation of the same, but a complete compensation is achieved in homogeneous interference fields. The special coil dimensioning also has the consequence that the induction occurring in opposite directions when driving in both coils are not the same size and consequently a sufficiently high total induction remains for the detection of a wheel. Since disturbing effects are virtually completely eliminated and the working magnetic field has a very high field strength and optimally passes through the wheel flange of the wheel to be detected Compared to the prior art, a significant improvement in the sensitivity of the sensor and thus increasing the reliability of the overall system. If the disturbance magnetic field is inhomogeneous, differences between the disturbing voltages of the partial coils can occur as a result of the different coil dimensions. In this case, a partial compensating effect is present, with the effectively remaining total noise voltage being extremely small and ultimately negligible.

Die zweite Spule ist gemäß Anspruch 2 vorzugsweise zentrisch innerhalb der ersten Spule angeordnet. Der Kompensationseffekt ist jedoch auch dann vorhanden, wenn die innere Spule exzentrisch angeordnet ist. Auch die Spulenformen können sehr unterschiedlich sein. Beispielsweise kann die innere Spule kreisförmige Windungen aufweisen und exzentrisch innerhalb einer oval ausgebildeten äußeren Spule angeordnet sein.The second coil is preferably arranged centrally within the first coil according to claim 2. However, the compensation effect is also present when the inner coil is arranged eccentrically. The coil shapes can be very different. For example, the inner coil may have circular turns and be arranged eccentrically within an oval shaped outer coil.

Anspruch 3 charakterisiert eine weitere Lösung der Aufgabenstellung, wobei gegenüber der Lösung gemäß Anspruch 1 zusätzlich eine Vereinfachung erzielt wird. Spulen unterschiedlicher Geometrie und unterschiedlicher Windungszahlen sind bei dieser Alternativlösung nicht erforderlich. Statt dessen ist eine in der Vertikalprojektion sich überlappende Anordnung gleichartiger Spulen vorgesehen, wobei die Windungsebenen quasi übereinander angeordnet sind. Da die Spulen nicht ineinander oder sich durchdringend angeordnet sind, durchsetzt das von einer Spule erzeugte Magnetfeld die andere Spule zu gleichen Teilen mit entgegengerichteten inneren und äußeren magnetischen Flüssen, das heißt, die Spulen sind magnetisch voneinander entkoppelt.Claim 3 characterizes a further solution of the task, wherein in addition to the solution according to claim 1, a simplification is achieved. Coils of different geometry and different number of turns are not required in this alternative solution. Instead, an overlapping in the vertical projection arrangement of similar coils is provided, the winding planes are arranged quasi one above the other. Since the coils are not interdigitated or interpenetrated, the magnetic field generated by one coil passes through the other coil in equal parts with opposing inner and outer magnetic fluxes, that is, the coils are magnetically decoupled from each other.

Die Spulen sind nach Anspruch 4 vorzugsweise als sehr flache, spiralförmig gewickelte Scheibenspulen ausgebildet. Auf diese Weise lassen sich die Spulen problemlos in das Gehäuse eines Radsensors einbauen.The coils are preferably designed according to claim 4 as a very flat, spirally wound disc coils. In this way, the coils can be easily installed in the housing of a wheel sensor.

Gemäß Anspruch 5 können die Windungsebenen der Spulen bei beiden Alternativlösungen parallel zur Gleisebene verlaufen.According to claim 5, the winding planes of the coils in both alternative solutions can run parallel to the track plane.

Bei einer in Anspruch 6 gekennzeichneten speziellen Spulenanordnung für die Alternativlösung gemäß Anspruch 3 sind beide Spulen mit dem gleichen Neigungswinkel zu einer Horizontalfläche in Gleisrichtung angekippt. Magnetische Störfelder durchsetzen dann beide Spulen in gleicher Intensität und Richtung und heben sich damit auf, auch wenn das Feld nicht parallel zu den Spulenlängsachsen verläuft.In a special coil arrangement for the alternative solution characterized in claim 6 according to claim 3, both coils are tilted at the same inclination angle to a horizontal surface in the track direction. Magnetic interference fields then pass through both coils in the same intensity and direction and thus cancel each other, even if the field is not parallel to the coil longitudinal axes.

