EP2122290B1 - Échangeur de chaleur pour l'échange de chaleur entre un premier fluide et un deuxième fluide - Google Patents

Échangeur de chaleur pour l'échange de chaleur entre un premier fluide et un deuxième fluide Download PDF

Info

Publication number
EP2122290B1
EP2122290B1 EP07856501.7A EP07856501A EP2122290B1 EP 2122290 B1 EP2122290 B1 EP 2122290B1 EP 07856501 A EP07856501 A EP 07856501A EP 2122290 B1 EP2122290 B1 EP 2122290B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
region
tube side
broad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07856501.7A
Other languages
German (de)
English (en)
Other versions
EP2122290A1 (fr
Inventor
Hermann Knaus
Christian Saumweber
Markus Reck
Claus Augenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2122290A1 publication Critical patent/EP2122290A1/fr
Application granted granted Critical
Publication of EP2122290B1 publication Critical patent/EP2122290B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1.
  • a heat exchanger is off US 5 092 397 known.
  • the invention further relates to the use of such a heat exchanger as a charge air cooler for the direct or indirect cooling of charge air in a Ladeiuftzu slaughterhouse for an internal combustion engine of a motor vehicle.
  • Heat exchangers are usually constructed, in particular in the case of the mobile application mentioned at the outset, as pipe-corrugated fin systems and, in particular in the case mentioned, are exposed to particularly high stochastic pressure and thermal cycling.
  • the mentioned alternating stresses are decisive for the life of a heat exchanger.
  • the thermal cycling is in a heat exchanger of the type mentioned above due to the resulting in the region of the tube ends particularly high mechanical stress amplitudes dominating the load. It has been found that within the block there is practically always an inhomogeneous temperature distribution with one of these directly associated inhomogeneous distribution of thermal expansions comes; the latter results in a distortion of the block. In this case, thermal expansion differences within the block can not only occur in a tube longitudinal direction, but generally also exist transversely thereto.
  • GB 169,855 known to keep pipe ends in a passage in a heat exchanger.
  • GB 169,855 a passage with a collar, which has a tooth-shaped contour formed by tongues at its end facing away from a bottom plate, in which a pipe end is held flexible and resilient.
  • the tongues mentioned serve a local extension of the passage in order to take into account any sudden change in cross section of a pipe.
  • a passage which has certain raised collar with an oval cross section for receiving a heat exchanger tube.
  • the collar has a smaller height in the region of its small radii than in the region of its larger radii.
  • the tearing of the collar should be largely eliminated, without thereby a significant reduction in performance of the heat exchanger also described there would have to be taken into account.
  • the invention begins, whose object is to provide a heat exchanger in which the durability is improved.
  • a change in the distance value is continuous at least on the tube broadside and in the transition.
  • the stresses in the region of the transition can be reduced in particular by the fact that the distance value in the entire transition region between the pipe narrow side and the pipe broadside is minimal.
  • the distance value is minimal at most in partial areas of the transition between the smallest and largest diameter of the oval passage opening. In the other transition areas, however, the distance value increases, so that the passages there have higher stiffness and accordingly induce stresses in the oval tubes that affect their durability.
  • the invention is based on the consideration that the bending deformations caused by expansion differences in the block are particularly strong in the area of a pipe-to-floor connection or a pipe-box connection and correspondingly lead to high mechanical stresses there.
  • the invention has recognized that it is possible to determine the highest stresses along the pipe circumference, specifically in the region of the transition between the pipe narrow side and the pipe broad side.
  • the invention is based on the recognition that a reduction, in particular minimization, of the stresses, especially in the region of the transition, leads to an increase in the service life of the heat exchanger.
  • the concept of the invention provides that a distance value at least at a transition between the pipe narrow side and the pipe wide side is so less than a distance value at the tube broad side, that stresses in the region of the transition are reduced.
  • a change in the distance value is continuous at least on the tube broad side and at the transition, so that stress concentrations are reduced or avoided by notch effects.
  • a voltage occurring according to the knowledge of the invention, especially in the transition region is taken into account by the targeted reduction of the distance value at the transition according to the concept of the invention.
  • the concept of the invention rather provides, in a controlled manner, for reducing the load of the transition as a region of particularly high tension. Above all, it is achieved by the concept of the invention that said high voltage is displaced into a region of low stress, for example in the side region of a pipe.
  • a floor or a box according to the concept of the invention can be even with a much reduced effort compared to the prior art produce and significantly improve the process reliability when Kassetieren of radiator networks.
  • the durability of a heat exchanger is improved according to the concept of the invention.
  • the advantages mentioned have resulted in particular in brazed heat exchangers.
  • the concept of the invention has also been found to be effective in welded, glued or more advantageously joined heat exchangers.
  • the concept has proven particularly advantageous in the case of a block in which the flow channels are accommodated by a chamber through which the second fluid can flow.
  • the concept according to the invention can be applied with regard to a box having a lid, the lid being fixed to the floor.
