EP2127472B1 - Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance - Google Patents

Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance Download PDF

Info

Publication number
EP2127472B1
EP2127472B1 EP08706758A EP08706758A EP2127472B1 EP 2127472 B1 EP2127472 B1 EP 2127472B1 EP 08706758 A EP08706758 A EP 08706758A EP 08706758 A EP08706758 A EP 08706758A EP 2127472 B1 EP2127472 B1 EP 2127472B1
Authority
EP
European Patent Office
Prior art keywords
alloy according
mass
max
alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08706758A
Other languages
German (de)
French (fr)
Other versions
EP2127472A2 (en
Inventor
Heike Hattendorf
Janine Lindemann
Rainer RÜFFERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
ThyssenKrupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp VDM GmbH filed Critical ThyssenKrupp VDM GmbH
Priority to PL08706758T priority Critical patent/PL2127472T3/en
Publication of EP2127472A2 publication Critical patent/EP2127472A2/en
Application granted granted Critical
Publication of EP2127472B1 publication Critical patent/EP2127472B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the invention relates to the use of an iron-chromium-aluminum alloy produced by melt metallurgy with a long service life and small changes in the heat resistance.
  • Such alloys are used to make electrical heating elements and catalyst supports. These materials form a dense, adherent alumina layer that protects them from destruction at high temperatures (eg up to 1400 ° C). This protection is improved by additions of so-called reactive elements such as Ca, Ce, La, Y, Zr, Hf, Ti, Nb, V, which inter alia improve the adhesion of the oxide layer and / or reduce the layer growth, as for example in “ Ralf Bürgel, Handbuch der Hochtemperatur-Werkstofftechnik, Vieweg Verlag, Braunschweig 1998 "from page 274 is described.
  • reactive elements such as Ca, Ce, La, Y, Zr, Hf, Ti, Nb, V
  • the aluminum oxide layer protects the metallic material against rapid oxidation. At the same time she is growing herself, albeit very slowly. This growth takes place using consumption of the aluminum content of the material. If no aluminum is present, other oxides (chromium and iron oxides) grow, the metal content of the material is consumed very quickly and the material fails due to destructive corrosion. The time to failure is defined as the lifetime. An increase in the aluminum content prolongs the service life.
  • the WO 02/20197 is a ferritic stainless steel alloy, especially for use as Bankleiterelement known.
  • the alloy is formed by a powder metallurgy FeCrAl alloy comprising (in% by mass) less than 0.02% C, ⁇ 0.5% Si, ⁇ 0.2% Mn, 10.0 to 40.0% Cr, ⁇ 0.6% Ni, ⁇ 0.01% Cu, 2.0 to 10.0% Al, one or more element (s) from the group of reactive elements, such as Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, in contents between 0.1 and 1.0%, balance iron and unavoidable impurities.
  • DE-A 199 28 842 is an alloy with (in wt .-%) 16 to 22% Cr, 6 to 10% Al, 0.02 to 1.0% Si, max. 0.5% Mn, 0.02 to 0.1% Hf, 0.02 to 0.1% Y, 0.001 to 0.01% Mg, max. 0.02% Ti, max. 0.03% Zr, max. 0.02% SE, max. 0.1% Sr, max. 0.1% Ca, max. 0.5% Cu, max. 0.1% V, max. 0.1% Ta, max. 0.1% Nb, max. 0.03% C, max. 0.01% N, max. 0.01% B, remainder iron and impurities due to melting for use as a carrier film for catalytic converters, as a heating conductor and as a component in industrial furnace construction and in gas burners.
  • EP-B 0 387 670 becomes an alloy containing (in wt%) 20 to 25% Cr, 5 to 8% Al, 0.03 to 0.08% yttrium, 0.004 to 0.008% nitrogen, 0.020 to 0.040% carbon, and about equal parts 0.035 to 0.07% Ti and 0.035 to 0.07% zirconium, and max. 0.01% phosphorus, max. 0.01% magnesium, max. 0.5% manganese, max. 0.005% sulfur, remainder iron, wherein the sum of the contents of Ti and Zr is 1.75 to 3.5% times as large as the percentage sum of the contents of C and N as well as impurities caused by melting.
  • Ti and Zr can be completely or partially replaced by hafnium and / or tantalum or vanadium.
  • EP-B 0 290 719 is an alloy with (in wt .-%) 12 to 30% Cr, 3.5 to 8% Al, 0.008 to 0.10% carbon, max. 0.8% silicon, 0.10 to 0.4% manganese, max. 0.035% phosphorus, max. 0.020% sulfur, 0.1 to 1.0% molybdenum, max.
  • nickel 1% nickel, and the additives 0.010 to 1.0% zirconium, 0.003 to 0.3% titanium and 0.003 to 0.3% nitrogen, calcium plus magnesium 0.005 to 0.05%, and rare earth metals from 0.003 to 0.80 %, Niobium 0.5%, remainder iron described with conventional accompanying elements, which is used for example as a wire for heating elements for electrically heated furnaces and as a construction material for thermally stressed parts and as a film for the preparation of catalyst supports.
  • US-A 4,414,023 is a steel with (in wt.%) 8.0 to 25.0% Cr, 3.0 to 8.0% Al, 0.002 to 0.06% rare earth metals, max. 4.0% Si, 0.06 to 1.0% Mn, 0.035 to 0.07% Ti, 0.035 to 0.07% Zr, including unavoidable impurities.
  • t B 4 . 4 ⁇ 10 - 3 ⁇ C 0 - C B ⁇ ⁇ ⁇ d ⁇ k - 1 n ⁇ ⁇ ⁇ m * 1 n - 1 where ⁇ rm * is the critical weight change at which flaking begins.
  • Heating conductors which consist of thin foils (for example, approximately 20 to 300 ⁇ m thick with a width in the range of one or several millimeters), are characterized by a large surface area to volume ratio. This is advantageous if you want to achieve fast heating and cooling times, as z. B. in the heating elements used in glass ceramic panels are required to make the heating quickly visible and to achieve a rapid heating similar to a gas cooker. At the same time, however, the large surface area to volume ratio is disadvantageous for the service life of the heating conductor.
  • the behavior of the hot resistor must be considered. As a rule, a constant voltage is applied to the heating conductor. If the resistance remains constant over the life of the heating element, the current and the power of this heating element will not change.
  • the temperature of the heating element decreases.
  • the life of the heating conductor and thus also of the heating element is extended.
  • heating elements often have a lower power limit, so this effect can not be used to extend service life.
  • the warm resistance R W decreases over time
  • the power P increases while the voltage remains constant Heating element. As the power increases, however, the temperature also increases and thus the service life of the heating conductor or heating element is shortened. The deviations of the heat resistance as a function of time should therefore be kept within a narrow range around zero.
  • the lifetime and the behavior of the heat resistance can be measured, for example, in an accelerated life test.
  • Such is z. In Harald Pfeifer, Hans Thomas, Zinderfest alloys, Springer Verlag, Berlin / Göttingen / Heidelberg / 1963 on page 113 described. It is carried out with a switching cycle of 120 s, at constant temperature on helically shaped wire with a diameter of 0.4 mm. The test temperature is 1200 ° C or 1050 ° C. Since in this case the behavior of thin foils is specifically concerned, the test was modified as follows: Film strips of 50 ⁇ m thickness and 6 mm width were clamped between 2 current feedthroughs and heated to 1050 ° C. by applying a voltage.
  • the heating at 1050 ° C takes place for 15 s, then the power supply is interrupted for 5 s. At the end of the life of the film fails by the fact that the remaining cross-section melts through.
  • the temperature is automatically measured during the life test with a pyrometer and, if necessary, corrected by the program control to the setpoint temperature.
  • the burn time is the addition of the times that the sample is heated.
  • the burning time is the time to failure of the samples, the burning time the current time during an experiment.
  • the burning time or burning time is given as a relative value in% relative to the burning time of a reference sample and referred to as the relative burning time or relative burning time.
  • Residual iron and manufacturing impurities consists, after which a homogenization treatment is carried out at 600 to 1200 ° C and the mass of the total coating is adjusted to 0.5 to 5%.
  • the film thus produced can also be used, among other things, as resistance material or heating conductor.
  • the invention has for its object to provide an iron-chromium-aluminum alloy for the specific application, which has a longer life than the previously used iron-chromium-aluminum alloys, with little change in the heat resistance over time at the application temperature , in particular when used as a film in a defined dimensional range, has.
  • This object is achieved by the use of an iron-chromium-aluminum alloy with a long service life and little change in the heat resistance as a foil for heating elements in the dimensional range of 0.020 to 0.300 mm thickness, with (in wt .-%) 4.5 to 6, 5% Al, 16 to 24% Cr and additions of 0.05 to 0.7% Si, 0.001 to 0.5% Mn, 0.02 to 0.1% Y, 0.02 to 0.1% Zr, 0.02 to 0.1% Hf, 0.003 to 0.020% C, max. 0.03% N, max. 0.01% S, max. 0.5% Cu, balance iron and the usual melting impurities.
  • the alloy should advantageously be melted with 0.0001 to 0.05% Mg, 0.0001 to 0.03% Ca and 0.010 to 0.030% P in order to be able to set optimum material properties in the film.
  • the element Y can furthermore be wholly or partially replaced by at least one of the elements Sc and / or La and / or cerium, partial ranges of 0.02 to 0.1% by weight being conceivable.
  • the element Hf may be further characterized by at least one of the elements Sc and / or Ti and / or V and / or Nb and / or Ta and / or La and / or Cerium completely or partially replaced, with partial substitution ranges between 0.01 and 0.1% by mass are conceivable.
  • the alloy with (in wt .-%) max. 0.02% N, and max. 0.005% S are melted.
  • Preferred Fe-Cr-Al alloys for use as a heating element are characterized by the following composition (in% by weight): al 4.8 - 6.2% 5.0 - 5.8% Cr 18 - 23% 19 - 22% Si 0.05 - 0.5% 0.05 - 0.5% Mn 0.005 - 0.5% 0.005 - 0.5% Y 0.03 - 0.1% 0.03 - 0.1% Zr 0.02 - 0.08% 0.02-0.08% Hf 0.02 - 0.10% 0.02 - 0.10% C 0.003 - 0.020% 0.003 - 0.020% mg 0.0001 - 0.03% 0.0001 - 0.02% Ca 0.0001 - 0.02% 0.0001 - 0.02% P 0.010 to 0.025% 0.010 to 0.022 S Max. 0.01% Max. 0.01% N Max. 0.03% Max. 0.03% Cu Max. 0.5% Max. 0.5% Ni Max. 0.5% Max. 0.5% Not a word Max. 0.1% Max. 0.1% W Max. 0.1% Max.
  • Table 1 shows industrially molten iron-chromium-aluminum alloys T1 to T3, L1 to L3 and the alloy E1 according to the invention. Films of this composition were made after melting of the alloy via block or continuous casting and hot and cold forming with required (s) intermediate annealing (s).
  • Figures 1-5 each show the course of the heat resistance in the life test on films for the alloys T3, L1-L3 according to the prior art and the inventively vulnerable batch E1.
  • a sample is taken with a strip thickness of 50 microns and cut to a width of about 6mm and subjected to the life test for films.
  • illustration 1 shows the heat resistance curve in the above described conductor test for films on one of the iron-chromium-aluminum Aluchrom Y alloys with a composition of 20 to 22% chromium, 5 to 6% aluminum, 0.01% to 0.1% carbon, max , 0.5% Mn, max. 0.3% Si, additions of 0.01 to 0.15% Y, 0.01 to 0.1% Zr and 0.01 to 0.1% Ti, the z. B. is used as a heating element.
  • the resistance is shown relative to its initial value at the beginning of the measurement. It shows a decrease in the heat resistance. Towards the end of the further course shortly before the sample burns through, the resistance to heat increases sharply (in illustration 1 from approx. 100% relative burning time).
  • a W will be the maximum deviation of the heat resistance ratio from the initial value 1.0 at the beginning of Try (or shortly after the start after the formation of the contact resistance) until the beginning of the steep rise referred.
  • This material typically has a relative burning time of about 100% as shown by examples T1 to T3 in Table 1.
  • the results of the lifetime tests are shown in Table 1.
  • the relative burning time indicated in Table 1 is formed by the mean values of at least 3 samples. Furthermore, the A W determined for each batch is entered.
  • T1 to T3 are three batches of the prior art Aluchrom Y iron-chromium-aluminum alloys having a composition of about 20% chromium, about 5.2% aluminum, about 0.03% carbon, and additions of Y, Zr and Ti each about 0.05%. They achieve a relative burning time of 96% (T1) to 124% (T3) and an outstanding value for AW of -2 to -3%.
  • this alloy shows an A W of -5% for L1 ( Figure 2 ) and even -8% of L2 ( Figure 3 ).
  • an A W of -8% is too large and leads experience shows a significant increase in temperature of the component, which compensates for the greater life of this material, so brings no overall advantage.
  • L3 is a variant of the material Aluchrom YHf according to the prior art, with an increased aluminum content of 7%.
  • the relative burning time is only 153% similar to that of L2 with 5.6% Al and even smaller, than that of L1 with 5.9 % Al.
  • An increase in the aluminum content to 7% does not appear to increase the life of Schuleiterfolien further.
  • E1 shows an alloy, as it can be used according to the invention for films in application ranges of 0.020 to 0.300 mm thickness. It has with 189% the desired high relative burning time and with an A W of -3% at the same time a very favorable behavior of the heat resistance similar to the batches according to the prior art T1 to T3.
  • E1 is an iron-chromium-aluminum alloy with 19 to 22% Cr, 5.5 to 6.5% aluminum, max. 0.5% Mn, max. 0.5% Si, max. 0.05% carbon and additions of max. 0.10% Y, max. 0.07% Zr and max. 0.1% Hf.
  • it contains a very low carbon content of only 0.007%.
  • L1 has an A W of -5% at a carbon content of 0.026% and an A W of -8% at a carbon content of 0.029%.
  • Cu, P, Mg, Ca and V are comparable to L1 and L2 to E1.
  • a minimum content of 0.02% Y is necessary to obtain the oxidation resistance-enhancing effect of Y.
  • the upper limit is set at 0.1% by weight for cost reasons.
  • a minimum content of 0.02% Zr is necessary to get a good life and a low A W.
  • the upper limit is set for cost reasons at 0.1 1 wt .-% Zr.
  • a minimum content of 0.02% Hf is necessary to obtain the oxidation resistance enhancing effect of Hf.
  • the upper limit is set for cost reasons at 0.1 wt .-% Hf.
  • the carbon content should be less than 0.020% to obtain a low value of A W. It should be greater than 0.003% to ensure processability.
  • the nitrogen content should not exceed 0.03% in order to avoid the formation of processability deteriorating nitrides.
  • the content of phosphorus should be less than 0.030% since this surfactant affects the oxidation resistance. Too low a P content increases costs. The P content is therefore greater than or equal to 0.010%.
  • the levels of sulfur should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.01% S set.
  • Chromium contents between 16 and 24% by mass have no decisive influence on the service life as in J. Klöwer, Materials and Corrosion 51 (2000), pages 373-385 to read.
  • a certain chromium content is necessary because chromium promotes the formation of the particularly stable and protective ⁇ - Al 2 O 3 layer. Therefore, the lower limit is 16%.
  • Chromium contents> 24% complicate the processability of the alloy.
  • An aluminum content of 4.5% is at least necessary to obtain an alloy with sufficient life. Al contents> 6.5% no longer increase the life span of film heating conductors.
  • a minimum content of 0.001% Mn is required to improve processability.
  • Manganese is limited to 0.5% because this element reduces oxidation resistance.
  • Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance. The same goes for nickel.
  • Molybdenum is reduced to max. 0.1% limited because this element reduces the oxidation resistance. The same goes for tungsten.
  • the contents of magnesium and calcium are set in the spread range of 0.0001 to 0.05 wt .-%, respectively 0.0001 to 0.03 wt .-%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Use of an iron-chromium-alumium alloy with long service life and minor changes in heat resistance as a foil for heating elements, the foil having a thickness ranging from 0.020 to 0.300 m. The alloy contains (in percentages by weight) 4.5-6.5% Al and 16-24% Cr, to which are added 0.05-0.7% Si, 0.001-0.5% Mn, 0.02-0.1% Y, 0.02-0.1% Zr, 0.02-0.1% Hf, 0.003-0.020% C, maximum 0.03% N, maximum 0.01% S and maximum 0.5% Cu, the remainder being iron and the usual impurities resulting from the melting process.

