EP2126320B1 - Method for starting an internal combustion engine - Google Patents
Method for starting an internal combustion engine Download PDFInfo
- Publication number
- EP2126320B1 EP2126320B1 EP07857706.1A EP07857706A EP2126320B1 EP 2126320 B1 EP2126320 B1 EP 2126320B1 EP 07857706 A EP07857706 A EP 07857706A EP 2126320 B1 EP2126320 B1 EP 2126320B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- angle
- internal combustion
- combustion engine
- crankshaft
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
- F02D2041/0092—Synchronisation of the cylinders at engine start
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/12—Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed
Definitions
- the present invention relates to a method for starting an internal combustion engine, in which at least one function is started at a specific crankshaft angle by a control unit.
- a second method the evaluation of a signal of a camshaft sensor, wherein the associated Nockenwellengebelrad may be designed to be suitable to allow the fastest possible position determination.
- a donor wheel is also referred to as a quick-start donor.
- This type of synchronization is associated with uncertainty in internal combustion engines with adjustable camshaft, since the camshaft could be incorrectly locked in the start wrong.
- This method is also referred to as synchronization stage 2.
- the evaluation of the crankshaft and camshaft sensor takes place at the time of the gap in the crankshaft sensor wheel. This type of synchronization is subject to the slightest uncertainty, since the crankshaft and camshaft position belonging to the gear wheel gap can be reliably determined.
- Such a method is also referred to as synchronization stage 3.
- the aforementioned synchronization procedures can be parallel. With increasing synchronization level, the uncertainty of the determination of the crankshaft angle is reduced.
- the respective achieved synchronization stage during Losdusens the Crankshaft of the internal combustion engine in the start of the internal combustion engine can be displayed for example by a stored in a controller variable.
- angle synchronous calculation grids (also referred to as tasks) can be executed, which can trigger, for example, fuel injection or ignition of a cylinder.
- the position of the angle synchronous calculation grid relative to the top dead center of a reference cylinder is usually adjustable. At different crankshaft angles, different calculation grids with different functions can be executed.
- angle-synchronized calculation rasters can be started in synchronization stage 1 or 2 in accordance with the information of an outlet detection or of the camshaft sensor.
- Motor control functions, such as injection or ignition, which are processed in these angle-synchronous rasters can be called in the start of the internal combustion engine, but it may be the case that an actual control of the corresponding output stage, for example, the ignition or Triggering of an injection valve or the like, as long as it must be suppressed until the synchronization stage 3 is reached, so that the greatest possible accuracy of the crankshaft angle determination is given.
- the achievement of the synchronization stage 3 thus means that the crankshaft encoder wheel gap or, in the case of an encoder wheel with asynchronous pitch, the asynchronous arrangement of teeth and tooth gaps replacing the transmitter wheel gap must have been detected.
- the Geberradlücke is defined by the mounting of the encoder wheel, is dependent on the particular model of the internal combustion engine and can, for example, at 50 ° crankshaft angle before top dead center (TDC) of a reference cylinder.
- Different boundary conditions may require that a certain angle-synchronous calculation grid be at a defined angle before top dead center.
- the accuracy of an engine control function calculated in this calculation grid requires that calculations or calculation outputs in the start of the internal combustion engine can only take place at synchronization stage 3, that is to say a specific one Functionality with its execution in the start of the internal combustion engine must wait in principle for a recognized gap in the sender wheel.
- the case may occur that the start of the internal combustion engine begins with a crankshaft angle at which the angle-synchronous calculation grid for a function has just been exceeded.
- the start of the internal combustion engine starts, for example, at a crankshaft angle of 50 ° before the top dead center of a cylinder and begins an angle synchronous calculation grid for a specific function, for example, 60 ° before the top dead center of the cylinder, this function will only after reaching the crankshaft angle of 50 again ° executed before the top dead center of the cylinder.
- the associated function is performed only at a much later time, namely after a crankshaft revolution.
- An object of the present invention is to specify a method and a device as well as a computer program which bring about the earliest possible execution of angle-synchronous calculating grids in the start of an internal combustion engine.
- a method for starting an internal combustion engine in which at least one function to a crankshaft angle is started by a control unit, wherein the function is shifted from the start of the internal combustion engine until reaching an end condition by a relative angle to a later crankshaft angle.
- the function is started in an angle-synchronous calculation grid, so the function is started at a defined crankshaft angle.
- Function is understood here as any type of calculation or control or regulation of functions of the internal combustion engine, that is, for example, the determination of an ignition point, the determination of an injection time, the determination of an injection quantity and the like.
- the start of the internal combustion engine is understood to mean the switching on of a control unit when the crankshaft is not rotating.
- the start of the internal combustion engine can also be defined at the time when a starter operation or the start of rotation of the crankshaft takes place.
- a later crankshaft angle is understood here to mean a crankshaft angle that is reached later in terms of time.
