EP2115948B1 - Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain - Google Patents

Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain Download PDF

Info

Publication number
EP2115948B1
EP2115948B1 EP08701127A EP08701127A EP2115948B1 EP 2115948 B1 EP2115948 B1 EP 2115948B1 EP 08701127 A EP08701127 A EP 08701127A EP 08701127 A EP08701127 A EP 08701127A EP 2115948 B1 EP2115948 B1 EP 2115948B1
Authority
EP
European Patent Office
Prior art keywords
data
profinet
field
field devices
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08701127A
Other languages
German (de)
English (en)
Other versions
EP2115948A1 (fr
Inventor
Eugen Breit
Jürgen Jasperneite
Jörg JESCHIN
Gunnar Lessmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Publication of EP2115948A1 publication Critical patent/EP2115948A1/fr
Application granted granted Critical
Publication of EP2115948B1 publication Critical patent/EP2115948B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40221Profibus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]

Definitions

  • the invention relates to a method for the optimized transmission of data between a control device and a plurality of field devices, which are interconnected via an IP-based communication network, wherein the data transmission is controlled using a Profinet protocol. Furthermore, the invention relates to a control and data transmission system, which is particularly suitable for carrying out the method.
  • the Profinet standard is used, which supports the control of field devices, such as sensors and actuators, by a higher-level control device.
  • Profinet-IO is based on Ethernet technology.
  • Profinet-IO was developed within the Profibus user organization and standardized in IEC61158 / IEC61784.
  • Profinet-IO supports a so-called provider-consumer model, in which data is cyclically transmitted in real-time from a data source called provider to a data sink called consumer.
  • providers and consumers are implemented both in an I / O controller and in I / O field devices.
  • the cyclic data exchange between an I / O control device and a decentralized I / O field devices takes place via a communication relationship, also known as communication rela- tionship (CR), which is established between a provider and a consumer.
  • a communication relation from the controller to a field device is referred to as output CR or output CR, while the communication relation from a field device to the controller is referred to as input CR or input CR.
  • Fig. 2 shows the time sequence diagram of a communication cycle between a controller 20 and, for example, three field devices 30, 40 and 50 of a known communication system based on the Profinet-IO standard.
  • Fig. 1 shows an Ethernet-based communication network 60 to which the I / O controller 20 and the three I / O field devices 30, 40 and 50 are connected.
  • the controller 20 must establish a separate output CR for each field device if it wishes to transmit data to the field devices.
  • a provider application P is started in the control device, while a consumer application C is started in the respective field device.
  • a separate input CR must be set up between each field device which would like to transmit data to the control device 20 and the control device 20.
  • a provider application P is started in each field device and a consumer application C is started in the control device 20 for each field device.
  • an Ethernet packet is generated in the data link layer of the controller corresponding to layer 2 of the OSI model into which the Profinet frame containing the data to be transmitted is embedded and transmitted to the respective field device.
  • each field device that wants to transfer data to the controller in an input CR generates an Ethernet packet into which a Profinet frame is embedded.
  • FIG. 2 For example, an exemplary Ethernet packet 90, in which a Profinet frame is embedded, is shown for an input CR from the field device 50 to the controller 20.
  • the Ethernet packet 90 has, in a manner known per se, an Ethernet header followed by a Profinet header. This is followed by the input data (E data slot 1, E data slot 2) to be transmitted by the field device 50, which are divided into slots 1 and 2.
  • Ethernet packets are contained in two slots.
  • the minimum length of an Ethernet packet is 72 bytes, of which 8 bytes fall on the preamble.
  • Profinet allows transmission of 44 bytes of user data in an Ethernet packet. If the data to be transmitted, for example, from the field device 50 has a smaller length, for example only 4 bytes, the remainder of the Ethernet packet is filled with corresponding filling bytes, as described in US Pat Fig. 2 is shown.
  • the transmission of Separate Ethernet packets between the controller and the field devices leads in particular in automation components with a small payload length to unfavorable transmission behavior.
  • the invention is therefore based on the object of providing a method and a control and data transmission system with which a more efficient data transmission between a control device and field devices with simultaneous compatibility with the Profinet standard can be achieved.
  • a central idea of the invention is that the data to be transmitted by a control device to a plurality of field devices in a single frame subdivided into data fields and the data to be transmitted from a plurality of field devices to a control device are also subdivided into only one common data field Frame can be transferred.
  • the transmission rate can be increased over the transmission rate achieved with standard Profinet frames, since inter alia the number of fill bits to be transmitted can be reduced.
  • a method for optimized transmission of data between a control device and a plurality of field devices is provided.
  • the field devices and the control device are interconnected via an IP-based communication network, wherein the data transmission is controlled by a Profinet protocol.
  • a single frame is generated according to the Profinet protocol (step a).
  • This per se known Profinet frame is subdivided into N data fields which are assigned to the N field devices to which data is to be transmitted in a predetermined manner (step b).
  • the assignment of data fields to the respective field devices can take place during the configuration phase.
  • data for the field device which is assigned to the respective data field are written into each data field of the subdivided Profinet frame if the control device has data for transmission to this field device (step c).
  • the divided Profinet frame is routed via the communication network to each of the N field devices (step d).
  • the subdivided Profinet frame is embedded in an Ethernet packet, which can be generated in the data protection layer of the control device.
  • the subdivided Profinet frame goes through each of the N field devices, each field device reading out data from the data field associated with the respective field device (step e).
  • the method also includes the optimized transmission of data during an input phase, that is, during a transmission of data from the field devices to the controller.
  • a single frame is generated in accordance with the Profinet protocol for transmitting data of the N field devices to the control device (step f).
  • the Profinet frame is divided into N data fields which are assigned to the N field devices in a predetermined manner (step g).
  • the subdivided Profinet frame is transferred to one of the N field devices (step h).
  • the generation of the Profinet frame and the subdivision of the Profinet frame into data fields can take place in a predetermined field device of the N field devices or in a separate device. If the Profinet frame is generated in one of the N field devices and subdivided into data fields, the step of transferring the Profinet frame to one of the N field devices means that the Profinet frame is transferred to a specific layer of the field device in which data of the field device is stored in the data field of the subdivided Profinet frame assigned to this field device is written.
  • the method step of transferring the Profinet frame to one of the N field devices means that the divided Profinet frame is transferred from the processing device to this one field device.
