EP2126320B1 - Method for starting an internal combustion engine - Google Patents

Method for starting an internal combustion engine Download PDF

Info

Publication number
EP2126320B1
EP2126320B1 EP07857706.1A EP07857706A EP2126320B1 EP 2126320 B1 EP2126320 B1 EP 2126320B1 EP 07857706 A EP07857706 A EP 07857706A EP 2126320 B1 EP2126320 B1 EP 2126320B1
Authority
EP
European Patent Office
Prior art keywords
angle
internal combustion
combustion engine
crankshaft
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07857706.1A
Other languages
German (de)
French (fr)
Other versions
EP2126320A1 (en
Inventor
Norbert Mueller
Ruediger Weiss
Tobias Leutwein
Matthias Walz
Elmar Pietsch
Harry Friedmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2126320A1 publication Critical patent/EP2126320A1/en
Application granted granted Critical
Publication of EP2126320B1 publication Critical patent/EP2126320B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed

Definitions

  • the present invention relates to a method for starting an internal combustion engine, in which at least one function is started at a specific crankshaft angle by a control unit.
  • a second method the evaluation of a signal of a camshaft sensor, wherein the associated Nockenwellengebelrad may be designed to be suitable to allow the fastest possible position determination.
  • a donor wheel is also referred to as a quick-start donor.
  • This type of synchronization is associated with uncertainty in internal combustion engines with adjustable camshaft, since the camshaft could be incorrectly locked in the start wrong.
  • This method is also referred to as synchronization stage 2.
  • the evaluation of the crankshaft and camshaft sensor takes place at the time of the gap in the crankshaft sensor wheel. This type of synchronization is subject to the slightest uncertainty, since the crankshaft and camshaft position belonging to the gear wheel gap can be reliably determined.
  • Such a method is also referred to as synchronization stage 3.
  • the aforementioned synchronization procedures can be parallel. With increasing synchronization level, the uncertainty of the determination of the crankshaft angle is reduced.
  • the respective achieved synchronization stage during Losdusens the Crankshaft of the internal combustion engine in the start of the internal combustion engine can be displayed for example by a stored in a controller variable.
  • angle synchronous calculation grids (also referred to as tasks) can be executed, which can trigger, for example, fuel injection or ignition of a cylinder.
  • the position of the angle synchronous calculation grid relative to the top dead center of a reference cylinder is usually adjustable. At different crankshaft angles, different calculation grids with different functions can be executed.
  • angle-synchronized calculation rasters can be started in synchronization stage 1 or 2 in accordance with the information of an outlet detection or of the camshaft sensor.
  • Motor control functions, such as injection or ignition, which are processed in these angle-synchronous rasters can be called in the start of the internal combustion engine, but it may be the case that an actual control of the corresponding output stage, for example, the ignition or Triggering of an injection valve or the like, as long as it must be suppressed until the synchronization stage 3 is reached, so that the greatest possible accuracy of the crankshaft angle determination is given.
  • the achievement of the synchronization stage 3 thus means that the crankshaft encoder wheel gap or, in the case of an encoder wheel with asynchronous pitch, the asynchronous arrangement of teeth and tooth gaps replacing the transmitter wheel gap must have been detected.
  • the Geberradlücke is defined by the mounting of the encoder wheel, is dependent on the particular model of the internal combustion engine and can, for example, at 50 ° crankshaft angle before top dead center (TDC) of a reference cylinder.
  • Different boundary conditions may require that a certain angle-synchronous calculation grid be at a defined angle before top dead center.
  • the accuracy of an engine control function calculated in this calculation grid requires that calculations or calculation outputs in the start of the internal combustion engine can only take place at synchronization stage 3, that is to say a specific one Functionality with its execution in the start of the internal combustion engine must wait in principle for a recognized gap in the sender wheel.
  • the case may occur that the start of the internal combustion engine begins with a crankshaft angle at which the angle-synchronous calculation grid for a function has just been exceeded.
  • the start of the internal combustion engine starts, for example, at a crankshaft angle of 50 ° before the top dead center of a cylinder and begins an angle synchronous calculation grid for a specific function, for example, 60 ° before the top dead center of the cylinder, this function will only after reaching the crankshaft angle of 50 again ° executed before the top dead center of the cylinder.
  • the associated function is performed only at a much later time, namely after a crankshaft revolution.
  • An object of the present invention is to specify a method and a device as well as a computer program which bring about the earliest possible execution of angle-synchronous calculating grids in the start of an internal combustion engine.
  • a method for starting an internal combustion engine in which at least one function to a crankshaft angle is started by a control unit, wherein the function is shifted from the start of the internal combustion engine until reaching an end condition by a relative angle to a later crankshaft angle.
  • the function is started in an angle-synchronous calculation grid, so the function is started at a defined crankshaft angle.
  • Function is understood here as any type of calculation or control or regulation of functions of the internal combustion engine, that is, for example, the determination of an ignition point, the determination of an injection time, the determination of an injection quantity and the like.
  • the start of the internal combustion engine is understood to mean the switching on of a control unit when the crankshaft is not rotating.
  • the start of the internal combustion engine can also be defined at the time when a starter operation or the start of rotation of the crankshaft takes place.
  • a later crankshaft angle is understood here to mean a crankshaft angle that is reached later in terms of time.
  • the relative angle is thereby positively defined in the direction of rotation.
  • the function controls an event which is an execution angle after the Start the function is executed, and that the relative angle is smaller than the execution angle.
  • the function started at the particular crankshaft angle calculates or controls an event that is the execution angle after the particular crankshaft angle. The function thus requires a certain time and thus a certain swept crankshaft angle until the result of the function is present.
  • the relative angle is now set so that the crankshaft angle to which the result of the function is present, must not be moved.
  • the relative angle is preferably selected to be so large that a calculation grid located ahead of the encoder wheel gap comes to rest after the shift to the encoder wheel gap. Due to the gap, the synchronization level 3 is reached and the injection can be released immediately in the shifted calculation grid.
  • the function must deliver the result faster by shifting the crankshaft angle to which it is started, which is ensured by the low crankshaft speed during the start of the internal combustion engine.
  • the end condition is the recognition of a Geberradmark ist for a designated absolute crankshaft angle, in particular the detection of a Geberradlücke.
  • the end condition can also be the achievement of a minimum speed of the crankshaft.
  • the shift is canceled by the relative angle.
  • the function comprises the calculation of injection parameters and / or an ignition time of at least one cylinder of the internal combustion engine.
  • the injection parameters preferably comprise at least one injection start of an injection.
  • a device in particular a control device or an internal combustion engine, which is set up to carry out a method according to the invention, and by a computer program with program code for carrying out all steps according to a method according to the invention when the program is executed in a computer ,
  • a diagram is shown showing the performance of various engine functions above the crankshaft angle.
  • the crankshaft angle (OKW) is designated by the top dead centers OT of the cylinders 1 to 4 of a 4-cylinder internal combustion engine.
  • the top dead center of the cylinder 1 is as OT Cyl. 1
  • the top dead center of the cylinder 2 is as OT Cyl. 2
  • the top dead center of the cylinder 3 is as OT Cyl. 3
  • the top dead center of the cylinder 4 is as OT Cyl. 4 designates.
  • the signal of a crankshaft sensor SKW is shown as a line trace, wherein the donor wheel gap is denoted by GL.
  • the calls of functions are used to determine control or regulating variables of an internal combustion engine or to carry out certain actions of the internal combustion engine, such as the discontinuation of an injection or the ignition of a spark plug, wherein the functions are performed by a control unit or a computer program executed in the control unit.
  • the functions T control events which are executed by an execution angle A after the start of the functions.
  • the functions T control an ignition Z, which is started by the execution angle A later than the beginning of the functions T.
  • Ansaugphasen for the respective cylinder are referred to as a solid horizontal line, for ease of recognition is again one of the Ansauphasen marked with a reference sign AN.
  • the ejection phase AU located before the suction phase AN is shown here in each case as a checkered rectangle.
  • Layer injections SE are shown as adjacent and connected by a line diamonds
  • homogeneous injections HE are shown as adjacent and connected by a line rectangles.
  • Ignitions Z are each shown as triangles.
  • Fig. 1 shows the waveform of the crankshaft sensor, assuming a starting position of the internal combustion engine directly after the Geberradlücke. Shown are the 180 ° periodic functions for the individual cylinders, which are adjusted in this case to the right (to late) until the first gap in the encoder wheel is detected.
  • a functionality which requires the synchronization stage 3, ie the presence of a synchronization based on the encoder wheel gap, can be executed as quickly as possible.
  • this functionality represents, for example, the ignition output, by this measure, ignition of cylinder 3 in the embodiment of Fig. 1 be initiated, whereas without the displacement according to the invention by a relative angle ⁇ KW only ignition of cylinder 4 would be possible.
  • a function T1 of the cylinder 2 and a function T2 of the cylinder 3 are between the start of the internal combustion engine ST and the crankshaft angle, in which the Geberradlücke GL has been recognized for the first time.
  • the two functions T1 and T2 thus take place between the start of the internal combustion engine to the crankshaft angle ST and the presence of a secured synchronization with the crankshaft angle GL2.
  • the relative angles ⁇ KW are each represented by curved arrows, the function T1 is shifted by the relative angle ⁇ KW to the function T1 'and the function T2 by the relative angle ⁇ KW to the function T2'.
  • T1 should only perform calculations that do not require the highest accuracy.
  • a calculation grid is 60 ° crankshaft angle before top dead center and calculates a function, for example, a firing angle of the next combustion.
  • the output of this function requires that the engine control be synchronized with the utmost reliability, thus waiting for the gap in the crankshaft sensor wheel, which in this case is 50 ° crankshaft angle before top dead center, for example.
  • the calculation grid in the start case is now briefly shifted to other crankshaft angle positions in order to accelerate the starting behavior of the slurry engine.
  • the angle-synchronous calculation grid is temporarily shifted to other angular positions.
  • it makes sense to shift the calculation grid, which is at 60 ° crankshaft angle in normal operation of the engine, to 50 ° crank angle before top dead center until the gap in the sender wheel is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Verfahren zum Start einer Brennkraftmaschine, bei der mindestens eine Funktion zu einem bestimmten Kurbelwellenwinkel durch ein Steuergerät gestartet wird.The present invention relates to a method for starting an internal combustion engine, in which at least one function is started at a specific crankshaft angle by a control unit.