- the relative angle is thereby positively defined in the direction of rotation.
- the function controls an event which is an execution angle after the Start the function is executed, and that the relative angle is smaller than the execution angle.
- the function started at the particular crankshaft angle calculates or controls an event that is the execution angle after the particular crankshaft angle. The function thus requires a certain time and thus a certain swept crankshaft angle until the result of the function is present.
- the relative angle is now set so that the crankshaft angle to which the result of the function is present, must not be moved.
- the relative angle is preferably selected to be so large that a calculation grid located ahead of the encoder wheel gap comes to rest after the shift to the encoder wheel gap. Due to the gap, the synchronization level 3 is reached and the injection can be released immediately in the shifted calculation grid.
- the function must deliver the result faster by shifting the crankshaft angle to which it is started, which is ensured by the low crankshaft speed during the start of the internal combustion engine.
- the end condition is the recognition of a Geberradmark ist for a designated absolute crankshaft angle, in particular the detection of a Geberradlücke.
- the end condition can also be the achievement of a minimum speed of the crankshaft.
- the shift is canceled by the relative angle.
- the function comprises the calculation of injection parameters and / or an ignition time of at least one cylinder of the internal combustion engine.
- the injection parameters preferably comprise at least one injection start of an injection.
- a device in particular a control device or an internal combustion engine, which is set up to carry out a method according to the invention, and by a computer program with program code for carrying out all steps according to a method according to the invention when the program is executed in a computer ,
- a diagram is shown showing the performance of various engine functions above the crankshaft angle.
- the crankshaft angle (OKW) is designated by the top dead centers OT of the cylinders 1 to 4 of a 4-cylinder internal combustion engine.
- the top dead center of the cylinder 1 is as OT Cyl. 1
- the top dead center of the cylinder 2 is as OT Cyl. 2
- the top dead center of the cylinder 3 is as OT Cyl. 3
- the top dead center of the cylinder 4 is as OT Cyl. 4 designates.
- the signal of a crankshaft sensor SKW is shown as a line trace, wherein the donor wheel gap is denoted by GL.
- the calls of functions are used to determine control or regulating variables of an internal combustion engine or to carry out certain actions of the internal combustion engine, such as the discontinuation of an injection or the ignition of a spark plug, wherein the functions are performed by a control unit or a computer program executed in the control unit.
- the functions T control events which are executed by an execution angle A after the start of the functions.
- the functions T control an ignition Z, which is started by the execution angle A later than the beginning of the functions T.
- Ansaugphasen for the respective cylinder are referred to as a solid horizontal line, for ease of recognition is again one of the Ansauphasen marked with a reference sign AN.
- the ejection phase AU located before the suction phase AN is shown here in each case as a checkered rectangle.
- Layer injections SE are shown as adjacent and connected by a line diamonds
- homogeneous injections HE are shown as adjacent and connected by a line rectangles.
- Ignitions Z are each shown as triangles.
- Fig. 1 shows the waveform of the crankshaft sensor, assuming a starting position of the internal combustion engine directly after the Geberradlücke. Shown are the 180 ° periodic functions for the individual cylinders, which are adjusted in this case to the right (to late) until the first gap in the encoder wheel is detected.
- a functionality which requires the synchronization stage 3, ie the presence of a synchronization based on the encoder wheel gap, can be executed as quickly as possible.
- this functionality represents, for example, the ignition output, by this measure, ignition of cylinder 3 in the embodiment of Fig. 1 be initiated, whereas without the displacement according to the invention by a relative angle ⁇ KW only ignition of cylinder 4 would be possible.
- a function T1 of the cylinder 2 and a function T2 of the cylinder 3 are between the start of the internal combustion engine ST and the crankshaft angle, in which the Geberradlücke GL has been recognized for the first time.
- the two functions T1 and T2 thus take place between the start of the internal combustion engine to the crankshaft angle ST and the presence of a secured synchronization with the crankshaft angle GL2.
- the relative angles ⁇ KW are each represented by curved arrows, the function T1 is shifted by the relative angle ⁇ KW to the function T1 'and the function T2 by the relative angle ⁇ KW to the function T2'.
- T1 should only perform calculations that do not require the highest accuracy.
- a calculation grid is 60 ° crankshaft angle before top dead center and calculates a function, for example, a firing angle of the next combustion.
- the output of this function requires that the engine control be synchronized with the utmost reliability, thus waiting for the gap in the crankshaft sensor wheel, which in this case is 50 ° crankshaft angle before top dead center, for example.
- the calculation grid in the start case is now briefly shifted to other crankshaft angle positions in order to accelerate the starting behavior of the slurry engine.
- the angle-synchronous calculation grid is temporarily shifted to other angular positions.