  • the concept of the invention is also advantageous with respect to a floor integrally formed with the box. In such an integral, in particular one-piece, training of soil and cast a shaping of the unit in the course of production can be carried out particularly favorable by a hydroforming process.
  • a passage opening is formed as a passage, in particular as a passage with a collar, with a collar oriented towards the block.
  • This type of soil has proven to be particularly easy to produce.
  • the floor is substantially flat and / or said plane substantially indicates the floor level.
  • it has the passage opening at least one, from one to the Rohrachsraum substantially perpendicular ground plane arched away and extending at a distance from said bottom plane boundary contour.
  • the distance value can be represented as required with regard to the expected stresses in the region of the transition according to the concept of the invention.
  • the distance value is also lower in the region of the pipe narrow side, in particular constant, than in the region of the pipe broadside. This leads to a particularly effective displacement of the stresses occurring at the transition in the region of a pipe broadside.
  • a contour curve of the limiting contour is a function of a circumferential dimension of the passage opening.
  • a dimension of a passage opening in particular a length of a passage opening - corresponding to the pipe width side - and / or a width of a passage opening - corresponding to a pipe narrow side - serve.
  • the concept of the invention provides that the polynomial function is formed in such a way that stresses in the region of the transition are reduced, preferably minimized. It has been found that a course curve in the form of a polynomial function of at least the second degree is advantageous. Thus, at the transition, a change in the distance value according to the concept of the invention may be continuous.
  • the degree of polynomial function is less than 5, that is, the polynomial function has no more than 4 extremes.
  • a wide variety of limiting contours according to the concept of the invention can serve for the local reduction of the stresses in the region of the transition.
  • the distance value in the region of the pipe width side preferably exactly, assumes a maximum value, preferably in the middle of the pipe broadside.
  • exactly one minimum value can be assumed by a distance value in the region of a pipe broadside, in particular in the middle of the pipe broadside.
  • the distance value in this case has exactly two maxima on one side, in particular between the middle of the page and the transition to the pipe narrow side.
  • the maximum value of the distance value can be determined according to the expected stress load.
  • Maximum values in the range of 0.5 to 1.0 times the clear width are particularly advantageous here.
  • limiting contours can be combined at a through hole.
  • a passage opening on opposite sides on different variants of limiting contours can be combined at a through hole.
  • a first non-inventive variant of a limiting contour can have exactly one maximum value of a distance value
  • a second non-inventive variant of a limiting contour has precisely a minimum value of a distance value or a constant value of a distance value.
  • a first non-inventive variant of a limiting contour can have exactly one minimum value of a distance value and the second non-inventive variant of a limiting contour can have a constant value of a distance value.
  • the concept of the invention is particularly effective for corner tubes and / or for tubes arranged in an edge area of a block.
  • a flow channel preferably has a heat-conducting element in the form of an inner rib attached to a channel inside, in particular soldered, and / or a heat-conducting element in the form of an outer rib attached to a channel outside, in particular soldered.
  • the ribs are also called corrugated ribs.
  • the block may further comprise a flow guide, in particular a turbulence device.
  • the invention leads in a particularly preferred manner to a heat exchanger in the form of a direct or indirect charge air heat exchanger, in particular radiator or in the form of an exhaust gas heat exchanger, in particular radiator.
  • the concept of the present invention can be used within the scope of the use of the heat exchanger of the type described above for an internal combustion engine of a motor vehicle, that is quite generally in the mobile sector.
  • An overall boundary contour of the passage opening or passage openings is preferably kink-free at least in the entire transitional area between a pipe narrow side and a pipe broadside. This avoids that stresses are increased by notch effects.
  • the overall boundary contour in the area of the tube broadside is substantially trapezoidal.
  • Such passage openings are particularly easy to manufacture.
  • corresponding heat exchangers have a high durability and good Kassetierbarkeit.
  • the distance value of the overall boundary contour to a plane substantially perpendicular to the tube axis direction along the circumference of the passage opening generally represents a function y (x) of a coordinate x in the circumferential direction of the passage opening.
  • these orders may differ in the different sections.
  • straight or oblique sections which correspond to polynomials zero and first degree, respectively, alternate with sections of higher degree.
  • the polynomials each have at most the fifth degree, since otherwise the boundary contour becomes wavy.
  • the functions defined in sections proceed continuously at the section boundaries, preferably one or more times continuously differentiable into one another, as is the case, for example, with cubic or B-splines.
  • x i denotes in the usual way the ite power of x, x 0k the coordinate at the beginning of a section k and x 1k the coordinate at the end of the section k.
  • the coefficients a ik , b ik , ⁇ ik , ⁇ ik are constant and predetermined for each section k.
  • E i 0 nk b ik sin ( ⁇ ik • x + ⁇ ik ) is a Fourier series nk-th degree, can be approximated by the advantageous gentle, kink-free contours.
  • coefficients of the polynomial or Fourier component in one or more sections may be identically zero, ie, in particular, the function may also be a pure polynomial function or pure Fourier series at least in sections.
  • Flat tubes of a heat exchanger may for example have a substantially rectangular or oval cross-section.