Zur Synchronisierung, also der Positionsfindung des Kurbelwellenwinkels der Kurbelwelle der Brennkraftmaschine im Start, kommen derzeit verschiedene Verfahren zum Einsatz siehe z.B. EP 0 942 163 . Bei einem ersten Verfahren wird die Auslaufposition der Kurbelwelle während des Abstellens der Brennkraftmaschine bestimmt und diese Information in der Motorsteuerung bis zu einem Neustart gespeichert. Dieses Verfahren wird auch als Auslauferkennung bezeichnet und ist mit größeren Unsicherheiten behaftet, da die Brennkraftmaschine zum Beispiel bei ausgeschalteter Zündung und damit ausgeschaltetem Steuergerät bewegt werden könnte, beispielsweise indem das Fahrzeug bei eingelegtem Gang geschoben wird. Dieses erste Verfahren wird auch als Synchronisierungsstufe 1 bezeichnet. Bei einem zweiten Verfahren erfolgt die Auswertung eines Signals eines Nockenwellensensors, wobei das zugehörige Nockenwellengebelrad geeignet ausgeführt sein kann, um eine möglichst schnelle Positionsfindung zu ermöglichten. Ein derartiges Geberrad wird auch als Schnellstart-Geberrad bezeichnet. Diese Synchronisierungsart ist bei Brennkraftmaschinen mit verstellbarer Nockenwelle mit Unsicherheiten behaftet, da die Nockenwelle im Start fälschlicherweise nicht eingerastet sein könnte. Dieses Verfahren wird auch als Synchronisierungsstufe 2 bezeichnet. Bei einem dritten Verfahren erfolgt die Auswertung des Kurbelwellen- sowie Nockenwellen-Sensors zum Zeitpunkt der Lücke im Kurbelwellen-Geberrad. Diese Synchronisierungsart ist mit der geringsten Unsicherheit behaftet, da die zur Geberradlücke gehörige Kurbelwellen- und Nockenwellenposition sicher bestimmt werden kann. Ein derartiges Verfahren wird auch als Synchronisierungsstufe 3 bezeichnet.For synchronization, so the position determination of the crankshaft angle of the crankshaft of the internal combustion engine in the start, currently come various methods are used, for example EP 0 942 163 , In a first method, the coasting position of the crankshaft is determined during engine shutdown and this information is stored in the engine control until it is restarted. This method is also referred to as leak detection and is subject to greater uncertainties, since the internal combustion engine could be moved, for example, with the ignition switched off and thus the control unit switched off, for example by the vehicle is pushed in gear. This first method is also referred to as synchronization stage 1. In a second method, the evaluation of a signal of a camshaft sensor, wherein the associated Nockenwellengebelrad may be designed to be suitable to allow the fastest possible position determination. Such a donor wheel is also referred to as a quick-start donor. This type of synchronization is associated with uncertainty in internal combustion engines with adjustable camshaft, since the camshaft could be incorrectly locked in the start wrong. This method is also referred to as synchronization stage 2. In a third method, the evaluation of the crankshaft and camshaft sensor takes place at the time of the gap in the crankshaft sensor wheel. This type of synchronization is subject to the slightest uncertainty, since the crankshaft and camshaft position belonging to the gear wheel gap can be reliably determined. Such a method is also referred to as synchronization stage 3.

