EP2146052B1 - Passage de bord de fuite de surface portante refroidissable - Google Patents

Passage de bord de fuite de surface portante refroidissable Download PDF

Info

Publication number
EP2146052B1
EP2146052B1 EP09250977.7A EP09250977A EP2146052B1 EP 2146052 B1 EP2146052 B1 EP 2146052B1 EP 09250977 A EP09250977 A EP 09250977A EP 2146052 B1 EP2146052 B1 EP 2146052B1
Authority
EP
European Patent Office
Prior art keywords
passage
trailing edge
airfoil
feed
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP09250977.7A
Other languages
German (de)
English (en)
Other versions
EP2146052A2 (fr
EP2146052A3 (fr
Inventor
Justin D. Piggush
William Abdel-Messeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP2146052A2 publication Critical patent/EP2146052A2/fr
Publication of EP2146052A3 publication Critical patent/EP2146052A3/fr
Application granted granted Critical
Publication of EP2146052B1 publication Critical patent/EP2146052B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the present invention relates to coolable airfoils of the type used in high temperature rotary machines such as gas turbine engines.
  • Efficiency is a primary concern in the design of any gas turbine engine.
  • One principle technique to increase engine efficiency is elevation of core gas path temperatures. Internally cooled components manufactured from high temperature capacity alloys accommodate these elevated temperatures. Turbine stator vanes and blades, for example, are typically cooled using compressor air worked to a higher pressure, but still at a lower temperature than that of the engine core gas path.
  • Airfoil cooling may be accomplished by, for example, external film cooling, internal air impingement and forced convection either separately or in combination.
  • forced convection cooling compressor bleed air flows through internal cavities of the blades and vanes to continuously remove thermal energy. Compressor bleed air enters the cavities through one or more inlets to the internal cavities which then discharge though various exits.
  • Trailing edge passages direct compressor bleed air around a pedestal array to axially exit through a trailing edge passage of the blade.
  • Recent advances in casting, such as refractory metal core (RMC) technology facilitates significantly smaller and more complex passages to accommodate the elevated temperatures with a reduced flow of compressor bleed air.
  • RMC refractory metal core
  • trailing edge passages may be susceptible to being plugged by dirt and debris such that a minimum passage height must be observed.
  • the passage area determines the cooling flow exit Mach number. As the cooling fluid exits into the engine core gas path, this exit Mach number may be less than optimum from an aerodynamic loss standpoint. To reduce this aerodynamic loss, the passage height restrictions must be circumvented, but to reduce channel heights, the entrances to the trailing edge cooling passage needs to be configured so that dirt and debris cannot enter.
  • US 6164913 discloses dust resistant airfoil cooling
  • US 5827043 discloses a coolable airfoil having a passage for discharging particular entrained in cooling air
  • EP 1927414 discloses RMC-defined tip blowing slots for turbine blades
  • EP 192315 and US 2007/0128036 A1 disclose an airfoil according to the preamble of claim 1.
  • Figure 1 illustrates a general schematic view of a gas turbine engine 10 such as a gas turbine engine for power generation or propulsion.
  • Figure 1 is a highly schematic view, however, the main components of the gas turbine engine are illustrated. Further, while a particular type of gas turbine engine is illustrated, it should be understood that the claim scope extends to other types of gas turbine engines such as commercial and military engine designs.
  • the engine 10 includes a core engine section that houses a low spool 14 and high spool 24.
  • the low spool 14 includes a low pressure compressor 16 and a low pressure turbine 18.
  • the core engine section drives a fan section 20 connected to the low spool 14 either directly or through a gear train.
  • the high spool 24 includes a high pressure compressor 26 and high pressure turbine 28.
