EP2125483B1 - Système et procédé de détection de véhicule - Google Patents

Système et procédé de détection de véhicule Download PDF

Info

Publication number
EP2125483B1
EP2125483B1 EP08727699A EP08727699A EP2125483B1 EP 2125483 B1 EP2125483 B1 EP 2125483B1 EP 08727699 A EP08727699 A EP 08727699A EP 08727699 A EP08727699 A EP 08727699A EP 2125483 B1 EP2125483 B1 EP 2125483B1
Authority
EP
European Patent Office
Prior art keywords
train
waveform data
railroad
multidimensional
detection zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08727699A
Other languages
German (de)
English (en)
Other versions
EP2125483A4 (fr
EP2125483A2 (fr
Inventor
Ahtasham Ashraf
David Baldwin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Signal LLC
Original Assignee
Central Signal LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/964,606 external-priority patent/US8028961B2/en
Application filed by Central Signal LLC filed Critical Central Signal LLC
Priority claimed from PCT/US2008/051099 external-priority patent/WO2008080175A2/fr
Publication of EP2125483A2 publication Critical patent/EP2125483A2/fr
Publication of EP2125483A4 publication Critical patent/EP2125483A4/fr
Application granted granted Critical
Publication of EP2125483B1 publication Critical patent/EP2125483B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/30Trackside multiple control systems, e.g. switch-over between different systems