- it makes sense to shift the calculation grid, which is at 60 ° crankshaft angle in normal operation of the engine, to 50 ° crank angle before top dead center until the gap in the sender wheel is detected.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Start einer Brennkraftmaschine, bei der mindestens eine Funktion zu einem bestimmten Kurbelwellenwinkel durch ein Steuergerät gestartet wird.The present invention relates to a method for starting an internal combustion engine, in which at least one function is started at a specific crankshaft angle by a control unit.
Zur Synchronisierung, also der Positionsfindung des Kurbelwellenwinkels der Kurbelwelle der Brennkraftmaschine im Start, kommen derzeit verschiedene Verfahren zum Einsatz siehe z.B.
Die zuvor genannten Verfahren zur Synchronisierung können parallel voneinander ablaufen. Mit steigender Synchronisierungsstufe reduziert sich die Unsicherheit der Ermittlung des Kurbelwellenwinkels. Die jeweilig erreichte Synchronisierungsstufe während des Losdrehens der Kurbelwelle der Brennkraftmaschine im Start der Brennkraftmaschine kann zum Beispiel durch eine in einem Steuergerät abgelegte Variable angezeigt werden.The aforementioned synchronization procedures can be parallel. With increasing synchronization level, the uncertainty of the determination of the crankshaft angle is reduced. The respective achieved synchronization stage during Losdrehens the Crankshaft of the internal combustion engine in the start of the internal combustion engine can be displayed for example by a stored in a controller variable.
Sobald die Synchronisierung erfolgt ist, können winkel synchrone Rechenraster (auch als Tasks bezeichnet) ausgeführt werden, welche zum Beispiel eine Kraftstoff-Einspritzung oder eine Zündung eines Zylinders auslösen können. Die Position der winkelsynchronen Rechenraster relativ zum oberen Totpunkt eines Referenzzylinders ist in der Regel einstellbar. Zu unterschiedlichen Kurbelwellenwinkeln können unterschiedliche Rechenraster mit unterschiedlichen Funktionen ausgeführt werden.Once the synchronization has taken place, angle synchronous calculation grids (also referred to as tasks) can be executed, which can trigger, for example, fuel injection or ignition of a cylinder. The position of the angle synchronous calculation grid relative to the top dead center of a reference cylinder is usually adjustable. At different crankshaft angles, different calculation grids with different functions can be executed.
Während eines Starts einer Brennkraftmaschine, sobald also die Drehbewegung der Kurbelwelle beginnt, können winkelsynchrone Rechenraster entsprechend der Informationen einer Auslauferkennung oder des Nockenwellen-Sensors in der Synchronisierungsstufe 1 oder 2 gestartet werden. Motorsteuerungsfunktionen, wie zum Beispiel eine Einspritzung oder Zündung, welche in diesen winkelsynchronen Rechenrastern verarbeitet werden, können im Start der Brenn-kraftmaschine zwar aufgerufen werden, es kann jedoch der Fall sein, dass eine tatsächliche Ansteuerung der entsprechenden Endstufe, zum Beispiel der Zündung oder der Ansteuerung eines Einspritzventils oder dergleichen, solange unterdrückt werden muss, bis die Synchronisierungsstufe 3 erreicht ist, bis also eine größtmögliche Genauigkeit der Kurbelwellenwinkel-Bestimmung gegeben ist.During a start of an internal combustion engine, as soon as the rotational movement of the crankshaft begins, angle-synchronized calculation rasters can be started in
Das Erreichen der Synchronisierungsstufe 3 bedeutet also, dass die Kurbelwellengeberradlücke oder bei einem Geberrad mit asynchroner Teilung die die Geberradlücke ersetzende asynchrone Anordnung von Zähnen und Zahnlücken, detektiert worden sein muss. Die Geberradlücke wird durch die Montage des Geberrades definiert, ist dabei abhängig von dem jeweiligen Modell der Brennkraftmaschine und kann zum Beispiel bei 50° Kurbelwellenwinkel vor dem oberen Totpunkt (OT) eines Referenzzylinders liegen.The achievement of the
Verschiedene Randbedingungen können es erfordern, dass ein bestimmtes winkelsynchrones Rechenraster in einem definierten Winkel vor dem oberen Totpunkt liegen muss. Zusätzlich kann der Fall vorliegen, dass die Genauigkeit einer in diesem Rechenraster gerechneten Motorsteuerungsfunktion es erfordert, dass Berechnungen oder Berechnungsausgaben im Start der Brennkraftmaschine erst bei Synchronisierungsstufe 3 erfolgen können, dass also eine bestimmte Funktionalität mit ihrer Ausführung im Start der Brennkraftmaschine prinzipiell auf eine erkannte Lücke im Geberrad warten muss.Different boundary conditions may require that a certain angle-synchronous calculation grid be at a defined angle before top dead center. In addition, it may be the case that the accuracy of an engine control function calculated in this calculation grid requires that calculations or calculation outputs in the start of the internal combustion engine can only take place at
Dabei kann der Fall eintreten, dass der Start der Brennkraftmaschine mit einem Kurbelwellenwinkel beginnt, bei dem das winkelsynchron Rechenraster für eine Funktion gerade überschritten wurde. Beginnt der Start der Brennkraftmaschine also beispielsweise bei einem Kurbelwellenwinkel von 50° vor dem oberen Totpunkt eines Zylinders und beginnt ein winkelsynchrones Rechenraster für eine spezielle Funktion beispielsweise 60° vor dem oberen Totpunkt des Zylinders, so wird diese Funktion erst nach erneutem Erreichen des Kurbelwellenwinkels von 50° vor dem oberen Totpunkt des Zylinders ausgeführt. Dies bedeutet, dass die zugehörige Funktion erst zu einem deutlich späteren Zeitpunkt, nämlich nach einer Kurbelwellenumdrehung, ausgeführt wird.In this case, the case may occur that the start of the internal combustion engine begins with a crankshaft angle at which the angle-synchronous calculation grid for a function has just been exceeded. Thus, if the start of the internal combustion engine starts, for example, at a crankshaft angle of 50 ° before the top dead center of a cylinder and begins an angle synchronous calculation grid for a specific function, for example, 60 ° before the top dead center of the cylinder, this function will only after reaching the crankshaft angle of 50 again ° executed before the top dead center of the cylinder. This means that the associated function is performed only at a much later time, namely after a crankshaft revolution.