Einfache Spulen- bzw. Wicklungsgeometrien, die auf einer runden Grundfläche beruhen, sind gemäß Anspruch 7 bevorzugt. Denkbar sind jedoch für beide Alternativen auch eckige, insbesondere quadratische oder rechteckige Grundflächen.Simple coil or winding geometries, which are based on a round base, are preferred according to claim 7. Conceivable, however, for both alternatives also square, in particular square or rectangular bases.

Bei einer in Anspruch 8 beschriebenen vorteilhaften Weiterbildung sind zwei Radsensoren hintereinander angeordnet. Auf diese Weise lässt sich anhand des zeitlichen Abstandes der Radimpulsregistrierung die Fahrtrichtung eines die beiden Radsensoren überfahrenden Schienenfahrzeuges ermitteln.In an advantageous development described in claim 8, two wheel sensors are arranged one behind the other. In this way, the direction of travel of a rail vehicle passing over the two wheel sensors can be determined on the basis of the time interval of the wheel pulse registration.

Um den Abstand der beiden Radsensoren möglichst gering zu halten, insbesondere bei gemeinsamer Umhäusung, und dennoch zeitlich ausreichend zueinander versetzte Radimpulse zu erhalten, sind gemäß Anspruch 9 dachförmig geneigte Windungsebenen der Spulenpaare vorgesehen.In order to keep the distance between the two wheel sensors as low as possible, in particular with common housing, and yet sufficiently timed to obtain mutually offset wheel pulses, according to claim 9 roof-shaped inclined winding planes of the coil pairs are provided.

Anspruch 10 charakterisiert eine Doppelradsensoranordnung, bei der sich auch die benachbarten Spulen der beiden Radsensoren überlappen. Auch in diesem Bereich wirkt die magnetische Entkopplung gemäß Anspruch 3. Der Vorteil dieser Anordnung besteht darin, dass die geometrische Überlappung der Radsensoren eine längere Überlappungsphase der von einem Rad auf beide Sensoren ausgeübten Beeinflussung aufweist.Claim 10 characterizes a Doppelradsensoranordnung in which also overlap the adjacent coils of the two wheel sensors. The magnetic decoupling according to claim 3 also has an effect in this area. The advantage of this arrangement is that the geometric overlapping of the wheel sensors has a longer overlapping phase of the influence exerted by a wheel on both sensors.

Nachfolgend wird die Erfindung anhand figürlicher Darstellungen näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung des Kompensationsprinzips, wie sie aus dem Stand der Technik bekannt ist,
Figur 2
eine erste erfindungsgemäße Ausführungsform einer Spulenanordnung,
Figur 3a
eine Seitenansicht und eine Draufsicht einer Spulenanordnung gemäß Figur 2 mit Arbeitsfeldbeaufschlagung,
Figur 3b
die Seitenansicht gemäß Figur 3a mit Störfeldbeaufschlagung,
Figur 4
eine Abwandlung der ersten Ausführungsform in Seitenansicht und in Draufsicht,
Figur 5
eine zweite erfindungsgemäße Ausführungsform einer Spulenanordnung,
Figur 6
eine Seitenansicht und eine Draufsicht der zweiten Ausführungsform gemäß Figur 5,
Figur 7a
eine Seitenansicht gemäß Figur 6 mit Arbeitsfeldbeaufschlagung,
Figur 7b
eine Seitenansicht gemäß Figur 6 mit Störfeldbeaufschlagung,
Figur 8
eine Doppelradsensoranordnung,
Figur 9
eine Spulenanordnung und
Figur 10
eine weitere Doppelradsenoranordnung.
The invention will be explained in more detail with reference to figurative representations. Show it:
FIG. 1
a schematic representation of the compensation principle, as known from the prior art,
FIG. 2
a first embodiment of a coil arrangement according to the invention,
FIG. 3a
a side view and a plan view of a coil assembly according to FIG. 2 with fieldwork,
FIG. 3b
the side view according to FIG. 3a with interference field,
FIG. 4
A modification of the first embodiment in side view and in plan view,
FIG. 5
A second embodiment of a coil arrangement according to the invention,
FIG. 6
a side view and a plan view of the second embodiment according to FIG. 5 .
Figure 7a
a side view according to FIG. 6 with fieldwork,
FIG. 7b
a side view according to FIG. 6 with interference field,
FIG. 8
a double wheel sensor arrangement,
FIG. 9
a coil assembly and
FIG. 10
another Doppelradsenoranordnung.