Die zuvor genannten Verfahren zur Synchronisierung können parallel voneinander ablaufen. Mit steigender Synchronisierungsstufe reduziert sich die Unsicherheit der Ermittlung des Kurbelwellenwinkels. Die jeweilig erreichte Synchronisierungsstufe während des Losdrehens der Kurbelwelle der Brennkraftmaschine im Start der Brennkraftmaschine kann zum Beispiel durch eine in einem Steuergerät abgelegte Variable angezeigt werden.The aforementioned synchronization procedures can be parallel. With increasing synchronization level, the uncertainty of the determination of the crankshaft angle is reduced. The respective achieved synchronization stage during Losdrehens the Crankshaft of the internal combustion engine in the start of the internal combustion engine can be displayed for example by a stored in a controller variable.

Sobald die Synchronisierung erfolgt ist, können winkel synchrone Rechenraster (auch als Tasks bezeichnet) ausgeführt werden, welche zum Beispiel eine Kraftstoff-Einspritzung oder eine Zündung eines Zylinders auslösen können. Die Position der winkelsynchronen Rechenraster relativ zum oberen Totpunkt eines Referenzzylinders ist in der Regel einstellbar. Zu unterschiedlichen Kurbelwellenwinkeln können unterschiedliche Rechenraster mit unterschiedlichen Funktionen ausgeführt werden.Once the synchronization has taken place, angle synchronous calculation grids (also referred to as tasks) can be executed, which can trigger, for example, fuel injection or ignition of a cylinder. The position of the angle synchronous calculation grid relative to the top dead center of a reference cylinder is usually adjustable. At different crankshaft angles, different calculation grids with different functions can be executed.

Während eines Starts einer Brennkraftmaschine, sobald also die Drehbewegung der Kurbelwelle beginnt, können winkelsynchrone Rechenraster entsprechend der Informationen einer Auslauferkennung oder des Nockenwellen-Sensors in der Synchronisierungsstufe 1 oder 2 gestartet werden. Motorsteuerungsfunktionen, wie zum Beispiel eine Einspritzung oder Zündung, welche in diesen winkelsynchronen Rechenrastern verarbeitet werden, können im Start der Brenn-kraftmaschine zwar aufgerufen werden, es kann jedoch der Fall sein, dass eine tatsächliche Ansteuerung der entsprechenden Endstufe, zum Beispiel der Zündung oder der Ansteuerung eines Einspritzventils oder dergleichen, solange unterdrückt werden muss, bis die Synchronisierungsstufe 3 erreicht ist, bis also eine größtmögliche Genauigkeit der Kurbelwellenwinkel-Bestimmung gegeben ist.During a start of an internal combustion engine, as soon as the rotational movement of the crankshaft begins, angle-synchronized calculation rasters can be started in synchronization stage 1 or 2 in accordance with the information of an outlet detection or of the camshaft sensor. Motor control functions, such as injection or ignition, which are processed in these angle-synchronous rasters can be called in the start of the internal combustion engine, but it may be the case that an actual control of the corresponding output stage, for example, the ignition or Triggering of an injection valve or the like, as long as it must be suppressed until the synchronization stage 3 is reached, so that the greatest possible accuracy of the crankshaft angle determination is given.

Das Erreichen der Synchronisierungsstufe 3 bedeutet also, dass die Kurbelwellengeberradlücke oder bei einem Geberrad mit asynchroner Teilung die die Geberradlücke ersetzende asynchrone Anordnung von Zähnen und Zahnlücken, detektiert worden sein muss. Die Geberradlücke wird durch die Montage des Geberrades definiert, ist dabei abhängig von dem jeweiligen Modell der Brennkraftmaschine und kann zum Beispiel bei 50° Kurbelwellenwinkel vor dem oberen Totpunkt (OT) eines Referenzzylinders liegen.The achievement of the synchronization stage 3 thus means that the crankshaft encoder wheel gap or, in the case of an encoder wheel with asynchronous pitch, the asynchronous arrangement of teeth and tooth gaps replacing the transmitter wheel gap must have been detected. The Geberradlücke is defined by the mounting of the encoder wheel, is dependent on the particular model of the internal combustion engine and can, for example, at 50 ° crankshaft angle before top dead center (TDC) of a reference cylinder.

Verschiedene Randbedingungen können es erfordern, dass ein bestimmtes winkelsynchrones Rechenraster in einem definierten Winkel vor dem oberen Totpunkt liegen muss. Zusätzlich kann der Fall vorliegen, dass die Genauigkeit einer in diesem Rechenraster gerechneten Motorsteuerungsfunktion es erfordert, dass Berechnungen oder Berechnungsausgaben im Start der Brennkraftmaschine erst bei Synchronisierungsstufe 3 erfolgen können, dass also eine bestimmte Funktionalität mit ihrer Ausführung im Start der Brennkraftmaschine prinzipiell auf eine erkannte Lücke im Geberrad warten muss.Different boundary conditions may require that a certain angle-synchronous calculation grid be at a defined angle before top dead center. In addition, it may be the case that the accuracy of an engine control function calculated in this calculation grid requires that calculations or calculation outputs in the start of the internal combustion engine can only take place at synchronization stage 3, that is to say a specific one Functionality with its execution in the start of the internal combustion engine must wait in principle for a recognized gap in the sender wheel.