  • a combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28.
  • the low and high spools 14, 24 rotate about an engine axis of rotation A.
  • Air compressed in the compressor 16, 26 is mixed with fuel, burned in the combustor 30, and expanded in turbines 18, 28.
  • the air compressed in the compressors 16, 18 and the fuel mixture expanded in the turbines 18, 28 may be referred to as a hot gas stream along a core gas path.
  • the turbines 18, 28 include rotor disks 22 which, in response to the expansion, drive the compressors 16, 26 and fan 14.
  • the turbines 18, 28 include alternate rows of rotary airfoils or blades 32 and static airfoils or vanes 34.
  • rotor disks 22 may be contained within each engine section and that although a single blade from a single disk in the high pressure turbine section is illustrated and described in the disclosed embodiment, other sections which have other blades such as fan blades, low pressure turbine blades, high pressure turbine blades, high pressure compressor blades and low pressure compressor blades will also benefit herefrom.
  • FIG. 2A one non-limiting embodiment of a high pressure turbine blade 32 with at least one internal cavity 36 (also illustrated in Figure 2B ) is illustrated in more detail.
  • Other internal cavities or sections thereof may alternatively or additionally be incorporated into the blade 32 and arranged in various configurations.
  • the internal cavity 36 may be of any conventional multipass serpentine channels with cooling fluid typically being sourced as bleed air from the compressors 16, 26.
  • other airfoils such as a static airfoil or vanes 34 ( Figure 2C ) may also include the internal cavity 36 as disclosed herein.
  • the blade 32 generally includes a root 38 that is secured to the rotor disk 22, a platform 40 supported by the root 38 and an airfoil portion 42, which extends from the platform 40 to a blade tip 44.
  • the cooling fluid is supplied at the root 38.
  • the blade 32 is further defined by a leading edge 46 and a trailing edge 48. Defined between the leading edge 46 and the trailing edge 48 is a suction side 50 provided by a convex surface and a pressure side 52 provided by a concave surface opposite of the suction side 50.
  • the cooling fluid flows through the internal cavity 36 to continuously remove thermal energy from the trailing edge 48 of the blade 32 through a trailing edge cooling system 55.
  • the cooling fluid enters the internal cavity 36 through at least one inlet 54 in the root 38.
  • the cooling fluid is then communicated from the internal cavity 36 to the trailing edge cooling system 55.
  • the trailing edge cooling system 55 includes a trailing edge passage 56 and at least one feed passage 58 which provides cooling fluid communication from the internal cavity 36 to the trailing edge passage 56.
  • the trailing edge passage 56 may be a radial flow passage which is at least partially supported by a multiple of pedestals 60.
  • the trailing edge passage 56 and pedestals 60 are manufactured to provide an extremely thin passage which is machined or otherwise molded within the blade 32.
  • the trailing edge cooling system 55 is formed by a refractory metal form F ( Figure 3 ) which is encapsulated in a blade mold prior to casting as generally understood.
  • Several refractory metals including molybdenum (Mo) and Tungsten (W) have melting points that are in excess of typical casting temperatures of nickel based superalloys typical of the blade 32.
  • the refractory metal form F is produced as a thin sheet to manufacture the desired trailing edge cooling system 55. More specifically, such cooling passages may be fabricated into components including, but not limited to, combustor liners, turbine vanes, turbine blades, turbine shrouds, vane endwalls, airfoil edges and others.
  • Thin refractory metal sheets possess enough ductility to allow bending and forming into complex shapes.
  • the ductility yields a robust design capable of surviving a waxing/shelling cycle of the blade manufacturing process.
  • the refractory metal form F is readily removed, such as through chemical removal, thermal leeching, or oxidation methods, leaving behind a cavity such as the trailing edge passage 56 and the at least one feed passage 58 which form the trailing edge cooling system 55.