Definitions

  • the present invention relates to systems for detecting and processing information generated by moving objects. More specifically, various embodiments of the application relate to systems and methods for detecting and processing information generated by on-track vehicles including locomotives, train cars of all types and railroad maintenance and inspection vehicles.
  • Methods for warning motor vehicle operators at highway-rail grade rail crossings are either passive or active. Passive warning methods at public crossings are often required by law to include the statutory crossbuck sign posted for each direction of traffic traversing the tracks. Alternative signs may be posted in addition to the crossbuck sign, such as number of tracks signs, "Do Not Stop on Tracks” signs, "Look for Trains” signs, statutory yield signs, statutory stop signs, and railroad crossing advance warning signs.
  • the roadway surface can be painted with stop bars and railroad crossing symbols. Warning devices at private roadway crossings of railroad tracks can be provided by the roadway owner or the railroad and may be absent altogether or can be any combination of passive or active devices identical to those used at public crossings or of unique design.
  • Active warning devices can be a warning bell, flashing red lights, swinging red lights, gate arms that obstruct roadway vehicle lanes, solid or flashing yellow advance warning lights in combination with statutory crossbuck signs, number of tracks signs, railroad advance warning signs, various informational signs, and pavement markings. Historically it has been cost prohibitive to include active warning systems at every grade crossing, thereby limiting many grade crossings to have merely passive warning systems.
  • track circuits Conventional railway systems often employ a method which uses track rails as part of a signal transmission path to detect the existence of a train within a defined length or configuration of track, commonly referred to as track circuits.
  • the track rails within the track circuit are often an inherent element of the design of the circuit because they provide the current path necessary to discriminate the condition of the track circuit which is the basis of train detection.
  • a conventional track circuit is often based upon a series battery circuit.
  • a battery commonly referred to as a track battery
  • a relay commonly referred to as a track relay
  • Current from the track battery flows through one rail of the track circuit, through the coil of the track relay and back to the track battery through the other rail of the track circuit.
  • the track relay will be energized.
  • an energized track relay corresponds to the unoccupied state of the system in which a train is not present within the track circuit.
  • the series track battery-track rails-track relay circuit becomes a parallel circuit in which the wheels and axles of the train provide a parallel path for current flow between the two track rails of the circuit.
  • Most current flows in this new circuit path because its resistance is very low compared to the track relay resistance.
  • the track relay cannot be energized if a train occupies the rails between the track battery and the track relay.
  • a significant advantage of this system is that if the current path between the track battery and the track relay is opened, the track relay will not be energized.
  • the track battery/relay circuit is often the basic functional unit for railroad signal system design.
  • the energy state of track relays provides the fundamental input to the logical devices that control automatic signal systems, including wayside train signal, crossing signal, and interlocking operation.
  • This device may provide multiple, independently programmable outputs which may be used control separate and independent systems. One output can be programmed to control the actual operation of the railroad crossing signal and the second output can be programmed to provide the appropriate input to a separate traffic light system that governs motor vehicle movement at an intersection near the railroad crossing.
  • a vehicle detection system detects roadway vehicles and an action is taken. Often the action taken is to adjust the frequency of intersection light operation in response to changing traffic patterns. It is common that roadway conditions can change dramatically as a result of a traffic accident, draw-bridge operation, or a train passing. As a result the rate of speed for the roadway vehicles is dramatically reduced, and often stopped. The slow rate of speed and common stoppage of traffic commonly is not accurately detected by certain magnetic field detectors.
  • trains are detected and active railroad signal crossing warning devices are activated to warn traffic at highway-rail grade crossings, and therefore advanced preemption of the warning devices is necessary.
  • a major disadvantage to the use of known loop detectors is that they do not reliably detect slow-moving objects passing through the magnetic field. It is often the case that railroads require trains to stop for periods of time. Due to the size and mass of trains they do not have the ability to accelerate quickly from a stopped position. Therefore it is often the case that trains move at a slow rate of speed.
  • One of the inherent problems associated with certain magnetic field detector is that a requisite minimum rate of speed prevents detection of slow moving objects.
  • Figure 1 is a conceptual schematic of the present invention for a highway-railroad grade warning device control system in accordance with at least one embodiment of the present invention.
  • Figure 2 is a block diagram of a sensor node in accordance with at least one embodiment of the present invention.
  • FIG. 3 is a block diagram of a control processor in accordance with at least one embodiment of the present invention.