Eine Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung sowie ein Computerprogramm anzugeben, die eine möglichst frühzeitige Ausführung von winkelsynchronen Rechenrastern im Start einer Brennkraftmaschine bewirken.An object of the present invention is to specify a method and a device as well as a computer program which bring about the earliest possible execution of angle-synchronous calculating grids in the start of an internal combustion engine.
Dieses Problem wird gelöst durch ein Verfahren zum Start einer Brennkraftmaschine, bei der mindestens eine Funktion zu einem Kurbelwellenwinkel durch ein Steuergerät gestartet wird, wobei die Funktion vom Start der Brennkraftmaschine bis zum Erreichen einer-Endbedingung um einen Relativwinkel zu einem späteren Kurbelwellenwinkel verschoben wird. Das Starten der Funktion erfolgt in einem winkelsynchronen Rechenraster, die Funktion wird also zu einem definierten Kurbelwellenwinkel gestartet. Unter Funktion wird hier jede Art der Berechnung oder Steuerung bzw. Regelung von Funktionen der Brennkraftmaschine verstanden, also beispielsweise die Bestimmung eines Zündzeitpunktes, die Bestimmung eines Einspritzzeitpunktes, die Bestimmung einer Einspritzmenge und dergleichen. Unter Start der Brennkraftmaschine wird hier das Einschalten eines Steuergerätes bei nicht drehender Kurbelwelle verstanden. Der Start der Brennkraftmaschine kann auch definiert werden zu dem Zeitpunkt, zu dem eine Anlasserbetätigung oder der Drehbeginn der Kurbelwelle erfolgt. Unter einem späteren Kurbelwellenwinkel wird hier ein Kurbelwellenwinkel verstanden, der zeitlich gesehen später erreicht wird. Der Relativwinkel ist dadurch in Drehrichtung positiv definiert. Vorzugsweise ist vorgesehen, dass die Funktion ein Ereignis steuert, das um einen Ausführungswinkel nach dem Start der Funktion ausgeführt wird, und dass der Relativwinkel kleiner als der Ausführungswinkel ist. Die zu dem bestimmten Kurbelwellenwinkel gestartete Funktion berechnet oder steuert ein Ereignis, das um den Ausführungswinkel nach dem bestimmten Kurbelwellenwinkel liegt. Die Funktion benötigt also eine gewisse Zeit und damit einen gewissen überstrichenen Kurbelwellenwinkel bis das Ergebnis der Funktion vorliegt. Der Relativwinkel wird nun so gelegt, dass der Kurbelwellenwinkel, zu dem das Ergebnis der Funktion vorliegt, nicht verschoben werden muss. Vorzugsweise wird der Relativwinkel so groß gewählt, dass ein zeitlich vor der Geberradlücke liegendes Rechenraster nach der Verschiebung nach der Geberradlücke zu liegen kommt. Durch die Lücke ist die Synchronisierungsstufe 3 erreicht und die Einspritzung kann im verschobenen Rechenraster sofort freigegeben werden. Die Funktion muss durch das Verschieben des Kurbelwellenwinkels, zu dem diese gestartet wird, das Ergebnis schneller liefern, was durch die geringe Kurbelwellendrehzahl während des Starts der Brennkraftmaschine aber gewährleistet ist. Vorzugsweise ist weiter vorgesehen, dass die Endbedingung das Erkennen einer Geberradmarkierung für einen ausgewiesenen Absolut-Kurbelwellenwinkel, insbesondere das Erkennen einer Geberradlücke, ist. Die Endbedingung kann aber ebenso das Erreichen einer Mindestdrehzahl der Kurbelwelle sein. Bei Erreichen der Endbedingung wird die Verschiebung um den Relativwinkel aufgehoben. Vorzugsweise ist vorgesehen, dass die Funktion die Berechnung von Einspritzparametern und/oder einem Zündzeitpunkt zumindest eines Zylinders der Brennkraftmaschine umfasst. Die Einspritzparameter umfassen vorzugsweise mindestens einen Einspritzbeginn einer Einspritzung.This problem is solved by a method for starting an internal combustion engine, in which at least one function to a crankshaft angle is started by a control unit, wherein the function is shifted from the start