Dabei kann der Fall eintreten, dass der Start der Brennkraftmaschine mit einem Kurbelwellenwinkel beginnt, bei dem das winkelsynchron Rechenraster für eine Funktion gerade überschritten wurde. Beginnt der Start der Brennkraftmaschine also beispielsweise bei einem Kurbelwellenwinkel von 50° vor dem oberen Totpunkt eines Zylinders und beginnt ein winkelsynchrones Rechenraster für eine spezielle Funktion beispielsweise 60° vor dem oberen Totpunkt des Zylinders, so wird diese Funktion erst nach erneutem Erreichen des Kurbelwellenwinkels von 50° vor dem oberen Totpunkt des Zylinders ausgeführt. Dies bedeutet, dass die zugehörige Funktion erst zu einem deutlich späteren Zeitpunkt, nämlich nach einer Kurbelwellenumdrehung, ausgeführt wird.In this case, the case may occur that the start of the internal combustion engine begins with a crankshaft angle at which the angle-synchronous calculation grid for a function has just been exceeded. Thus, if the start of the internal combustion engine starts, for example, at a crankshaft angle of 50 ° before the top dead center of a cylinder and begins an angle synchronous calculation grid for a specific function, for example, 60 ° before the top dead center of the cylinder, this function will only after reaching the crankshaft angle of 50 again ° executed before the top dead center of the cylinder. This means that the associated function is performed only at a much later time, namely after a crankshaft revolution.

Offenbarung der ErfindungDisclosure of the invention

Eine Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung sowie ein Computerprogramm anzugeben, die eine möglichst frühzeitige Ausführung von winkelsynchronen Rechenrastern im Start einer Brennkraftmaschine bewirken.An object of the present invention is to specify a method and a device as well as a computer program which bring about the earliest possible execution of angle-synchronous calculating grids in the start of an internal combustion engine.

Dieses Problem wird gelöst durch ein Verfahren zum Start einer Brennkraftmaschine, bei der mindestens eine Funktion zu einem Kurbelwellenwinkel durch ein Steuergerät gestartet wird, wobei die Funktion vom Start der Brennkraftmaschine bis zum Erreichen einer-Endbedingung um einen Relativwinkel zu einem späteren Kurbelwellenwinkel verschoben wird. Das Starten der Funktion erfolgt in einem winkelsynchronen Rechenraster, die Funktion wird also zu einem definierten Kurbelwellenwinkel gestartet. Unter Funktion wird hier jede Art der Berechnung oder Steuerung bzw. Regelung von Funktionen der Brennkraftmaschine verstanden, also beispielsweise die Bestimmung eines Zündzeitpunktes, die Bestimmung eines Einspritzzeitpunktes, die Bestimmung einer Einspritzmenge und dergleichen. Unter Start der Brennkraftmaschine wird hier das Einschalten eines Steuergerätes bei nicht drehender Kurbelwelle verstanden. Der Start der Brennkraftmaschine kann auch definiert werden zu dem Zeitpunkt, zu dem eine Anlasserbetätigung oder der Drehbeginn der Kurbelwelle erfolgt. Unter einem späteren Kurbelwellenwinkel wird hier ein Kurbelwellenwinkel verstanden, der zeitlich gesehen später erreicht wird. Der Relativwinkel ist dadurch in Drehrichtung positiv definiert. Vorzugsweise ist vorgesehen, dass die Funktion ein Ereignis steuert, das um einen Ausführungswinkel nach dem Start der Funktion ausgeführt wird, und dass der Relativwinkel kleiner als der Ausführungswinkel ist. Die zu dem bestimmten Kurbelwellenwinkel gestartete Funktion berechnet oder steuert ein Ereignis, das um den Ausführungswinkel nach dem bestimmten Kurbelwellenwinkel liegt. Die Funktion benötigt also eine gewisse Zeit und damit einen gewissen überstrichenen Kurbelwellenwinkel bis das Ergebnis der Funktion vorliegt. Der Relativwinkel wird nun so gelegt, dass der Kurbelwellenwinkel, zu dem das Ergebnis der Funktion vorliegt, nicht verschoben werden muss. Vorzugsweise wird der Relativwinkel so groß gewählt, dass ein zeitlich vor der Geberradlücke liegendes Rechenraster nach der Verschiebung nach der Geberradlücke zu liegen kommt. Durch die Lücke ist die Synchronisierungsstufe 3 erreicht und die Einspritzung kann im verschobenen Rechenraster sofort freigegeben werden. Die Funktion muss durch das Verschieben des Kurbelwellenwinkels, zu dem diese gestartet wird, das Ergebnis schneller liefern, was durch die geringe Kurbelwellendrehzahl während des Starts der Brennkraftmaschine aber gewährleistet ist. Vorzugsweise ist weiter vorgesehen, dass die Endbedingung das Erkennen einer Geberradmarkierung für einen ausgewiesenen Absolut-Kurbelwellenwinkel, insbesondere das Erkennen einer Geberradlücke, ist. Die Endbedingung kann aber ebenso das Erreichen einer Mindestdrehzahl der Kurbelwelle sein. Bei Erreichen der Endbedingung wird die Verschiebung um den Relativwinkel aufgehoben. Vorzugsweise ist vorgesehen, dass die Funktion die Berechnung von Einspritzparametern und/oder einem Zündzeitpunkt zumindest eines Zylinders der Brennkraftmaschine umfasst. Die Einspritzparameter umfassen vorzugsweise mindestens einen Einspritzbeginn einer Einspritzung.This problem is solved by a method for starting an internal combustion engine, in which at least one function to a crankshaft angle is started by a control unit, wherein the function is shifted from the start of the internal combustion engine until reaching an end condition by a relative angle to a later crankshaft angle. The function is started in an angle-synchronous calculation grid, so the function is started at a defined crankshaft angle. Function is understood here as any type of calculation or control or regulation of functions of the internal combustion engine, that is, for example, the determination of an ignition point, the determination of an injection time, the determination of an injection quantity and the like. The start of the internal combustion engine is understood to mean the switching on of a control unit when the crankshaft is not rotating. The start of the internal combustion engine can also be defined at the time when a starter operation or the start of rotation of the crankshaft takes place. A later crankshaft angle is understood here to mean a crankshaft angle that is reached later in terms of time. The relative angle is thereby positively defined in the direction of rotation. Preferably, it is provided that the function controls an event which is an execution angle after the Start the function is executed, and that the relative angle is smaller than the execution angle. The function started at the particular crankshaft angle calculates or controls an event that is the execution angle after the particular crankshaft angle. The function thus requires a certain time and thus a certain swept crankshaft angle until the result of the function is present. The relative angle is now set so that the crankshaft angle to which the result of the function is present, must not be moved. The relative angle is preferably selected to be so large that a calculation grid located ahead of the encoder wheel gap comes to rest after the shift to the encoder wheel gap. Due to the gap, the synchronization level 3 is reached and the injection can be released immediately in the shifted calculation grid. The function must deliver the result faster by shifting the crankshaft angle to which it is started, which is ensured by the low crankshaft speed during the start of the internal combustion engine. Preferably, it is further provided that the end condition is the recognition of a Geberradmarkierung for a designated absolute crankshaft angle, in particular the detection of a Geberradlücke. The end condition can also be the achievement of a minimum speed of the crankshaft. When the end condition is reached, the shift is canceled by the relative angle. It is preferably provided that the function comprises the calculation of injection parameters and / or an ignition time of at least one cylinder of the internal combustion engine. The injection parameters preferably comprise at least one injection start of an injection.