  • Figure 4 is a flow chart identifying steps in a method for sensing, processing and transmitting data by the sensor node to the control processor in accordance with at least one embodiment of the present invention.
  • Figure 5 is a flow chart identifying the steps in a method for processing the data transmitted by the sensor nodes in accordance with at least one embodiment of the present invention.
  • Figure 6 is a flow chart identifying the steps in a method for the control processor health checks in accordance with at least one embodiment of the present invention.
  • FIG. 1 An embodiment of a vehicle detection system 10 is represented in Figure 1 .
  • the system 10 includes sensor devices 12, 14, 16, 18, each sensor device 12, 14, 16, 18 has a pair of sensor nodes 24, 26, and a control processor 28.
  • Each of the sensor nodes 24, 26 is placed in proximity to the railway track 20, which crosses a roadway 22. Data from the sensor nodes 24, 26 is communicated through wireless transmission and reception with the control processor 28.
  • the wireless connection 28 can be chosen from a variety of wireless protocols, by example, 900 MHZ radio signals.
  • the system 10 is not limited to a specific number of sensor nodes 24, 26. Sensor nodes need not be paired as in this embodiment, and devices 12, 14, 16, 18 can alternatively have more than 2 sensor nodes 24, 26.
  • the sensor devices 12, 14, 16, 18 include one or multiple sensor elements 30, an amplifier module 32, and analog to digital converter 34, a microprocessor module 36, a bias compensation module 38 and a radio module 40.
  • the sensor devices 12, 14, 16, 18 can be single or multi-dimensional.
  • One or more sensor nodes 24, 26 can be connected to the sensor device 12, 14, 16, 18.
  • the sensor nodes 24, 26 receive data and transmit the data to the sensor devices 12, 14, 16, 18.
  • the radio 40 sends data from the sensor device 12, 14, 16, 18 to the control processor 28.
  • the microprocessor module 36 receives digital data from the analog to digital converter 34 and encodes the data in packets for transmission by the radio 40.
  • the sensor element 30 provides a continuous signal to the amplifier module 32 which filters and amplifies the analog waveform for processing by the analog to digital converter 34.
  • the microprocessor 36 also continuously receives data from the bias compensation module 38 and controls elements of a resistive network to maintain optimum bias for the sensor element 30.
  • Data Conditioning enhances the signal to noise ratio of the sensor output by various filtering techniques such as Kalman, Infinite Impulse Response, and Finite Impulse Response filters.
  • the Kalman filter is an advanced filtering technique that enhances the signal to noise ratio and eliminates unexpected signal variation.
  • the filtered signal can also be amplified.
  • the combination of sensor node 24, 26 and sensor device 12, 14, 16, 18 can be referred to as a sensor.
  • the sensor devices 12, 14, 16, 18 and control processor 28 can be placed at locations a significant distance from power lines, making it inconvenient for traditional power sources.
  • a fuel cell system (not shown) can be connected to the paired sensors 12, 14, 16, 18 and control processor 28 to provide operating power.
  • a photo voltaic system may be substituted for the fuel cell system.
  • other sources of power can be used to provide power to the paired sensors 12, 14, 16, 18 and control processor 28.
  • the control processor 28 includes vital processing module 42, communication module 50, vital I/O modules 48, user interface module 44, diagnostic testing and data logging module 52, and remote operations module 46.
  • the vital processing module 42 can be a central processing unit (CPU) that may be selected from a variety of suitable CPUs known in the art. Alternatively, module 42 can be two or more redundant CPUs.
  • the communications module 50 receives data transmitted from the sensor devices 12, 14, 16, 18, exchanges data with VPU module 42, and with warning system peripheral devices (not shown).
  • the vital I/O module 48 provides a vital interface control of conventional railroad signal relays or control devices that can be connected to the control processor 28.
  • the diagnostic testing and data logging module 52 can provide a variety of user interface options, including, by example, RS232, USB, Ethernet, and wireless technologies, to facilitate user access to control processor 28 to enter site specific information, select appropriate user variable values, perform set-up and diagnostic testing and to review or download data log files. Data can be saved on dedicated hard drive, flash memory module, CD ROM drive or other devices appropriate to the intended environment.
  • the user interface module 44 can be a software module that provides configuration options, firmware update, device programming and debugging.
  • the remote operations module 46 can provide the interfaces for remote communications with the system 10, using cellular or satellite channels. The module 46 can provide, for example, remote status checking, alarm notification, limited configuration and data transfer.
  • the communication module 50, remote operations module 46 and user interface module 44 provide communications security and adaptability to a variety of communications protocols that can be executed by the system 10.
  • the sensor nodes 24, 26 are configured to respond to the presence of vehicles.
  • the Earth's magnetic field is used as a magnetic background or "reference" point which stays substantially constant when the sensor nodes are installed in a fixed arrangement. Adjustments can be made in the event substantial constant magnetic offsetting, other than the Earth's magnetic field, occur near the sensor nodes 24, 26.
  • Vehicles which are constructed of, or contain, hard and/or soft-iron materials affect the earth's magnetic flux.
  • Hard-iron sources are materials that possess flux concentration abilities and can have remnant flux generation abilities.