  • other sections of the cooling system such as internal cavity 36, may alternatively or additionally be manufactured through investment casting techniques with ceramic cores.
  • the refractory metal form F is fashioned such that at least one feed passage section 70 is essentially twisted out of a plane PL defined by a trailing edge passage section 72 which forms the trailing edge passage 56 ( Figure 2A ).
  • the feed passage section 70 of the refractory metal form F is arranged such that the at least one feed passage 58 ( Figure 2A ) formed by the feed passage section 70 is aligned at least perpendicular to an axis Z defined by the internal cavity 36 ( Figure 2A ).
  • the refractory metal form F further includes apertures 74 which are formed through the trailing edge passage section 72.
  • the apertures 74 produce the pedestals 60 in the trailing edge passage 56 ( Figure 2A ) to provide a serpentine axial flow and support the trailing edge 48. It should be understood that various pedestals 60 and other support or flow directing structure may be formed in the trailing edge passage 56 by formation in the refractory metals form F.
  • each entrance 58A to each feed passage 58 is arranged generally transverse to the trailing edge passage 56.
  • the feed passage 58 also defines an angle ⁇ between the velocity vector C defined generally along the blade axis Z of the cooling fluid entering the internal cavity 36 and the velocity vector P into the at least one feed passage 58.
  • the feed passage velocity vector P into the feed passage entrance 58A is perpendicular or less than perpendicular to the velocity vector C of the cooling fluid.
  • each feed passage 58 is essentially a twisted three-dimensional shape in the refractory metal form F such that the feed passage entrance 58A formed thereby is transverse to a feed passage exit 58B which communicates with the trailing edge passage 56.
  • the at least one feed passage 58 prevents dirt and debris from entering the trailing edge passage 56 to thereby allow usage of a much thinner cooling passage without the risk of plugging.
  • the thinner trailing edge passage 56 also allows the cooling fluid to have an exit Mach number optimized to assure cooling of the blade 32 with a reduced cooling fluid flow and a reduced trailing edge 48 thickness.
  • Dirt and debris particles are generally communicated with the cooling fluid flow but are typically much denser than the cooling fluid such that the particles do not readily follow the direction of the cooling fluid flow due to the relatively large amount of particle momentum. Additionally, the particles will be centrifuged outward within a rotating part such as the rotor blade 32 which rotates about the engine axis A.
  • the orientation of the internal cavity 36 is thereby configured to impart and maintain a large amount of momentum to the particles while the at least one feed passage 58 is oriented such that the particle cannot overcome its momentum to make the turn into the feed passage 58 ( Figure 5 ). Trip strips may be avoided so as not to disrupt the momentum of the particles in the internal cavity 36, however, other heat transfer augmentation features such as dimples or fish scales may alternatively or additionally be utilized.
  • An exit 36E is located through the blade tip 44 of the rotor blade 32 to provide an exit for the debris ( Figure 5 ).
  • the exit 36E in one non-limiting embodiment is a core printout located through the blade tip 44.
  • another refractory metal form F' outside the scope of the present invention, includes at least one feed passage section 70' defined within the same plane PL as the trailing edge passage section 72 but raked to form an acute angle relative the velocity vector of the cooling fluid which transits the internal cavity 36. That is, each feed passage section 70' in the refractory metal form F' is not twisted but only angled or raked to fabricate a feed passage 58' ( Figure 4 ) to prevent debris from entering the trailing edge passage 56' of the blade 32'.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (11)