Description

Die Erfindung betrifft die Verwendung einer schmelzmetallurgisch hergestellten Eisen-Chrom-Aluminium-Legierung mit hoher Lebensdauer und geringen Änderungen im Warmwiderstand.The invention relates to the use of an iron-chromium-aluminum alloy produced by melt metallurgy with a long service life and small changes in the heat resistance.

Derartige Legierungen werden zur Herstellung von elektrischen Heizelementen und Katalysatorträgern verwendet. Diese Werkstoffe bilden eine dichte, festhaftende Aluminiumoxidschicht, die sie vor Zerstörung bei hohen Temperaturen (z. B. bis zu 1400°C) schützt. Dieser Schutz wird verbessert durch Zugaben von sogenannten reaktiven Elementen wie beispielsweise Ca, Ce, La, Y, Zr, Hf, Ti, Nb, V, die u.a. die Haftfähigkeit der Oxidschicht verbessern und/oder das Schichtwachstum verringern, wie es zum Beispiel in " Ralf Bürgel, Handbuch der Hochtemperatur-Werkstofftechnik, Vieweg Verlag, Braunschweig 1998" ab Seite 274 beschrieben wird.Such alloys are used to make electrical heating elements and catalyst supports. These materials form a dense, adherent alumina layer that protects them from destruction at high temperatures (eg up to 1400 ° C). This protection is improved by additions of so-called reactive elements such as Ca, Ce, La, Y, Zr, Hf, Ti, Nb, V, which inter alia improve the adhesion of the oxide layer and / or reduce the layer growth, as for example in " Ralf Bürgel, Handbuch der Hochtemperatur-Werkstofftechnik, Vieweg Verlag, Braunschweig 1998 "from page 274 is described.

Die Aluminiumoxidschicht schützt den metallischen Werkstoff vor schneller Oxidation. Dabei wächst sie selbst, wenn auch sehr langsam. Dieses Wachstum findet unter Verbrauch des Aluminiumgehaltes des Werkstoffes statt. Ist kein Aluminium mehr vorhanden, so wachsen andere Oxide (Chrom- und Eisenoxide), der Metallgehalt des Werkstoffes wird sehr schnell verbraucht und der Werkstoff versagt durch zerstörende Korrosion. Die Zeit bis zum Versagen wird als Lebensdauer definiert. Eine Erhöhung des Aluminiumgehaltes verlängert die Lebensdauer.The aluminum oxide layer protects the metallic material against rapid oxidation. At the same time she is growing herself, albeit very slowly. This growth takes place using consumption of the aluminum content of the material. If no aluminum is present, other oxides (chromium and iron oxides) grow, the metal content of the material is consumed very quickly and the material fails due to destructive corrosion. The time to failure is defined as the lifetime. An increase in the aluminum content prolongs the service life.

Durch die WO 02/20197 ist eine ferritische nicht rostende Stahllegierung, insbesondere zum Einsatz als Heizleiterelement, bekannt geworden. Die Legierung wird gebildet durch eine pulvermetallurgisch hergestellte FeCrAl-Legierung, beinhaltend (in Masse %) weniger als 0,02 % C, ≤ 0,5 % Si, ≤ 0,2 % Mn, 10,0 bis 40,0 % Cr, ≤ 0,6 % Ni, ≤ 0,01 % Cu, 2,0 bis 10,0 % Al, einem oder mehreren Element(en) aus der Gruppe der reaktiven Elemente, wie Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, in Gehalten zwischen 0,1 und 1,0 %, Rest Eisen sowie unvermeidbare Verunreinigungen.By the WO 02/20197 is a ferritic stainless steel alloy, especially for use as Heizleiterelement known. The alloy is formed by a powder metallurgy FeCrAl alloy comprising (in% by mass) less than 0.02% C, ≤ 0.5% Si, ≤ 0.2% Mn, 10.0 to 40.0% Cr, ≦ 0.6% Ni, ≦ 0.01% Cu, 2.0 to 10.0% Al, one or more element (s) from the group of reactive elements, such as Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb, Ta, in contents between 0.1 and 1.0%, balance iron and unavoidable impurities.

In der DE-A 199 28 842 wird eine Legierung mit (in Gew.-%) 16 bis 22 % Cr, 6 bis 10 % Al, 0,02 bis 1,0 % Si, max. 0,5 % Mn, 0,02 bis 0,1 % Hf, 0,02 bis 0,1 % Y, 0,001 bis 0,01 % Mg, max. 0,02 % Ti, max. 0,03 % Zr, max. 0,02 % SE, max. 0,1 % Sr, max. 0,1 % Ca, max. 0,5 % Cu, max. 0,1 % V, max. 0,1 % Ta, max. 0,1 % Nb, max. 0,03 % C, max. 0,01 % N, max. 0,01 % B, Rest Eisen sowie erschmelzungsbedingte Verunreinigungen für die Verwendung als Trägerfolie für Abgaskatalysatoren, als Heizleiter sowie als Bauteil im Industrieofenbau und in Gasbrennern beschrieben.In the DE-A 199 28 842 is an alloy with (in wt .-%) 16 to 22% Cr, 6 to 10% Al, 0.02 to 1.0% Si, max. 0.5% Mn, 0.02 to 0.1% Hf, 0.02 to 0.1% Y, 0.001 to 0.01% Mg, max. 0.02% Ti, max. 0.03% Zr, max. 0.02% SE, max. 0.1% Sr, max. 0.1% Ca, max. 0.5% Cu, max. 0.1% V, max. 0.1% Ta, max. 0.1% Nb, max. 0.03% C, max. 0.01% N, max. 0.01% B, remainder iron and impurities due to melting for use as a carrier film for catalytic converters, as a heating conductor and as a component in industrial furnace construction and in gas burners.