Das eingangs genannte Problem wird auch gelöst durch eine Vorrichtung, insbesondere ein Steuergerät oder eine Brennkraftmaschine, die zur Durchführung eines erfindungsgemäßen Verfahrens eingerichtet ist, sowie durch ein Computerprogramm mit Programmcode zur Durchführung aller Schritte nach einem erfindungsgemäßen Verfahren, wenn das Programm in einem Computer ausgeführt wird.The problem mentioned at the outset is also solved by a device, in particular a control device or an internal combustion engine, which is set up to carry out a method according to the invention, and by a computer program with program code for carrying out all steps according to a method according to the invention when the program is executed in a computer ,

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der beiliegenden Zeichnung näher erläutert. Dabei zeigt:

Fig. 1
die zeitliche Abfolge von Funktionen für eine 4-Zylinder-Brennkraftmaschine.
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. Showing:
Fig. 1
the temporal sequence of functions for a 4-cylinder internal combustion engine.

Ausführungsform der ErfindungEmbodiment of the invention

In Fig. 1 ist ein Diagramm dargestellt, das die Ausführung verschiedener Motorfunktionen über dem Kurbelwellenwinkel zeigt. Der Kurbelwellenwinkel (OKW) ist anhand der oberen Totpunkte OT der Zylinder 1 bis 4 einer 4-Zylinder-Brennkraftmaschine bezeichnet. Der obere Totpunkt des Zylinders 1 ist als OT Zyl. 1 bezeichnet, der obere Totpunkt des Zylinders 2 ist als OT Zyl. 2 bezeichnet, der obere Totpunkt des Zylinders 3 ist als OT Zyl. 3 bezeichnet und der obere Totpunkt des Zylinders 4 ist als OT Zyl. 4 bezeichnet. Das Signal eines Kurbelwellengebers SKW ist als Linienzug dargestellt, wobei die Geberradlücke jeweils mit GL bezeichnet ist. Der Start der Brennkraftmaschine erfolgt zu einem, mit einem Pfeil ST bezeichneten Kurbelwellenwinkel, dieser liegt um wenige Grad nach der Geberradlücke. Bis zum erneuten Erreichen der Geberradlücke GL, dieser Kurbelwellenwinkel ist durch eine senkrechte gestrichene Linie GL2 gekennzeichnet, liegt also keine Synchronisierung des Kurbelwellengebersignals anhand der Geberradlücke vor. Nach dem Erreichen der Geberradlücke zu dem Kurbelwellenwinkel GL2 liegt eine Synchronisierung vor. Aufrufe von Funktionen (auch als Tasks bezeichnet) sind in Fig. 1 jeweils als senkrechte Linien mit Quadraten als Linienenden bezeichnet. Eine dieser Funktionen ist mit dem Bezugszeichen T gekennzeichnet. Die Aufrufe von Funktionen dienen der Ermittlung von Steuer- oder Regelgrößen einer Brennkraftmaschine oder zur Durchführung bestimmter Aktionen der Brennkraftmaschine wie z.B. dem Absetzen einer Einspritzung oder der Zündung einer Zündkerze, wobei die Funktionen durch ein Steuergerät bzw. ein in dem Steuergerät ausgeführten Computerprogramm ausgeführt werden. Die Funktionen T steuern Ereignisse, die um einen Ausführungswinkel A nach dem Beginn der Funktionen ausgeführt werden. Beispielsweise steuert die Funktionen T eine Zündung Z, die um den Ausführungswinkel A später als der Beginn der Funktionen T gestartet wird. Ansaugphasen für den jeweiligen Zylinder sind als durchgezogene waagerechte Linie bezeichnet, zur leichteren Erkennbarkeit ist wiederum eine der Ansauphasen mit einem Bezugszeichen AN gekennzeichnet. Die vor der Ansaugphase AN befindliche Ausschiebephase AU ist hier jeweils als kariertes Rechteck dargestellt. Schichteinspritzungen SE sind als nebeneinander liegende und mit einer Linie verbundene Rauten dargestellt, Homogeneinspritzungen HE sind als nebeneinander liegende und mit einer Linie verbundene Rechtecke dargestellt. Zündungen Z sind jeweils als Dreiecke dargestellt. Die zu den Zylindern 1 bis 4, diese sind als Zyl. 1 bis Zyl. 4 bezeichnet, gehörenden Funktionen bzw. Vorgänge sind in der Darstellung der Fig. 1 übereinander dargestellt und mit der entsprechenden Zylinderbezeichnung mit einer gestrichelten Linie versehen.In Fig. 1 a diagram is shown showing the performance of various engine functions above the crankshaft angle. The crankshaft angle (OKW) is designated by the top dead centers OT of the cylinders 1 to 4 of a 4-cylinder internal combustion engine. The top dead center of the cylinder 1 is as OT Cyl. 1, the top dead center of the cylinder 2 is as OT Cyl. 2, the top dead center of the cylinder 3 is as OT Cyl. 3 and the top dead center of the cylinder 4 is as OT Cyl. 4 designates. The signal of a crankshaft sensor SKW is shown as a line trace, wherein the donor wheel gap is denoted by GL. The start of the engine takes place at a, designated by an arrow ST crankshaft angle, this is a few degrees after the Geberradlücke. Until again reaching the Geberradlücke GL, this crankshaft angle is characterized by a vertical line GL2, so there is no synchronization of the crankshaft sensor signal based on the Geberradlücke. After reaching the Geberradlücke to the crankshaft angle GL2 is a synchronization. Calls to functions (also called tasks) are in Fig. 1 each referred to as vertical lines with squares as line ends. One of these functions is identified by the reference symbol T. The calls of functions are used to determine control or regulating variables of an internal combustion engine or to carry out certain actions of the internal combustion engine, such as the discontinuation of an injection or the ignition of a spark plug, wherein the functions are performed by a control unit or a computer program executed in the control unit. The functions T control events which are executed by an execution angle A after the start of the functions. For example, the functions T control an ignition Z, which is started by the execution angle A later than the beginning of the functions T. Ansaugphasen for the respective cylinder are referred to as a solid horizontal line, for ease of recognition is again one of the Ansauphasen marked with a reference sign AN. The ejection phase AU located before the suction phase AN is shown here in each case as a checkered rectangle. Layer injections SE are shown as adjacent and connected by a line diamonds, homogeneous injections HE are shown as adjacent and connected by a line rectangles. Ignitions Z are each shown as triangles. The cylinders 1 to 4, these are as Cyl. 1 to Cyl. 4 denotes belonging functions or processes are in the representation of Fig. 1 shown above each other and provided with the corresponding cylinder name with a dashed line.