  • the processing device can also be part of this field device.
  • the subdivided Profinet frame is successively forwarded to all N field devices which, on receipt of the subdivided Profinet frame, write data into the data field assigned to the respective field device (step i).
  • This method ensures that data is transferred at a higher speed than the standard Profinet can be because only a reduced number of Greints, and in the best case even no Artbytes must be transmitted with the user data.
  • the data transmission can be further optimized in that, depending on the amount of data to be transmitted to the N field devices and / or the N field devices, it is decided whether the data from the N field devices and / or the N field devices is divided into a single subdivided Profinet code. Frames are transmitted, or whether the data from and / or to at least one of the N field devices are each transmitted in a separate conventional Profinet frame. Accordingly, the method can ensure that data to be transmitted to and / or transmitted by a field device in a separate conventional Profinet frame when the amount of data substantially equal to the length of the payload field of the conventional Profinet frame, so that no or only few filler bytes would have to be transmitted.
  • the steps a) to e) and / or f) to j) of the method 1 are repeated cyclically until all data has been transferred completely, in particular in real time to the field devices or to the control device.
  • the method steps a) to d), which belong to an output phase, are executed by the control device itself.
  • the method steps a) to d) can also be carried out by an optimization device assigned to the control device, which is also referred to below as a head station.
  • the controller before generating a Profinet frame, the controller generates a separate conventional Profinet frame for each of the N field devices to which data is being transferred. The data that is to be transferred to the respective field device is written to each Profinet frame.
  • the control device preferably successively transmits the Profinet frames using the destination address of the respective field device to the optimization device. In the optimizer, the destination addresses are replaced by a multicast address, which is written in the partitioned Profinet frame. Subsequently, the method steps c) and d) are carried out by the optimization device.
  • the optimizer receives a partitioned Profinet frame destined for the controller.
  • the data of each data field of the divided Profinet frame is then written into a separate Profinet frame.
  • Each Profinet frame now contains data of a specific field device.
  • each Profinet frame is now transmitted in a separate Ethernet packet to the control device. Based on the source address recognizes the Control device, from which field device the data originate in the respective Profinet frame.
  • the above-mentioned technical problem is also solved by a control and data transmission system for optimized transmission of data between a control device and a plurality of field devices.
  • the control device and a multiplicity of N field devices are connected to an IP-based communication network, a Profinet protocol being used as the communication protocol.
  • the control device is assigned a device for optimizing the data transmission.
  • the optimizing means comprises means for generating a single frame according to a Profinet protocol for transmitting data to the N field devices.
  • the optimization device has a device for dividing the Profinet frame into N data fields and for assigning the N data fields to the N field devices in a predetermined manner.
  • means are provided for selectively writing data into the data fields of the subdivided Profinet frame and means for transmitting the subdivided Profinet frame to each of the N field devices.
  • Each field device is designed to read out the data intended for it from the data field of the subdivided Profinet frame assigned to it.
  • the optimizer is implemented in the controller.
  • the optimizer is implemented in one of the N field devices or formed as a separate device connected to the communication network.
  • the optimizer has a first in this case Device for receiving conventional Profinet frames from the control device, which are each intended for one of the N field devices.
  • a device is provided for reading out the data from the received Profinet frames, wherein the writing device is designed to write the read-out data into the data fields of the Profinet frame, which are assigned to the respective field devices.
  • a second device is provided for receiving a subdivided Profinet frame intended for the control device.
  • a device for writing the data of each data field of the subdivided Profinet frame into a separate conventional Profinet frame as well as a device for transmitting the conventional Profinet frames using the source address of the respective field device to the control device may be provided.
  • At least one of the N field devices has a device for generating a frame according to a Profinet protocol and a device for dividing the Profinet frame into N data fields.
  • Each of the N field devices is then designed to write data into the data field of the subdivided Profinet frame, which is assigned to the respective field device.
  • the optimizer comprises means for sending a multicast address into an IP packet containing the divided Profinet frame to the N field devices transmits, can write.
  • each of the N field devices knows both its own source address and the Multicast address, which allows transmission of the divided Profinet frame to the group of field devices.
  • the optimization device has a decision device, which can decide depending on the amount of data to be transmitted to the N field devices and / or the N field devices, whether the data from the N field devices and / or to the N field devices are each transmitted in a single subdivided Profinet frame, or whether the data from and / or to at least one of the N field devices are each transmitted in a separate conventional Profinet frame to or from the controller.
  • the IP-based communication network is preferably an Ethernet, in particular a fast Ethernet.
  • the process as well as the control and data transmission system can support all configuration mechanisms of Profinet, such as context management.
  • standard Profinet field devices can also be operated with field devices that support the optimized transmission service in real time. Thanks to the transmission of data to multiple field devices and multiple field devices in a single Profinet frame divided into data fields, it is sufficient, for example, to transmit the cycle counter only once, thereby further optimizing data transmission.
  • Fig. 1 shows as a control and data transmission system, an exemplary automation system 10, in which the I / O control device 20 and, for example, three field devices 30, 40 and 50, which can act as I / O devices, connected to a transmission medium based on Ethernet technology are.
  • the in Fig. 1 illustrated automation system 10 is designed such that it is a data transmission both in accordance with the standard Profinet protocol than in the optimized Support real-time operation according to the present invention.
  • Fig. 6 shows an exemplary optimization module 100 according to the invention, which is used in both the control device 20 and in an Fig. 4 illustrated headend can be implemented.
  • the optimization module has a device 110 for generating a Profinet frame according to the standard Profinet and a further generation device 120 , which is designed to form a Profinet sum frame.
  • the generation device 120 serves to subdivide the Profinet frame according to the standard Profinet into a plurality of data fields into which data can be written, which are intended for the respective field devices.
  • the conventional Profinet frame is stored by the generator 110 in a Profinet frame memory 160.
  • the Profinet frame subdivided into data fields hereinafter referred to as the Profinet sum frame for short, is stored by the generation device 120 in a memory for Profinet sum frame 150.
  • a read / write device 170 is connected to the two memories 160 and 150 in order to store data intended for the field devices, either in a conventional Profinet frame, which is directed only to a single field device, or in the Profinet sum frame, which contains the data for a group of field devices.
  • the optimization module 100 includes a data protection layer 180 and a physical layer 190 based on Ethernet technology. These two layers correspond to the second or first layer of the OSI layer model. Via the physical layer 190, the optimization module 100 is connected to the Ethernet 60. It should be noted at this point that the backup layer 180 and the physical layer 190 may be implemented at any point on the controller 20 or, if the optimization module is implemented in the headend 80, anywhere within the headend 80.
  • a controller or microprocessor 140 is connected to all components of the optimization module to monitor and control the optimization module 100. Furthermore, the microprocessor 140 is connected to a decision device 130, which in turn is connected to the generation device 110 and the generation device 120. The decision device 130 is able to decide on the basis of the amount of data to be transmitted to the field devices and / or from the field devices to the control device 20, whether the data in individual conventional Profinet frames for each individual field device or from the field devices to the control device 20 and / or to be transmitted in a common single Profinet sum frame to the group of field devices or from the group of field devices to the controller.
  • the conventional Profinet frame and also the Profinet sum frame are transferred for data transmission to the data protection layer 180, which embeds the respective frame in an Ethernet packet.
  • An Ethernet packet 70 containing a Profinet sum frame is in Fig. 5 exemplified.
  • the Ethernet packet contains a minimum length of 72 bytes.
  • the Ethernet packet includes a preamble 71, a destination address field 72, a source address field 73 Type field 74 and a data field in which now the Profinet sum frame is housed.
  • the Profinet sum frame comprises a field for the Profinet header 75, a first data field 76 associated with the field device 30, a second data field 76 associated with the field device 40, and a third data field 78 associated with the field device 50 is assigned.
  • stuffing bytes are stuffed into a corresponding field.
  • a Profinet status field 79 is provided at the end of the Profinet sum frame. The information in the Profinet status field 79 indicates, for example, whether a conventional Profinet frame or Profinet sum frame is being transmitted in the Ethernet packet 70.
  • a multicast address written in the address field 72 is known to the three field devices 30, 40 and 50. If, by contrast, a conventional Profinet frame is transmitted in the Ethernet packet 70, the address field 72 contains the destination address of the respective receiver, which may be the control device 20 or one of the field devices 30, 40 or 50. If a Profinet sum frame is transmitted from the control device to the field devices 30, 40 and 50, then the address of the control device 20 is in the source address field 73. If, however, a Profinet sum frame is transmitted from the field devices 30, 40 and 50 to the control device 20, then For example, the source address field 73 may be empty.
  • the multicast address can be contained in the address field 72 and an indication in the Profinet status field that a Profinet sum frame is now transmitted.
  • the optimization module 100 associated with the headend 80 or controller 20 is able to recognize that data from a group of field devices, which in the present example are the field devices 30, 40 and 50, have been received.
  • 10 conventional Profinet field devices can be used in the automation system, which can receive and send only conventional Profinet frames.
  • field devices can be connected that can only receive and transmit Profinet sum frames.
  • field devices can be connected to the communication network 60, which can process both conventional Profinet frames and Profinet sum frames.
  • a generation device 51 for generating a conventional Profinet frame and a generation device 52 for generating a Profinet sum frame are provided in the field device 50. It should be noted that both the in Fig. 6 shown generating means 110 and 120 and the in Fig.
  • Each of the generating devices 51 and 52 shown can each represent a single assembly, in which case the generating device for generating a Profinet sum frame initially generates a conventional Profinet frame and this then divided into a corresponding number of data fields. Similar to the one in Fig. 6
  • the optimization module shown has a memory 56 for storing conventional Profinet frames and a memory 58 for storing Profinet sum frames in the generation device 51.
  • a read / write device 53 is used for writing data into or into the Profinet frame stored in the memory 56 and / or for writing to or reading data from the Profinet sum frame stored in the memory 58.
  • the field device again has a data protection layer 54 and a physical layer 55, which are constructed in accordance with the Ethernet standard. Via the physical layer 55, the field device 50 is connected to the Ethernet 60.
  • the components of the field device 50 are controlled and monitored by a microprocessor or a programmable logic controller 57, which is shown only schematically together with their terminals.
  • Fig. 3 schematically shows the connected to the Ethernet 60 field devices 30, 40 and 50 and the connected controller 20.
  • the transmission time increases in the direction of the arrow of the vertical time axis.
  • an application relation also called an application relation (AR)
  • AR application relation
  • a provider application P is started in the control device 20 and a consumer application C is started in the field device 50.
  • the provider application P of the controller 20 causes the microprocessor 140 to cause the generator 120 to compile a Profinet sum frame with the data fields 76, 77, and 78, respectively Fig. 5 to create.
  • the Profinet status field 79 of the in Fig. 5 For example, one or more bits that indicate the transmission of a Profinet sum frame are set. The Profinet sum frame is then placed in the memory 150 by the generator 120.
  • reading device 170 writes the data of field devices 30, 40 and 50 available in data memory 155 into data fields 76, 77 and 78, respectively writes the Profinet totals frame into an Ethernet packet.
  • the address field 72 of the in Fig. 5 shown packets the multicast address that the three field devices 30, 40 and 50 is also known. Assume at this point that only a single filler byte must be transmitted in the Profinet sum frame. That too in Fig. 3 schematically shown Ethernet packet 70 is now on the physical layer 190 and the Ethernet 60 first to the field device 30, then forwarded to the field device 40 and from this finally to the field device 50.
  • the field device 30 recognizes from the multicast address of the received Ethernet packet 70 that this packet is intended for it among other things. In addition, the field device 30 has already been informed that the data intended for it will be transmitted in the data field 76. The field device 30 reads or copies those intended for it
  • the data is stored, for example, in two slots, slot 1 and slot 2 in memory 59.
  • the field device 30 then forwards the Ethernet packet 70 to the field device 40, which in turn recognizes at the multicast address that this packet is intended for it.
  • the field device 40 knows that data has been transferred for it in the data field 77 and reads these out. These data are again stored in slots in a memory.
  • the Ethernet packet 70 is further transmitted to the last field device 50, which now reads out the data contained in the data field 78 and stores them in slots.
  • the data fields 76, 77 and 78 are pre-configured locations which, as already mentioned, are known both to the optimization module 100 and to the respective field devices 30, 40 and 50.
  • the Profinet sum frame is transferred from the memory 58 of the data link layer 54, which now embeds the Profinet sum frame in an Ethernet packet.
  • the multicast address is written into the address field 72 as well as a corresponding indication in the Profinet status field 79, which indicates the transmission of a Profinet sum frame.
  • the Ethernet packet is first transferred via the Ethernet 60 to the field device 40.
  • the field device 40 recognizes on the basis of the multicast address that a Profinet sum frame is to be transmitted to the control device 20. Thereupon, the field device 40, if present, writes its data intended for the control device 20 into the data field 77 assigned to it and forwards the Ethernet packet to the field device 30.
  • the field device 30 in turn writes, if present, its data to be sent to the control device 20 into the data field 76 of the Profinet sum frame, which is assigned to this field device and transmits the Ethernet packet to the control device 20. It should be noted that the field device 30 in the present Example has written only a single filler byte in the Profinet sum frame to fill the data to be transmitted to the entire payload length of the Profinet sum frame. The consumer application ensures that the data of the field devices 30, 40 and 50 are read from the corresponding data fields and processed further. The corresponding Ethernet packet transmitted to the control device is also schematically shown in FIG Fig. 3 shown.
  • the Profinet sum frame transmitted from the control device to the field devices includes output data (A data), while the Profinet sum frame transmitted from the field devices to the control device 20 contains input data (E data).
  • a data output data
  • E data input data
  • the in Fig. 3 shown Profinet sum frame does not contain all the data for the field devices 30, 40 and 50, but in each case only a first part of the data, which are each stored in the slot 1 of each field device. Consequently, the remainder of the data in a second Profinet sum frame would have to be transferred from the controller 20 to the field devices 30, 40 and 50.
  • Profinet sum frame transmits only input data for the control device 20, which are each stored in one of the two slots - Slot1 or Slot2 - the field devices 30, 40 and 50. In this case, the remaining data are transmitted in a further Profinet sum frame from the field devices to the control device 20.
  • Fig. 4 shows a further embodiment for the transmission of data in a Profinet Summnenrahmen between the controller 20 and the field devices 30, 40 and 50.
  • optimization module 100 is now housed in the head station 80, which is a separate field device in the present example, which is also connected to the Ethernet 60.
  • the field devices 30, 40 or 50 could also form the head station 80.
  • FIG. 4 An advantage of in Fig. 4
  • the embodiment shown can be seen in that uses a conventional control device according to the Profinet standard can be. If data is now to be transmitted to the field devices, the control device 20 first establishes its own application relationship with the head station 80 for each field device. The controller 20 then generates for each field device its own conventional Profinet frame which is transmitted in an Ethernet packet to the headend 80, as shown schematically by three connections between three provider applications P implemented in the controller 20 and the lozenge 81 in FIG Fig. 4 is shown.
  • the Ethernet packet contains the source address of the control device 20 and the destination address of the respective field device.
  • the Ethernet packets associated with the field devices 30, 40 and 50 are first written to the memory 160 in the optimizer module 100 of the headend 80.
  • the optimization module 100 now generates a Profinet sum frame with the data fields 76, 77 and 78.
  • the microprocessor 140 of the optimization module 180 controls the read / write device 170, which then contains the data contained in the individual Profinet frame of the respective field devices in the im Memory 150 writes stored Profinet sum frame such that the data intended for the field device 30 data are written in the data field 76, the data destined for the field device 40 data are written into the data field 77 and the data destined for the field device 50 written in the data field 78 become.
  • the optimization module 100 in the data protection layer 180 replaces the target addresses of the respective field devices contained in the conventional Profinet frames with the agreed multicast address.
  • the source address field 77 may include the address of the controller 20 or the headend 80.
  • the headend 80 transmits the Ethernet packet included in the Profinet sum frame via the physical layer 190 and the communication network 60 to the Field device 30, which is similar to that in connection with Fig. 3 described method reads in the associated data field 76 and then forwards the Ethernet packet 70 to the field device 40.
  • the field device 40 in turn reads the data intended for it from the data field 77 and forwards the Ethernet packet via the communication network 60 to the field device 50.
  • the field device 50 in turn reads out the data intended for it from the data field 78.
  • the field device 50 first generates the field device 50, similar to that in connection with Fig. 3 already explained procedure, a Profinet sum frame.
  • the field device 50 then writes its data intended for the control device 20 into the data field 78.
  • the Profinet sum frame is embedded in an Ethernet packet and transmitted to the field device 40 using the multicast address. Similar to the explanations to Fig. 3
  • the field device 40 writes the data intended for the control device 20 into the data field 77 and forwards the Ethernet packet to the field device 30, which in turn writes the data intended for the control device 20 into the data field 76 of the Profinet sum frame.
  • the field device 30 then transmits the Ethernet packet to the headend 80, indicated by the diamond 82 in FIG Fig. 4 is shown schematically.
  • the optimization module 100 of the headend 80 removes the Profinet sum frame from the received Ethernet packet in the data link layer 180 and writes the Profinet sum frame into the memory 150. Under control of the microprocessor 140, the data stored in the data fields 76, 77, and 78, respectively in your own Profinet framework written in the
  • Generating device 110 generated and stored in the memory 160.
  • the Profinet frames associated with the three field devices 30, 40, and 50 are passed from the memory 160 to the backup layer 180, which embeds each conventional Profinet frame into a separate Ethernet packet.
  • the source address of the respective field device is written into the data protection layer 54 in each Ethernet packet, and the address of the control device 20 as the destination address. Subsequently, that transmits
  • each Ethernet packet which is assigned to one of the field devices 30, 40 and 50, via the physical layer 190 and the Ethernet 60 to the controller 20.
  • This transmission is in Fig. 4 schematically represented by three communication relationships between the diamond 82 and the consumer applications C of the controller 20.
  • the decision device 130 of the optimization module 100 is able to determine from the data quantity to be transmitted to one or more of the field devices 30, 40 and 50 and in the reverse direction from at least one of the field devices to the control device 20 whether the respective data are to be transmitted in conventional separate Profinet frames or in a common Profinet sum frame.
  • the decision device 130 recognizes that the control device 20 receives data on the field device 30 want to transmit, which occupy the payload length of a conventional Profinet frame completely or almost completely, and that, for example, data for field devices 40 and 50, which would occupy a Profinet sum frame completely or almost completely, the decision means 130 causes the control means 20th Data is transferred to the field device 30 in a conventional Profinet frame generated in the device 110 while the data is transferred to the field devices 40 and 50 in a Profinet sum frame, as shown in FIG Figures 3 and 4 previously explained in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Claims (13)

  1. Procédé pour la transmission optimisée de données entre un dispositif de commande (20) et plusieurs appareils de champ (30, 40, 50), qui sont reliés les uns aux autres par un réseau de communication (860) basé sur IP, la transmission de données étant commandée par un protocole de Profinet, comprenant les étapes suivantes :
    a) génération d'un unique cadre de données selon le protocole de Profinet pour la transmission de données à une pluralité de N appareils de champ (30, 40, 50), caractérisé par les autres étapes suivantes :
    b) subdivision du cadre de données de Profinet en N champs de données, qui sont attribués de façon prédéfinie aux N appareils de champ (30, 40, 50) ;
    c) enregistrement dans chaque champ de données du cadre de données de Profinet de données pour l'appareil de champ, qui est attribué au champ de données respectif, dans la mesure où des données existent pour cet appareil de champ ;
    d) transfert du cadre de données subdivisé de Profinet à chacun des N appareils de champ (30, 40, 50) ;
    e) extraction des données de chaque champ de données par l'appareil de champ, qui est attribué au champ de données respectif ; et/ou comprenant les étapes suivantes :
    f) génération d'un unique cadre de données selon le protocole de Profinet pour la transmission de données des N appareils de champ (30, 40, 50) au dispositif de commande (20) ;
    g) subdivision du cadre de données de Profinet en N champs de données, qui sont attribués de façon prédéfinie aux N appareils de champ (30, 40, 50) ;
    h) remise du cadre de données de Profinet à l'un des N appareils de champ (30, 40, 50) ;
    i) en cas de réception du cadre de données subdivisé de Profinet sur l'un des appareils de champ enregistrement de données, si disponibles, dans le champ de données attribué à cet appareil de champ, du cadre de données subdivisé de Profinet ;
    j) répétition des étapes h) et i) jusqu'à ce que le cadre de données subdivisé de Profinet soit passé par tous les N appareils de champ (30, 40, 50).
  2. Procédé selon la revendication 1,
    caractérisé par les étapes suivantes :
    décision en fonction de la quantité de données à transmettre allant aux N appareils de champ et/ou provenant des N appareils de champ pour savoir si les données provenant des N appareils de champ et/ou allant aux N appareils de champ sont transmises dans un seul cadre de données subdivisé de Profinet ou si les données provenant de et/ou allant à au moins l'un des N appareils de champ sont transmises respectivement dans un cadre de données séparé et classique de Profinet.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que
    les étapes a) jusqu'à e) et/ou f) jusqu'à j) sont répétées de façon cyclique jusqu'à ce que toutes les données aient été transmises complètement, en particulier en temps réel.
  4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que
    les étapes a) jusqu'à d) sont exécutées par le dispositif de commande.
  5. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que
    les étapes a) jusqu'à d) sont exécutées par un dispositif d'optimisation (100) attribué au dispositif de commande (20), les étapes suivantes étant exécutées dans le dispositif de commande avant l'exécution de l'étape a) :
    génération d'un cadre de données de Profinet pour chacun des N appareils de champ, auxquels des données doivent être transmises ;
    enregistrement des données définies pour un appareil de champ dans le cadre de données respectif de Profinet ;
    transmission des cadres de données de Profinet avec utilisation de l'adresse cible de l'appareil de champ respectif au dispositif d'optimisation, l'adresse cible de chaque appareil de champ étant remplacée à l'étape c) par une adresse de multidiffusion.
  6. Procédé selon la revendication 5,
    caractérisé par les étapes suivantes :
    réception d'un cadre de données subdivisé de Profinet, qui est destiné au dispositif de commande, sur le dispositif d'optimisation (100) ;
    enregistrement des données de chaque champ de données du cadre de données subdivisé de Profinet dans un cadre de données séparé de Profinet et transmission de chaque cadre de données de Profinet avec utilisation de l'adresse source de l'appareil de champ respectif au dispositif de commande.
  7. Installation de commande et de transmission de données (10) pour la transmission optimisée de données entre un dispositif de commande (20) et plusieurs appareils de champ (30, 40, 50), comprenant
    un dispositif de commande (20) et une pluralité de N appareils de champ (30, 40, 50), qui sont reliés les uns aux autres avec un réseau de communication (60) basé sur IP, un protocole de Profinet étant utilisé comme protocole de communication,
    et un dispositif (100) attribué au dispositif de commande (20) pour l'optimisation de la transmission de données, qui présente la caractéristique suivante :
    un dispositif (110) pour la génération d'un unique cadre de données selon le protocole de Profinet pour la transmission de données aux N appareils de champ, caractérisé en ce que le dispositif de commande (20) présente également les caractéristiques suivantes :
    un dispositif (120) pour la subdivision du cadre de données de Profinet en N champs de et pour l'attribution des N champs de données aux N appareils de champ de façon prédéfinie,
    un dispositif (170) pour l'enregistrement ciblé de données dans les champs de données du cadre de données subdivisé de Profinet,
    un dispositif (180, 190) pour la transmission du cadre de données subdivisé de Profinet à chacun des N appareils de champ (30, 40, 50) ;
    chaque appareil de champ (30, 40, 50) étant conçu pour l'extraction des données qui lui sont destinées à partir du champ de données qui lui est attribué, du cadre de données subdivisé de Profinet.
  8. Installation de commande et de transmission de données selon la revendication 7,
    caractérisée en ce que
    le dispositif d'optimisation (100) est mis en oeuvre dans le dispositif de commande (20).
  9. Installation de commande et de transmission de données selon la revendication 7,
    caractérisée en ce que
    le dispositif d'optimisation (100) est mis en oeuvre dans l'un des appareil de champ ou forme un dispositif (80) séparé, qui est relié au réseau de communication (60), le dispositif d'optimisation (100) présentant les autres caractéristiques suivantes :
    un premier dispositif (54, 55) pour la réception de cadres de données classiques de Profinet du dispositif de commande (20) qui sont destinés à chacun à l'un des N appareils de champ (30, 40, 50),
    un dispositif (53) pour l'extraction des données des cadres de données reçus de Profinet, le dispositif d'enregistrement (53) étant conçu pour l'enregistrement des données extraites dans les champs de données du cadre de données de Profinet qui sont attribués aux appareils de champ respectifs,
    un second dispositif (54, 55) pour la réception d'un cadre de données, subdivisé et destiné au dispositif de commande, de Profinet,
    un dispositif (53) pour l'enregistrement des données de chaque champ de données du cadre de données subdivisé de Profinet dans un cadre de données séparé et classique de Profinet,
    et un dispositif (54, 55) pour la transmission des cadres de données classiques de Profinet avec utilisation de l'adresse source de l'appareil de champ respectif au dispositif de commande.
  10. Installation de commande et transmission de données selon l'une quelconque des revendications 7 à 9, caractérisée en ce qu'au moins l'un des N appareils de champ présente un dispositif pour la génération (51) d'un cadre de données selon le protocole de Profinet pour la transmission de données au dispositif de commande et un dispositif (52) pour la subdivision du cadre de données de Profinet en N champs de données, chaque appareil de champ étant conçu pour l'enregistrement de données dans le champ de données du cadre de données subdivisé de Profinet qui est attribué au champ de données respectif.
  11. Installation de commande et de transmission de données selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le dispositif d'optimisation (100) présente un dispositif pour l'enregistrement d'une adresse de multidiffusion dans un paquet IP pour la transmission du cadre de données subdivisé de Profinet aux N appareils de champ.
  12. Installation de commande et de transmission de données selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le dispositif d'optimisation (100) présente un dispositif de décision (130) qui décide en fonction de la quantité de données à transmettre allant aux N appareils de champ et/ou provenant des N appareils de champ si les données provenant des N appareils de champ et/ou allant aux N appareils de champ sont transmises respectivement dans un unique cadre de données subdivisé de Profinet ou si les données provenant et/ou allant à au moins l'un des N appareils de champ sont transmises respectivement dans un cadre de données séparé et classique de Profinet.
  13. Installation de commande et de transmission de données selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le réseau de communication basé sur IP est conçu selon le standard Ethernet.
EP08701127A 2007-01-22 2008-01-16 Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain Active EP2115948B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007004044A DE102007004044B4 (de) 2007-01-22 2007-01-22 Verfahren und Anlage zur optimierten Übertragung von Daten zwischen einer Steuereinrichtung und mehreren Feldgeräten
PCT/EP2008/000280 WO2008089901A1 (fr) 2007-01-22 2008-01-16 Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain

Publications (2)

Publication Number Publication Date
EP2115948A1 EP2115948A1 (fr) 2009-11-11
EP2115948B1 true EP2115948B1 (fr) 2010-08-11

Family

ID=39149337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08701127A Active EP2115948B1 (fr) 2007-01-22 2008-01-16 Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain

Country Status (8)

Country Link
US (1) US8670460B2 (fr)
EP (1) EP2115948B1 (fr)
JP (1) JP5164994B2 (fr)
CN (1) CN101548508B (fr)
AT (1) ATE477644T1 (fr)
DE (2) DE102007004044B4 (fr)
ES (1) ES2350715T3 (fr)
WO (1) WO2008089901A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025892A1 (de) * 2007-06-01 2008-12-11 Phoenix Contact Gmbh & Co. Kg Werkzeugerkennung im Profinet
DE102008009835B4 (de) * 2008-02-18 2011-07-28 Phoenix Contact GmbH & Co. KG, 32825 Sendeverfahren und Empfangsverfahren
DE102010033229A1 (de) * 2010-08-03 2012-02-09 Siemens Aktiengesellschaft Verfahren und System zur manipulationssicheren Übertragung von Steuerdaten
EP2466803B1 (fr) 2010-12-15 2013-04-17 Siemens Aktiengesellschaft Procédé de transmission de données dans un système d'automatisation en utilisant le Dynamic Frame Packing
EP2466406B1 (fr) 2010-12-15 2016-03-02 Siemens Aktiengesellschaft Procédé de génération automatique de groupes de "dynamic frame packing"
JP5893609B2 (ja) 2011-04-13 2016-03-30 Hoya株式会社 眼鏡用フォトクロミックレンズ
US9385786B2 (en) 2011-12-14 2016-07-05 Marvell World Trade Ltd. Method and apparatus for charging a battery in a mobile device through a near field communication (NFC) antenna
EP2642403B1 (fr) * 2012-03-23 2014-07-23 Siemens Aktiengesellschaft Dispositif d'interface et procédé d'échange stable de données
DE102012211867B3 (de) * 2012-07-06 2013-10-02 Siemens Aktiengesellschaft PROFIenergy in unterlagerten Kommunikationssystemen
EP2713563B1 (fr) * 2012-09-28 2017-08-02 Siemens Aktiengesellschaft Système de communication industriel pouvant fonctionner de manière redondante, appareil de communication et procédé de fonctionnement redondant d'un système de communication industriel
US9582457B2 (en) 2013-06-12 2017-02-28 Qualcomm Incorporated Camera control interface extension bus
WO2015133175A1 (fr) * 2014-03-04 2015-09-11 オムロン株式会社 Système de commande, dispositif de commande, et procédé de commande
CN104601569B (zh) * 2015-01-13 2018-08-14 国家电网公司 一种提高profinet协议中通信报文利用率的方法
CN104767598B (zh) * 2015-01-15 2019-03-12 国家电网公司 一种用于储能电站现场设备之间的数据传输系统及其方法
DE102015120242B3 (de) * 2015-11-23 2017-02-09 Beckhoff Automation Gmbh Verfahren zum Betreiben eines Kommunikationsnetzwerkes, Kommunikationsnetzwerk, Steuervorrichtung und Datenverarbeitungsvorrichtung
US10222775B2 (en) 2015-11-30 2019-03-05 Hubbell Incorporated Interrupt exception window protocol on a data communication bus and methods and apparatuses for using same
DE102017119578A1 (de) 2017-08-25 2019-02-28 Phoenix Contact Gmbh & Co. Kg Verfahren zur Übertragung von Daten zwischen einer zentralen Steuereinrichtung und einer Mehrzahl dezentraler Geräte und entsprechende Vorrichtungen
JP6911791B2 (ja) * 2018-02-14 2021-07-28 オムロン株式会社 制御装置、制御システム、制御方法、および、制御プログラム
DE102018212399A1 (de) * 2018-07-25 2020-01-30 Siemens Aktiengesellschaft Verfahren zur Übermittlung zeitkritischer Daten innerhalb eines Kommunikationssystems für ein industrielles Automatisierungssystem und Kommunikationssystem
DE102019208678A1 (de) * 2019-06-14 2020-12-17 Robert Bosch Gmbh Kommunikationsverfahren
CN116436994B (zh) * 2023-06-15 2023-08-25 杭州禾芯半导体有限公司 Profinet协议报文传输方法、装置、设备及介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163047A (en) * 1989-09-15 1992-11-10 At&T Bell Laboratories Time division multiplex system and method having a time slot reuse capability
JP3351214B2 (ja) 1996-01-19 2002-11-25 富士通株式会社 制御情報伝送方法
DE19739297C2 (de) * 1997-09-08 2001-11-15 Phoenix Contact Gmbh & Co Automatisierungsanlage und Anschaltvorrichtung zur transparenten Kommunikation zwischen zwei Netzen
US6515976B1 (en) * 1998-04-06 2003-02-04 Ericsson Inc. Demodulation method and apparatus in high-speed time division multiplexed packet data transmission
EP1032165A1 (fr) * 1999-02-26 2000-08-30 International Business Machines Corporation Procédé d' assemblage de trames segmentés de données transmises sur un circuit principal
JP3852067B2 (ja) * 1999-06-08 2006-11-29 株式会社山武 通信システム
DE19939568C1 (de) * 1999-08-20 2001-02-08 Pilz Gmbh & Co Verfahren zur Einstellung einer Datenübertragungsrate in einem Feldbussystem
JP3613102B2 (ja) * 1999-12-14 2005-01-26 日本電気株式会社 フレーム構成方法、フレーム構成装置およびフレーム構成転送システム
US7024257B2 (en) * 2001-02-09 2006-04-04 Motion Engineering, Inc. System for motion control, method of using the system for motion control, and computer-readable instructions for use with the system for motion control
EP1288757A1 (fr) 2001-08-07 2003-03-05 Siemens Aktiengesellschaft Procédé et système de commande de processus pour la conduite d'une installation technique
DE10147412A1 (de) * 2001-09-26 2003-04-24 Siemens Ag Verfahren zur Erzeugung einer statischen Adresstabelle und Datennetz
JP2005057373A (ja) 2003-08-07 2005-03-03 Ntt Docomo Inc 無線パケット通信装置
DE10337699B4 (de) * 2003-08-16 2006-01-12 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zur Übertragung von Daten über ein Busnetz unter Verwendung des Broadcast-Prinzip
DE102004035442B4 (de) * 2004-07-22 2006-06-01 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zum sicheren Schalten eines Automatisierungsbussystems
DE102004050416A1 (de) * 2004-10-15 2006-04-27 Bosch Rexroth Ag Verfahren zur Synchronisation in einem redundanten Kommunikationssystem
US7613190B2 (en) * 2004-10-18 2009-11-03 Temic Automotive Of North America, Inc. System and method for streaming sequential data through an automotive switch fabric
US8121392B2 (en) * 2004-10-25 2012-02-21 Parata Systems, Llc Embedded imaging and control system
DE102004062683A1 (de) * 2004-12-21 2006-06-29 Bosch Rexroth Aktiengesellschaft Verfahren zur Regelung einer Übertragung mit kurzen Datentelegrammen
DE102005025582B4 (de) * 2005-06-01 2011-08-18 Phoenix Contact GmbH & Co. KG, 32825 Vorrichtung und Verfahren zur kombinierten Übertragung von Ein-/Ausgabedaten in Automatisierungs-Bussystemen
US7719961B2 (en) * 2006-09-29 2010-05-18 Rockwell Automation Technologies, Inc. Industrial ethernet communications adapter
DE502007002941D1 (de) * 2007-08-23 2010-04-08 Siemens Ag Verfahren zur Datenübertragung

Also Published As

Publication number Publication date
DE102007004044A1 (de) 2008-07-31
US8670460B2 (en) 2014-03-11
US20100074262A1 (en) 2010-03-25
DE102007004044B4 (de) 2009-09-10
JP5164994B2 (ja) 2013-03-21
CN101548508B (zh) 2012-08-29
CN101548508A (zh) 2009-09-30
ES2350715T3 (es) 2011-01-26
DE502008001122D1 (de) 2010-09-23
ATE477644T1 (de) 2010-08-15
EP2115948A1 (fr) 2009-11-11
WO2008089901A1 (fr) 2008-07-31
JP2010517347A (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
EP2115948B1 (fr) Procédé et équipement de transmission optimisée des données entre un dispositif de commande et plusieurs appareils de terrain
DE3856569T2 (de) Nachrichtübertragungsanordnung mit gemeinsamer Datenübertragungs- und Sammel-Geräten
EP2702497B1 (fr) Procédé et dispositif de transmission de données sérielle adaptée à la capacité mémoire
EP1989598B1 (fr) Procede, reseau de communication et unite de commande permettant une transmission cyclique de donnees
EP2030117B1 (fr) Passerelle servant à transférer des données entre des bus série
DE102014108455A1 (de) Verfahren zum Betreiben eines Netzwerks
EP3759871B1 (fr) Système de bus maître-esclave et procédé de fonctionnement d'un système de bus
DE10220334A1 (de) Verfahren und System zur Übertragung von Daten über schaltbare Datennetze
EP3151474B1 (fr) Procédé de communication de données avec surdébit réduit dans un réseau de données ethernet en temps réel
EP1776808A1 (fr) Procede de mise en memoire de messages dans une memoire de messages et memoire de messages associee
DE10231958A1 (de) Direkt adressiertes Multicast-Protokoll
EP1099153B1 (fr) Dispositif a memoire et son procede de fonctionnement
DE60127028T2 (de) Verfahren zur wechselseitigen Übertragung von Steuerungsparametern durch ein Kommunikationsnetz
EP1430670A1 (fr) Procede pour l'exploitation d'un systeme de communication cyclique isochrone
EP1642423A1 (fr) Procede et dispositif pour gerer une memoire
EP1371184B1 (fr) Circuit de commutation electronique et procede destines a une interface de communication avec memoire tampon intermediaire
DE10141187B4 (de) Elektronischer Schaltkreis und Verfahren für eine Kommunikationsschnittstelle mit Zwischenspeicherung
DE102009044936A1 (de) Verfahren zum Austauschen von Daten
DE60318971T2 (de) Routinggerät mit paralleler Verarbeitung
DE10347762B4 (de) Verfahren zur Speicherung von Übertragungseinheiten und Netzwerkkommunikations-Vorrichtung
EP3676995B1 (fr) Maître d'un système de bus
DE102018010209A1 (de) Master-Slave Bussystem und Verfahren zum Betrieb eines Bussystems
DE102011017539A1 (de) Verfahren und Vorrichtung zur an Speichergrößen angepassten seriellen Datenübertragung
DE102019219023A1 (de) Übertragungsverfahren
EP2203991A2 (fr) Système de radiocommunication, appareil de coordination et terminal de communication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001122

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100811

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101111

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: PHOENIX CONTACT GMBH & CO. KG

Free format text: PHOENIX CONTACT GMBH & CO. KG#FLACHSMARKTSTRASSE 8#32825 BLOMBERG (DE) -TRANSFER TO- PHOENIX CONTACT GMBH & CO. KG#FLACHSMARKTSTRASSE 8#32825 BLOMBERG (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001122

Country of ref document: DE

Effective date: 20110512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160111

Year of fee payment: 9

Ref country code: CH

Payment date: 20160127

Year of fee payment: 9

Ref country code: IT

Payment date: 20160129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160127

Year of fee payment: 9

Ref country code: AT

Payment date: 20160125

Year of fee payment: 9

Ref country code: BE

Payment date: 20160121

Year of fee payment: 9

Ref country code: FR

Payment date: 20160128

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 477644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 17