  1. Surface portante (34 ; 42) appropriée pour être utilisée dans un moteur à turbine à gaz comprenant :
    une surface portante (42) qui définit une cavité interne (36) le long d'un axe (Z) de cavité, ladite cavité interne (36) étant en communication avec un passage de bord de fuite (56 ; 56') par le biais d'au moins un passage d'alimentation (58 ; 58'), ledit au moins un passage d'alimentation (58 ; 58') est
    au moins en partie défini le long d'un axe d'alimentation qui est au moins perpendiculaire audit axe (Z) de cavité et caractérisé en ce que ledit au moins un passage d'alimentation (58) est tordu.
  2. Pale selon la revendication 1, dans laquelle ledit au moins un passage d'alimentation (58 ; 58') comprend une entrée (58A) de passage d'alimentation définie le long dudit axe d'alimentation.
  3. Surface portante selon la revendication 1 ou 2, dans laquelle ledit axe d'alimentation définit un angle aigu (α) par rapport audit axe (Z) de cavité.
  4. Surface portante selon une quelconque revendication précédente, comprenant en outre une sortie (36E) depuis ladite cavité interne (36) afin d'éjecter ladite particule de ladite cavité interne (36).
  5. Surface portante selon une quelconque revendication précédente, dans laquelle ledit axe (Z) de cavité est nié généralement le long d'une longueur de la surface portante (42) qui s'étendant radialement depuis un axe (A) de moteur.
  6. Surface portante selon une quelconque revendication précédente, dans lequel ladite surface portante est une surface portante rotative (42) ou une surface portante statique (34).
  7. Procédé de réduction de l'ingestion de saletés dans un passage de bord de fuite (56 ; 56') pour une surface portante (42) appropriée pour être utilisée dans un moteur à turbine à gaz comprenant :
    l'agencement d'au moins un passage d'alimentation (58 ; 58') en communication avec un passage de bord de fuite (56 ; 56') dans une surface portante (42), l'au moins un passage d'alimentation (58; 58') étant au moins partiellement défini le long d'un axe d'alimentation, l'axe d'alimentation étant au moins perpendiculaire à un axe (Z) de cavité défini par une cavité interne (36) en communication avec l'au moins un passage d'alimentation (58 ; 58') ; caractérisé en ce qu'il comprend en outre la torsion de l'au moins un passage d'alimentation (58) entre la cavité interne (36) et le passage de bord de fuite (56).
  8. Procédé selon la revendication 7, comprenant en outre :
    l'agencement de l'au moins un passage d'alimentation (58 ; 58') selon un angle aigu (α) par rapport à l'axe (Z) de cavité.
  9. Procédé selon la revendication 7 ou 8, comprenant en outre :
    l'agencement d'une entrée (58A) sur l'au moins un passage d'alimentation (58) transversalement au passage de bord de fuite (56).
  10. Procédé selon l'une quelconque des revendications 7 à 9, comprenant en outre :
    le support au moins partiel du passage de bord de fuite avec de multiples socles.
  11. Procédé de préparation d'un passage de bord de fuite (56) pour une surface portante destinée à être utilisée dans un moteur à turbine à gaz comprenant :
    la fabrication d'une forme métallique réfractaire (F ; F') pour avoir une section (72, 72') de passage de bord de fuite et au moins une section (70 ; 70') de passage d'alimentation ;
    l'agencement de la forme métallique réfractaire (F ; F') de telle sorte que l'au moins une section (70 ; 70') de passage d'alimentation est en communication avec une cavité interne (36) dans une surface portante ;
    le retrait de la forme métallique réfractaire (F ; F') pour fabriquer un passage de bord de fuite (56 ; 56') avec la section (72, 72') de passage de bord de fuite et au moins un passage d'alimentation (58 ; 58') avec l'au moins une section (70 ; 70') de passage d'alimentation, la cavité interne (36) étant en communication avec le passage de bord de fuite (56 ; 56') par le biais de l'au moins un passage d'alimentation (58 ; 58'), l'au moins un passage de bord de fuite (56 ; 56') définit au moins en partie un axe d'alimentation qui est au moins perpendiculaire audit axe de cavité (36) ; caractérisé en ce qu'il comprend en outre
    la torsion de l'au moins une section (70) de passage d'alimentation par rapport à la section (72) de passage de bord de fuite.
EP09250977.7A 2008-07-14 2009-03-31 Passage de bord de fuite de surface portante refroidissable Expired - Fee Related EP2146052B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/172,997 US8348614B2 (en) 2008-07-14 2008-07-14 Coolable airfoil trailing edge passage