  • the narrow sides of the tube can be curved and the tube broad sides straight.
  • a corner or a corner radius in particular, where the narrow side of the tube and the broad side of the tube meet, is designated as the transition region between the narrow side of the tube and the broad side of the tube.
  • the transition region may in particular denote the region in which the pipe narrow side and pipe wide side approach one another perpendicular to their respective extent direction.
  • essentially the area between the smallest and the largest diameter or, preferably, the area can be regarded as a transitional area in which the diameter is less than 80% of the largest and greater than 120% of the smallest diameter is.
  • the present invention also is useful in the context of non-mobile applications or applications in the mobile field, which are not described specifically here are and which are outside of the areas explicitly mentioned here.
  • the presented concept also apply to a heat exchanger as a heater for the interior heating of a motor vehicle or as an oil cooler, in particular for cooling engine oil and / or gear oil, or as a refrigerant cooler or refrigerant condenser in a refrigerant circuit of an air conditioning system of a motor vehicle.
  • an insertion bevel for simplified insertion of the flat tube is provided in the region of the boundary contour.
  • a contact surface for surface soldering to the flat tube is provided in the region of the boundary contour.
  • a draft having the boundary contour projects inwardly toward the box from the ground.
  • Such orientation of the passage is particularly well suited to be combined in the sense of a simple production with an integrated or one-piece design of floor and box.
  • a heat exchanger is realized according to a preferred embodiment in the form of a charge air cooler for direct charge air cooling and serves for heat exchange between a charge air and a coolant, preferably air.
  • the heat exchanger comprises a block comprising a radiator network for the separate heat exchanging guidance of the charge air and the coolant.
  • the block has a number of flow channels through which charge air can flow, which additionally have a heat-conducting element in the form of an inner rib attached to a channel inside and a heat-conducting element in the form of an outer rib attached to a channel outside.
  • Such usually consisting of an alternating superposition of pipes and heat-transmitting corrugated fins arrangement is also referred to as a radiator network.
  • a box fluidly connected to the flow channels is associated with the block, and a bottom between the block and the box is provided with one or more through holes for passage of the flow channels between the block and the box.
  • a so-called passage with the radiator mesh oriented collar 17 '- as in Fig. 1 is shown - can be used especially for mobile applications such as the discussed intercooler for commercial vehicles.
  • Bodenüberstandes - given as half the difference between tube depth t and depth T - are advantageously used to increase the internal pressure cycle resistance.
  • One way to reduce the stresses in the region of the transition 27 'from the narrow pipe side 13 to the pipe broadside 15 can be achieved by the fact that at the transition 27' - as in Fig. 2 exemplified and based on Fig. 4A .
  • FIG. 4B demonstrates - between the pipe narrow side 13 and the pipe broadside 15 a distance value such less than a distance value 25 at the tube broadside 15 is selected, that stresses ( Fig. 4A . Fig. 4B , View A) in the region of the transition 27 ', 27 are reduced (see in comparison Fig. 4A . Fig. 4B , View B).
  • FIG. 3 shows the lid 5 of the box 3, wherein the lid 5 is fixed to the said bottom 1.
  • the floor looks several in Fig. 2 closer passage openings 7 in front, which are provided for carrying out the flow channels between the not further illustrated block 9 and the box 3.
  • flow channels in the form of flat tubes 11 are formed, wherein a flat tube 11 has a narrow side tube 13 and a pipe broadside 15.
  • the block 9 is at the tube ends of the tubes 11 a bottom 1 with a plurality of through holes 7 each arranged in the form of a passage for receiving a tube 11, the block 9 with the both sides of the block 9 arranged collecting boxes 3 - of which only one is shown here - connect.
  • FIG. 7 An alternative non-inventive embodiment of a tube plate is in Fig. 7 and a box is in Fig. 8 shown which will be described below.
  • a flat tube 11 is formed as a rectangular tube.
  • the cross-section of a tube may be varied.
  • a cross section may be approximately rectangular, approximately oval or, for example, a rectangular cross section with a curved narrow side.
  • the in Fig. 2 in view A in perspective and in view B as a section again shown tube sheet 1 has the passage opening 7 in the form of a passage with a block 9 oriented collar 17.
  • the collar 17 of the passage opening 7 is limited to the block 9 through a limiting contour 19, wherein the limiting contour 19 is curved away from a plane substantially perpendicular to the Rohrachscardi 21 level 23 and extends at a distance 25 to said plane 23.
  • the distance 25 is in the in Fig. 2 illustrated embodiment of the present according to the passage opening length t in the middle of the pipe broad side 15 formed maximum distance. At the in Fig. 2 illustrated embodiment, the distance 25 thus assumes in the region of the tube broad side 15 exactly a maximum value as the maximum distance 25 at.
  • the distance value at the transition 27 between the narrow side 13 of the pipe and the broad side 15 of the pipe is so smaller than a distance value 25 on the pipe broad side 15 that stresses in the region of the transition 27 are reduced.
  • a change in the distance value 25 is continuous.
  • the pipe run in the form of the collar present locally, starting from the transition 27, is continuously increased in such a way that the maximum stress at the transition 27 is minimized.
  • FIG. 2 illustrated embodiment has the in view B of Fig. 4A .
  • Fig. 4B graphically, as a result of a finite element calculation for the lower tube section reproduced stress distribution result.
  • Fig. 4A shows the result with bottom 1, 1 ', Fig. 4B without.
  • the stress distribution in view B is the result of the contour curve of the limiting contour 19 designed to minimize the stress distribution, specifically the minimization of the stress in the region of the transition 27.