Figur 1 veranschaulicht schematisch die Funktionsweise eines induktiven Sensors mit Störfeldkompensation nach dem Stand der Technik. Der Sensor besteht im Wesentlichen aus einem Oszillator 1 und einem Schwingkreis 2 mit einem Kondensator C und zwei Spulen L1 und L2. Mit dieser Anordnung ist es möglich, die Störspannungen UStörL1 und UStörL2 eines auf beide Spulen L1 und L2 gleichartig einwirkenden Störmagnetfeldes φs (Figur 2 und Figur 5) zu kompensieren. Dazu sind die beiden Spulen L1 und L2 im LC-Schwingkreis 2 derart verschaltet, dass die Störspannungen UStörL1 und UStörL2 bei gleichem Absolutwert entgegengerichtet sind und sich somit gegenseitig aufheben. Andererseits wird eine durch den Oszillator 1 an den LC-Schwingkreis 2 angelegte Arbeitsspannung UoszL1 bzw. UoszL2 zur Erzeugung eines Arbeitsmagnetfeldes durch diese Anordnung kaum beeinflusst. FIG. 1 schematically illustrates the operation of an inductive sensor with interference field compensation according to the prior art. The sensor consists essentially of an oscillator 1 and a resonant circuit 2 with a capacitor C and two coils L1 and L2. With this arrangement, it is possible, the interference voltages U StörL1 and U StörL2 a on both coils L1 and L2 similarly acting disturbance magnetic field φ s ( FIG. 2 and FIG. 5 ) to compensate. For this purpose, the two coils L1 and L2 in the LC resonant circuit 2 are connected in such a way that the interference voltages U StörL1 and U StörL2 are opposite in direction for the same absolute value and thus cancel each other out. On the other hand, a voltage applied by the oscillator 1 to the LC resonant circuit 2 working voltage U oszL1 or U oszL2 for generating a working magnetic field is hardly affected by this arrangement.

Figur 2 zeigt einen Gleiskörper 3 in perspektivischer Ansicht mit einer ersten erfindungsgemäßen Ausführungsform einer Spulenanordnung zur Störmagnetfeldkompensation. Es ist ersichtlich, dass ein Störmagnetfeld φs von einem Schienenstrom Is erzeugt wird. Um dieses Störmagnetfeld φs quasi zu neutralisieren, sind hier die beiden Spulen L1 und L2 in Reihe geschaltete als innere Spule Li und äußere Spule La ausgebildet, wobei die Windungsorientierungen der beiden Spulen Li und La einander entgegengerichtet sind, wie die Figuren 3a und 4 durch Pfeile symbolisiert zeigen. Außerdem ist die Windungszahl nLi der inneren Spule Li größer als die Windungszahl nLa der äußeren Spule La. FIG. 2 shows a track body 3 in perspective view with a first embodiment of a coil arrangement according to the invention for interference magnetic field compensation. It is seen that a noise magnetic field φ s of a rail current I s is generated. In order to virtually neutralize this disturbing magnetic field φ s , here the two coils L1 and L2 connected in series are formed as inner coil Li and outer coil La, wherein the winding orientations of the two coils Li and La are opposite to each other, like the FIGS. 3a and 4 show symbolized by arrows. In addition, the number of turns n Li of the inner coil Li is greater than the number of turns n La of the outer coil La.