Publications (3)

Publication Number Publication Date
EP2146052A2 EP2146052A2 (fr) 2010-01-20
EP2146052A3 EP2146052A3 (fr) 2013-01-23
EP2146052B1 true EP2146052B1 (fr) 2016-05-18

Family

ID=41212240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09250977.7A Expired - Fee Related EP2146052B1 (fr) 2008-07-14 2009-03-31 Passage de bord de fuite de surface portante refroidissable

Country Status (2)

Country Link
US (1) US8348614B2 (fr)
EP (1) EP2146052B1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
US9039370B2 (en) 2012-03-29 2015-05-26 Solar Turbines Incorporated Turbine nozzle
US8951004B2 (en) 2012-10-23 2015-02-10 Siemens Aktiengesellschaft Cooling arrangement for a gas turbine component
US9995150B2 (en) 2012-10-23 2018-06-12 Siemens Aktiengesellschaft Cooling configuration for a gas turbine engine airfoil
US8936067B2 (en) 2012-10-23 2015-01-20 Siemens Aktiengesellschaft Casting core for a cooling arrangement for a gas turbine component
US9551228B2 (en) 2013-01-09 2017-01-24 United Technologies Corporation Airfoil and method of making
US9458725B2 (en) 2013-10-04 2016-10-04 General Electric Company Method and system for providing cooling for turbine components
EP3149310A2 (fr) 2014-05-29 2017-04-05 General Electric Company Moteur à turbine, composants et leurs procédés de refroidissement
EP3149311A2 (fr) 2014-05-29 2017-04-05 General Electric Company Moteur de turbine, et épurateurs de particules pour celui-ci
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US9897006B2 (en) * 2015-06-15 2018-02-20 General Electric Company Hot gas path component cooling system having a particle collection chamber
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US10307816B2 (en) 2015-10-26 2019-06-04 United Technologies Corporation Additively manufactured core for use in casting an internal cooling circuit of a gas turbine engine component
US10226812B2 (en) 2015-12-21 2019-03-12 United Technologies Corporation Additively manufactured core for use in casting an internal cooling circuit of a gas turbine engine component
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128036A1 (en) * 2005-12-05 2007-06-07 Snecma Turbine blade with cooling and with improved service life

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163219B (en) * 1981-10-31 1986-08-13 Rolls Royce Cooled turbine blade
US5704763A (en) * 1990-08-01 1998-01-06 General Electric Company Shear jet cooling passages for internally cooled machine elements
US5464322A (en) 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
US5842829A (en) 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
US5827043A (en) 1997-06-27 1998-10-27 United Technologies Corporation Coolable airfoil
US6176677B1 (en) 1999-05-19 2001-01-23 Pratt & Whitney Canada Corp. Device for controlling air flow in a turbine blade
US6164913A (en) 1999-07-26 2000-12-26 General Electric Company Dust resistant airfoil cooling
US6932571B2 (en) 2003-02-05 2005-08-23 United Technologies Corporation Microcircuit cooling for a turbine blade tip
US6955522B2 (en) 2003-04-07 2005-10-18 United Technologies Corporation Method and apparatus for cooling an airfoil
US7014424B2 (en) 2003-04-08 2006-03-21 United Technologies Corporation Turbine element
US7097425B2 (en) 2003-08-08 2006-08-29 United Technologies Corporation Microcircuit cooling for a turbine airfoil
US6890154B2 (en) 2003-08-08 2005-05-10 United Technologies Corporation Microcircuit cooling for a turbine blade
US7097424B2 (en) 2004-02-03 2006-08-29 United Technologies Corporation Micro-circuit platform
US7217094B2 (en) 2004-10-18 2007-05-15 United Technologies Corporation Airfoil with large fillet and micro-circuit cooling
US7220103B2 (en) 2004-10-18 2007-05-22 United Technologies Corporation Impingement cooling of large fillet of an airfoil
US7131818B2 (en) 2004-11-02 2006-11-07 United Technologies Corporation Airfoil with three-pass serpentine cooling channel and microcircuit
US7357623B2 (en) 2005-05-23 2008-04-15 Pratt & Whitney Canada Corp. Angled cooling divider wall in blade attachment
US7255536B2 (en) 2005-05-23 2007-08-14 United Technologies Corporation Turbine airfoil platform cooling circuit
US7311497B2 (en) 2005-08-31 2007-12-25 United Technologies Corporation Manufacturable and inspectable microcircuits
US7311498B2 (en) 2005-11-23 2007-12-25 United Technologies Corporation Microcircuit cooling for blades
US7303375B2 (en) 2005-11-23 2007-12-04 United Technologies Corporation Refractory metal core cooling technologies for curved leading edge slots
US7695246B2 (en) * 2006-01-31 2010-04-13 United Technologies Corporation Microcircuits for small engines
US7351038B2 (en) 2006-03-02 2008-04-01 Pratt & Whitney Canada Corp. HP turbine vane airfoil profile
US7354249B2 (en) 2006-03-02 2008-04-08 Pratt & Whitney Canada Corp. LP turbine blade airfoil profile
US7306436B2 (en) 2006-03-02 2007-12-11 Pratt & Whitney Canada Corp. HP turbine blade airfoil profile
US7713027B2 (en) * 2006-08-28 2010-05-11 United Technologies Corporation Turbine blade with split impingement rib
US20080110024A1 (en) 2006-11-14 2008-05-15 Reilly P Brennan Airfoil casting methods
US7690892B1 (en) * 2006-11-16 2010-04-06 Florida Turbine Technologies, Inc. Turbine airfoil with multiple impingement cooling circuit
US20080131285A1 (en) 2006-11-30 2008-06-05 United Technologies Corporation RMC-defined tip blowing slots for turbine blades