  • Fig. 4A . Fig. 4B It can be seen clearly that the stresses in the region of the transition 27 - there around the curve of the boundary contour 19 around - outweigh, while they are comparatively small in the region of the maximum distance 25.
  • Fig. 4A . Fig. 4B in view B that by an interpretation of the curve of the boundary contour 19, the stress distribution in the Compared to a prior art embodiment in view A as shown in FIG Fig. 1 shown - can minimize.
  • this is achieved by a circular arc-like boundary contour 19, the - or the distance values - at the transition 27 continuously decreasing in the peripheral region along the narrow pipe side 13 - ie the region of the width of the through hole 7 - enters.
  • a contour progression adapted to the specific stress distribution can be achieved by an overall circumferential change of the distance values, thereby minimizing the stress.
  • Fig. 2 View A that a distance along the width of the through hole 7 is also less than a distance value 25 on the tube broad side 15. Also this circumstance went into the calculations, as in Fig. 4A . Fig. 4B , View B, are shown.
  • the desired position of the local maxima of the contour curve of the limiting contour 19 and its extent in the direction of the coordinate y can be determined depending on the stress field to be reduced.
  • the parameters mentioned are adapted such that the maximum distance 25 between the curve the distance contour 19 and the bottom plane 23 is in the range between 0.2 times to 1.5 times the clear width of the through hole 7.
  • the width h is in Fig. 1 , View A, shown by way of example.
  • Fig. 5 shows a not diversified embodiment according to the invention.
  • a through opening 7 on opposite sides 31, 33 has different variants of limiting contours 19A, 19B.
  • a first variant of a limiting contour 19A corresponds to that in FIG Fig. 2 which exactly has a maximum value of a distance value 25.
  • a second variant of a limiting contour 19B has a constant value of a distance value which lies below that of the distance value 25 and essentially corresponds to that of the narrow side 13 of the tube.
  • At the transition 27 between the narrow pipe side 13 and the pipe broad side 15 of the distance value 25 is again such a smaller than a distance value on the pipe broadside 15 that stresses in the region of the transition 27 are reduced.
  • a change in the distance value 25 on the tube broad side 15 and at the transition 27 is continuous.
  • Fig. 6 shows yet another varied not inventive embodiment of a bottom 1 with through hole 7, in which on opposite sides 31, 33 different variants of limiting contours 19C, 19D are provided.
  • the first variant 19C is similar to the one in Fig. 2 However, has no continuous change of the distance value 25 at the junction 27 on.
  • the second variant of the limiting contour 19D has exactly one minimum value of a distance value, in the middle 35 of the tube broadside 15.
  • the second variant of the limiting contour 19D has exactly two maxima 37A, 37B on one side 33, namely between the side center 35 and the transition 27. This also allows a significant reduction in the distribution of stress can be achieved.
  • the embodiment shown has a one-sided design of a limiting contour 19A, 19D.
  • the limiting contour 19B shown could also be replaced by a limiting contour 19D.
  • Contour contour 19C shown could also be replaced by a boundary contour 19a.
  • Fig. 1 Fig. 2 . Fig. 3 . Fig. 5 and Fig. 6 embodiments shown have a block 9 oriented towards passage with collar 17.
  • the draft is also referred to as an "upturned draft".
  • Characteristic of the geometry of the passage is that a collar 17 "outwards", that is oriented towards the block 9 out.
  • a curved boundary contour 19, 19A, 19B, 19C, 19D provided, ie a boundary contour, which does not extend parallel to the ground plane 23.
  • a distance value 25 of the boundary contour 19 of the respective passage 17 from the bottom plane of the floor 1 is a function of a circumferential coordinate X, in the present case the longitudinal coordinate of the tube broadside 15.
  • the curve of the limiting contour 19 is itself a function of the longitudinal coordinate X (FIG. Fig. 2 ).
  • Characteristic of the passage 17 is further that the distance 25 of the collar 17 from the ground plane 23 between the passages in the region of the transition 27 between Rohrschmaiseite 13 and pipe broadside 15, ie in the region "Corner radii" of the passages continuously decreasing is the smallest and the maximum distance 25 along the broad side 15, in this case in the middle of the same, but in general somewhere along the broad side 15 - depending on the voltage field to be reduced - comes to rest.
  • the middle of the broad side 15 is advantageous in the rule.
  • curve of the boundary contour 19 is characterized by a local maximum of the distance 25 from the ground plane 23 between the passages.
  • Fig. 7 shows an alternative embodiment not according to the invention, which provides a curved bottom 41 for a flat tube 11. Also in the in Fig. 7 In the case shown, the passage opening 7 has a curved from a to the Rohrachscardi 21 substantially perpendicular plane 23 away and at a distance from said plane 23 limiting contour 19E, 19F, which on opposite sides 31, 33 of a tube longitudinal side 15 identical as a contour of the overall circular formed tube bottom is present. In this particularly simple embodiment, therefore, eliminates the need for a collar 17 as in the in Fig. 2 . Fig. 3 . Fig. 5 and Fig. 6 to provide embodiments shown.
  • Fig. 8 shows a further particularly easy to manufacture non-inventive embodiment of a bottom 51, which in the present case is formed integrally with an air box 53 for a flat tube 11.
  • FIGS. 7 and 8 shown embodiments increased durability of a charge air cooler and the elimination of additional costs causing additional measures, such as Eckrohrhülsen or reinforcing shoes are combined with a particularly reduced manufacturing costs.
  • Varyed embodiments as in Fig. 5 or Fig. 6 can therefore be provided only along a single pipe broadside 15 with a passage in the form of a collar.
  • Fig. 7 shows a, as explained, curved bottom 1, in which the previously described with respect to bending load advantageous curve in the ground itself is realized.