Aus U = μ n dt

Figure imgb0001
bzw. U = μ n 1 A dB dt
Figure imgb0002
und
ULi = ULa ergibt sich für die Dimensionierung der Spulen: n Li n La = A La A Li ,
Figure imgb0003
wobei

  • µ die Permeabilität,
  • φ der magnetische Fluss,
  • B die magnetische Induktion und
  • A die Fläche der Spule La bzw. Li
    bedeuten. Die innere Spule Li hat also eine dem Flächenverhältnis entsprechende höhere Windungszahl nLi als die äußere Spule La. Dieser Umstand hat zur Folge, dass die durch den Schwingkreisstrom des Oszillators 1 in beiden Spulen Li und La entgegengesetzt auftretenden Induktionen BLi und BLa nicht gleich groß sind und im Bereich der inneren Spule Li gemäß Figur 3a eine ausreichend hohe Gesamtinduktion BLi-BLa zur Detektion eines den induktiven Sensor überfahrenden Rades eines Schienenfahrzeuges verbleibt. Dagegen kompensieren sich der innere und der äußere Anteil eines Störmagnetfeldes mit der Gesamtinduktion BStör gegenseitig, wie Figur 3b in symbolhafter Darstellung zeigt.
Out U = μ n dt
Figure imgb0001
respectively. U = μ n 1 A dB dt
Figure imgb0002
and
U Li = U La results for the dimensioning of the coils: n Li n La = A La A Li .
Figure imgb0003
in which
  • μ the permeability,
  • φ the magnetic flux,
  • B is the magnetic induction and
  • A is the area of the coil La or Li
    mean. The inner coil Li thus has a higher number of turns n Li corresponding to the area ratio than the outer coil La. This circumstance has the consequence that the inductances B Li and B La which occur in opposite directions due to the resonant circuit current of the oscillator 1 in both coils Li and La are not the same and in the region of the inner coil Li according to FIG FIG. 3a a sufficiently high total induction B Li -B La for the detection of a inductive sensor passing wheel of a rail vehicle remains. In contrast, the inner and the outer portion of a disturbing magnetic field with the total inductance B sturge compensate each other, as FIG. 3b in symbolic representation shows.

Der Kompensationseffekt ist auch dann vorhanden, wenn, wie in Figur 4, die innere Spule Li nicht zentrisch in der äußeren Spule La angeordnet ist. In weiterer Abwandlung können die Spulen Li und La nahezu beliebige Formen, wie kreisförmig, quadratisch, rechteckig oder oval haben. Bei exakter Befolgung der oben angegebenen Dimensionierungsregel, nämlich der umgekehrter Proportionalität der Windungszahlen zu den Spulenflächen, kann eine nahezu vollständige Kompensation störender homogener Magnetfelder erreicht werden. Bei inhomogenen Störfeldern können Differenzen zwischen den Störspannungen der Spulen Li und La infolge der unterschiedlichen Spulenabmessungen auftreten. Die effektiv verbleibende Gesamtstörspannung ist jedoch immer kleiner als die einer einzelnen Spule, so dass zumindest teilkompensierende Wirkung garantiert ist.The compensation effect is present even if, as in FIG. 4 , the inner coil Li is not arranged centrically in the outer coil La. In a further modification, the coils Li and La can be of almost any shape, such as circular, square, rectangular or oval. With exact compliance with the above-mentioned dimensioning rule, namely the reverse proportionality of the number of turns to the coil surfaces, an almost complete compensation of disturbing homogeneous magnetic fields can be achieved. In the case of inhomogeneous interference fields, differences between the interference voltages of the coils Li and La can occur as a result of the different coil dimensions. However, the effectively remaining total noise voltage is always smaller than that of a single coil, so that at least partially compensating effect is guaranteed.

Die Figuren 5 bis 10 beziehen sich auf eine weitere erfindungsgemäße Ausführungsform einer störfeldkompensierenden Spulenanordnung. Gegenüber der in den Figuren 2 bis 4 dargestellten Variante unterscheidet sich diese Ausführungsform insbesondere dadurch, dass die verwendeten Spulen L1 und L2 im Gegensatz zu den Spulen Li und La gleichartige Geometrie aufweisen. Damit ergibt sich eine Verringerung des Aufwandes bzw. der Kosten.The FIGS. 5 to 10 refer to a further embodiment according to the invention of an interference field compensating coil arrangement. Opposite in the FIGS. 2 to 4 illustrated variant, this embodiment differs in particular in that the coils used L1 and L2, in contrast to the coils Li and La have similar geometry. This results in a reduction of the effort or costs.