In der EP-B 0 387 670 wird eine Legierung mit (in Gew.-%) 20 bis 25 % Cr, 5 bis 8 % Al, 0,03 bis 0,08 % Yttrium, 0,004 bis 0,008 % Stickstoff, 0,020 bis 0,040 % Kohlenstoff, sowie zu etwa gleichen Teilen 0,035 bis 0,07 % Ti und 0,035 bis 0,07 % Zirkonium, und max. 0,01 % Phosphor, max. 0,01 % Magnesium, max. 0,5 % Mangan, max. 0,005 % Schwefel, Rest Eisen beschrieben, wobei die Summe der Gehalte an Ti und Zr 1,75 bis 3,5 % mal so groß ist, wie die prozentuale Summe der Gehalte an C und N sowie erschmelzungsbedingte Verunreinigungen. Ti und Zr kann ganz oder teilweise durch Hafnium und/oder Tantal oder Vanadium ersetzt werden.In the EP-B 0 387 670 becomes an alloy containing (in wt%) 20 to 25% Cr, 5 to 8% Al, 0.03 to 0.08% yttrium, 0.004 to 0.008% nitrogen, 0.020 to 0.040% carbon, and about equal parts 0.035 to 0.07% Ti and 0.035 to 0.07% zirconium, and max. 0.01% phosphorus, max. 0.01% magnesium, max. 0.5% manganese, max. 0.005% sulfur, remainder iron, wherein the sum of the contents of Ti and Zr is 1.75 to 3.5% times as large as the percentage sum of the contents of C and N as well as impurities caused by melting. Ti and Zr can be completely or partially replaced by hafnium and / or tantalum or vanadium.

In der EP-B 0 290 719 wird eine Legierung mit (in Gew.-%) 12 bis 30 % Cr, 3,5 bis 8 % Al, 0,008 bis 0,10 % Kohlenstoff, max. 0,8 % Silizium, 0,10 bis 0,4 % Mangan, max. 0,035 % Phosphor, max. 0,020 % Schwefel, 0,1 bis 1,0 % Molybdän, max. 1 % Nickel, und den Zusätzen 0,010 bis 1,0 % Zirkonium, 0,003 bis 0,3 % Titan und 0,003 bis 0,3 % Stickstoff, Kalzium plus Magnesium 0,005 bis 0,05 %, sowie seltene Erdmetalle von 0,003 bis 0,80 %, Niob 0,5 %, Rest Eisen mit üblichen Begleitelementen beschrieben, die zum Beispiel als Draht für Heizelemente für elektrisch beheizte Öfen und als Konstruktionswerkstoff für thermisch belastete Teile sowie als Folie zur Herstellung von Katalysatorträgern verwendet wird.In the EP-B 0 290 719 is an alloy with (in wt .-%) 12 to 30% Cr, 3.5 to 8% Al, 0.008 to 0.10% carbon, max. 0.8% silicon, 0.10 to 0.4% manganese, max. 0.035% phosphorus, max. 0.020% sulfur, 0.1 to 1.0% molybdenum, max. 1% nickel, and the additives 0.010 to 1.0% zirconium, 0.003 to 0.3% titanium and 0.003 to 0.3% nitrogen, calcium plus magnesium 0.005 to 0.05%, and rare earth metals from 0.003 to 0.80 %, Niobium 0.5%, remainder iron described with conventional accompanying elements, which is used for example as a wire for heating elements for electrically heated furnaces and as a construction material for thermally stressed parts and as a film for the preparation of catalyst supports.

In der US 4,277,374 wird eine Legierung mit (in Gew.-%) bis zu 26 % Chrom, 1 bis 8 % Aluminium, 0,02 bis 2 % Hafnium, bis zu 0,3 % Yttrium, bis zu 0,1 % Kohlenstoff, bis zu 2 % Silizium, Rest Eisen, mit einem bevorzugten Bereich von 12 bis 22 % Chrom und 3 bis 6 % Aluminium beschrieben, die als Folie zur Herstellung von Katalysatorträgern Verwendung findet.In the US 4,277,374 is an alloy containing (in wt.%) up to 26% chromium, 1 to 8% aluminum, 0.02 to 2% hafnium, up to 0.3% yttrium, up to 0.1% carbon, up to 2 % Silicon, balance iron, with a preferred range of 12 to 22% chromium and 3 to 6% aluminum, which is used as a film for the preparation of catalyst supports.

Durch die US-A 4,414,023 ist ein Stahl mit (in Gew.-%) 8,0 bis 25,0 % Cr, 3,0 bis 8,0 % Al, 0,002 bis 0,06 % Seltenerdmetallen, max. 4,0 % Si, 0,06 bis 1,0 % Mn, 0,035 bis 0,07 % Ti, 0,035 bis 0,07 % Zr einschließlich unvermeidbarer Verunreinigungen bekannt geworden.By the US-A 4,414,023 is a steel with (in wt.%) 8.0 to 25.0% Cr, 3.0 to 8.0% Al, 0.002 to 0.06% rare earth metals, max. 4.0% Si, 0.06 to 1.0% Mn, 0.035 to 0.07% Ti, 0.035 to 0.07% Zr, including unavoidable impurities.

Ein detailliertes Modell der Lebensdauer von Eisen-Chrom-Aluminium-Legierungen wird in dem Artikel von 1. Gurrappa, S. Weinbruch, D. Naumenko, W. J. Quadakkers, Materials and Corrosions 51 (2000), Seiten 224 bis 235 beschrieben. Dort wird ein Model dargelegt, bei welchem die Lebensdauer von Eisen-Chrom-Aluminium-Legierungen in Abhängigkeit vom Aluminiumgehalt und der Probenform abhängig sein soll, wobei in dieser Formel mögliche Abplatzungen noch nicht berücksichtigt werden t B = 4 , 4 × 10 - 3 × C 0 - C B × ρ f k 1 n mit f = 2 × Volumen Oberfl a ¨ che

Figure imgb0001

tB = Lebensdauer, definiert als Zeit bis zum Auftreten anderer Oxide als Aluminiumoxid
Co = Aluminium-Konzentration am Beginn der Oxidation
CB = Aluminium-Konzentration bei Auftreten von anderen Oxiden als Aluminiumoxiden
p = spezifische Dichte der metallischen Legierung
k = Oxidationsgeschwindigkeitskonstante
n = OxidationsgeschwindigkeitsexponentA detailed model of the life of iron-chromium-aluminum alloys is given in the article of FIG. Gurrappa, S. Weinbruch, D. Naumenko, WJ Quadakkers, Materials and Corrosion 51 (2000), pages 224 to 235 described. There, a model is presented, in which the life of iron-chromium-aluminum alloys should be dependent on the aluminum content and the sample shape, in this formula, possible flakes are not yet taken into account t B = 4 . 4 × 10 - 3 × C 0 - C B × ρ f k 1 n With f = 2 × volume surface a ¨ che
Figure imgb0001

t B = lifetime, defined as the time until oxides other than alumina appear
Co = aluminum concentration at the beginning of the oxidation
C B = aluminum concentration in the presence of oxides other than aluminum oxides
p = specific gravity of the metallic alloy
k = oxidation rate constant
n = oxidation rate exponent

Mit Berücksichtigung der Abplatzungen ergibt sich für eine flache Probe unendlicher Breite und Länge mit der Dicke d (f ≈ d) die folgende Formel: t B = 4 , 4 × 10 - 3 × C 0 - C B × ρ × d × k - 1 n × Δ m * 1 n - 1

Figure imgb0002

wobei Δrm* die kritische Gewichtsänderung ist, bei der die Abplatzungen beginnen.Taking into account the flaking results for a flat sample of infinite width and length with the thickness d (f ≈ d), the following formula: t B = 4 . 4 × 10 - 3 × C 0 - C B × ρ × d × k - 1 n × Δ m * 1 n - 1
Figure imgb0002

where Δrm * is the critical weight change at which flaking begins.

Beide Formeln drücken aus, dass die Lebensdauer mit Verringerung des Aluminium-Gehaltes und einem großen Oberflächen zu Volumen Verhältnis (oder kleiner Probendicke) sinkt.Both formulas express that the lifetime decreases with reduction of the aluminum content and a large surface to volume ratio (or small sample thickness).

Dies wird bedeutsam, wenn dünne Folien im Abmessungsbereich von ca. 20 µm bis ca. 300 µm für die Anwendung eingesetzt werden müssen.This becomes important when thin films in the size range of about 20 microns to about 300 microns must be used for the application.

Heizleiter, die aus dünnen Folien (z. B. ca. 20 bis 300 µm Dicke bei einer Breite im Bereich von einem oder mehreren Millimetern) bestehen, zeichnen sich durch ein großes Oberflächen zu Volumenverhältnis aus. Dies ist vorteilhaft, wenn man schnelle Aufheiz- und Abkühlzeiten erreichen möchte, wie sie z. B. bei den in Glaskeramikfeldern verwendeten Heizleitern gefordert werden, um das Aufheizen schnell sichtbar werden zu lassen und ein schnelles Erwärmen ähnlich einem Gaskocher zu erreichen. Gleichzeitig ist aber das große Oberflächen- zu Volumenverhältnis nachteilig für die Lebensdauer des Heizleiters.Heating conductors, which consist of thin foils (for example, approximately 20 to 300 μm thick with a width in the range of one or several millimeters), are characterized by a large surface area to volume ratio. This is advantageous if you want to achieve fast heating and cooling times, as z. B. in the heating elements used in glass ceramic panels are required to make the heating quickly visible and to achieve a rapid heating similar to a gas cooker. At the same time, however, the large surface area to volume ratio is disadvantageous for the service life of the heating conductor.

Beim Einsatz einer Legierung als Heizleiter ist noch das Verhalten des Warmwiderstandes zu beachten. An den Heizleiter wird in der Regel eine konstante Spannung angelegt. Bleibt der Widerstand im Verlauf der Lebensdauer des Heizelementes konstant, so ändern sich auch der Strom und die Leistung dieses Heizelementes nicht.When using an alloy as a heating conductor, the behavior of the hot resistor must be considered. As a rule, a constant voltage is applied to the heating conductor. If the resistance remains constant over the life of the heating element, the current and the power of this heating element will not change.