of the internal combustion engine until reaching an end condition by a relative angle to a later crankshaft angle. The function is started in an angle-synchronous calculation grid, so the function is started at a defined crankshaft angle. Function is understood here as any type of calculation or control or regulation of functions of the internal combustion engine, that is, for example, the determination of an ignition point, the determination of an injection time, the determination of an injection quantity and the like. The start of the internal combustion engine is understood to mean the switching on of a control unit when the crankshaft is not rotating. The start of the internal combustion engine can also be defined at the time when a starter operation or the start of rotation of the crankshaft takes place. A later crankshaft angle is understood here to mean a crankshaft angle that is reached later in terms of time. The relative angle is thereby positively defined in the direction of rotation. Preferably, it is provided that the function controls an event which is an execution angle after the Start the function is executed, and that the relative angle is smaller than the execution angle. The function started at the particular crankshaft angle calculates or controls an event that is the execution angle after the particular crankshaft angle. The function thus requires a certain time and thus a certain swept crankshaft angle until the result of the function is present. The relative angle is now set so that the crankshaft angle to which the result of the function is present, must not be moved. The relative angle is preferably selected to be so large that a calculation grid located ahead of the encoder wheel gap comes to rest after the shift to the encoder wheel gap. Due to the gap, the
Das eingangs genannte Problem wird auch gelöst durch eine Vorrichtung, insbesondere ein Steuergerät oder eine Brennkraftmaschine, die zur Durchführung eines erfindungsgemäßen Verfahrens eingerichtet ist, sowie durch ein Computerprogramm mit Programmcode zur Durchführung aller Schritte nach einem erfindungsgemäßen Verfahren, wenn das Programm in einem Computer ausgeführt wird.The problem mentioned at the outset is also solved by a device, in particular a control device or an internal combustion engine, which is set up to carry out a method according to the invention, and by a computer program with program code for carrying out all steps according to a method according to the invention when the program is executed in a computer ,
Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der beiliegenden Zeichnung näher erläutert. Dabei zeigt:
- Fig. 1
- die zeitliche Abfolge von Funktionen für eine 4-Zylinder-Brennkraftmaschine.
- Fig. 1
- the temporal sequence of functions for a 4-cylinder internal combustion engine.
In
Eine Funktion T1 des Zylinders 2 und eine Funktion T2 des Zylinders 3 liegen zwischen dem Start der Brennkraftmaschine ST und dem Kurbelwellenwinkel, bei dem die Geberradlücke GL erstmalig erkannt worden ist. Die beiden Funktionen T1 und T2 finden also zwischen dem Start der Brennkraftmaschine zum Kurbelwellenwinkel ST und dem Vorliegen einer gesicherten Synchronisierung zum Kurbelwellenwinkel GL2 statt. Erfindungsgemäß ist nun vorgesehen, diese Funktionen um einen Relativwinkel ΔKW zu späteren Kurbelwellenwinkeln hin zu verschieben. Die Relativwinkel ΔKW sind jeweils durch geschwungene Pfeile dargestellt, die Funktion T1 ist um den Relativwinkel ΔKW zur Funktion T1' verschoben und die Funktion T2 um den Relativwinkel ΔKW zur Funktion T2'. Dies hat in dem in
In T1' sollten nur Berechnungen ausgeführt werden, die keine höchste Genauigkeit erfordern.T1 'should only perform calculations that do not require the highest accuracy.