  • Fig. 8 illustrated embodiment in which a box 53 and a bottom 51 form an integral component. All representations have in common that the curved curves can be described or approximated by a polynomial, as shown above, thereby ensuring that in the transition, a distance value continuously decreases and possibly assumes its lowest value.
  • Solutions shown but also for the solutions shown in the other previous figures are clearly more complex curves than the circular arcs shown in the pictures conceivable. In relation to Fig. 1 running disadvantages are avoided.
  • Fig. 9 shows in Fig. 2 in a corresponding manner, a further varied embodiment of a bottom 1 with passage opening 7.
  • the in Fig. 2 corresponding features are indicated by like reference numerals, so that will be discussed below only on the differences from this embodiment.
  • Fig. 9 shown embodiment has a Monbegrenzungskontur 19, which, as in view B of Fig. 9 good to recognize, in the region of the tube broad side 15 is formed substantially trapezoidal.
  • the contour 19 runs essentially parallel to the plane 23 perpendicular to the pipe axis direction 21, so that a distance y (x) between the contour 19 and the boundary line in this section is given by a zero-degree polynomial of the coordinate x is described in the circumferential direction.
  • the contour 19 is continuously differentiable in a sinusoidal course and runs out of this again continuously differentiable in a likewise substantially parallel to the plane 23 section, extending over a part of a pipe broadside, the Whole adjoining pipe narrow side and a part of the opposite other pipe broadside extends, so that the distance value y (x) in this entire section and thus in particular in the entire transition region between pipe narrow and pipe broadside is minimal.
  • a continuously differentiable transition is understood to mean a transition between functions with the same pitch angle.
  • the flanks 100 of the essentially trapezoidal boundary contour 19 formed by the sinusoidal sections have on average a pitch angle ⁇ of approximately 20 °.
  • the distance 101 between the transition region 27 and the maximum value of the distance value 25 corresponds in the embodiment of the clear height h of the passage.
  • Fig. 10 shows a further embodiment, which is a modification of the embodiment Fig. 9 represents.
  • the boundary contour 19 is not visible, but shown as a dashed line.
  • the bordering in the lateral plan view of the passage and the boundary contour 19 slightly projecting edge 102 is not a limiting contour in the context of the invention, but an outer edge of an insertion bevel 103, which is provided for better usability of the exchanger tubes in the course of production of the heat exchanger.
  • the insertion bevel 103 has the boundary contour 19 as the lower boundary in the direction of insertion of the tubes and forms a surface or phase inclined outwardly away from the tube, the outer boundary of which is the edge 102.
  • Such an insertion bevel 103 in the form shown or similar, may be useful in any of the above and below described embodiments of the present invention Be provided embodiments.
  • the contact line of the passage is to be understood, with which the passage abuts against the pipe wall and is soldered.
  • this boundary contour 19 which touches the exchanger tube, the introduction of force from the exchanger tube into the ground, for example due to thermal expansion, is thus decisively influenced.
  • Such a contact surface 104 may be provided as required in each of the embodiments described above and below.
  • a width of the contact surface 104 may advantageously vary over the course of the limiting contour 19, depending on which local forces are to be expected in the soldered state during operation at the respective position.
  • the width of the contact surface can be designed differently depending on the position, in order to ensure a reliable distribution of the solder during the soldering process even at critical points.
  • the reference plane 23 oriented perpendicular to the tube axis is positioned at the level of the end of the exchanger tube 15 inserted into the passage.
  • the position of the reference plane 23 is also for oriented in the reverse direction passages (see, for example, the embodiments described below 11 and FIG. 12 ) ensures a correct definition of the distance value 25 in the sense of the invention.
  • Fig. 11 shows another example not according to the invention, in which a bottom 1 has a passage 105 projecting inwardly away from the block.
  • the passage initially has an insertion bevel 103, which is particularly wide in order to simplify the introduction of the exchanger tubes, in particular in the regions of the short sides.
  • the end of the insertion bevel 103 is formed by a delimiting contour 19, which bears against the tube wall of an inserted exchanger tube.
  • the delimiting contour has a region 27 in the vicinity of the transition from the long sides of the passage to the short sides, in which a distance value from a reference plane (not shown) becomes steadily monotonically smaller.
  • the reference plane is perpendicular to the tube axis through the end of the tube inserted into the passage.
  • Fig. 10 Similar to the embodiment according to Fig. 10 joins the boundary contour 19 a contact surface 104, which extends from the limiting contour 19 in the direction of the pipe end and allows an improved surface soldering of the passage with the pipe.
  • the in Fig. 11 The floor shown can be a section of an integrated, in particular one-piece design of floor and box.
  • the integrated unit can be made of box and floor by means of a hydroforming process.
  • a blank can be processed by means of hydroforming in a first step, after which the passages 105 are injected from the outside in a second step.
  • Fig. 12 shows a modification of the non-inventive embodiment Fig. 11 in which there is also an inwardly directed passage 105 with an insertion bevel 103, a shaped boundary contour 19 and a contact surface 104 adjoining the boundary contour 19.
  • the passage is not arranged in a flat region of the bottom 1, but passes through two bends 107.
  • the bends 107 support the rigidity and compressive strength of the soil.
  • Fig. 11 is the bottom of the example after Fig. 12 particularly suitable to be formed as an integrated one-piece unit with a box and can be prepared in the same manner described above.