  • Soft-iron materials are often considered to be ferrous materials that concentrate magnetic flux into material and do not have any remnant flux generated within the material.
  • the sensor element 30 will encounter a relatively small (in the range of milligauss) Earth field bias along with relatively large (in the range of 3-4 gauss) spikes as typical vehicles come into range of the sensing element.
  • the change in the magnetic field causes the three dimensional sensor element to produce an output along the three dimensions of space that correspond to the amount and rate of change of field monitored by the sensor element 30.
  • the waveforms generated along the three axes are determined by the magnetic characteristics of the vehicle sensed.
  • the sensor nodes 24, 26 can be configured to generate data which corresponds to the direction of a moving vehicle.
  • the system can utilize one or more sensors in order to obtain vehicle direction data. With a single sensor element configuration, as a vehicle approaches the sensor the flux density changes and the sensor output is proportional to the change.
  • the sensor output waveform is substantially a mirror image for the same vehicle moving in the opposite directions.
  • the configuration of system 10 at a particular installation may depend on, but not limited to, sensor node 24, 26 depth, pair spacing, and positioning distance from the railroad track. These parameters influence the three dimensional waveform data generated by sensor nodes 24, 26.
  • the system 10, once configured, can obtain information pertaining to the passing vehicle such as vehicle speed, direction, length or size of the vehicle.
  • the system 10 can detect, distinguish between and identify vehicles.
  • the sensor element output data from a locomotive engine will be significantly different from a rail car, and type of rail car, such as a box car or tank car will generate detectably different sensor element output data.
  • the sensor nodes 24, 26 are typically placed a relatively small distance from one another.
  • a range of 10-20 meters or alternatively 5-12 meters is suitable. The distance can be user determined based upon a variety of variables including the type and use of the vehicle detection system 10.
  • a suitable sensor node 24, 26 placement can also be about one foot to several meters distance from each other. Further distances between sensors can provide additional advantages, including increased calculation data for analyzing vehicle travel and position. Often a vehicle in motion will create the same signature, merely displaced in time.
  • a multi-sensor configuration 12, 14, 16, 18 generates a multiplicity of sensor node 24, 26 data that can be analyzed to produce a multidimensional representation of the magnetic fields at specific locations within and at the limits of the system 10 detection zone.
  • Such analysis enables criteria to be established which correspond to each of the possible on-track vehicle events that can occur within the detection zone of on-track vehicles.
  • the events of interest include on-track vehicles moving in one direction or the other, stopping and reversing direction within the zone, stopping within the zone, speed of movement including speed changes within the zone.
  • Number, placement and configuration of sensor nodes 24, 26 determine the resolution detail of the detection zone representation possible for a particular system 10. The level of resolution required depends upon the accuracy needed to determine specific events within specified timeframes.
  • system 10 layout is a signal engineering design task and is based upon the identified requirements of the specific location where system 10 is to be installed.
  • the data is analyzed vitally by the system 10 for the purpose of detecting oncoming trains in advance of their travel through grade crossings.
  • the analysis and subsequent decisions and inferences made from vital data processing ensure proper and safe operation of the railroad crossings.
  • the system 10 is initialized at step 54.
  • the sensor nodes 24, 26 produce a signal at step 56 whenever any on-track vehicle is within range.
  • the sensor nodes 24, 26 apply the signal to a low pass noise filter and adjust the dynamic range through a low noise instrumentation amplifier at step 58.
  • the resulting waveform is processed by high precision analog to digital converters at step 60.
  • the digitized waveform is organized into fixed length data frames containing sensor ID, packet length, and CRC checksum by a microprocessor at step 62.
  • the data packets are transmitted to the control processor at step 64.
  • the control processor 28 is initialized at step 66 and receives the data at step 68.
  • the processor 28 decodes, and filters data transmitted by the sensor nodes 24, 26 at step 70.
  • Waveform data from all of the sensor nodes 24, 26 is compared and processed by a detection algorithm at step 72, in order to determine classification, speed and direction of the sensed vehicle.
  • the normal output of the vital output controller is de-energized at step 76.
  • the output of the vital output controller is energized if there are no on-track vehicles present and the system reverts back to the ready state after step 66. This is often referred to as the normal state of the system.
  • the de-energized output of the vital output controller 76 corresponds to an alarm state and will result when event criteria for on-track vehicles within the detection zone are satisfied or from internal faults of any element of the system 10.
  • the warning sequence execution includes the step of removing a normally high output signal from the control interface with the crossing warning device (not shown).
  • the crossing warning devices for any on-track vehicle approaching or occupying the crossing roadway are activated.