Im vorliegenden Beispiel liegt also ein Rechenraster 60° Kurbelwellenwinkel vor dem oberen Totpunkt und berechnet eine Funktion, zum Beispiel einen Zündwinkel der nächsten Verbrennung. Die Ausgabe dieser Funktion erfordert es jedoch, dass die Motorsteuerung mit größter Zuverlässigkeit synchronisiert ist, somit auf die Lücke im Kurbelwellengeberrad warten muss, welche beispielsweise im vorliegenden Fall 50° Kurbelwellenwinkel vor dem oberen Totpunkt liegt. Im Startfall muss also auf die Lücke gewartet werden, wenn diese jedoch erkannt ist und damit die Freigabe der Berechnung oder Ausgabe der Funktion vorliegt, dann ist das entsprechende Rechenraster gerade vorbei und es muss auf das nächste entsprechende Rechenraster gewartet werden, welches bei einem 4-Zylindermotor dann in der Regel 720° periodisch liegt, das heißt in diesem Beispiel erst nach 710° Kurbelwellenwinkel wieder auftritt. Dieser Fall ist in
Erfindungsgemäß wird das Rechenraster im Startfall nun kurzzeitig an andere Kurbelwellenwinkelpositionen verschoben, um das Startverhalten der Breimkraftmaschine zu beschleunigen. Im Startfall wird also das winkelsynchrone Berechnungsraster vorübergehend an andere Winkelpositionen verschoben. Im bezeichneten Beispiel bietet sich an, das Rechenraster, welches im Normalbetrieb des Motors bei 60° Kurbelwellenwinkel liegt, so lange auf 50° Kurbelwinkelwinkel vor dem oberen Totpunkt zu verschieben, bis die Lücke im Geberrad erkannt ist. Der Vorteil ist ein beschleunigtes Startverhalten. Im bezeichneten Beispiel ergibt sich eine 180° Kurbelwellenwinkel frühere Verbrennung, es wird also einen oberen Totpunkt eines Zylinders früher gezündet (beim 4-Zylindermotor wird ein oberer Totpunkt eines Zylinders aller 180° Kurbelwellenwinkel erreicht), bei üblichen Startzeiten einer Brennkraftmaschine und üblichen Anlasserdrehzahlen ergibt sich dadurch eine Startbeschleunigung um bis zu ca. 25 %.According to the invention, the calculation grid in the start case is now briefly shifted to other crankshaft angle positions in order to accelerate the starting behavior of the slurry engine. In the start case, therefore, the angle-synchronous calculation grid is temporarily shifted to other angular positions. In the example given, it makes sense to shift the calculation grid, which is at 60 ° crankshaft angle in normal operation of the engine, to 50 ° crank angle before top dead center until the gap in the sender wheel is detected. The advantage is an accelerated startup behavior. In the example given results in a 180 ° crankshaft angle earlier combustion, so it is a top dead center of a cylinder detonated earlier (in the 4-cylinder engine top dead center of a cylinder is reached all 180 ° crankshaft angle), at usual starting times of an internal combustion engine and normal starting speeds results thereby a starting acceleration by up to approx. 25%.
Claims (8)
- Method for starting an internal combustion engine in which at least one function (T, T1, T2) is started at a specific crankshaft angle by a control device, characterized in that the function is shifted through a relative angle (ΔCA) with respect to a later crankshaft angle, from the starting of the internal combustion engine to the reaching of an end condition.
- Method according to Claim 1, characterized in that the function controls an event which is carried out about an execution angle (A) after the starting of the function, and in that the relative angle (ΔCA) is smaller than the execution angle (A).
- Method according to Claim 1 or 2, characterized in that the end condition is the detection of an encoder wheel mark for an indicated absolute crankshaft angle, in particular the detection of an encoder wheel gap.
- Method according to one of Claims 1 to 3, characterized in that the end condition is the reaching of the minimum rotational speed of the crankshaft.
- Method according to one of Claims 1 to 4, characterized in that the function comprises the calculation of injection parameters and/or an ignition time of at least one cylinder of the internal combustion engine.
- Method according to Claim 5, characterized in that the injection parameters comprise a start of injection.
- Device, in particular control unit or internal combustion engine, which is configured to carry out a method according to one of Claims 1 to 6.