Figur 5 zeigt in analoger Darstellungsweise zu Figur 2, dass zwei gegeneinander versetzte und sich teilweise überlappende Spulen L1 und L2 gleicher Geometrie und Windungszahlen vorgesehen sind. Da beide Spulen L1 und L2 baugleich sind, induziert das Störmagnetfeld φs in beide Spulen L1 und L2 die gleiche Störspannung UStörL1 und UStörL2 (Figur 1). Zur Kompensation sind die Spulen L1 und L2, wie zur Figur 1 ausgeführt, gegeneinander verschaltet. Bei der sich überlappenden, nicht aber durchdringenden Anordnung der beiden Spulen L1 und L2 sind diese magnetisch voneinander entkoppelt, das heißt, das von einer Spule L1 bzw. L2 erzeugte Magnetfeld durchsetzt die andere Spule L2 bzw. L1 zu gleichen Teilen mit den entgegengerichteten inneren und äußeren magnetischen Flüssen φi und φa, wie Figur 6 zeigt. Dieser Effekt wird durch die teilweise Überlappung der Spulen L1 und L2 erreicht, wobei der Abstand X zwischen den Längsachsen der beiden Spulen L1 und L2 immer kleiner als deren Durchmesser ist. Für das zur Detektion von Rädern erforderliche Arbeitsmagnetfeld BL1 bzw. BL2 ergeben sich die in Figur 7a dargestellten Verhältnisse, während ein Störmagnetfeld BStör gemäß Figur 7b kompensiert wird. Jede Spule L1 und L2 erzeugt ein Magnetfeld wie eine einzelne Spule, da durch die magnetische Entkopplung keine gegenseitige Beeinflussung auftritt. Daher hat es auch keinen Einfluss, dass die Magnetfelder BL1 und BL2 beider Spulen L1 und L2 im Oszillatorbetrieb entgegengerichtet sind. Beide Spulen L1 und L2 tragen zu gleichen Teilen zur Detektion eines Rades bei, weil ihre Magnetfelder BL1 und BL2 vom Spurkranz 4 (Figur 8) eines Rades in gleicher Weise beeinflusst werden. Gegenüber einer Anordnung mit nur einer Sensorspule, das heißt ohne Einbeziehung dieser Einzelspule in eine Spulenmehrheit zur Störfeldkompensation, verlängert sich der Einwirkbereich des Rades etwa um den seitlichen Versatz X der beiden Spulen L1 und L2. FIG. 5 shows in an analogous representation FIG. 2 in that two mutually offset and partially overlapping coils L1 and L2 of the same geometry and number of turns are provided. Since both coils L1 and L2 are identical, the disturbance magnetic field φ s induces in both coils L1 and L2 the same interference voltage U StörL1 and U StörL2 ( FIG. 1 ). For compensation, the coils L1 and L2, as for FIG. 1 executed, interconnected. In the overlapping, but not penetrating arrangement of the two coils L1 and L2, these are magnetically decoupled from each other, that is, the magnetic field generated by a coil L1 and L2 passes through the another coil L2 or L1 in equal parts with the opposing inner and outer magnetic fluxes φ i and φ a , as FIG. 6 shows. This effect is achieved by the partial overlap of the coils L1 and L2, wherein the distance X between the longitudinal axes of the two coils L1 and L2 is always smaller than the diameter thereof. For the required for the detection of wheels working magnetic field B L1 and B L2 , the result in Figure 7a shown conditions, while a disturbance magnetic field B sturgeon according to FIG. 7b is compensated. Each coil L1 and L2 generates a magnetic field as a single coil, since the magnetic decoupling no mutual interference occurs. Therefore, it has no influence that the magnetic fields B L1 and B L2 of both coils L1 and L2 are directed in oscillator operation. Both coils L1 and L2 contribute in equal parts to the detection of a wheel, because their magnetic fields B L1 and B L2 from the flange 4 ( FIG. 8 ) of a wheel are influenced in the same way. Compared to an arrangement with only one sensor coil, that is, without including this single coil in a coil majority for interference field compensation, the Einwirkbereich of the wheel extends approximately to the lateral offset X of the two coils L1 and L2.