Claims (28)

  1. Echangeur de chaleur, en particulier refroidisseur d'air de suralimentation, servant à l'échange de chaleur entre un premier fluide et un deuxième fluide, ledit échangeur de chaleur comprenant
    un bloc (9) servant au guidage du premier et du deuxième fluide, séparés l'un de l'autre et échangeant de la chaleur, lequel bloc présente au moins un conduit d'écoulement pouvant être traversé par le premier fluide ;
    un bac (3) qui est en communication fluidique avec le conduit d'écoulement et comprend un fond (1) qui présente une ouverture de passage (7) servant à faire passer le conduit d'écoulement entre le bloc (9) et le bac (3) ; ;
    où le conduit d'écoulement est configuré sous la forme d'un tube plat (11) comportant un petit côté tubulaire (13) et un grand côté tubulaire (15),
    où l'ouverture de passage (7) présente un contour de délimitation d'ensemble (19) le long de la totalité de la circonférence de l'ouverture de passage (7), en ayant un intervalle (25) par rapport à un plan (23) pratiquement perpendiculaire à la direction d'axe tubulaire (21) ;
    caractérisé en ce que
    l'ouverture de passage est réalisée sous la forme d'un passage comprenant une collerette (17) orientée dans la direction du bloc (9), et le contour de délimitation d'ensemble (19) est configuré, dans la zone du grand côté tubulaire (15), pratiquement en forme de trapèze et,
    en amont des zones de transition (27) qui, concernant la section - pratiquement rectangulaire - de l'ouverture de passage (7), sont formées par les petits rayons d'angles dans lesquels se rencontrent le grand côté et le petit côté tubulaire, le contour (19) se transforme à chaque fois de manière constamment différenciable, en un profil de forme sinusoïdale et, à partir de ce profil, se termine de manière à nouveau constamment différenciable, en une section parallèle pratiquement au plan (23).
  2. Echangeur de chaleur selon la revendication 1, caractérisé en ce que le contour de délimitation d'ensemble (19) est sans courbure au moins dans la totalité de la zone de transition (27) comprise entre le petit côté tubulaire (13) et le grand côté tubulaire (15).
  3. Echangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que les flancs du contour de délimitation d'ensemble pratiquement en forme de trapèze présentent un angle d'inclinaison (σ) se situant dans la plage comprise entre 5° et 75°, de préférence dans la plage comprise entre 10° et 60° et, de façon particulièrement préférable, dans la plage comprise entre 15° et 45°.
  4. Echangeur de chaleur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la valeur de distance de l'intervalle (25) du contour de délimitation d'ensemble (19), par rapport au plan (23) pratiquement perpendiculaire à la direction d'axe tubulaire (21), forme, le long de la circonférence de l'ouverture de passage (7), une fonction (y(x)) d'une coordonnée (x) dans la direction circonférentielle de l'ouverture de passage (7), où cette fonction (y(x)) est définie partiellement et s'applique pour chaque section (k) : y x = i = 0 nk a ik x i + b ik sin ω ik x + ϕ ik < = = > x 0 k x x 1 k
    Figure imgb0005
    où Σi=0 nk désigne la somme de i = 0 jusqu'à nk, nk désigne l'ordre du polynôme dans la section k, x1 désigne la puissance n-ième de x, x0k désigne la coordonnée au début de la section k, x1k désigne la coordonnée à la fin de la section k, et aik, bik, ωik, ϕik désignent des coefficients constants prédéfinis pour chaque section (k).
  5. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le bloc (9) présente une chambre recevant le conduit ou les conduits d'écoulement et pouvant être traversée par le deuxième fluide.
  6. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le bac (3) présente un couvercle (5), et le couvercle (5) est fixé sur le fond (1).
  7. Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le fond (1) est formé de manière monobloc avec le bac (3).
  8. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le fond (1) est configuré de manière pratiquement plate et / ou s'étend pratiquement dans le plan (23) pratiquement perpendiculaire à la direction d'axe tubulaire (21).
  9. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur de distance, à partir du grand côté tubulaire (15), est pour la première fois, au niveau de la transition (27) comprise entre le petit côté tubulaire (13) et le grand côté tubulaire (15), plus petite que celle dans la zone du grand côté tubulaire (15).
  10. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur de distance dans la zone du petit côté tubulaire est plus petite, en particulier constante, par rapport à celle dans la zone du grand côté tubulaire (15).