  • On-track vehicles moving away from the crossing roadway or stopped on the approach to the crossing roadway will not typically cause the crossing warning devices to activate.
  • the warning device can be any combination of active railroad crossing signals.
  • the on-track vehicle must be within the sensing field of a sensor node to be detected.
  • the data received at step 68 from each of the sensor nodes placed for a specific detection zone is processed at step 70 via detection algorithm to determine presence location and speed of an on-track vehicle and the necessary state of the vital output controller 76.
  • the algorithm results that correspond to an on-track vehicle moving toward the crossing zone, where the arrival is predicted within a user specified time, cause the normally energized vital output controller output to be de-energized.
  • control processor 28 will interrupt the vital output controller 76, causing the crossing signals to activate. This feature maintains a fail safe system and therefore the default position for the system is the warning signal activation, which will occur if any part of the system 10 fails to operate within preset parameters.
  • the control processor 28 performs a health check protocol at regular intervals to assure the system is operating properly.
  • the health check protocol is utilized at step 78.
  • Data from each sensor node 24, 26 of the system 10 must be received, decoded and identified at step 80 by the control processor 28 within a user selected interval range of about 1 to 4 seconds or the output of the vital output controller is disabled at step 86.
  • the processor module is comprised of redundant microprocessors and associated hardware. Each of the processors monitor the heartbeat of the other processors at step 82. All microprocessor heartbeats must agree or the vital output is disabled at step 86.
  • the vital output controller 84 is comprised of redundant microprocessors, associated hardware and relay driver circuits.
  • the microprocessors each monitor the heartbeat of the other processors at step 84. All microprocessor heartbeats must agree or the vital output is disabled at step 86.
  • the microprocessor heartbeat can be the clock signal. If all health check requirements are satisfied and the data processing algorithm result is consistent with no current or pending on-track vehicle occupancy of the grade crossing, the vital output of the control processor is enabled at step 88. Alternatively, the time interval range can be about 2-10 seconds.
  • At least two sensor nodes 24, 26 are positioned in close proximity to one another and strategically placed with respect to the grade crossing and warning device. Transmission of the data from the sensor nodes 24, 26 can be performed through a variety of known technologies.
  • One exemplary manner of transmission includes short-range spread spectrum radio 40. Radio signal transmission is preferably at about 900 MHZ.
  • a secure radio signal transmission link can be provided for increased security.
  • Waveform data transmitted from the sensor nodes 24, 26 are analyzed through advanced processing techniques. Specific placement of the sensor nodes 24, 26 with respect to the railroad track or roadway affects the waveform detail produced by the sensor node. Sensitivity of the sensor node is determined by inherent characteristics of the physical sensor, the configuration of the resistive bridge element and by the voltage applied.
  • the system 10 contains more than one sensor node 24, 26 placed between railroad crossings, it is possible for the sensor devices 12, 14, 16, 18 to function with respect to greater than one grade crossing control device. Since the system 10 is capable of detecting direction of travel, a train traveling in either direction with respect to the sensor nodes 24, 26 can be detected and analyzed.
  • the information acquired by the sensor nodes 24, 26 can include a variety of information depending upon the type and calibration of the sensor nodes 24, 26.
  • Suitable sensor nodes include the AMR sensors manufactured by Honeywell.
  • one suitable type of sensor node 24, 26 is a 3M Canoga ® Model C924TE microloop detector. The 3M Canoga detector detects vehicle presence and movement through an inductive loop.
  • the sensor nodes 24, 26 are configured to reduce the incidence of falsing due to environmental, component, or supply voltage variations. Incorrect detection of vehicles is referred to as falsing.
  • the sensor nodes 24, 26 dynamically update the 'bias' value of the sensor element by detecting the proper bias and changing the existing bias value when a user defined threshold results. Through dynamic bias updating the system more accurately maintains the distance between the bias value and the detection threshold value. Without dynamic bias update there is an increased risk that the detection threshold value will result in either false positive or false negative detection.
  • the sensor node 24, 26 is comprised of the sensor element 30, amplifier 32, biasing element 38, microprocessor 36, and analog to digital converter 34.
  • the microprocessor 36 controls the feedback and compensation circuits 38 necessary to maintain the optimum detection condition of the sensor.
  • the biasing element 38 is typically a negative magnetic flux generating coil that allows minute discrimination of changes in the bias voltage applied to the sensor element 30 by the microprocessor 36.
  • the microprocessor 36 adjusts the voltage to this coil to provide dynamic compensation 36, 38.
  • the sensor element 30 output waveform is amplified 32 and applied to an analog to digital converter 34 and the result is encoded into packets by the microprocessor 36 for transmission by the sensor node radio 40.
  • the automatic bias compensation circuits 36, 38 enable the sensor element 30 to operate in its optimum range when placed into environments where there are extreme variations of temperature, humidity, and flux density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Claims (11)