Figur 8 zeigt die Spulen L1_1, L2_1 und L2_2 zweier Radsensoren relativ zu dem Gleiskörper 3. Dabei sind die Spulen L1_1, L2_1 sowie L2_2 und L1_2 derart, zum Beispiel innerhalb eines Sensorgehäuses, angebracht, dass ihre Mittelpunkte eine konstante Höhe zur horizontalen Grundfläche des Gleiskörpers 3 aufweisen, wobei die Windungsebenen zur Gleisebene geneigt sind. Magnetische Störfelder durchsetzen dann die beiden Spulen L1_1 und L2_1 bzw. L2_2 und L1_2 jeweils in gleicher Intensität und Richtung und heben sich damit auf, auch wenn das Störfeld nicht parallel zu den Spulenlängsachsen verläuft. Der in Figur 8 dargestellte Doppelsensor wird von dem Spurkranz 4 des Rades in einer bestimmten zeitlichen Reihenfolge überfahren, so dass aus der Signalreihenfolge auf die Fahrtrichtung des Schienenfahrzeuges geschlossen werden kann. FIG. 8 shows the coils L1_1, L2_1 and L2_2 two wheel sensors relative to the track body 3. The coils L1_1, L2_1 and L2_2 and L1_2 are such, for example, within a sensor housing, mounted so that their centers have a constant height to the horizontal base surface of the track body 3 , wherein the winding planes are inclined to the track plane. Magnetic interference fields then pass through the two coils L1_1 and L2_1 or L2_2 and L1_2 in the same intensity and direction and thus cancel each other, even if the Interference field is not parallel to the coil longitudinal axes. The in FIG. 8 shown double sensor is run over by the wheel flange 4 of the wheel in a specific time sequence, so that it can be concluded from the signal sequence on the direction of travel of the rail vehicle.

In Figur 9 ist eine bevorzugte Spulenform für Radsensoren dargestellt. Die Spulen L1 und L2 sind scheibenförmig ausgebildet und in Spiralen gewickelt. Die Höhe der Scheibenspulen entspricht dem Durchmesser des Wicklungsdrahtes und ist folglich derart gering, dass die beiden sich überlappenden Spulen L1 und L2 ohne Neigung in das Gehäuse eines Radsensors eingebaut werden können.In FIG. 9 a preferred coil form for wheel sensors is shown. The coils L1 and L2 are disc-shaped and wound in spirals. The height of the disk coils corresponds to the diameter of the winding wire and is therefore so small that the two overlapping coils L1 and L2 can be installed without inclination in the housing of a wheel sensor.

Figur 10 veranschaulicht einen Doppelsensor mit Scheibenspulen L1_Sys1 und L2_Sys1 sowie L1_Sys1 und L2_Sys2, wobei sich auch die benachbarten Spulen L2_Sys1 und L1_Sys2 der beiden Sensorsysteme Sys1 und Sys2 überlappen FIG. 10 illustrates a dual sensor with disk coils L1_Sys1 and L2_Sys1 and L1_Sys1 and L2_Sys2, with the adjacent coils L2_Sys1 and L1_Sys2 of the two sensor systems overlap Sys1 and Sys2

Claims (10)