- Computer program with program code for carrying out all the steps according to one of Claims 1 to 6 when the program is executed in a computer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006061574 | 2006-12-27 | ||
DE102007027709A DE102007027709A1 (en) | 2006-12-27 | 2007-06-15 | Four-cylinder internal combustion engine starting method for vehicle, involves starting function at crankshaft angle, and shifting function by starting engine up to reaching end condition about angle relative to another crankshaft angle |
PCT/EP2007/064076 WO2008080817A1 (en) | 2006-12-27 | 2007-12-17 | Method for starting an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2126320A1 EP2126320A1 (en) | 2009-12-02 |
EP2126320B1 true EP2126320B1 (en) | 2016-04-20 |
Family
ID=39201622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07857706.1A Not-in-force EP2126320B1 (en) | 2006-12-27 | 2007-12-17 | Method for starting an internal combustion engine |
Country Status (8)
Country | Link |
---|---|
US (1) | US8660776B2 (en) |
EP (1) | EP2126320B1 (en) |
JP (1) | JP2010514976A (en) |
KR (1) | KR101404878B1 (en) |
CN (1) | CN101573523B (en) |
BR (1) | BRPI0720865A2 (en) |
DE (1) | DE102007027709A1 (en) |
WO (1) | WO2008080817A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007063101A1 (en) * | 2007-12-28 | 2009-07-02 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
US8042385B2 (en) * | 2009-09-09 | 2011-10-25 | GM Global Technology Operations LLC | Synchronization diagnostic systems and methods for engine controllers |
FR2981121B1 (en) * | 2011-10-05 | 2013-12-27 | Continental Automotive France | MOTOR SYNCHRONIZATION METHOD |
JP5858793B2 (en) * | 2012-01-10 | 2016-02-10 | 本田技研工業株式会社 | Fuel supply device for internal combustion engine |
CN103527250A (en) * | 2012-07-04 | 2014-01-22 | 周登荣 | Start control device and method of aerodynamic engine |
DE102012218183A1 (en) * | 2012-10-05 | 2014-04-10 | Robert Bosch Gmbh | Method for operating an internal combustion engine |
FR3120658B1 (en) * | 2021-03-12 | 2023-02-10 | Vitesco Technologies | Optimization of a process for controlling an internal combustion engine |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2638670A1 (en) * | 1976-08-27 | 1978-03-02 | Bosch Gmbh Robert | FUEL INJECTION PUMP |
JPS58167837A (en) * | 1982-03-30 | 1983-10-04 | Toyota Motor Corp | Control method of fuel injection in internal-combustion engine |
US5311771A (en) * | 1992-03-30 | 1994-05-17 | Caterpillar Inc. | Method for determining the rotational position of a crankshaft of an internal combustion engine |
JP3379271B2 (en) * | 1995-03-28 | 2003-02-24 | 株式会社デンソー | Engine cylinder discriminator |
US5862795A (en) * | 1996-01-23 | 1999-01-26 | Toyota Jidosha Kabushiki Kaisha | Evaporative control system for a multicylinder internal combustion engine |
KR100342550B1 (en) * | 1996-12-30 | 2002-11-18 | 기아자동차주식회사 | Method for controlling fuel injection and ignition time during vehicle starting |
DE19810214B4 (en) * | 1998-03-10 | 2009-09-17 | Robert Bosch Gmbh | Method for synchronizing a multi-cylinder internal combustion engine |
DE10081774B4 (en) * | 1999-06-07 | 2007-11-08 | Keihin Corp. | Apparatus and method for detecting the crank angle position in an internal combustion engine |
JP3578047B2 (en) | 1999-11-11 | 2004-10-20 | 国産電機株式会社 | Internal combustion engine ignition control method and internal combustion engine ignition control device |
JP4089109B2 (en) | 1999-11-29 | 2008-05-28 | 株式会社デンソー | Ignition control device for internal combustion engine |
CN101025124B (en) * | 2001-03-30 | 2010-08-18 | 三菱重工业株式会社 | Internal combustion engine combustion diagnosis/control apparatus and combustion diagnosis/control method |
JP3815261B2 (en) * | 2001-06-08 | 2006-08-30 | トヨタ自動車株式会社 | Start control device for internal combustion engine |
TWI221880B (en) * | 2001-10-24 | 2004-10-11 | Yamaha Motor Co Ltd | Engine control device |
US6789517B2 (en) * | 2001-11-19 | 2004-09-14 | General Motors Corporation | Method for managing thermal load on an engine |
JP3778349B2 (en) * | 2001-11-20 | 2006-05-24 | 三菱電機株式会社 | Fuel injection control device for start-up of internal combustion engine |
JP3614145B2 (en) * | 2002-03-18 | 2005-01-26 | 日産自動車株式会社 | Control device for hybrid vehicle |
DE10304449B4 (en) * | 2003-02-04 | 2007-10-25 | Siemens Ag | Method for controlling a direct injection of an internal combustion engine |
JP2004316561A (en) | 2003-04-16 | 2004-11-11 | Toyota Motor Corp | Start controller for internal combustion engine |
FR2853935B1 (en) * | 2003-04-17 | 2007-03-02 | Siemens Vdo Automotive | METHOD OF SYNCHRONIZING THE INJECTION WITH THE MOTOR PHASE IN AN ENGINE WITH ELECTRONIC CONTROL OF THE INJECTORS |
DE10329506A1 (en) * | 2003-06-30 | 2005-01-20 | Daimlerchrysler Ag | Auto-ignition internal combustion engine |
DE102004008261B3 (en) * | 2004-02-20 | 2005-09-29 | Mtu Friedrichshafen Gmbh | Method for controlling and regulating an internal combustion engine-generator unit |
DE102004010519B4 (en) * | 2004-03-04 | 2007-10-04 | Mehnert, Jens, Dr. Ing. | Method for controlling the air flow rate of internal combustion engines |
JP4516401B2 (en) * | 2004-10-18 | 2010-08-04 | 日立オートモティブシステムズ株式会社 | Engine start control device |
JP4306600B2 (en) * | 2004-12-16 | 2009-08-05 | トヨタ自動車株式会社 | Control device for internal combustion engine |