Fig. 1 zeigt unten den Signalverlauf des Kurbelwellengebers, angenommen ist eine Startposition der Brennkraftmaschine direkt nach der Geberradlücke. Dargestellt sind die 180° periodischen Funktionen für die einzelnen Zylinder, welche in diesem Fall solange nach rechts (nach spät) verstellt werden, bis die erste Lücke im Geberrad erkannt ist. Dadurch kann eine Funktionalität, welche die Synchronsisierungsstufe 3, also das Vorliegen einer Synchronisierung anhand der Geberradlücke, erfordert, schnellstmöglich ausgeführt werden. Für den Fall, dass diese Funktionalität beispielsweise die Zündausgabe darstellt, kann durch diese Maßnahme eine Zündung von Zylinder 3 im Ausführungsbeispiel der Fig. 1 eingeleitet werden, wohingegen ohne die erfindungsgemäße Verschiebung um einen Relativwinkel ΔKW erst eine Zündung von Zylinder 4 möglich wäre. Fig. 1 below shows the waveform of the crankshaft sensor, assuming a starting position of the internal combustion engine directly after the Geberradlücke. Shown are the 180 ° periodic functions for the individual cylinders, which are adjusted in this case to the right (to late) until the first gap in the encoder wheel is detected. As a result, a functionality which requires the synchronization stage 3, ie the presence of a synchronization based on the encoder wheel gap, can be executed as quickly as possible. In the event that this functionality represents, for example, the ignition output, by this measure, ignition of cylinder 3 in the embodiment of Fig. 1 be initiated, whereas without the displacement according to the invention by a relative angle ΔKW only ignition of cylinder 4 would be possible.

Eine Funktion T1 des Zylinders 2 und eine Funktion T2 des Zylinders 3 liegen zwischen dem Start der Brennkraftmaschine ST und dem Kurbelwellenwinkel, bei dem die Geberradlücke GL erstmalig erkannt worden ist. Die beiden Funktionen T1 und T2 finden also zwischen dem Start der Brennkraftmaschine zum Kurbelwellenwinkel ST und dem Vorliegen einer gesicherten Synchronisierung zum Kurbelwellenwinkel GL2 statt. Erfindungsgemäß ist nun vorgesehen, diese Funktionen um einen Relativwinkel ΔKW zu späteren Kurbelwellenwinkeln hin zu verschieben. Die Relativwinkel ΔKW sind jeweils durch geschwungene Pfeile dargestellt, die Funktion T1 ist um den Relativwinkel ΔKW zur Funktion T1' verschoben und die Funktion T2 um den Relativwinkel ΔKW zur Funktion T2'. Dies hat in dem in Fig. 1 dargestellten Ausführungsbeispiel zur Folge, dass die Funktion T2' nunmehr nach dem Erkennen der Geberradlücke GL zum Kurbelwellenwinkel GL2 aufgerufen wird, für die Funktion T2' also nunmehr eine Kurbelwellensynchronisierung vorliegt, während dies bei der nicht verschobenen Funktion T2 nicht der Fall gewesen wäre. Ohne die erfindungsgemäße Verschiebung um den Relativwinkel ΔKW wäre die Funktion T2 erstmalig zwei Kurbelwellenumdrehungen später bei T2x aufgerufen worden. Die Lage von T1/T1' ist mit Unsicherheiten behaftet. In T1' können deshalb nur Funktionen berechnet werden, die keine große Genauigkeit erfordern. So könnte in T1'z. B. die Homogen-Einspritzmenge für Zylinder 3 berechnet und ausgegeben werden. Für eine Schicht-Einspritzung würde die Genauigkeit nicht ausreichen, ebenso nicht für eine Zündung. Allerdings kann die Zündung mit der erforderlichen Genauigkeit für Zylinder 3 ja in T2' berechnet werden.A function T1 of the cylinder 2 and a function T2 of the cylinder 3 are between the start of the internal combustion engine ST and the crankshaft angle, in which the Geberradlücke GL has been recognized for the first time. The two functions T1 and T2 thus take place between the start of the internal combustion engine to the crankshaft angle ST and the presence of a secured synchronization with the crankshaft angle GL2. According to the invention, it is now provided to shift these functions by a relative angle ΔKW to later crankshaft angles. The relative angles ΔKW are each represented by curved arrows, the function T1 is shifted by the relative angle ΔKW to the function T1 'and the function T2 by the relative angle ΔKW to the function T2'. This has in the in Fig. 1 shown embodiment that the function T2 'is now called after detecting the Geberradlücke GL to the crankshaft angle GL2, for the function T2' so now there is a crankshaft synchronization, while this would not have been the case for the non-shifted function T2. Without the displacement according to the invention by the relative angle ΔKW, the function T2 would have been called for the first time two crankshaft revolutions later at T2x. The location of T1 / T1 'is subject to uncertainties. In T1 'therefore only functions can be calculated that do not require high accuracy. So could in T1'z. B. the homogeneous injection quantity for cylinder 3 is calculated and output. For a layer injection, the accuracy would not be sufficient, nor for an ignition. However, the ignition with the required accuracy for cylinder 3 can indeed be calculated in T2 '.

In T1' sollten nur Berechnungen ausgeführt werden, die keine höchste Genauigkeit erfordern.T1 'should only perform calculations that do not require the highest accuracy.