Dies ist aber auf Grund der oben beschriebenen Vorgänge, bei denen fortwährend Aluminium verbraucht wird nicht der Fall. Durch den Verbrauch des Aluminiums verringert sich der spezifische elektrische Widerstand des Materials. Dies geschieht aber, indem Atome aus der metallischen Matrix entfernt werden, d. h. der Querschnitt verringert sich, was eine Widerstandszunahme zur Folge hat (siehe auch Harald Pfeifer, Hans Thomas, Zunderfeste Legierungen, Springer Verlag, Berlin/Göttingen/Heidelberg/ 1963 Seite 111 ). Sodann treten durch die Spannungen beim Wachsen der Oxidschicht und den Spannungen durch die unterschiedlichen Ausdehnungskoeffizienten von Metall und Oxid beim Aufheizen und Abkühlen des Heizleiters weitere Spannungen auf, welche eine Verformung der Folie und damit eine Dimensionsänderung zur Folge haben können (siehe auch H. Echsler, H. Hattendorf, L. Singheiser, W.J. Quadakkers, Oxidation behaviour of Fe-Cr-Al alloys during resistance and furnace heating, Materials and Corrosion 57 (2006) 115 - 121 ). Je nach Zusammenwirken der Dimensionsänderungen mit der Änderung des spezifischen elektrischen Widerstandes kann es zu einer Zunahme oder zu einer Abnahme des Heizleiter Warmwiderstandes im Verlauf der Nutzungszeit kommen.However, this is not the case due to the above-described processes in which aluminum is continuously consumed. By the consumption of aluminum the specific electrical resistance of the material decreases. This happens, however, by removing atoms from the metallic matrix, ie the cross-section is reduced, which results in an increase in resistance (see also Harald Pfeifer, Hans Thomas, Zinderfest Alloys, Springer Verlag, Berlin / Göttingen / Heidelberg / 1963 page 111 ). Then occur through the tensions in the growth of the oxide layer and the stresses due to the different expansion coefficients of metal and oxide during heating and cooling of the heating other tensions, which may have a deformation of the film and thus a dimensional change result (see also H. Echsler, H. Hattendorf, L. Singheiser, WJ Quadakkers, Oxidation behavior of Fe-Cr alloys during resistance and furnace heating, Materials and Corrosion 57 (2006) 115-121 ). Depending on the interaction of the dimensional changes with the change in the specific electrical resistance, there may be an increase or a decrease in the heat resistance of the heating resistor over the period of use.

Bei Draht aus Eisen-Chrom-Aluminium-Legierungen wird in der Regel eine Zunahme des Warmwiderstandes mit der Zeit beobachtet ( Harald Pfeifer, Hans Thomas, Zunderfeste Legierungen, Springer Verlag, Berlin/Göttingen/Heidelberg/ 1963 Seite 112 ), bei Heizleitern in Form von Folie aus Eisen-Chrom-Aluminium-Legierungen ist in der Regel ein Abfall des Warmwiderstandes mit der Zeit zu beobachten. (Abbildung 1)In iron-chromium-aluminum alloy wire, an increase in hot resistance is usually observed over time ( Harald Pfeifer, Hans Thomas, Zinderfest Alloys, Springer Verlag, Berlin / Göttingen / Heidelberg / 1963 page 112 ), with heat conductors in the form of foil made of iron-chromium-aluminum alloys is usually a drop in the heat resistance to observe over time. ( illustration 1 )

Steigt der Warmwiderstand RW im Laufe der Zeit, so sinkt die Leistung P bei konstant gehaltener Spannung am daraus gefertigten Heizelement, die sich über P = U * I = U2 /RW berechnet. Mit sinkender Leistung am Heizelement sinkt auch die Temperatur des Heizelementes. Die Lebensdauer des Heizleiters und damit auch des Heizelementes verlängert sich. Allerdings besteht für Heizelemente oft eine Untergrenze für die Leistung, so dass sich dieser Effekt nicht zur Lebensdauerverlängerung nutzen lässt. Sinkt dagegen der Warmwiderstand RW im Laufe der Zeit, so steigt die Leistung P bei konstant gehaltener Spannung am Heizelement. Mit steigender Leistung steigt aber auch die Temperatur und damit verkürzt sich die Lebensdauer des Heizleiters bzw. Heizelements. Die Abweichungen des Warmwiderstandes in Abhängigkeit von der Zeit sollten also in einem eng begrenzten Bereich um Null herum gehalten werden.If the heat resistance R W increases over time, the power P decreases while the voltage maintained at the heating element made therefrom, which is calculated as P = U * I = U 2 / R W. With decreasing power at the heating element also the temperature of the heating element decreases. The life of the heating conductor and thus also of the heating element is extended. However, heating elements often have a lower power limit, so this effect can not be used to extend service life. If, on the other hand, the warm resistance R W decreases over time, the power P increases while the voltage remains constant Heating element. As the power increases, however, the temperature also increases and thus the service life of the heating conductor or heating element is shortened. The deviations of the heat resistance as a function of time should therefore be kept within a narrow range around zero.

Die Lebensdauer und das Verhalten des Warmwiderstandes können z.B. in einem beschleunigten Lebensdauertest gemessen werden. Ein solcher ist z. B. in Harald Pfeifer, Hans Thomas, Zunderfeste Legierungen, Springer Verlag, Berlin/Göttingen/Heidelberg/ 1963 auf Seite 113 beschrieben. Er wird mit einen Schaltzyklus von 120 s, bei konstanter Temperatur an zu Wendeln geformtem Draht mit dem Durchmesser 0,4 mm durchgeführt. Als Prüftemperatur wird 1200°C oder 1050°C vorgeschlagen. Da es aber in diesem Fall speziell um das Verhalten von dünnen Folien geht, wurde der Test wie folgt abgewandelt: Es wurden Folienstreifen von 50 µm Dicke und 6 mm Breite zwischen 2 Stromdurchführungen eingespannt und durch Anlegen einer Spannung bis auf 1050°C erhitzt. Die Erhitzung auf 1050°C erfolgt jeweils für 15 s, dann wird die Stromzufuhr für 5 s unterbrochen. Am Ende der Lebensdauer versagt die Folie dadurch, dass der restliche Querschnitt durchschmilzt. Die Temperatur wird während des Lebensdauertests mit einem Pyrometer automatisch gemessen und von der Programmsteuerung ggf. auf die Solltemperatur korrigiert.The lifetime and the behavior of the heat resistance can be measured, for example, in an accelerated life test. Such is z. In Harald Pfeifer, Hans Thomas, Zinderfest alloys, Springer Verlag, Berlin / Göttingen / Heidelberg / 1963 on page 113 described. It is carried out with a switching cycle of 120 s, at constant temperature on helically shaped wire with a diameter of 0.4 mm. The test temperature is 1200 ° C or 1050 ° C. Since in this case the behavior of thin foils is specifically concerned, the test was modified as follows: Film strips of 50 μm thickness and 6 mm width were clamped between 2 current feedthroughs and heated to 1050 ° C. by applying a voltage. The heating at 1050 ° C takes place for 15 s, then the power supply is interrupted for 5 s. At the end of the life of the film fails by the fact that the remaining cross-section melts through. The temperature is automatically measured during the life test with a pyrometer and, if necessary, corrected by the program control to the setpoint temperature.

Als Maß für die Lebensdauer wird die Brenndauer genommen. Die Brenndauer bzw. Brennzeit ist die Addition der Zeiten, die die Probe beheizt wird. Die Brenndauer ist dabei die Zeit bis zum Versagen der Proben, die Brennzeit die laufende Zeit während eines Versuchs. In allen folgenden Abbildungen und Tabellen wird die Brenndauer bzw. die Brennzeit als ein relativer Wert in % bezogen auf die Brenndauer einer Referenzprobe angegeben und als relative Brenndauer bzw. relative Brennzeit bezeichnet.As a measure of the life of the burning time is taken. The burn time is the addition of the times that the sample is heated. The burning time is the time to failure of the samples, the burning time the current time during an experiment. In all the following figures and tables, the burning time or burning time is given as a relative value in% relative to the burning time of a reference sample and referred to as the relative burning time or relative burning time.

Es ist aus dem oben beschriebenen Stand der Technik bekannt, dass geringfügige Zugaben von Y, Zr, Ti, Hf, Ce, La, Nb, V, u. ä. die Lebensdauer von FeCrAl-Legierungen stark beeinflussen.It is known from the prior art described above that minor additions of Y, Zr, Ti, Hf, Ce, La, Nb, V, u. Ä. Strongly affect the life of FeCrAl alloys.

Die DE 100 02 933 offenbart ein Verfahren zur Herstellung von Fe-Cr-Al-Folien mit einem Schrumpf in Länge und/oder Breite < 0,5 % durch ein- oder beidseitige Beschichtung eines Trägerbandes mit Al oder Al-Legierungen, wobei das Trägerband aus (in Masse-%):

  • 16-25%Cr
  • 2-6%Al
  • 0,1-3% Si
  • max. 0,5 % Mn
  • 0,01 - 0,3 % Zr und/oder
  • 0,01 - 0,1 % Seltenerdmetall und/oder Yttrium, Hafnium, Titan
  • max. 0,01 % Mg
  • max. 0,1 % Ca
The DE 100 02 933 discloses a process for the production of Fe-Cr-Al films with a shrinkage in length and / or width <0.5% by coating one or both sides of a carrier strip with Al or Al alloys, the carrier strip being made of (in bulk) %):
  • 16-25% Cr
  • 2-6% Al
  • 0.1-3% Si
  • Max. 0.5% Mn
  • 0.01-0.3% Zr and / or
  • 0.01 - 0.1% rare earth metal and / or yttrium, hafnium, titanium
  • Max. 0.01% Mg
  • Max. 0.1% Ca

Rest Eisen und herstellungsbedingten Verunreinigungen besteht, wobei danach eine Homogenisierungsbehandlung bei 600 bis 1200°C erfolgt und die Masse der Gesamtbeschichtung auf 0,5 bis 5 % eingestellt wird.Residual iron and manufacturing impurities consists, after which a homogenization treatment is carried out at 600 to 1200 ° C and the mass of the total coating is adjusted to 0.5 to 5%.

Die so erzeugte Folie kann unter anderem auch als Widerstandswerkstoff oder Heizleiter eingesetzt werden.The film thus produced can also be used, among other things, as resistance material or heating conductor.

Vom Markt her werden erhöhte Anforderungen an die Produkte gestellt, die eine längere Lebensdauer und eine höhere Einsatztemperatur der Legierungen erfordern.The market places increased demands on the products, which require a longer service life and a higher operating temperature of the alloys.