KR100707328B1 (en) * | 2005-01-18 | 2007-04-13 | 닛산 지도우샤 가부시키가이샤 | Starting system for internal combustion engine |
JP2007071061A (en) * | 2005-09-05 | 2007-03-22 | Kokusan Denki Co Ltd | Engine control system |
JP4187013B2 (en) * | 2006-06-06 | 2008-11-26 | 国産電機株式会社 | Ignition device for internal combustion engine |
JP4727518B2 (en) * | 2006-07-12 | 2011-07-20 | 日立オートモティブシステムズ株式会社 | Control device for internal combustion engine |
JP2008215321A (en) * | 2007-03-08 | 2008-09-18 | Hitachi Ltd | High pressure fuel pump control device for internal combustion engine |
-
2007
- 2007-06-15 DE DE102007027709A patent/DE102007027709A1/en not_active Withdrawn
- 2007-12-17 US US12/521,513 patent/US8660776B2/en not_active Expired - Fee Related
- 2007-12-17 BR BRPI0720865-0A patent/BRPI0720865A2/en not_active Application Discontinuation
- 2007-12-17 WO PCT/EP2007/064076 patent/WO2008080817A1/en active Application Filing
- 2007-12-17 KR KR1020097013425A patent/KR101404878B1/en active IP Right Grant
- 2007-12-17 EP EP07857706.1A patent/EP2126320B1/en not_active Not-in-force
- 2007-12-17 CN CN200780048453XA patent/CN101573523B/en not_active Expired - Fee Related
- 2007-12-17 JP JP2009543439A patent/JP2010514976A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20090102770A (en) | 2009-09-30 |
KR101404878B1 (en) | 2014-06-09 |
WO2008080817A1 (en) | 2008-07-10 |
DE102007027709A1 (en) | 2008-07-03 |
BRPI0720865A2 (en) | 2014-03-04 |
CN101573523A (en) | 2009-11-04 |
JP2010514976A (en) | 2010-05-06 |
CN101573523B (en) | 2013-09-25 |
US8660776B2 (en) | 2014-02-25 |
EP2126320A1 (en) | 2009-12-02 |
US20110184633A1 (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2126320B1 (en) | Method for starting an internal combustion engine | |
DE4440656B4 (en) | Variable camshaft adjuster | |
EP0784745B1 (en) | Electronic control system for an internal combustion engine | |
DE69301280T2 (en) | Cylinder identification method for the control of an electronic injection system of an internal combustion engine | |
DE102008021581B3 (en) | Method for determining the rail pressure in a common rail system and common rail injection system | |
DE102006040337A1 (en) | Method for operating an internal combustion engine | |
DE102016117342B4 (en) | Device for detecting a misfire | |
WO1998012432A1 (en) | Methods to determine the phase angle of a four stroke internal combustion engine with an odd number of cylinders | |
DE19521277A1 (en) | Device for cylinder detection in a multi-cylinder internal combustion engine | |
EP1590563B1 (en) | Method for controlling a direct injection of an internal combustion engine | |
DE102006043678A1 (en) | Device and method for operating an internal combustion engine | |
EP2587225A1 (en) | Method for determining a rotation angle | |
EP0638717B1 (en) | Apparatus for controlling the fuel injection and the ignition of a combustion engine | |
DE19638338A1 (en) | Encoder arrangement for quick cylinder recognition in an internal combustion engine | |
DE102008010053B3 (en) | Method for synchronizing injection system of internal combustion engine, involves detecting crankshaft angle of crankshaft of internal combustion engine by stroke sequence of internal combustion engine | |
WO2000057053A1 (en) | Ignition control device and method | |
DE10323486B4 (en) | Method for operating an internal combustion engine, in particular in a motor vehicle | |
DE19735720A1 (en) | Method for recognizing the combustion stroke of a specific cylinder when starting an internal combustion engine | |
DE4418578B4 (en) | Device for detecting the phase position in an internal combustion engine | |
DE10324858B4 (en) | Method for the reverse rotation detection of an internal combustion engine | |
DE10249393B4 (en) | Ignition control method and apparatus of an engine | |
DE10234949C1 (en) | Crankshaft position determination method for multi-cylinder IC engine using evaluation of angle markings in camshaft signal | |
DE10196053B4 (en) | Method and arrangement on a multi-cylinder four-stroke internal combustion engine | |
WO2003060300A1 (en) | Method for reversing the direction of rotation of a two-stroke engine | |
EP1327761B1 (en) | Process for verifying the operation of two sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090727 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091211 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 792721 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007014753 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160822 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160721 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007014753 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 10 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20161221 Year of fee payment: 10 |
|
26N | No opposition filed |
Effective date: 20170123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161217 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161217 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 792721 Country of ref document: AT Kind code of ref document: T Effective date: 20161217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161217 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20071217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200221 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007014753 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |