EP2121176A1 - Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire - Google Patents

Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire

Info

Publication number
EP2121176A1
EP2121176A1 EP08708814A EP08708814A EP2121176A1 EP 2121176 A1 EP2121176 A1 EP 2121176A1 EP 08708814 A EP08708814 A EP 08708814A EP 08708814 A EP08708814 A EP 08708814A EP 2121176 A1 EP2121176 A1 EP 2121176A1
Authority
EP
European Patent Office
Prior art keywords
tube bundle
analysis device
bundle reactor
heat carrier
liquid heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08708814A
Other languages
German (de)
English (en)
Inventor
Gerhard Olbert
Jobst Rüdiger VON WATZDORF
Thomas Krug
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08708814A priority Critical patent/EP2121176A1/fr
Publication of EP2121176A1 publication Critical patent/EP2121176A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00268Detecting faulty operations

Definitions

  • the invention relates to a method for monitoring the leakage in tube bundle reactors and to a use of the method for carrying out gas phase reactions.
  • Tube bundle reactors Gas phase reactions are often carried out on a large scale in tube bundle reactors.
  • the usual type of tube bundle reactors consists of a, usually cylindrical container in which a bundle, that is, a plurality of contact tubes, usually housed in a vertical arrangement.
  • These catalyst tubes which may optionally contain supported catalysts, are sealingly secured with their ends in tube sheets and open into a respectively connected at the top and at the bottom of the container hood.
  • the reaction tubes flowing through the reaction mixture is added or removed.
  • a generally liquid heat transfer circuit is passed to balance the heat balance, especially in endothermic or exothermic reactions with strong heat of reaction.
  • tube bundle reactors are used with the largest possible number of contact tubes, wherein the number of housed contact tubes in the range of 100 to 50,000, preferably between 10,000 and 50,000.
  • the fluid reaction mixture is usually operated at an overpressure against the heat carrier side, which is advantageously operated at atmospheric pressure, i. the maximum pressure on the heat carrier side is the static pressure of the liquid slurry plus the pump pressure.
  • the reaction gas may be mixed, for example, with a molten salt heat carrier, which in particular contains potassium nitrate, in whole or in part with the degradation products react with monoxide and carbon dioxide; Nitrogen oxides can be formed from the molten salt heat carrier.
  • the solution consists in a method for monitoring leakage in a tube bundle reactor with a bundle of mutually vertically arranged contact tubes, through which a fluid reaction mixture and the space surrounding the catalyst tubes a liquid heat transfer medium is passed, and with one or more vent holes for the liquid Heat transfer medium in the upper region of the tube bundle reactor, which connect the tube bundle reactor with one or more equalization vessels for the liquid heat carrier, which is characterized in that at least one of the expansion vessels for the liquid heat carrier, a connecting line for the supply of the gas phase above the liquid level in the same to an analysis device which determines the composition of the supplied gas phase.
  • Tube bundle reactors are equipped with vent holes in the upper tube sheet or on the outer wall of the reactor, just below the upper tube plate for the space traversed by the heat transfer medium, which can also be, for example, corner holes.
  • the vent holes displace air or inert gas when the reactor is filled with the liquid heat transfer medium. This displaced gas collects by design, especially below the upper tube plate and then flows through the vent holes and possibly a vent manifold in a surge tank, which is usually equipped with a nitrogen blanket.
  • vent holes serve to carry with the liquid heat transfer through the pump entrained or formed gas through the vent hole in the expansion tank.
  • the liquid heat carrier may preferably be a molten salt, in particular a molten salt with the eutectic composition of potassium nitrate, sodium nitrate and sodium nitrite, and an application temperature of preferably about 250 to 450 0 C.
  • the one or more equalization vessels When using a salt melt as a liquid heat carrier, the one or more equalization vessels must be kept at a temperature above the melting point of the molten salt in order to prevent them from solidifying.
  • this temperature depending on the degree of impurity, at about 150 to 160 0 C.
  • the connecting line to the analysis device must be accompanied by heating, for example by indirect heating with steam in a double jacket in order to prevent solidification of the molten salt.
  • the housing of a feed pump for the liquid heat carrier can serve as a surge tank, the housing of a feed pump for the liquid heat carrier.
  • the two or more housings of the feed pumps can also serve as equalizing vessels via which a connection line to the analysis device is provided.
  • the pump housing may be provided with a nitrogen blanket, or that lubricants of the pump may decompose and form gases entering the analyzer.
  • an intermediate container between the tube bundle reactor and the housing of the feed pump which serves as a surge tank, and wherein from the gas phase above the liquid level in the same, the connecting line is passed to the analysis device.
  • the gas chambers from the housing of the feed pump and from the expansion tank are connected to a compensation line, which is thinner compared to the connecting line to the analysis device.
  • the intermediate container Preferably, however, only the intermediate container, but not the housing of the feed pump on a connecting line to the analysis device.
  • the intermediate container which has a connecting line to the analysis device, is arranged in connection with the upper ring line. This embodiment allows a faster and more precise detection of leaks.
  • the gas space above the liquid level in the housings of the feed pumps may have a common connection line to the analysis device.
  • the concentration of degradation products of the fluid reaction mixture, in particular CO x or residual hydrocarbons can be determined in the analysis device.
  • the analysis device can be an infrared and / or flame ionization detector.
  • the invention also provides the use of the described method for monitoring leakage in tube bundle reactors for the production of (meth) acrolein, (meth) acrylic acid, phthalic anhydride, maleic anhydride or glyoxal.
  • FIG. 1 shows a section of a preferred embodiment of a tube bundle reactor for carrying out the method according to the invention
  • FIG. 2 shows a detail of a further preferred embodiment of a tube bundle reactor for carrying out the method according to the invention
  • FIG. 3 shows a detail of a further embodiment of a tube bundle reactor for carrying out the method according to the invention
  • Figure 4 shows another embodiment of a tube bundle reactor for carrying out the method according to the invention
  • Figure 5 shows an embodiment with two separate heat transfer circuits for carrying out the method according to the invention.
  • like reference characters designate like or corresponding parts.
  • the tube bundle reactor 1 shown in FIG. 1 has a bundle of contact tubes, through which a fluid reaction mixture is passed, with a space 3 surrounding the contact tubes, through which a liquid heat carrier circulates, represented by a pump 10, of which the pump shaft is shown in the FIGURE is being promoted.
  • the heat transfer chamber has a vent hole 4, with connection to the housing 5 of the feed pump 10, which serves as a surge tank. From the gas space above the liquid level in the pump housing 5, a connecting line 8 leads to the analysis device 9.
  • an intermediate container 6 is provided as a further expansion vessel between the tube bundle reactor 1 and the housing 5 of the feed pump 10.
  • the connecting line 8 to the analysis device is used to forward the gas phase from both equalizing vessels, that is, both from the housing 5 of the feed pump 10 and from the intermediate container. 6
  • FIG. 3 shows an intermediate container 6, which is arranged in connection with the upper ring line 1 1 for the heat carrier.
  • venting bore 4 from the contact tube of the surrounding space 3 is connected to a further equalizing vessel 7.
  • the housing 5 of the feed pump 10 has no connection to the analysis device 9.
  • Figure 5 shows an embodiment with two separate heat transfer circuits, each with a feed pump 10, with pump housing 5 as a surge tank.
  • the connection line 8 to the analysis device 9 connects the gas space above the liquid level in both housings 5 of the feed pumps 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