Im vorliegenden Beispiel liegt also ein Rechenraster 60° Kurbelwellenwinkel vor dem oberen Totpunkt und berechnet eine Funktion, zum Beispiel einen Zündwinkel der nächsten Verbrennung. Die Ausgabe dieser Funktion erfordert es jedoch, dass die Motorsteuerung mit größter Zuverlässigkeit synchronisiert ist, somit auf die Lücke im Kurbelwellengeberrad warten muss, welche beispielsweise im vorliegenden Fall 50° Kurbelwellenwinkel vor dem oberen Totpunkt liegt. Im Startfall muss also auf die Lücke gewartet werden, wenn diese jedoch erkannt ist und damit die Freigabe der Berechnung oder Ausgabe der Funktion vorliegt, dann ist das entsprechende Rechenraster gerade vorbei und es muss auf das nächste entsprechende Rechenraster gewartet werden, welches bei einem 4-Zylindermotor dann in der Regel 720° periodisch liegt, das heißt in diesem Beispiel erst nach 710° Kurbelwellenwinkel wieder auftritt. Dieser Fall ist in Fig. 1 am Beispiel des Zylinders Zyl. 3 verdeutlicht.In the present example, therefore, a calculation grid is 60 ° crankshaft angle before top dead center and calculates a function, for example, a firing angle of the next combustion. However, the output of this function requires that the engine control be synchronized with the utmost reliability, thus waiting for the gap in the crankshaft sensor wheel, which in this case is 50 ° crankshaft angle before top dead center, for example. In the start case, therefore, the gap has to be waited, but if this is detected and therewith the release of the calculation or output of the function is present, then the corresponding calculation grid is just over and it has to wait for the next corresponding calculation grid, which in a 4- Cylinder engine is then usually 720 ° periodically, that is, in this example occurs again after 710 ° crankshaft angle. This case is in Fig. 1 the example of the cylinder Zyl. 3 clarifies.

Erfindungsgemäß wird das Rechenraster im Startfall nun kurzzeitig an andere Kurbelwellenwinkelpositionen verschoben, um das Startverhalten der Breimkraftmaschine zu beschleunigen. Im Startfall wird also das winkelsynchrone Berechnungsraster vorübergehend an andere Winkelpositionen verschoben. Im bezeichneten Beispiel bietet sich an, das Rechenraster, welches im Normalbetrieb des Motors bei 60° Kurbelwellenwinkel liegt, so lange auf 50° Kurbelwinkelwinkel vor dem oberen Totpunkt zu verschieben, bis die Lücke im Geberrad erkannt ist. Der Vorteil ist ein beschleunigtes Startverhalten. Im bezeichneten Beispiel ergibt sich eine 180° Kurbelwellenwinkel frühere Verbrennung, es wird also einen oberen Totpunkt eines Zylinders früher gezündet (beim 4-Zylindermotor wird ein oberer Totpunkt eines Zylinders aller 180° Kurbelwellenwinkel erreicht), bei üblichen Startzeiten einer Brennkraftmaschine und üblichen Anlasserdrehzahlen ergibt sich dadurch eine Startbeschleunigung um bis zu ca. 25 %.According to the invention, the calculation grid in the start case is now briefly shifted to other crankshaft angle positions in order to accelerate the starting behavior of the slurry engine. In the start case, therefore, the angle-synchronous calculation grid is temporarily shifted to other angular positions. In the example given, it makes sense to shift the calculation grid, which is at 60 ° crankshaft angle in normal operation of the engine, to 50 ° crank angle before top dead center until the gap in the sender wheel is detected. The advantage is an accelerated startup behavior. In the example given results in a 180 ° crankshaft angle earlier combustion, so it is a top dead center of a cylinder detonated earlier (in the 4-cylinder engine top dead center of a cylinder is reached all 180 ° crankshaft angle), at usual starting times of an internal combustion engine and normal starting speeds results thereby a starting acceleration by up to approx. 25%.

Claims (8)

  1. Method for starting an internal combustion engine in which at least one function (T, T1, T2) is started at a specific crankshaft angle by a control device, characterized in that the function is shifted through a relative angle (ΔCA) with respect to a later crankshaft angle, from the starting of the internal combustion engine to the reaching of an end condition.
  2. Method according to Claim 1, characterized in that the function controls an event which is carried out about an execution angle (A) after the starting of the function, and in that the relative angle (ΔCA) is smaller than the execution angle (A).
  3. Method according to Claim 1 or 2, characterized in that the end condition is the detection of an encoder wheel mark for an indicated absolute crankshaft angle, in particular the detection of an encoder wheel gap.
  4. Method according to one of Claims 1 to 3, characterized in that the end condition is the reaching of the minimum rotational speed of the crankshaft.
  5. Method according to one of Claims 1 to 4, characterized in that the function comprises the calculation of injection parameters and/or an ignition time of at least one cylinder of the internal combustion engine.
  6. Method according to Claim 5, characterized in that the injection parameters comprise a start of injection.
  7. Device, in particular control unit or internal combustion engine, which is configured to carry out a method according to one of Claims 1 to 6.
  8. Computer program with program code for carrying out all the steps according to one of Claims 1 to 6 when the program is executed in a computer.
EP07857706.1A 2006-12-27 2007-12-17 Method for starting an internal combustion engine Not-in-force EP2126320B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006061574 2006-12-27
DE102007027709A DE102007027709A1 (en) 2006-12-27 2007-06-15 Four-cylinder internal combustion engine starting method for vehicle, involves starting function at crankshaft angle, and shifting function by starting engine up to reaching end condition about angle relative to another crankshaft angle
PCT/EP2007/064076 WO2008080817A1 (en) 2006-12-27 2007-12-17 Method for starting an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2126320A1 EP2126320A1 (en) 2009-12-02
EP2126320B1 true EP2126320B1 (en) 2016-04-20

Family

ID=39201622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07857706.1A Not-in-force EP2126320B1 (en) 2006-12-27 2007-12-17 Method for starting an internal combustion engine

Country Status (8)