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128036A1 (en) * 2005-12-05 2007-06-07 Snecma Turbine blade with cooling and with improved service life

Also Published As

Publication number Publication date
US20100008761A1 (en) 2010-01-14
EP2146052A2 (fr) 2010-01-20
US8348614B2 (en) 2013-01-08
EP2146052A3 (fr) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2146052B1 (fr) Passage de bord de fuite de surface portante refroidissable
EP1445424B1 (fr) Aube creuse avec circuit incorporé pour le refroidissement des extrémités
US9206697B2 (en) Aerofoil cooling
EP2855857B1 (fr) Joint d'étanchéité vis-à-vis de l'air externe de pale avec passages évidés
CA2870740C (fr) Profil aerodynamique de turbine a commande d'epaisseur de paroi locale
JP5599624B2 (ja) タービン・ブレード冷却
EP2230381B1 (fr) Procédé d'utilisation et de reconstruction d'un dispositif d'augmentation de refroidissement à film d'air pour une aube de turbine
EP2230384B1 (fr) Dispositif d'augmentation du refroidissement pour aube de turbine
EP1942251B1 (fr) Aube refroidie ayant un flux réduit dans les fentes de bord de fuite et procédé de moulage associé
EP3556999B1 (fr) Configuration de refroidissement de surface portante à double paroi pour moteur à turbine à gaz
EP3399145B1 (fr) Profil d'aube avec cavité hybride de bord d'attaque
EP2586982A2 (fr) Procédé et appareil de refroidissement de pales de rotor de turbine à gaz
EP3757352B1 (fr) Procédé de fabrication d'un profil d'aube avec cavités internes
EP3819469A1 (fr) Composant de turbine avec système de refroidissement tolérant à la poussière
EP3495617B1 (fr) Profil aérodynamique avec des passages de refroidissement internes
CA2962644A1 (fr) Composant de moteur de turbine dote d'un trou de film
EP3594448B1 (fr) Profil aérodynamique doté d'un système de refroidissement par convection de bord d'attaque
WO2017196470A2 (fr) Paroi de composant moteur comportant un circuit de refroidissement
EP3597859B1 (fr) Aube de turbine avec système de refroidissement tolérant à la poussière
JP5662672B2 (ja) タービン翼形部冷却アパーチャに関連する装置
CN110770415B (zh) 包括改进的冷却回路的叶片
CN113874600A (zh) 具有蛇形通道的涡轮叶片
EP4028643B1 (fr) Aube de turbine, procédé de fabrication d'une aube de turbine et procédé de reconditionnement d'une aube de turbine
EP3477058B1 (fr) Circuit de refroidissement de profil aérodynamique
EP3508692B1 (fr) Profil aérodynamique avec de nervure avec aperture de communication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/14 20060101ALI20121219BHEP

Ipc: F01D 5/18 20060101AFI20121219BHEP

17P Request for examination filed

Effective date: 20130723

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20131105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009038710

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UNITED TECHNOLOGIES CORPORATION

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009038710

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009038710

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009038710

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009038710

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220225

Year of fee payment: 14

Ref country code: DE

Payment date: 20220217

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009038710

Country of ref document: DE

Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES DELAWARE), FARMINGTON, CONN., US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009038710

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003