Der Erfindung liegt die Aufgabe zugrunde, eine Eisen-Chrom-Aluminium-Legierung für den konkreten Anwendungsbereich bereitzustellen, die eine höhere Lebensdauer als die bisher verwendeten Eisen-Chrom-Aluminium-Legierungen, bei gleichzeitig geringer Veränderung des Warmwiderstandes im Verlauf der Zeit bei der Anwendungstemperatur, insbesondere bei Anwendung als Folie in definiertem Abmessungsbereich, hat.The invention has for its object to provide an iron-chromium-aluminum alloy for the specific application, which has a longer life than the previously used iron-chromium-aluminum alloys, with little change in the heat resistance over time at the application temperature , in particular when used as a film in a defined dimensional range, has.

Diese Aufgabe wird gelöst durch die Verwendung einer Eisen-Chrom-Aluminium-Legierung mit hoher Lebensdauer und geringer Änderung der Warmwiderstands als Folie für Heizelemente im Abmessungsbereich von 0,020 bis 0,300 mm Dicke, mit (in Gew.-%) 4,5 bis 6,5 % Al, 16 bis 24 % Cr und Zugaben von 0,05 bis 0,7 % Si, 0,001 bis 0,5 % Mn, 0,02 bis 0,1 % Y, 0,02 bis 0,1 % Zr, 0,02 bis 0,1 % Hf, 0,003 bis 0,020 % C, max. 0,03 % N, max. 0,01 % S, max. 0,5 % Cu, Rest Eisen und den üblichen erschmelzungsbedingten Verunreinigungen.This object is achieved by the use of an iron-chromium-aluminum alloy with a long service life and little change in the heat resistance as a foil for heating elements in the dimensional range of 0.020 to 0.300 mm thickness, with (in wt .-%) 4.5 to 6, 5% Al, 16 to 24% Cr and additions of 0.05 to 0.7% Si, 0.001 to 0.5% Mn, 0.02 to 0.1% Y, 0.02 to 0.1% Zr, 0.02 to 0.1% Hf, 0.003 to 0.020% C, max. 0.03% N, max. 0.01% S, max. 0.5% Cu, balance iron and the usual melting impurities.

Vorteilhafte Weiterbildungen des Verwendungsgegenstandes sind den Unteransprüchen zu entnehmen.Advantageous developments of the subject matter can be found in the dependent claims.

Des Weiteren soll die Legierung vorteilhafterweise mit 0,0001 bis 0,05 % Mg, 0,0001 bis 0,03 % Ca und 0,010 bis 0,030 % P erschmolzen werden, um optimale Werkstoffeigenschaften in der Folie einstellen zu können.Furthermore, the alloy should advantageously be melted with 0.0001 to 0.05% Mg, 0.0001 to 0.03% Ca and 0.010 to 0.030% P in order to be able to set optimum material properties in the film.

Das Element Y kann des Weiteren durch mindestens eines der Elemente Sc und/oder La und/oder Cer ganz bzw. teilweise ersetzt werden, wobei bei teilweiser Substitution Bereiche zwischen 0,02 und 0,1 Gew.-% denkbar sind.The element Y can furthermore be wholly or partially replaced by at least one of the elements Sc and / or La and / or cerium, partial ranges of 0.02 to 0.1% by weight being conceivable.

Das Element Hf kann des Weiteren durch mindestens eines der Elemente Sc und/oder Ti und/oder V und/oder Nb und/oder Ta und/oder La und/oder Cer ganz bzw. teilweise ersetzt werden, wobei bei teilweiser Substitution Bereiche zwischen 0,01 und 0,1 Masse % denkbar sind.The element Hf may be further characterized by at least one of the elements Sc and / or Ti and / or V and / or Nb and / or Ta and / or La and / or Cerium completely or partially replaced, with partial substitution ranges between 0.01 and 0.1% by mass are conceivable.

Vorteilhafterweise kann die Legierung mit (in Gew.-%) max. 0,02 % N, sowie max. 0,005 % S erschmolzen werden.Advantageously, the alloy with (in wt .-%) max. 0.02% N, and max. 0.005% S are melted.

Bevorzugte Fe-Cr-Al-Legierungen für den Einsatz als Heizelement zeichnen sich durch folgende Zusammensetzung (in Gew.-%) aus: Al 4,8 - 6,2 % 5,0 - 5,8 % Cr 18 - 23 % 19 - 22 % Si 0,05 - 0,5 % 0,05 - 0,5 % Mn 0,005 - 0,5 % 0,005 - 0,5 % Y 0,03 - 0,1 % 0,03 - 0,1 % Zr 0.02 - 0,08 % 0,02 - 0,08 % Hf 0,02 - 0,10 % 0,02 - 0,10 % C 0,003 - 0,020 % 0,003 - 0,020 % Mg 0,0001 - 0,03 % 0,0001 - 0,02 % Ca 0,0001 - 0,02 % 0,0001 - 0,02 % P 0,010 bis 0,025 % 0,010 bis 0,022 S max. 0,01 % max. 0,01 % N max. 0,03 % max. 0,03 % Cu max. 0,5 % max. 0,5 % Ni max. 0,5 % max. 0,5 % Mo max. 0,1 % max. 0,1 % W max. 0,1 % max. 0,1 % Fe Rest Rest Preferred Fe-Cr-Al alloys for use as a heating element are characterized by the following composition (in% by weight): al 4.8 - 6.2% 5.0 - 5.8% Cr 18 - 23% 19 - 22% Si 0.05 - 0.5% 0.05 - 0.5% Mn 0.005 - 0.5% 0.005 - 0.5% Y 0.03 - 0.1% 0.03 - 0.1% Zr 0.02 - 0.08% 0.02-0.08% Hf 0.02 - 0.10% 0.02 - 0.10% C 0.003 - 0.020% 0.003 - 0.020% mg 0.0001 - 0.03% 0.0001 - 0.02% Ca 0.0001 - 0.02% 0.0001 - 0.02% P 0.010 to 0.025% 0.010 to 0.022 S Max. 0.01% Max. 0.01% N Max. 0.03% Max. 0.03% Cu Max. 0.5% Max. 0.5% Ni Max. 0.5% Max. 0.5% Not a word Max. 0.1% Max. 0.1% W Max. 0.1% Max. 0.1% Fe rest rest

Bevorzugt ist auch die Verwendung der Legierung als Folien-Heizleiter für den Einsatz in Glaskeramik-Kochfeldern. Des Weiteren ist eine Verwendung für den Einsatz als Trägerfolie in beheizbaren metallischen Abgaskatalysatoren bevorzugt.Preference is also the use of the alloy as a film heating conductor for use in glass ceramic cooktops. Furthermore, a use for use as a carrier film in heatable metallic catalytic converters is preferred.

Weitere bevorzugt einsetzbare Legierungen, insbesondere deren Spreizungsbereiche, sind in den entsprechenden Unteransprüchen angegeben.Further preferably usable alloys, in particular their spreading ranges, are specified in the corresponding subclaims.

Die Details und die Vorteile der Erfindung werden in den folgenden Beispielen näher erläutert.The details and advantages of the invention will be more apparent from the following examples.

In Tabelle 1 sind großtechnisch erschmolzene Eisen-Chrom-Aluminium-Legierungen T1 bis T3, L1 bis L3 und die erfindungsgemäße Legierung E1 dargestellt. Folien mit dieser Zusammensetzung wurden nach Erschmelzung der Legierung über Block- bzw. Strangguss sowie Warm- und Kaltumformen mit bedarfsweise erforderlicher(en) Zwischenglühung(en) hergestellt.Table 1 shows industrially molten iron-chromium-aluminum alloys T1 to T3, L1 to L3 and the alloy E1 according to the invention. Films of this composition were made after melting of the alloy via block or continuous casting and hot and cold forming with required (s) intermediate annealing (s).

Die Abbildungen 1-5 zeigen jeweils den Verlauf des Warmwiderstandes im Lebensdauertest an Folien für die Legierungen T3, L1-L3 gemäß Stand der Technik und der erfindungsgemäß verwundbaren Charge E1.Figures 1-5 each show the course of the heat resistance in the life test on films for the alloys T3, L1-L3 according to the prior art and the inventively vulnerable batch E1.

Für den vorab beschriebenen Lebensdauertest aus der großtechnischen Fertigung wird ein Muster mit der Banddicke 50 µm entnommen und auf eine Breite von ca. 6mm geschnitten und dem Lebensdauertest für Folien unterzogen.For the life test described above from the large-scale production, a sample is taken with a strip thickness of 50 microns and cut to a width of about 6mm and subjected to the life test for films.

Abbildung 1 zeigt den Warmwiderstandsverlauf in dem oben geschriebenen Heizleitertest für Folien an einer der Eisen-Chrom-Aluminium-Legierungen Aluchrom Y mit einer Zusammensetzung von 20 bis 22 % Chrom, 5 bis 6 % Aluminium, 0,01 % bis 0,1 % Kohlenstoff, max. 0,5% Mn, max. 0,3 % Si, Zugaben von 0,01 bis 0,15% Y, 0,01 bis 0,1 % Zr und 0,01 bis 0,1 % Ti, die z. B. als Heizleiter eingesetzt wird. Der Widerstand ist bezogen auf seinen Anfangswert zu Beginn der Messung dargestellt. Es zeigt sich ein Absinken des Warmwiderstandes. Gegen Ende des weiteren Verlaufs kurz vor dem Durchbrennen der Probe steigt der Warmwiderstand stark an (in Abbildung 1 ab ca. 100 % relative Brennzeit). Als AW wird im Folgenden die maximale Abweichung des Warmwiderstandsverhältnisses vom Ausgangswert 1,0 zu Beginn des Versuches (oder kurz nach dem Start nach Ausbildung des Übergangswiderstandes) bis zu Beginn des steilen Anstiegs bezeichnet. illustration 1 shows the heat resistance curve in the above described conductor test for films on one of the iron-chromium-aluminum Aluchrom Y alloys with a composition of 20 to 22% chromium, 5 to 6% aluminum, 0.01% to 0.1% carbon, max , 0.5% Mn, max. 0.3% Si, additions of 0.01 to 0.15% Y, 0.01 to 0.1% Zr and 0.01 to 0.1% Ti, the z. B. is used as a heating element. The resistance is shown relative to its initial value at the beginning of the measurement. It shows a decrease in the heat resistance. Towards the end of the further course shortly before the sample burns through, the resistance to heat increases sharply (in illustration 1 from approx. 100% relative burning time). In the following, A W will be the maximum deviation of the heat resistance ratio from the initial value 1.0 at the beginning of Try (or shortly after the start after the formation of the contact resistance) until the beginning of the steep rise referred.

Dieser Werkstoff hat typischerweise eine relative Brenndauer von ca. 100 % wie die Beispiele T1 bis T3 in Tabelle 1 zeigen.This material typically has a relative burning time of about 100% as shown by examples T1 to T3 in Table 1.