Country Link
US (1) US8660776B2 (en)
EP (1) EP2126320B1 (en)
JP (1) JP2010514976A (en)
KR (1) KR101404878B1 (en)
CN (1) CN101573523B (en)
BR (1) BRPI0720865A2 (en)
DE (1) DE102007027709A1 (en)
WO (1) WO2008080817A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063101A1 (en) * 2007-12-28 2009-07-02 Robert Bosch Gmbh Method for operating an internal combustion engine
US8042385B2 (en) * 2009-09-09 2011-10-25 GM Global Technology Operations LLC Synchronization diagnostic systems and methods for engine controllers
FR2981121B1 (en) * 2011-10-05 2013-12-27 Continental Automotive France MOTOR SYNCHRONIZATION METHOD
JP5858793B2 (en) * 2012-01-10 2016-02-10 本田技研工業株式会社 Fuel supply device for internal combustion engine
CN103527250A (en) * 2012-07-04 2014-01-22 周登荣 Start control device and method of aerodynamic engine
DE102012218183A1 (en) * 2012-10-05 2014-04-10 Robert Bosch Gmbh Method for operating an internal combustion engine
FR3120658B1 (en) * 2021-03-12 2023-02-10 Vitesco Technologies Optimization of a process for controlling an internal combustion engine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2638670A1 (en) * 1976-08-27 1978-03-02 Bosch Gmbh Robert FUEL INJECTION PUMP
JPS58167837A (en) * 1982-03-30 1983-10-04 Toyota Motor Corp Control method of fuel injection in internal-combustion engine
US5311771A (en) * 1992-03-30 1994-05-17 Caterpillar Inc. Method for determining the rotational position of a crankshaft of an internal combustion engine
JP3379271B2 (en) * 1995-03-28 2003-02-24 株式会社デンソー Engine cylinder discriminator
US5862795A (en) * 1996-01-23 1999-01-26 Toyota Jidosha Kabushiki Kaisha Evaporative control system for a multicylinder internal combustion engine
KR100342550B1 (en) * 1996-12-30 2002-11-18 기아자동차주식회사 Method for controlling fuel injection and ignition time during vehicle starting
DE19810214B4 (en) * 1998-03-10 2009-09-17 Robert Bosch Gmbh Method for synchronizing a multi-cylinder internal combustion engine
DE10081774B4 (en) * 1999-06-07 2007-11-08 Keihin Corp. Apparatus and method for detecting the crank angle position in an internal combustion engine
JP3578047B2 (en) 1999-11-11 2004-10-20 国産電機株式会社 Internal combustion engine ignition control method and internal combustion engine ignition control device
JP4089109B2 (en) 1999-11-29 2008-05-28 株式会社デンソー Ignition control device for internal combustion engine
CN101025124B (en) * 2001-03-30 2010-08-18 三菱重工业株式会社 Internal combustion engine combustion diagnosis/control apparatus and combustion diagnosis/control method
JP3815261B2 (en) * 2001-06-08 2006-08-30 トヨタ自動車株式会社 Start control device for internal combustion engine
TWI221880B (en) * 2001-10-24 2004-10-11 Yamaha Motor Co Ltd Engine control device
US6789517B2 (en) * 2001-11-19 2004-09-14 General Motors Corporation Method for managing thermal load on an engine
JP3778349B2 (en) * 2001-11-20 2006-05-24 三菱電機株式会社 Fuel injection control device for start-up of internal combustion engine
JP3614145B2 (en) * 2002-03-18 2005-01-26 日産自動車株式会社 Control device for hybrid vehicle
DE10304449B4 (en) * 2003-02-04 2007-10-25 Siemens Ag Method for controlling a direct injection of an internal combustion engine
JP2004316561A (en) 2003-04-16 2004-11-11 Toyota Motor Corp Start controller for internal combustion engine
FR2853935B1 (en) * 2003-04-17 2007-03-02 Siemens Vdo Automotive METHOD OF SYNCHRONIZING THE INJECTION WITH THE MOTOR PHASE IN AN ENGINE WITH ELECTRONIC CONTROL OF THE INJECTORS
DE10329506A1 (en) * 2003-06-30 2005-01-20 Daimlerchrysler Ag Auto-ignition internal combustion engine
DE102004008261B3 (en) * 2004-02-20 2005-09-29 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine-generator unit
DE102004010519B4 (en) * 2004-03-04 2007-10-04 Mehnert, Jens, Dr. Ing. Method for controlling the air flow rate of internal combustion engines
JP4516401B2 (en) * 2004-10-18 2010-08-04 日立オートモティブシステムズ株式会社 Engine start control device
JP4306600B2 (en) * 2004-12-16 2009-08-05 トヨタ自動車株式会社 Control device for internal combustion engine
KR100707328B1 (en) * 2005-01-18 2007-04-13 닛산 지도우샤 가부시키가이샤 Starting system for internal combustion engine
JP2007071061A (en) * 2005-09-05 2007-03-22 Kokusan Denki Co Ltd Engine control system
JP4187013B2 (en) * 2006-06-06 2008-11-26 国産電機株式会社 Ignition device for internal combustion engine
JP4727518B2 (en) * 2006-07-12 2011-07-20 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP2008215321A (en) * 2007-03-08 2008-09-18 Hitachi Ltd High pressure fuel pump control device for internal combustion engine

Also Published As

Publication number Publication date
KR20090102770A (en) 2009-09-30
KR101404878B1 (en) 2014-06-09
WO2008080817A1 (en) 2008-07-10
DE102007027709A1 (en) 2008-07-03
BRPI0720865A2 (en) 2014-03-04
CN101573523A (en) 2009-11-04
JP2010514976A (en) 2010-05-06
CN101573523B (en) 2013-09-25
US8660776B2 (en) 2014-02-25
EP2126320A1 (en) 2009-12-02
US20110184633A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
EP2126320B1 (en) Method for starting an internal combustion engine
DE4440656B4 (en) Variable camshaft adjuster
EP0784745B1 (en) Electronic control system for an internal combustion engine
DE69301280T2 (en) Cylinder identification method for the control of an electronic injection system of an internal combustion engine
DE102008021581B3 (en) Method for determining the rail pressure in a common rail system and common rail injection system
DE102006040337A1 (en) Method for operating an internal combustion engine
DE102016117342B4 (en) Device for detecting a misfire
WO1998012432A1 (en) Methods to determine the phase angle of a four stroke internal combustion engine with an odd number of cylinders
DE19521277A1 (en) Device for cylinder detection in a multi-cylinder internal combustion engine
EP1590563B1 (en) Method for controlling a direct injection of an internal combustion engine
DE102006043678A1 (en) Device and method for operating an internal combustion engine
EP2587225A1 (en) Method for determining a rotation angle
EP0638717B1 (en) Apparatus for controlling the fuel injection and the ignition of a combustion engine
DE19638338A1 (en) Encoder arrangement for quick cylinder recognition in an internal combustion engine
DE102008010053B3 (en) Method for synchronizing injection system of internal combustion engine, involves detecting crankshaft angle of crankshaft of internal combustion engine by stroke sequence of internal combustion engine
WO2000057053A1 (en) Ignition control device and method
DE10323486B4 (en) Method for operating an internal combustion engine, in particular in a motor vehicle
DE19735720A1 (en) Method for recognizing the combustion stroke of a specific cylinder when starting an internal combustion engine
DE4418578B4 (en) Device for detecting the phase position in an internal combustion engine
DE10324858B4 (en) Method for the reverse rotation detection of an internal combustion engine
DE10249393B4 (en) Ignition control method and apparatus of an engine
DE10234949C1 (en) Crankshaft position determination method for multi-cylinder IC engine using evaluation of angle markings in camshaft signal
DE10196053B4 (en) Method and arrangement on a multi-cylinder four-stroke internal combustion engine
WO2003060300A1 (en) Method for reversing the direction of rotation of a two-stroke engine
EP1327761B1 (en) Process for verifying the operation of two sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091211

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014753

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014753

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161221

Year of fee payment: 10

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161217

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 792721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014753

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701