L'invention concerne un procédé de contrôle de fuite dans un réacteur à faisceau tubulaire (1) comprenant un faisceau de conduits de contact verticaux agencés en parallèle les uns par rapport aux autres (2) à travers lesquels un mélange de réaction fluide s'écoule et à travers lequel l'espace proche du conduit de contact (3) conduit à un fluide caloporteur, comprenant également un ou plusieurs alésages d'aération (4) pour le fluide caloporteur dans l'espace supérieur de réacteur à faisceau tubulaire (1), qui raccordent le réacteur à faisceau tubulaire (1) à un ou plusieurs réservoirs de compensation (5, 6, 7) pour le fluide caloporteur, caractérisé en ce qu'au moins un réservoir de compensation (5, 6, 7) pour le fluide caloporteur présente un conduit de raccordement (8) pour l'acheminement de la phase gazeuse au-dessus de la surface du liquide vers une unité d'analyse (9), qui détermine la composition de la phase gazeuse acheminée.
EP08708814A 2007-02-12 2008-02-08 Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire Withdrawn EP2121176A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08708814A EP2121176A1 (fr) 2007-02-12 2008-02-08 Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07102117 2007-02-12
PCT/EP2008/051538 WO2008098878A1 (fr) 2007-02-12 2008-02-08 Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire
EP08708814A EP2121176A1 (fr) 2007-02-12 2008-02-08 Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire

Publications (1)

Publication Number Publication Date
EP2121176A1 true EP2121176A1 (fr) 2009-11-25

Family

ID=39376970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708814A Withdrawn EP2121176A1 (fr) 2007-02-12 2008-02-08 Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire

Country Status (6)

Country Link
US (1) US20100018292A1 (fr)
EP (1) EP2121176A1 (fr)
CN (1) CN101605596B (fr)
MY (1) MY169575A (fr)
TW (1) TW200902151A (fr)
WO (1) WO2008098878A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145126A (ja) * 2010-01-13 2011-07-28 Sumitomo Chemical Co Ltd 熱交換プロセスの異常検知方法
EP3010634A1 (fr) * 2013-06-17 2016-04-27 Basf Se Procédé et installation pour mettre en oeuvre une réaction exothermique en phase gazeuse sur un catalyseur particulaire hétérogène

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976461A (en) * 1998-05-05 1999-11-02 Kostuck; Paul R. Method for protecting cooling water systems
JP3559456B2 (ja) * 1998-09-18 2004-09-02 株式会社日本触媒 接触気相酸化方法及び多管式反応器
TW534972B (en) * 2001-06-26 2003-06-01 Sumitomo Chemical Co Method and device for detecting abnormality in process for exchanging heat
DE10258153A1 (de) * 2002-12-12 2004-06-24 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
EP1854534A1 (fr) * 2006-05-12 2007-11-14 Methanol Casale S.A. Réacteur isothermique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008098878A1 *

Also Published As

Publication number Publication date
WO2008098878A1 (fr) 2008-08-21
CN101605596A (zh) 2009-12-16
US20100018292A1 (en) 2010-01-28
TW200902151A (en) 2009-01-16
CN101605596B (zh) 2013-09-11
MY169575A (en) 2019-04-22

Similar Documents

Publication Publication Date Title
EP1485195B1 (fr) Procede de production de phosgene
EP2406181B1 (fr) Procédé de production du phosgène
EP1572582B1 (fr) Procede pour produire du chlore par oxydation en phase gazeuse de chlorure d'hydrogene
DD150006A5 (de) Chemisches verfahren und reaktionsgefaess fuer die durchfuehrung desselben
DE2457873A1 (de) Waermetauscher
EP1185494B1 (fr) Procede d'oxydation catalytique en phase gazeuse pour produire de l'anhydride d'acide maleique
DE2420949C3 (de) Verfahren und Reaktor zur Herstellung von Äthylenoxid durch katalytische Oxidation von Äthylen
WO2008098878A1 (fr) Procédé de contrôle de fuite dans un réacteur à faisceau tubulaire
EP2361675B1 (fr) Réacteur pour réactions à pression et température élevées et son utilisation
EP1002571A1 (fr) Réacteur pour réaliser des réactions fortement exothermiques
DE102005030230B3 (de) Vorrichtung zur Behandlung von organischen Substanzen
WO2002099287A1 (fr) Pompe pour acheminer un fluide d'echange thermique pour un reacteur a faisceau tubulaire de contact
EP4320399A1 (fr) Échangeur de chaleur pour équilibrer la température d'une matière solide
WO2021156092A1 (fr) Procédé et réacteur pour la production de phosgène
EP3972934A1 (fr) Procédé et réacteur de fabrication de phosgène
DE2527630A1 (de) Chemisches verfahren und vorrichtung zur durchfuehrung desselben
EP1497259B1 (fr) Reacteur de fission thermique d'esters d'acide carbamide monofonctionnels et polyfonctionnels
EP0233352B1 (fr) Séparateur à chaud
DE2329700C3 (de) Verfahren zur hydrierenden Raffination und/oder hydrierenden Spaltung kohlenwasserstoffhaltigem Einsatzmaterial
DE19804806A1 (de) Verfahren und Reaktor zur Hydrierung von Acetylen
EP3194065B1 (fr) Procédé de phosgénation de composés contenant des groupes hydroxyle, thiol, amino et/ou formamide
DE2724605A1 (de) Waermetauscher
DE861997C (de) Vorrichtung zur thermischen Umwandlung von Gasen unter Druck
EP0432429A1 (fr) Réacteurs à tubes
EP0626441A1 (fr) Réacteur pour éxécuter des réactions endothermiques ou faiblement exothermiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101104