Die Ergebnisse der Lebensdauertests sind Tabelle 1 zu entnehmen. Die in Tabelle 1 jeweils angegebene relative Brenndauer wird gebildet durch die Mittelwerte von mindestens 3 Proben. Des Weiteren ist das für jede Charge bestimmte AW eingetragen. T1 bis T3 sind 3 Chargen der Eisen-Chrom-Aluminium-Legierungen Aluchrom Y nach dem Stand der Technik, mit einer Zusammensetzung von ca. 20 % Chrom, ca. 5,2 % Aluminium, ca. 0,03 % Kohlenstoff und Zugaben von Y, Zr und Ti von jeweils ca. 0,05 %. Sie erreichen eine relative Brenndauer von 96 % (T1) bis 124 % (T3) und einen hervorragenden Wert für AW von -2 bis -3 %.The results of the lifetime tests are shown in Table 1. The relative burning time indicated in Table 1 is formed by the mean values of at least 3 samples. Furthermore, the A W determined for each batch is entered. T1 to T3 are three batches of the prior art Aluchrom Y iron-chromium-aluminum alloys having a composition of about 20% chromium, about 5.2% aluminum, about 0.03% carbon, and additions of Y, Zr and Ti each about 0.05%. They achieve a relative burning time of 96% (T1) to 124% (T3) and an outstanding value for AW of -2 to -3%.

Des weiteren sind in Tabelle 1 die Chargen L1 und L2 des Werkstoff Aluchrom YHf nach dem Stand der Technik, mit 19 bis 22 % Cr, 5,5 bis 6,5 % Aluminium, max. 0,5 % Mn, max. 0,5 % Si, max. 0,05 % Kohlenstoff und Zugaben von max. 0,10 % Y, max. 0,07 % Zr und max. 0,1 % Hf eingetragen. Dieser Werkstoff findet z. B. als Folie für Katalysatorträger, aber auch als Heizleiter, Verwendung. Werden die Chargen L1 und L2 dem oben beschriebenen Heizleitertest für Folien unterzogen, so ist die deutlich erhöhte Lebensdauer von L1 mit 188 % und L2 mit 152 % zu erkennen. L1 hat eine höhere Lebensdauer als L2, was mit dem von 5,6 auf 5,9 % erhöhten Aluminium-Gehalt erklärt werden kann. Leider zeigt diese Legierung ein AW von -5 % für L1 (Abbildung 2) und sogar -8 % von L2 (Abbildung 3). Insbesondere ein AW von -8 % ist zu groß und führt erfahrungsgemäß zu einer deutlichen Temperaturerhöhung des Bauteils, die die größere Lebensdauer dieses Werkstoffes kompensiert, also insgesamt keinen Vorteil bringt.Furthermore, in Table 1, the batches L1 and L2 of the material Aluchrom YHf according to the prior art, with 19 to 22% Cr, 5.5 to 6.5% aluminum, max. 0.5% Mn, max. 0.5% Si, max. 0.05% carbon and additions of max. 0.10% Y, max. 0.07% Zr and max. 0.1% Hf registered. This material is z. B. as a film for catalyst support, but also as a heat conductor, use. If the batches L1 and L2 are subjected to the film conductor test described above, the significantly increased lifetime of L1 is 188% and L2 152%. L1 has a longer life than L2, which can be explained by the increased aluminum content from 5.6 to 5.9%. Unfortunately, this alloy shows an A W of -5% for L1 ( Figure 2 ) and even -8% of L2 ( Figure 3 ). In particular, an A W of -8% is too large and leads experience shows a significant increase in temperature of the component, which compensates for the greater life of this material, so brings no overall advantage.

L3 ist eine Variante des Werkstoffs Aluchrom YHf gemäß Stand der Technik, mit erhöhtem Aluminium-Gehalt von 7 %. Die relative Brenndauer ist mit 153 % nur ähnlich groß, wie die von L2 mit 5,6 % Al und sogar kleiner, als die von L1 mit 5,9 % Al. Eine Erhöhung des Aluminium-Gehaltes auf 7 % scheint die Lebensdauer von Heizleiterfolien nicht weiter zu erhöhen.L3 is a variant of the material Aluchrom YHf according to the prior art, with an increased aluminum content of 7%. The relative burning time is only 153% similar to that of L2 with 5.6% Al and even smaller, than that of L1 with 5.9 % Al. An increase in the aluminum content to 7% does not appear to increase the life of Heizleiterfolien further.

E1 zeigt eine Legierung, wie sie erfindungsgemäß für Folien in Anwendungsbereichen von 0,020 bis 0,300 mm Dicke einsetzbar ist. Sie hat mit 189 % die gewünschte hohe relative Brenndauer und mit einem AW von -3 % gleichzeitig ein sehr günstiges Verhalten des Warmwiderstandes ähnlich wie die Chargen nach dem Stand der Technik T1 bis T3. E1 ist wie L1 und L2 eine Eisen-Chrom-Aluminium-Legierung mit 19 bis 22 % Cr, 5,5 bis 6,5 % Aluminium, max. 0,5 % Mn, max. 0,5 % Si, max. 0,05 % Kohlenstoff und Zugaben von max. 0,10 % Y, max. 0,07 % Zr und max. 0,1 % Hf. Allerdings enthält sie, im Unterschied zu L1 und L2, einen sehr niedrigen Kohlenstoffgehalt von nur 0,007 %. L1 hat bei einem Kohlenstoff-Gehalt von 0,026 % ein AW von -5 % und L2 bei einem Kohlenstoff-Gehalt von 0,029 % eine AW von -8 %. In den Elementen Fe, Cr, Mn, Si, S, N, Y, Zr, Hf, Ti, Nb. Cu, P, Mg, Ca und V sind L1 und L2 mit E1 vergleichbar.E1 shows an alloy, as it can be used according to the invention for films in application ranges of 0.020 to 0.300 mm thickness. It has with 189% the desired high relative burning time and with an A W of -3% at the same time a very favorable behavior of the heat resistance similar to the batches according to the prior art T1 to T3. Like L1 and L2, E1 is an iron-chromium-aluminum alloy with 19 to 22% Cr, 5.5 to 6.5% aluminum, max. 0.5% Mn, max. 0.5% Si, max. 0.05% carbon and additions of max. 0.10% Y, max. 0.07% Zr and max. 0.1% Hf. However, unlike L1 and L2, it contains a very low carbon content of only 0.007%. L1 has an A W of -5% at a carbon content of 0.026% and an A W of -8% at a carbon content of 0.029%. In the elements Fe, Cr, Mn, Si, S, N, Y, Zr, Hf, Ti, Nb. Cu, P, Mg, Ca and V are comparable to L1 and L2 to E1.

Damit scheint AW stark vom Kohlenstoff-Gehalt abzuhängen. Da es leicht möglich ist, dass das Halbzeug im Verlauf des Fertigungsprozesses im Kohlenstoff-Gehalt etwas ansteigt, wurden die Kohlenstoff-Gehalte an der fertigen Folie nachanalysiert. Das Ergebnis (siehe Tabelle 1) lag für L1, L3 und E1 im Bereich der Analysentoleranz, bei L2 wurde ein deutlich höherer Kohlenstoff-Gehalt von 0,037 % analysiert. Dies erklärt den besonders großen AW Wert von -8 % und unterstreicht noch einmal die Wichtigkeit der Vermeidung einer Kontamination mit Kohlenstoff. Zur Erzielung eines guten Wertes von AW ist der Kohlenstoff-Gehalt kleiner 0,02 % zu halten.Thus A W seems to depend strongly on the carbon content. Since it is easily possible that the semi-finished product in the course of the manufacturing process in the carbon content increases somewhat, the carbon contents were post-analyzed on the finished film. The result (see Table 1) was in the range of the analysis tolerance for L1, L3 and E1, with L2 a significantly higher carbon content of 0.037% was analyzed. This explains the particularly high A W value of -8% and underlines once again the importance of avoiding contamination with carbon. To obtain a good value of A W , the carbon content should be kept below 0.02%.

Die beanspruchten Grenzen für die als Folie zu verwendende Legierung lassen sich daher im Einzelnen wie folgt begründen:The claimed limits for the alloy to be used as a film can therefore be explained in detail as follows:

Es ist ein Mindestgehalt von 0,02 % Y notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Y zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,1 Gew.% gelegt.A minimum content of 0.02% Y is necessary to obtain the oxidation resistance-enhancing effect of Y. The upper limit is set at 0.1% by weight for cost reasons.

Es ist ein Mindestgehalt von 0,02 % Zr notwendig, um eine guten Lebensdauer und ein geringes AW zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,1 1 Gew.-% Zr gelegt.A minimum content of 0.02% Zr is necessary to get a good life and a low A W. The upper limit is set for cost reasons at 0.1 1 wt .-% Zr.

Es ist ein Mindestgehalt von 0,02 % Hf notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Hf zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,1 Gew.-% Hf gelegt.A minimum content of 0.02% Hf is necessary to obtain the oxidation resistance enhancing effect of Hf. The upper limit is set for cost reasons at 0.1 wt .-% Hf.

Der Kohlenstoffgehalt sollte kleiner 0,020 % sein um einen geringen Wert von AW zu erhalten. Er sollte größer 0,003 % , um die Verarbeitbarkeit zu gewährleisten.The carbon content should be less than 0.020% to obtain a low value of A W. It should be greater than 0.003% to ensure processability.

Der Stickstoffgehalt sollte maximal 0,03 % betragen, um die Bildung von die Verarbeitbarkeit verschlechternden Nitriden zu vermeiden.The nitrogen content should not exceed 0.03% in order to avoid the formation of processability deteriorating nitrides.

Der Gehalt an Phosphor sollte kleiner 0,030 % sein, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Ein zu niedriger P-Gehalt erhöht die Kosten. Der P-Gehalt ist deshalb größer gleich 0,010 %.The content of phosphorus should be less than 0.030% since this surfactant affects the oxidation resistance. Too low a P content increases costs. The P content is therefore greater than or equal to 0.010%.

Die Gehalte an Schwefel sollten so gering wie möglich gehalten werden, da diese grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,01 % S festgelegt.The levels of sulfur should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.01% S set.

Chromgehalte zwischen 16 und 24 Masse % haben keinen entscheidenden Einfluss auf die Lebensdauer wie in J. Klöwer, Materials and Corrosion 51 (2000), Seiten 373 bis 385 nach zu lesen ist. Allerdings ist ein gewisser Chromgehalt nötig, da Chrom die Bildung der besonders stabilen und schützenden α - Al2O3 Schicht fördert. Deshalb liegt die Untergrenze bei 16 %. Chromgehalte > 24 % erschweren die Verarbeitbarkeit der Legierung.Chromium contents between 16 and 24% by mass have no decisive influence on the service life as in J. Klöwer, Materials and Corrosion 51 (2000), pages 373-385 to read. However, a certain chromium content is necessary because chromium promotes the formation of the particularly stable and protective α - Al 2 O 3 layer. Therefore, the lower limit is 16%. Chromium contents> 24% complicate the processability of the alloy.

Ein Aluminiumgehalt von 4,5 % ist mindestens notwendig um eine Legierung mit ausreichender Lebensdauer zu erhalten. Al-Gehalte > 6,5 % erhöhen die Lebensdauer bei Folienheizleitem nicht mehr.An aluminum content of 4.5% is at least necessary to obtain an alloy with sufficient life. Al contents> 6.5% no longer increase the life span of film heating conductors.

Nach J. Klower, Materials and Corrosion 51 (2000), Seiten 373 bis 385 erhöhen Zugaben von Silizium die Lebensdauer durch eine Verbesserung der Haftung der Deckschicht. Es ist deshalb ein Gehalt von mindestens 0,05 Gew.-% Silizium erforderlich. Zu hohe Si-Gehalte erschweren die Verarbeitbarkeit der Legierung. Deshalb liegt die Obergrenze bei 0,7 %. After J. Klower, Materials and Corrosion 51 (2000), pages 373-385 Additions of silicon increase the life by improving the adhesion of the overcoat. It is therefore required a content of at least 0.05 wt .-% silicon. Too high Si contents make the workability of the alloy difficult. Therefore, the upper limit is 0.7%.

Es ist ein Mindestgehalt von 0,001 % Mn zur Verbesserung der Verarbeitbarkeit notwendig. Mangan wird auf 0,5 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.A minimum content of 0.001% Mn is required to improve processability. Manganese is limited to 0.5% because this element reduces oxidation resistance.

Kupfer wird auf max. 0,5 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das gleiche gilt für Nickel.Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance. The same goes for nickel.

Molybdän wird auf max. 0,1 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das gleiche gilt für Wolfram.Molybdenum is reduced to max. 0.1% limited because this element reduces the oxidation resistance. The same goes for tungsten.

Die Gehalte an Magnesium und Kalzium werden im Spreizungsbereich 0,0001 bis 0,05 Gew.-%, respektive 0,0001 bis 0,03 Gew.-%, eingestellt.The contents of magnesium and calcium are set in the spread range of 0.0001 to 0.05 wt .-%, respectively 0.0001 to 0.03 wt .-%.

Die Texte der Abbildungen 1 bis 5 werden wie folgt wiedergegeben:

  • Abbildung 1 Verlauf des Warmwiderstandes im Lebensdauertest an Folien für Charge T3
  • Abbildung 2 Verlauf des Warmwiderstandes im Lebensdauertest an Folien für Charge L1
  • Abbildung 3 Verlauf des Warmwiderstandes im Lebensdauertest an Folien für Charge L2
  • Abbildung 4 Verlauf des Warmwiderstandes im Lebensdauertest an Folien für Charge L3
  • Abbildung 5 Verlauf des Warmwiderstandes im Lebensdauertest an Folien für Charge E1
Tabelle 1. Zusammensetzung, relative Brenndauer und AW für die untersuchten Legierungen. Alle Angaben in Gew.-% Aluchrom Y Y Y YHf YHf YHf Al YHf (So) Charge (VDM) 58860 59651 153275 152891 55735 58323 153190 Charge T1 T2 T3 L1 L2 L3 E1 Fe (R) 73,3 73,1 73,2 73,1 73,2 71,8 73,0 Cr 20,9 20,8 20,7 20,0 20,3 20,3 20,1 Al 5,1 5,1 5,2 5,9 5,6 7,0 6,0 Mn 0,21 0,26 0,22 0,18 0,20 0,20 0,12 Si 0,13 0,17 0,15 0,25 0,28 0,27 0,33 Ni 0,15 0,19 0,17 0,17 0,15 0,14 0,18 Mo 0,01 . 0,01 <0,01 <0,01 0,01 0,013 <0,01 C 0,033 0,033 0,035 0,026 0,029 0,024 0,007 C Analyse an Folie 50 µ-m 0,028 0,037 0,024 0,008 S <0,001 <0,001 0,001 0,001 0,002 <0,001 0,002 N 0,006 0,006 0,006 0,005 0,004 0,004 0,007 Y 0,04 0,05 0,04 0,05 0,06 0,05 0,05 Zr 0,05 0,05 0,04 0,05 0,05 0,06 0,04 Hf <0,01 <0,01 <0,01 0,04 0,03 0,03 0,03 Ti 0,05 0,08 0,04 <0,01 0,01 <0,01 <0,01 Nb <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0,01 Cu 0,01 0,02 0,03 0,02 0,07 0,02 0,02 P 0,012 0,012 0,012 0,013 0,012 0,011 Mg 0,009 0,010 0,010 0,009 0,007 0,010 0,008 Ca 0,003 0,002 0,002 0,001 0,001 0,003 0,0004 V 0,06 0,04 0,05 0,08 0,05 0,05 0,040 W <0,01 0,01 0,02 - - <0,01 0,02 B - - <0,001 0,001 - - 0,001 Relative Brenndauer ± s in %, Folie 50µm x 6mm, 1050°C, 15 s "an"/ 5 s "aus" 91±8 105±20 124±8 188±33 152±14 153±22 189±19 AW in % -2 -2 -3 -5 -8 -5 -3 The texts in Figures 1 to 5 are reproduced as follows:
  • illustration 1 Course of the heat resistance in the life test on foils for batch T3
  • Figure 2 Course of the heat resistance in the life test on foils for charge L1
  • Figure 3 Course of the heat resistance in the life test on foils for charge L2
  • Figure 4 Course of the heat resistance in the life test on foils for batch L3
  • Figure 5 Course of the heat resistance in the life test on foils for batch E1
Table 1. Composition, relative burning time and A <sub> W </ sub> for the alloys studied. All data in% by weight Aluchrom Y Y Y YHf YHf YHf Al YHf (Sun) Batch (VDM) 58860 59651 153275 152891 55735 58323 153190 charge T1 T2 T3 L1 L2 L3 E1 Fe (R) 73.3 73.1 73.2 73.1 73.2 71.8 73.0 Cr 20.9 20.8 20.7 20.0 20.3 20.3 20.1 al 5.1 5.1 5.2 5.9 5.6 7.0 6.0 Mn 0.21 0.26 0.22 0.18 0.20 0.20 0.12 Si 0.13 0.17 0.15 0.25 0.28 0.27 0.33 Ni 0.15 0.19 0.17 0.17 0.15 0.14 0.18 Not a word 0.01 . 0.01 <0.01 <0.01 0.01 0,013 <0.01 C 0.033 0.033 0,035 0.026 0,029 0.024 0,007 C analysis on film 50 μ-m 0.028 0.037 0.024 0,008 S <0.001 <0.001 0.001 0.001 0,002 <0.001 0,002 N 0,006 0,006 0,006 0.005 0,004 0,004 0,007 Y 0.04 0.05 0.04 0.05 0.06 0.05 0.05 Zr 0.05 0.05 0.04 0.05 0.05 0.06 0.04 Hf <0.01 <0.01 <0.01 0.04 0.03 0.03 0.03 Ti 0.05 0.08 0.04 <0.01 0.01 <0.01 <0.01 Nb <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 Cu 0.01 0.02 0.03 0.02 0.07 0.02 0.02 P 0,012 0,012 0,012 0,013 0,012 0.011 mg 0.009 0,010 0,010 0.009 0,007 0,010 0,008 Ca 0,003 0,002 0,002 0.001 0.001 0,003 0.0004 V 0.06 0.04 0.05 0.08 0.05 0.05 0,040 W <0.01 0.01 0.02 - - <0.01 0.02 B - - <0.001 0.001 - - 0.001 Relative burning time ± s in%, foil 50μm x 6mm, 1050 ° C, 15 s "on" / 5 s "off" 91 ± 8 105 ± 20 124 ± 8 188 ± 33 152 ± 14 153 ± 22 189 ± 19 A W in% -2 -2 -3 -5 -8th -5 -3

Claims (34)

  1. A use of an iron-chromium-aluminium alloy having a long service life and a minor change in heat resistance as foil for heating elements within the dimension range comprised between 0.020 and 0.300 mm thickness, comprising (in % by mass) 4.5 to 6.5 % Al, 16 to 24 % Cr and additions of 0.05 to 0.7 % Si, 0.001 to 0.5 % Mn, 0.02 to 0.1 % Y, 0.02 to 0.1 % Zr, 0.02 to 0.1 % Hf, 0.003 to 0.020 % C, max. 0.03 % N, max. 0.01 % S, max. 0.5 % Cu, the rest being iron and the usual elaboration dependent impurities.
  2. A use of the alloy according to claim 1, comprising (in % by mass) 4.8 to 6.2 % Al.
  3. A use of the alloy according to claim 1 or 2, comprising (in % by mass) 5.0 to 5.8 % Al.
  4. A use of the alloy according to claim 1 or 2, comprising (in % by mass) 4.8 to 5.5 % Al.
  5. A use of the alloy according to claim 1, comprising (in % by mass) 5.5 to 6.3 % Al.
  6. A use of the alloy according to one of the claims 1 through 5, comprising (in % by mass) 18 to 23 % Cr.
  7. A use of the alloy according to one of the claims 1 through 6, comprising (in % by mass) 19 to 22 % Cr.
  8. A use of the alloy according to one of the claims 1 through 7, comprising (in % by mass) additions of 0.05 to 0.5 % Si.
  9. A use of the alloy according to one of the claims 1 through 8, comprising (in % by mass) additions of 0.005 to 0.5 % Mn.
  10. A use of the alloy according to one of the claims 1 through 9, comprising (in % by mass) additions of 0.03 to 0.1 % Y.
  11. A use of the alloy according to one of the claims 1 through 10, comprising (in % by mass) additions of 0.02 to 0.08 % Zr.
  12. A use of the alloy according to one of the claims 1 through 11, comprising (in % by mass) additions of 0.02 to 0.1 % Hf.
  13. A use of the alloy according to one of the claims 1 through 12, comprising (in % by mass) additions of 0.003 to 0.020 % C.
  14. A use of the alloy according to one of the claims 1 through 13, comprising 0.0001 to 0.05 % Mg, 0.0001 to 0.03 % Ca, 0.010 to 0.030 % P.
  15. A use of the alloy according to one of the claims 1 through 14, comprising (in % by mass) 0.0001 to 0.03 % Mg.
  16. A use of the alloy according to one of the claims 1 through 15, comprising (in % by mass) 0.0001 to 0.02 % Mg.
  17. A use of the alloy according to one of the claims 1 through 16, comprising (in % by mass) 0.0002 to 0.01 % Mg.
  18. A use of the alloy according to one of the claims 1 through 17, comprising (in % by mass) 0.0001 to 0.02 % Ca.
  19. A use of the alloy according to one of the claims 1 through 18, comprising (in % by mass) 0.0002 to 0.01 % Ca.
  20. A use of the alloy according to one of the claims 1 through 19, comprising (in % by mass) 0.010 to 0.025 % P.
  21. A use of the alloy according to one of the claims 1 through 20, comprising (in % by mass) 0.010 to 0.022 % P.
  22. A use of the alloy according to one of the claims 1 through 21, in which Y is completely replaced by at least one of the elements Sc and/or La and/or cerium.
  23. A use of the alloy according to one of the claims 1 through 21, in which Y is partly replaced by (in % by mass) 0.02 to 0.10 % of at least one of the elements Sc and/or La and/or cerium.
  24. A use of the alloy according to one of the claims 1 through 23, in which Hf is completely replaced by at least one of the elements Sc and/or Ti and/or V and/or Nb and/or Ta and/or La and/or cerium.
  25. A use of the alloy according to one of the claims 1 through 23, in which Hf is partly replaced by (in % by mass) 0.01 to 0.1 % of at least one of the elements Sc and/or Ti and/or V and/or Nb and/or Ta and/or La and/or cerium.
  26. A use of the alloy according to one of the claims 1 through 25, comprising (in % by mass) max. 0.02 % N and max. 0.005 % S.
  27. A use of the alloy according to one of the claims 1 through 26, comprising (in % by mass) max. 0.01 % N and max. 0.003 % S.
  28. A use of the alloy according to one of the claims 1 through 27, furthermore comprising (in % by mass) max. 0.5 % nickel, max. 0.1 % Mo and/or 0.1 % W.
  29. A use of the alloy according to one of the claims 1 through 28 for being employed as foil in electrically heated heating elements.
  30. A use of the alloy according to one of the claims 1 through 28 for being employed as foil in heat conductors having a thickness comprised between 20 and 200 µm.
  31. A use of the alloy according to one of the claims 1 through 28 for being employed as foil in heat conductors having a thickness comprised between 20 and 100 µm.
  32. A use of the alloy according to one of the claims 1 through 28 as heat conductor foil for being employed in hobs, especially glass ceramic hobs.
  33. A use of the alloy according to one of the claims 1 through 28 as carrier foil in heated metallic exhaust gas catalysts.
  34. A use of the alloy according to one of the claims 1 through 28 as foil in fuel cells.
EP08706758A 2007-01-29 2008-01-15 Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance Active EP2127472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08706758T PL2127472T3 (en) 2007-01-29 2008-01-15 Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005154A DE102007005154B4 (en) 2007-01-29 2007-01-29 Use of an iron-chromium-aluminum alloy with a long service life and small changes in the heat resistance
PCT/DE2008/000061 WO2008092420A2 (en) 2007-01-29 2008-01-15 Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance

Publications (2)

Publication Number Publication Date
EP2127472A2 EP2127472A2 (en) 2009-12-02
EP2127472B1 true EP2127472B1 (en) 2012-06-27

Family

ID=39410517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08706758A Active EP2127472B1 (en) 2007-01-29 2008-01-15 Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance

Country Status (8)

Country Link
US (1) US20100092749A1 (en)
EP (1) EP2127472B1 (en)
JP (1) JP5409390B2 (en)
CN (1) CN101578911B (en)
DE (1) DE102007005154B4 (en)
ES (1) ES2388583T3 (en)
PL (1) PL2127472T3 (en)
WO (1) WO2008092420A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092759A1 (en) * 2008-10-13 2010-04-15 Hua Fan Fluoropolymer/particulate filled protective sheet
CN102760508B (en) * 2012-07-18 2014-05-28 中南大学 High-conductivity creep-resistant aluminium alloy cable conductor containing Hf and Ce and preparation method thereof
WO2014097562A1 (en) * 2012-12-17 2014-06-26 Jfeスチール株式会社 Stainless steel sheet and stainless steel foil
KR101446688B1 (en) * 2013-04-11 2014-10-07 (주)칩타시너지코리아 Iron-chromium-aluminum alloy showing durability and corrosion resistance in high temperature and wire and metalfiber manufactured by the alloy
WO2018091727A1 (en) * 2016-11-21 2018-05-24 Plastic Omnium Advanced Innovation And Research Device for heating a tank containing a corrosive liquid
CN107805688B (en) * 2017-11-03 2019-07-02 北京首钢吉泰安新材料有限公司 A method of control Aludirome filament rice resistance fluctuation range
TWI641001B (en) * 2018-01-22 2018-11-11 國立屏東科技大學 Alloy thin film resistor
US10883160B2 (en) 2018-02-23 2021-01-05 Ut-Battelle, Llc Corrosion and creep resistant high Cr FeCrAl alloys
CN109680206B (en) * 2019-03-08 2020-10-27 北京首钢吉泰安新材料有限公司 High-temperature-resistant iron-chromium-aluminum alloy and preparation method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277374A (en) 1980-01-28 1981-07-07 Allegheny Ludlum Steel Corporation Ferritic stainless steel substrate for catalytic system
US4414023A (en) 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
DE3378099D1 (en) * 1982-06-24 1988-10-27 Matsushita Electric Ind Co Ltd Panel heater
DE3627668C1 (en) * 1986-08-14 1988-03-24 Thyssen Stahl Ag Well weldable structural steel with high resistance to stress corrosion cracking
DE3706415A1 (en) 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
DE3908526A1 (en) * 1989-03-16 1990-09-20 Vdm Nickel Tech FERRITIC STEEL ALLOY
EP0516097B1 (en) * 1991-05-29 1996-08-28 Kawasaki Steel Corporation Iron-chromium-aluminium alloy, catalytic substrate comprising the same and method of preparation
JPH06116652A (en) * 1992-06-30 1994-04-26 Kawasaki Steel Corp Production of fe-cr-al steel sheet excellent in oxidation resistance
CN1058363C (en) * 1996-04-12 2000-11-08 杨春益 High temperature electric heating materials with high stable electric resistivity
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
DE19928842C2 (en) 1999-06-24 2001-07-12 Krupp Vdm Gmbh Ferritic alloy
SE0000002L (en) * 2000-01-01 2000-12-11 Sandvik Ab Process for manufacturing a FeCrAl material and such a mortar
JP3350499B2 (en) * 2000-01-20 2002-11-25 新日本製鐵株式会社 Rough surface finish metal foil with good corrugation and catalyst carrier for exhaust gas purification
DE10002933C1 (en) 2000-01-25 2001-07-05 Krupp Vdm Gmbh Iron-chromium-aluminum foil production, used e.g. as support material for exhaust gas treatment catalysts, comprises coating one or both sides of supporting strip with aluminum or aluminum alloys, and carrying out homogenizing treatment
SE517894C2 (en) 2000-09-04 2002-07-30 Sandvik Ab FeCrAl alloy
US6485025B1 (en) * 2000-11-27 2002-11-26 Neomet Limited Metallic cellular structure
DE10157749B4 (en) * 2001-04-26 2004-05-27 Thyssenkrupp Vdm Gmbh Iron-chromium-aluminum alloy
JP3690325B2 (en) * 2001-07-26 2005-08-31 Jfeスチール株式会社 Fe-Cr-Al alloy foil excellent in oxidation resistance and high temperature deformation resistance and method for producing the same
DE10233624B4 (en) * 2001-07-27 2004-05-13 Jfe Steel Corp. Continuous casting process for a steel with high Cr and Al content
DE10310865B3 (en) * 2003-03-11 2004-05-27 Thyssenkrupp Vdm Gmbh Use of an iron-chromium-aluminum alloy containing additions of hafnium, silicon, yttrium, zirconium and cerium, lanthanum or neodymium for components in Diesel engines and two-stroke engines
DE102005016722A1 (en) * 2004-04-28 2006-02-09 Thyssenkrupp Vdm Gmbh Iron-chromium-aluminum alloy
DE102008018135B4 (en) * 2008-04-10 2011-05-19 Thyssenkrupp Vdm Gmbh Iron-chromium-aluminum alloy with high durability and small changes in heat resistance

Also Published As

Publication number Publication date
ES2388583T3 (en) 2012-10-16
PL2127472T3 (en) 2012-11-30
JP2010516903A (en) 2010-05-20
EP2127472A2 (en) 2009-12-02
WO2008092420A3 (en) 2008-09-25
WO2008092420A2 (en) 2008-08-07
DE102007005154A1 (en) 2008-07-31
US20100092749A1 (en) 2010-04-15
DE102007005154B4 (en) 2009-04-09
CN101578911B (en) 2013-07-10
JP5409390B2 (en) 2014-02-05
CN101578911A (en) 2009-11-11

Similar Documents

Publication Publication Date Title
EP2283167B1 (en) Durable iron-chromium-aluminum alloy showing minor changes in heat resistance
EP2127472B1 (en) Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance
EP1740733B1 (en) Iron-chrome-aluminum alloy
EP2678458B1 (en) Nickel-chromium-iron-aluminum alloy having good processability
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP3102710B1 (en) Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
EP2882881B1 (en) Usage of a nickel-chromium-iron-aluminium alloy with good workability
DE102012011161B4 (en) Nickel-chromium-aluminum alloy with good processability, creep resistance and corrosion resistance
EP2480695B1 (en) Method of manufactur an iron-chrome alloy.
EP0290719A1 (en) Semi-finished product made from ferritic steel and its uses
EP3102712B1 (en) Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
DE2534379A1 (en) METAL ALLOY
JP4644405B2 (en) Zirconium-based alloy and method for producing component for nuclear fuel assembly using the same
DE102018107248A1 (en) USE OF NICKEL CHROME IRON ALUMINUM ALLOY
DE60224249T3 (en) Steel for solid oxide fuel cell separators
DE10157749A1 (en) Iron-chromium-aluminum alloy
EP0236823B1 (en) Metallic semi-finished product, process for its manufacture and uses of the semi-finished product
EP1381701B1 (en) Iron-chrome-aluminium-alloy
EP0677355B1 (en) Brazing material
DE102018130945A1 (en) IRON CHROME NICKEL ALLOY BOR
EP3971311B1 (en) Improved dispersion-hardened precious metal alloy
EP3775308B1 (en) Use of a nickel-chromium-iron-aluminium alloy
DE102022110384A1 (en) Using a nickel-iron-chromium alloy with high resistance in highly corrosive environments while maintaining good workability and strength
DE102022110383A1 (en) Using a nickel-iron-chromium alloy with high resistance in carburizing and sulfiding and chlorinating environments while maintaining good workability and strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090703

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091210

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 564730

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007580

Country of ref document: DE

Effective date: 20120830

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2388583

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007580

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: OUTOKUMPU VDM GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007580

Country of ref document: DE

Effective date: 20130328

BERE Be: lapsed

Owner name: THYSSENKRUPP VDM G.M.B.H.

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007580

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007580

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20140623

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140623

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007580

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008007580

Country of ref document: DE

Owner name: VDM METALS INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VDM METALS GMBH, 58791 WERDOHL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230119

Year of fee payment: 16

Ref country code: PL

Payment date: 20230110

Year of fee payment: 16

Ref country code: IT

Payment date: 20230120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240223

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 17

Ref country code: GB

Payment date: 20240123

Year of fee payment: 17