  1. Système de détection (10) pour train sur voie ferrée, caractérisé par :
    un premier capteur magnéto-résistif (AMR) anisotrope multidimensionnel (24, 26, 30), fixé à proximité d'une voie de chemin de fer (20) ;
    un deuxième capteur AMR multidimensionnel (24, 26, 30) fixé à proximité de la voie de chemin de fer (20) et espacé du premier capteur AMR (24, 26, 30) ;
    dans lequel chaque capteur AMR (24, 26, 30) est configuré pour engendrer des données d'onde analogue multidimensionnelle représentative de changements dans un environnement à champ magnétique sensiblement constant, dûs à la présence d'un train sur voie ferrée passant sur la voie de chemin de fer ;
    une unité de traitement de signal (32, 34, 36, 38) configurée pour engendrer des données sous forme d'onde numérique multidimensionnelle sur la base des donnée sous forme d'onde analogique multidimensionnelle, engendrées par le premier et le deuxième capteur AMR (24, 26, 30) ;
    un émetteur de données sous forme d'onde (40) configuré pour transmettre des données sous forme d'onde numérique multidimensionnelle depuis l'unité de traitement de signal (32, 34, 36, 38) vers un appareil de traitement de système (28) ;
    l'appareil de traitement de système (28) étant configuré pour commander un dispositif d'avertissement actif au niveau d'un passage à niveau (22) en utilisant les données sous forme d'onde numérique transmises.
  2. Système de détection de train sur voie ferrée (10) selon la revendication 1, dans lequel l'unité de traitement de signal (32, 34, 36, 38) comprend :
    un amplificateur et filtre configuré pour convertir les données sous forme d'onde analogique multidimensionnelle en données sous forme d'onde analogique multidimensionnelle traitées ;
    un convertisseur analogique-numérique, configuré pour convertir les données sous forme d'onde analogique multidimensionnelle traitées en données sous forme d'onde numérique multidimensionnelle ; et
    un encodeur, configuré pour encoder les données sous forme d'onde numérique multidimensionnelle, afin d'engendrer des données numériques encodées ; et
    l'émetteur (40) de données sous forme d'onde est, en outre, configuré pour transmettre les données sous forme d'onde numérique multidimensionnelle en utilisant une transmission radio à large spectre.
  3. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 2, dans lequel l'appareil de traitement de système (28) comprend au moins l'un des éléments suivants :
    un module de traitement vital (42), comprenant une pluralité de microprocesseurs reliés pour fournir un traitement vital de données de commande de dispositif d'avertissement actif ;
    un module de communication (50), configuré pour fournir des communications entre l'appareil de traitement de système (28) et les premier et deuxième capteurs AMR (24, 26, 30) par l'intermédiaire de l'émetteur (40) de données sous forme d'onde, et entre l'appareil de traitement de système (28) et le dispositif d'avertissement actif;
    un module I/O vital (48), configuré pour fournir une commande I/O vitale d'au moins l'un des éléments suivants :
    un ou plusieurs relais de signal de voie de chemin de fer,
    un ou plusieurs dispositifs de commande ;
    un module d'enregistrement et de test diagnostic (52), configuré pour fournir un accès utilisateur à l'appareil de traitement de système (28), afin de permettre l'un ou plusieurs des éléments suivants : entrée d'information spécifique à un site, sélection ou entrée de valeurs variables d'utilisateur, réalisation de mise en place ou d'autre traitement, test diagnostic et revue, téléchargement ou chargement de fichier de journalisation de données ;
    un module d'interface utilisateur (44) ;
    un module d'opération à distance (46), configuré pour fournir des communications à distance avec le système de détection de train sur voie ferrée (10) par l'intermédiaire de communications satellites ou cellulaires, afin de réaliser au moins l'un des éléments suivants :
    vérification de statut à distance ;
    notification d'alarme ;
    commande de configuration ;
    transfert de données.
  4. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 3, dans lequel l'appareil de traitement de signal (28) comprend un compensateur de biais (38), configuré pour compenser des changements dans les premier et deuxième capteurs AMR (24, 26, 30) dûs à au moins l'un des éléments suivants ;
    variations environnementales ;
    variations de densité de flux ;
    variations d'humidité ;
    variations de température ;
    variations de composants ;
    variations d'alimentation.
  5. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 4, caractérisé, en outre, par un troisième capteur AMR (24, 26, 30) et un quatrième capteur AMR (24, 26, 30), les premier, deuxième, troisième et quatrième capteurs AMR (24, 26, 30) définissant une zone de détection sur la voie de chemin de fer (20) et définissant, en outre, une zone d'intersection avec la zone de détection, dans lequel la zone d'intersection comprend le passage à niveau (22).
  6. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 5, dans lequel l'appareil de traitement de système (28) comprend un appareil de processeur (42) configuré pour amener le fonctionnement du dispositif d'avertissement actif dans une condition sûre, si n'importe quel élément de l'appareil de traitement de système (28) est défaillant, dans lequel l'appareil de processeur (42) est une conception de circuit fermé.
  7. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 6, dans lequel les données sous forme d'onde analogique multidimensionnelle comprennent une sortie le long de trois dimensions d'espace, qui correspondent à la quantité et au taux de changement du champ magnétique surveillé par chaque capteur AMR (24, 26, 30).
  8. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 7, dans lequel l'appareil de traitement de système (28) active le dispositif d'avertissement actif en retirant un signal de sortie normalement élevé au niveau d'une interface de commande entre l'appareil de traitement de système (28) et le dispositif d'avertissement actif.
  9. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 8, dans lequel l'appareil de traitement de système (28) comprend une pluralité de microprocesseurs redondants, dans lequel chaque microprocesseur surveille les battements de coeur de tout autre microprocesseur dans l'appareil de traitement de système (28) et dans lequel, en outre, le dispositif d'avertissement actif est activé si des battements de coeur ne correspondent pas.
  10. Système de détection de train sur voie ferrée (10) selon l'une quelconque des revendications 1 à 9, dans lequel les données sous forme d'onde numérique multidimensionnelle reçues par l'appareil de traitement de système (28) sont utilisées pour déterminer au moins l'un des éléments suivants :
    la présence d'un train qui est stationnaire sur la voie ; la vitesse de train ;la direction de mouvement de train ; la longueur de train ; la dimension de train ; l'identification de train ;
    le type de wagon dans un train donné la position de train sur la voie de chemin de fer ;
    l'arrêt d'un train sur la voie de chemin de fer ; le changement de direction d'un train sur la voie de chemin de fer.
  11. Procédé de collecte d'informations sur un train dans une zone de détection sur une voie de chemin de fer (20), le procédé comprenant les étapes consistant à :
    définir la zone de détection en utilisant une pluralité de capteurs magnéto-résistifs (AMR) anisotropes tridimensionnels (24, 26, 30), fixés à proximité de la voie de chemin de fer (20) ;
    chaque capteur AMR (24, 26, 30) engendrant des données sous forme d'onde analogique multidimensionnelle représentative de changements dans un environnement à champ magnétique sensiblement constant, dus à la présence d'un train dans la zone de détection ;
    convertir les données sous forme d'onde analogique multidimensionnelle engendrée en données sous forme d'onde numérique multidimensionnelle ;
    transmettre les données sous forme d'onde numérique multidimensionnelle à une unité de traitement de commande (28),
    l'unité de traitement de commande (28) traitant les données sous forme d'onde numérique multidimensionnelle afin d'engendrer une information ayant trait à au moins l'un des éléments suivants :
    la vitesse d'un train dans la zone de détection ; la position d'un train dans la zone de détection ; la direction de mouvement d'un train dans la zone de détection ; la longueur de train ; des changements dans la longueur de train ; la présence d'un train stationnaire dans la zone de détection ; l'identification d'un train dans la zone de détection ; le type d'un ou plusieurs wagons d'un train dans la zone de détection ; l'arrêt d'un train dans la zone de détection ; le changement de direction d'un train dans la zone de détection ; des caractéristiques d'un train dans la zone de détection ; la présence d'un train dans la zone de détection ; le mouvement d'un train dans la zone de détection ; la composition d'un train dans la zone de détection ; le besoin d'activer ou de désactiver un dispositif d'avertissement actif dans la zone de détection.
EP08727699A 2006-12-22 2008-01-15 Système et procédé de détection de véhicule Not-in-force EP2125483B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US87160906P 2006-12-22 2006-12-22
US88493007P 2007-01-15 2007-01-15
US11/964,606 US8028961B2 (en) 2006-12-22 2007-12-26 Vital solid state controller
PCT/US2007/088849 WO2008080169A1 (fr) 2006-12-22 2007-12-26 Dispositif de commande d'état solide vital
PCT/US2008/051099 WO2008080175A2 (fr) 2006-12-22 2008-01-15 Système de détection de véhicule