  11. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une courbe de profil du contour de délimitation (19) est une fonction d'une dimension étendue de l'ouverture de passage (7), en particulier d'une longueur de l'ouverture de passage (7) (grand côté tubulaire) et / ou d'une largeur de l'ouverture de passage (7) (petit côté tubulaire), en particulier la courbe de profil est une fonction de polynôme au moins du 2ème degré.
  12. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur de distance dans la zone d'un grand côté tubulaire (11) prend une valeur maximale.
  13. Echangeur de chaleur selon la revendication 12, caractérisé en ce que la valeur de distance dans la zone d'un grand côté tubulaire (11) prend, dans un intervalle (101) formé par une zone de transition comprise entre le petit côté tubulaire et le grand côté tubulaire, une valeur maximale, où l'intervalle (101) compris entre la valeur maximale et la zone de transition se situe dans la plage allant de 0,2 fois à 2,5 fois, en particulier dans la plage allant de 0,25 fois à 2,0 fois la largeur intérieure de l'ouverture de passage (7).
  14. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur de distance dans la zone d'un grand côté tubulaire (15) prend précisément une valeur maximale, en particulier au milieu du grand côté tubulaire.
  15. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une valeur maximale de la valeur de distance se situe dans la plage allant de 0,2 fois à 1,5 fois, en particulier dans la plage allant de 0,5 fois à 1,0 fois la largeur intérieure de l'ouverture de passage (7) (petit côté tubulaire).
  16. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le tube plat (11) est disposé comme un tube placé dans une zone de bordure, en particulier une zone angulaire du bloc (9).
  17. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un conduit d'écoulement présente un élément conducteur de la chaleur, sous la forme d'une ailette intérieure fixée, en particulier brasée sur un côté intérieur du conduit, et / ou présente un élément conducteur de la chaleur sous la forme d'une ailette extérieure fixée, en particulier brasée sur un côté extérieur du conduit.
  18. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé par un dispositif déflecteur d'écoulement, en particulier par un dispositif à turbulences.
  19. Echangeur de chaleur selon l'une quelconque des revendications précédentes se présentant sous la forme d'un échangeur d'air de suralimentation, en particulier d'un refroidisseur d'air de suralimentation, direct ou indirect.
  20. Echangeur de chaleur selon l'une quelconque des revendications précédentes se présentant sous la forme d'un échangeur de chaleur de gaz d'échappement, en particulier d'un refroidisseur de gaz d'échappement.
  21. Echangeur de chaleur selon l'une quelconque des revendications 1 à 20, caractérisé en ce que le fond (1) est configuré au moins partiellement de façon courbée.
  22. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le fond (1) et le couvercle (5) forment un ensemble unitaire.
  23. Echangeur de chaleur selon la revendication 7, caractérisé en ce que l'ensemble monobloc est réalisé à partir d'un fond et d'un bac assemblés par formage à haute pression interne.
  24. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu, dans la zone du contour de délimitation (19), un chanfrein d'entrée (103) servant à l'introduction simplifiée du tube plat (11).
  25. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu, dans la zone du contour de délimitation (19), une surface de contact (104) servant au brasage à plat avec le tube plat (11).
  26. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un passage (105) présentant le contour de délimitation (19) est, à partir du fond (1), en saillie vers l'intérieur en direction du bac.
  27. Echangeur de chaleur selon la revendication 26, caractérisé en ce que le passage chevauche, dans une zone d'extrémité, une partie coudée (107) du fond.
  28. Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications précédentes, prévue pour un moteur à combustion interne d'un véhicule automobile.
EP07856501.7A 2006-12-13 2007-12-10 Échangeur de chaleur pour l'échange de chaleur entre un premier fluide et un deuxième fluide Active EP2122290B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006059288 2006-12-13
DE102007014437 2007-03-22
DE102007035441 2007-07-26
PCT/EP2007/010725 WO2008071362A1 (fr) 2006-12-13 2007-12-10 Échangeur de chaleur pour l'échange de chaleur entre un premier fluide et un deuxième fluide

Publications (2)

Publication Number Publication Date
EP2122290A1 EP2122290A1 (fr) 2009-11-25
EP2122290B1 true EP2122290B1 (fr) 2017-07-19

Family

ID=39146848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856501.7A Active EP2122290B1 (fr) 2006-12-13 2007-12-10 Échangeur de chaleur pour l'échange de chaleur entre un premier fluide et un deuxième fluide

Country Status (3)

Country Link
EP (1) EP2122290B1 (fr)
DE (1) DE102007059673A1 (fr)
WO (1) WO2008071362A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151655B1 (fr) 2008-08-08 2017-11-01 MAHLE Behr GmbH & Co. KG Echangeur thermique, utilisation et procédé de fabrication d'un échangeur thermique
DE102008059737A1 (de) * 2008-12-01 2010-06-02 Behr Gmbh & Co. Kg Kreuzstrom-Wärmetauscher
FR2951259B1 (fr) * 2009-10-08 2014-02-28 Valeo Systemes Thermiques Plaque collectrice pour un echangeur de chaleur et echangeur de chaleur correspondant
DE102009057175A1 (de) * 2009-12-05 2011-06-09 Volkswagen Ag Wärmetauscher
DE102011075071A1 (de) 2011-05-02 2012-11-08 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Ladeluftkühler
DE102011076225A1 (de) * 2011-05-20 2012-11-22 Behr Gmbh & Co. Kg Wärmetauscher
DE102012219268A1 (de) 2012-10-22 2014-04-24 Mahle International Gmbh Wärmetauscher
DE102013208424A1 (de) * 2013-05-07 2014-11-13 Behr Gmbh & Co. Kg Boden für einen Wärmetauscher, insbesondere für ein Kraftfahrzeug und Verfahren zur Herstellung des Bodens
DE102014213758A1 (de) * 2014-07-15 2016-01-21 Mahle International Gmbh Rohrboden und Wärmeübertrager
DE102015209130A1 (de) 2015-05-19 2016-11-24 Mahle International Gmbh Wärmeübertrager
US10371464B2 (en) 2015-07-07 2019-08-06 Mahle International Gmbh Tube header for heat exchanger
DE202017103235U1 (de) * 2017-05-30 2018-08-31 Autokühler GmbH & Co KG Wärmeaustauscher
FR3089609A1 (fr) * 2018-12-10 2020-06-12 Valeo Systemes Thermiques Boîte collectrice pour echangeur de chaleur et echangeur de chaleur comprenant une telle boîte collectrice
JPWO2021054484A1 (fr) * 2019-09-20 2021-03-25
JP2021127869A (ja) * 2020-02-14 2021-09-02 株式会社デンソー 熱交換器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB169855A (en) 1920-07-19 1921-10-13 Henry Garner Improvements in radiators for motor vehicles and the like
US2488627A (en) * 1946-02-28 1949-11-22 Young Radiator Co Tube and header-plate assembly for heat-exchange units
US4150556A (en) * 1978-02-27 1979-04-24 Mccord Corporation Radiator tank headsheet and method
DD211225A3 (de) 1982-05-17 1984-07-04 Umform & Plastverarb Fz Boden fuer den tank eines rohrwaermetauschers und werkzeug zu dessen herstellung
US4730669A (en) * 1986-02-03 1988-03-15 Long Manufacturing Ltd. Heat exchanger core construction utilizing a diamond-shaped tube-to-header joint configuration
DE3910357A1 (de) * 1989-03-30 1990-10-04 Autokuehler Gmbh & Co Kg Leitblech fuer einen waermetauscher und daraus hergestelltes waermetauschernetz
AU650221B2 (en) * 1989-08-25 1994-06-09 Showa Denko Kabushiki Kaisha A method of making a brazeable metal pipe having tube-insertion apertures formed with guide lugs
JP3822958B2 (ja) 1997-08-04 2006-09-20 サンデン株式会社 熱交換器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2008071362A1 (fr) 2008-06-19
WO2008071362A9 (fr) 2009-08-27
DE102007059673A1 (de) 2008-08-07
EP2122290A1 (fr) 2009-11-25

Similar Documents

Publication Publication Date Title
EP2122290B1 (fr) Échangeur de chaleur pour l&#39;échange de chaleur entre un premier fluide et un deuxième fluide
EP2151655B1 (fr) Echangeur thermique, utilisation et procédé de fabrication d&#39;un échangeur thermique
DE10392610B4 (de) Verbesserter Wärmeübertrager
EP1985953B1 (fr) Echangeur thermique, en particulier destiné au refroidissement des gaz d&#39;échappement, procédé d&#39;utilisation d&#39;un tel échangeur et système comprenant un refroidisseur EGR
DE60219538T2 (de) Wärmetauscher
EP0632245B1 (fr) Echangeur de chaleur eau-air en aluminium pour véhicules automobiles
EP1711772B1 (fr) Echangeur de chaleur, en particulier evaporateur a tuyaux plats pour un systeme de climatisation de vehicule a moteur
DE112011100691T5 (de) Wellrippe und Wärmetauscher umfassend eine Wellrippe
EP1846718B1 (fr) Echangeur thermique
DE102007049665A1 (de) Wärmeaustauscher
DE102007018879A1 (de) Wärmetauscher
EP1929233B1 (fr) Refroidisseur d&#39;air de suralimentation ou refroidisseur de gaz d&#39;echappement pour un moteur a combustion interne d&#39;un vehicule automobile
DE112007000019B4 (de) Wärmeaustauscher
DE112008000114T5 (de) Wärmetauscher und Verfahren
DE102007028792A1 (de) Wärmeaustauscher
DE102007015530A1 (de) Wärmeaustauscher
EP1504230A2 (fr) Echangeur thermique, notamment refroidisseur d&#39;air de suralimentation
DE102011008220A1 (de) Wärmeaustauscher
EP1528348A1 (fr) Echangeur de chaleur
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
EP1376043A2 (fr) Echangeur de chaleur avec diffuseur
EP2049860B1 (fr) Ailette ondulée et échangeur de chaleur
EP1869390A1 (fr) Echangeur thermique conçu en particulier pour un vehicule automobile
DE60015701T2 (de) Gebogenes Rohr für Wärmetauscher und dessen Herstellung
WO2007137866A1 (fr) Échangeur thermique, notamment refroidisseur d&#39;air de suralimentation, à fond tubulaire renforcé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100203

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RECK, MARKUS

Inventor name: SAUMWEBER, CHRISTIAN

Inventor name: KNAUS, HERMANN

Inventor name: AUGENSTEIN, CLAUS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20170612

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 910799

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015764

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015764

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 910799

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191220

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 17