  1. Wheel sensor, in particular for a track-free signalling installation, having at least one trackside inductive sensor for detection of a magnetic field change resulting from iron wheels of a rail vehicle moving over the track and having an arrangement which has coreless coils (L1, L2; La, Li) in order to compensate for disturbing magnetic fields (ϕs, Bdist) ,
    characterized in that
    a first coreless coil (La) and a second coreless coil (Li), which is arranged within the first and when current flows through them jointly produces a magnetic field (BLi) in the opposite sense, are provided, with the turn planes of the coils (La, Li) essentially matching and with the numbers of turns (nLi and nLa) of the coils (Li and La) being inversely proportional to the coil areas (ALa and ALi) .
  2. Wheel sensor according to Claim 1
    characterized in that
    the second coil (Li) is arranged centrally within the first coil (La).
  3. Wheel sensor, in particular for a track-free signalling installation, having at least one trackside inductive sensor for detection of a magnetic field change resulting from iron wheels of a rail vehicle moving over the track and having an arrangement which has coreless coils (L1, L2) in order to compensate for disturbing magnetic fields (ϕS, Bdist),
    characterized in that
    two coreless coils (L1, L2) are provided which have essentially the same geometry and the same numbers of turns, and whose turn planes run essentially parallel to one another, with the coils (L1, L2) overlapping in a vertical projection and producing magnetic fields in opposite senses when current flows through them jointly.
  4. Wheel sensor according to one of the preceding claims,
    characterized in that
    the coils (L1, L2; L1Sys1, L2Sys1, L1_Sys2, L2_Sys2) are in the form of disc coils whose height corresponds to the diameter of the conductor used.
  5. Wheel sensor according to one of the preceding claims,
    characterized in that
    the turn planes of the coils (L1, L2; La, Li) run essentially parallel to the track plane.
  6. Wheel sensor according to Claim 3,
    characterized in that
    the turn planes of the coils (L1_1, L2_1; L2_2, L2_1) are at an angle, which is oriented essentially in the track longitudinal direction, with respect to the track plane, and the connecting line between the coil centre points runs parallel to the track on a horizontal plane.
  7. Wheel sensor according to one of the preceding claims,
    characterized in that
    the coils (L1, L2; Li, La) have round, in particular circular and/or oval, turns.
  8. Wheel sensor arrangement, which is dependent on the direction of travel,
    characterized by
    the wheel sensors, which are at a distance from one another in the track direction, according to one of the preceding claims being used in pairs.
  9. Wheel sensor arrangement, which is dependent on the direction of travel, according to Claim 8,
    characterized by
    the use of wheel sensors according to Claim 5, with the turn planes of the coil pairs (L1_1 and L2_1; L2_2 and L1_2) having inclinations which are oriented in opposite directions, in the form of a roof.
  10. Wheel sensor arrangement, which is dependent on the direction of travel,
    characterized by
    wheel sensors which overlap in the track direction, according to one of Claims 1-7, being used in pairs.
EP02090264A 2001-07-30 2002-07-17 Wheel sensor and arrangement Expired - Lifetime EP1288098B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10137519 2001-07-30
DE10137519A DE10137519A1 (en) 2001-07-30 2001-07-30 Wheel sensor for a unit signaling a clear railway line has an inductive sensor on a railway line to detect a change in a magnetic field as the iron wheels of a railway vehicle pass over a rail

Publications (2)

Publication Number Publication Date
EP1288098A1 EP1288098A1 (en) 2003-03-05
EP1288098B1 true EP1288098B1 (en) 2008-12-31

Family

ID=7693880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02090264A Expired - Lifetime EP1288098B1 (en) 2001-07-30 2002-07-17 Wheel sensor and arrangement

Country Status (6)

Country Link
EP (1) EP1288098B1 (en)
AT (1) ATE419158T1 (en)
DE (2) DE10137519A1 (en)
DK (1) DK1288098T3 (en)
ES (1) ES2316521T3 (en)
PT (1) PT1288098E (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278305B2 (en) * 2004-07-16 2007-10-09 Lynxrail Corporation Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
DE102005023726B4 (en) * 2005-05-23 2007-11-22 Frauscher Gmbh Method and device for avoiding unwanted influences of double sensors
DE102007023475B4 (en) 2007-05-15 2009-07-09 Siemens Ag wheel sensor
DE102007023476B4 (en) 2007-05-15 2009-07-09 Siemens Ag wheel sensor
DE102008056481A1 (en) 2008-11-05 2010-05-06 Siemens Aktiengesellschaft wheel sensor
DE102009007068A1 (en) 2009-01-29 2010-08-12 Siemens Aktiengesellschaft wheel sensor
DE102009053257B4 (en) * 2009-11-05 2013-10-02 Siemens Aktiengesellschaft wheel sensor
DE102012212939A1 (en) 2012-07-24 2014-01-30 Siemens Aktiengesellschaft Wheel sensor, particularly for train detection system, has inductive sensor for detecting magnetic field change as result of iron wheels of rail vehicle, where inductive sensor is arranged at side of rail of track
DE102017220281A1 (en) 2017-11-14 2019-05-16 Siemens Aktiengesellschaft sensor device
DE102018111454A1 (en) 2018-05-14 2019-11-14 PINTSCH TIEFENBACH GmbH Sensor for detecting metal parts, and method for attenuating a magnetic field
DE102018111448A1 (en) 2018-05-14 2019-11-14 PINTSCH TIEFENBACH GmbH Sensor for detecting metal parts, and method for attenuating a magnetic field
DE102021212809A1 (en) 2021-11-15 2023-05-17 Siemens Mobility GmbH Sensor device and method for detecting a change in magnetic field

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882374A (en) * 1974-04-18 1975-05-06 Us Army Transmitting-receiving coil configuration
DD261004A1 (en) * 1987-06-25 1988-10-12 Deutsche Reichsbahn MAGNETOSTATIC PULSE ENGINE
DE3842882A1 (en) * 1988-12-20 1990-06-21 Knorr Bremse Ag METHOD AND ARRANGEMENT FOR SUPPRESSING THE INTERFERENCE OF MAGNETIC BRAKES ON MAGNETIC AXLE COUNTERS
DE19709844A1 (en) * 1997-02-28 1998-09-03 Siemens Ag Sensor esp. wheel sensor for rail vehicle
AT406139B (en) * 1998-04-08 2000-02-25 Frauscher Josef WHEEL SENSOR

Also Published As

Publication number Publication date
ATE419158T1 (en) 2009-01-15
ES2316521T3 (en) 2009-04-16
DK1288098T3 (en) 2009-04-20
PT1288098E (en) 2009-02-02
EP1288098A1 (en) 2003-03-05
DE10137519A1 (en) 2003-02-13
DE50213159D1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
EP0900997B1 (en) Inductive Angle Sensor
EP1288098B1 (en) Wheel sensor and arrangement
EP2349810B1 (en) Wheel sensor
EP3107791B1 (en) Sensor device for detecting a change in a magnetic field and track-bound transportation system having at least one such sensor device
DE19738834A1 (en) Inductive angle sensor for a motor vehicle
EP2591316A1 (en) Inductive sensor device and inductive proximity sensor with an inductive sensor device
EP2146886B1 (en) Wheel sensor
DE102012212939A1 (en) Wheel sensor, particularly for train detection system, has inductive sensor for detecting magnetic field change as result of iron wheels of rail vehicle, where inductive sensor is arranged at side of rail of track
AT406139B (en) WHEEL SENSOR
EP0675032A1 (en) Wheel sensor for railways
EP0340660B1 (en) Device at railways to produce presence criteria of rail-bound wheels
EP1980427A2 (en) Suspension unit with sensor for spring deflection
DE10221577B3 (en) Magnetic wheel sensor
DE2335280C2 (en) Vehicle operated device
EP2797802B1 (en) Sensor device for detecting a wheel which moves along a travel rail
DE102007023476B4 (en) wheel sensor
DE3916730A1 (en) Arrangement for the track guidance of a vehicle over passive guiding means
DE2201769C3 (en) Vehicle-operated track contact to generate presence and / or direction criteria
EP3294608B1 (en) Sensor device for detecting a wheel moving along a rail
EP2382120B1 (en) Wheel sensor
EP2211149B1 (en) Route/position measurement device
AT501703A1 (en) INDUCTIVE PULL CONTROL SYSTEM
EP3569466A1 (en) Sensor for detecting metal parts and method for reducing a magnetic field
DE3720576A1 (en) Device on an electronic double rail contact
EP4144612A1 (en) Sensor device, arrangement and method for detecting a change in a magnetic field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030317

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RTI1 Title (correction)

Free format text: WHEEL SENSOR AND ARRANGEMENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20090120

REF Corresponds to:

Ref document number: 50213159

Country of ref document: DE

Date of ref document: 20090212

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090400630

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2316521

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090709

Year of fee payment: 8

26N No opposition filed

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090731

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090713

Year of fee payment: 8

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140723

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20140120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150703

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 14

Ref country code: ES

Payment date: 20150807

Year of fee payment: 14

Ref country code: GB

Payment date: 20150709

Year of fee payment: 14

Ref country code: DK

Payment date: 20150721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150604

Year of fee payment: 14

Ref country code: SE

Payment date: 20150706

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150727

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20160118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151002

Year of fee payment: 14

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20090400630

Country of ref document: GR

Effective date: 20110202

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213159

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160801

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 419158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160717

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160717

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128