Publications (3)

Publication Number Publication Date
EP2125483A2 EP2125483A2 (fr) 2009-12-02
EP2125483A4 EP2125483A4 (fr) 2011-01-12
EP2125483B1 true EP2125483B1 (fr) 2012-03-14

Family

ID=39562964

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07866027.1A Not-in-force EP2125482B1 (fr) 2006-12-22 2007-12-26 Dispositif de commande d'état solide vital
EP08727699A Not-in-force EP2125483B1 (fr) 2006-12-22 2008-01-15 Système et procédé de détection de véhicule

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07866027.1A Not-in-force EP2125482B1 (fr) 2006-12-22 2007-12-26 Dispositif de commande d'état solide vital

Country Status (4)

Country Link
EP (2) EP2125482B1 (fr)
AT (1) ATE549228T1 (fr)
CA (2) CA2710038C (fr)
WO (1) WO2008080169A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028961B2 (en) 2006-12-22 2011-10-04 Central Signal, Llc Vital solid state controller
ITTO20090172A1 (it) * 2009-03-09 2010-09-10 Ansaldo Sts Spa Sistema di supporto alla protezione del personale di manutenzione su linee, in particolare su linee ferroviare, e relativo metodo
US9026283B2 (en) 2010-05-31 2015-05-05 Central Signal, Llc Train detection
US8668170B2 (en) 2011-06-27 2014-03-11 Thales Canada Inc. Railway signaling system with redundant controllers
CN104571008A (zh) * 2014-11-20 2015-04-29 杭州电子科技大学 一种印制电路板曝光机用的带安全功能的并行控制方法
WO2019081326A1 (fr) * 2017-10-26 2019-05-02 Siemens Mobility GmbH Concept pour faire fonctionner un véhicule ferroviaire
CN109677468A (zh) * 2019-03-04 2019-04-26 中车青岛四方车辆研究所有限公司 列车用逻辑控制单元及逻辑控制方法
CN112596480B (zh) * 2020-12-09 2022-08-30 亚太森博(广东)纸业有限公司 一种双回路控制装置、方法及系统
CN114179860A (zh) * 2021-12-28 2022-03-15 交控科技股份有限公司 用于列车控制的融合单元、列车控制管理系统及列车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810119A (en) * 1971-05-04 1974-05-07 Us Navy Processor synchronization scheme
DE19532640C2 (de) 1995-08-23 2000-11-30 Siemens Ag Einrichtung zur einkanaligen Übertragung von aus zwei Datenquellen stammenden Daten
US7075427B1 (en) * 1996-01-12 2006-07-11 Eva Signal Corporation Traffic warning system
US6457682B2 (en) * 1999-12-07 2002-10-01 Railroad Controls Llc Automated railroad crossing warning system
US20020185571A1 (en) * 2001-05-01 2002-12-12 Bryant Jackie D. Automated railroad crossing gate management system
US6951132B2 (en) * 2003-06-27 2005-10-04 General Electric Company Rail and train monitoring system and method
US7053784B2 (en) * 2004-04-23 2006-05-30 General Electric Company System and method for monitoring alignment of a signal lamp
DE102004035901B4 (de) * 2004-07-19 2016-02-04 Siemens Aktiengesellschaft Einrichtung zum Steuern eines sicherheitskritischen Prozesses
WO2006051355A1 (fr) * 2004-11-15 2006-05-18 Abb As Systeme de commande, procede de fonctionnement d'un systeme de commande, signal de donnees informatiques et interface utilisateur graphique pour vehicules sur rails
DE102006011361B4 (de) * 2006-03-09 2010-08-26 Lenord, Bauer & Co. Gmbh Umdrehungszähler

Also Published As

Publication number Publication date
EP2125482B1 (fr) 2014-05-14
CA2710038C (fr) 2015-11-10
CA2710041A1 (fr) 2009-07-03
CA2710041C (fr) 2016-06-07
EP2125482A1 (fr) 2009-12-02
ATE549228T1 (de) 2012-03-15
EP2125482A4 (fr) 2011-01-19
CA2710038A1 (fr) 2008-07-03
WO2008080169A1 (fr) 2008-07-03
EP2125483A4 (fr) 2011-01-12
EP2125483A2 (fr) 2009-12-02

Similar Documents

Publication Publication Date Title
US8888052B2 (en) Vehicle detection system
EP2125483B1 (fr) Système et procédé de détection de véhicule
AU2014405896B2 (en) Broken rail detection system for railway systems
RU2443588C2 (ru) Система и способ обнаружения изменения рельсового пути или препятствия на нем
EP0002609A1 (fr) Dispositif pour la commande d'un système
AU2021204799B2 (en) Speed proving method and apparatus
Li et al. Some practical vehicle speed estimation methods by a single traffic magnetic sensor
EP2851261B1 (fr) Système et procédé pour déterminer l'occupation de piste
US20040046546A1 (en) Mobile detection system
AU2018208375A1 (en) Automated warning time inspection at railroad grade crossings on a given track route
WO2008036472A1 (fr) Procédé, code de logiciel, et système permettant de déterminer le sens d'un train à un passage à niveau
AU2013101775A4 (en) Vehicle Detection System
BR112014023802B1 (pt) Método para uma previsão de cruzamento e sistema de cruzamento
Ananth et al. A smart approach for secure control of railway transportation systems
Dhande et al. Unmanned level crossing controller and rail track broken detection system using IR sensors and Internet of Things technology
WO2008080175A2 (fr) Système de détection de véhicule
Ilampiray et al. Automated Railway gate control system using Arduino and Ultrasonic sensors
Ahmed et al. A Secure Automated Level Crossing and Train Detection System for Bangladesh Railway
US20230166780A1 (en) System and method for virtual block operational status control with long block time delay
AU2019100656A4 (en) Speed Proving Method and Apparatus
JP4011204B2 (ja) 踏切制御システム
Vignesh et al. REALIZATION AND FORESTALLING OF FLAWS AND RUINING IN RAILWAY NETWORK BY MCEC
KR100799327B1 (ko) 철도 구조물 진단 정보를 이용한 열차 위치 검지 시스템 및그 방법
CN205656762U (zh) 一种综合集成检测的快速路交通事件检测系统
Havryliuk Level crossing activation time prediction in dependence on the train real speed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20101214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 29/30 20060101AFI20110711BHEP

Ipc: B61L 29/24 20060101ALI20110711BHEP

RTI1 Title (correction)

Free format text: VEHICLE DETECTION SYSTEM AND METHOD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008014110

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 549228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008014110

Country of ref document: DE

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190329

Year of fee payment: 12

Ref country code: GB

Payment date: 20190123

Year of fee payment: 12

Ref country code: IT

Payment date: 20190121

Year of fee payment: 12

Ref country code: FR

Payment date: 20190123

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008014110

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200115

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200115