EP2111475B1 - Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine - Google Patents

Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine Download PDF

Info

Publication number
EP2111475B1
EP2111475B1 EP07801785.2A EP07801785A EP2111475B1 EP 2111475 B1 EP2111475 B1 EP 2111475B1 EP 07801785 A EP07801785 A EP 07801785A EP 2111475 B1 EP2111475 B1 EP 2111475B1
Authority
EP
European Patent Office
Prior art keywords
uhc
light
steel
weight
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07801785.2A
Other languages
German (de)
English (en)
Other versions
EP2111475A1 (fr
Inventor
Tilmann Haug
Wolfgang KLEINEKATHÖFER
Frédéric POL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2111475A1 publication Critical patent/EP2111475A1/fr
Application granted granted Critical
Publication of EP2111475B1 publication Critical patent/EP2111475B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the invention relates to ultra-high carbon steels or Ultra High Carbon Steel (UHC) with reduced density and high scale resistance according to claim 1, and the manufacture of components by hot forging according to claim 8 and claim 9.
  • UHC steels have been known for some time. They have been developed especially with regard to their superplastic properties. The superplastic deformation runs in a narrow process window of temperature and strain rate (strain rate ( ⁇ ')). In the superplastic forming strain values of some 100 to 1000% can be achieved. Typical here are a forming temperature above about 50% of the melting temperature (ideally in the range of ⁇ -> ⁇ conversion) and a very low strain rate of about 10 -2 to 10 -5 s -1 .
  • a good formability includes a high achievable without component damage degree of deformation, a low yield stress during forming and the lowest possible forming temperature. Only then are complex components made available in a few cost-effective forming steps.
  • the materials show a high forming capacity (suitable for highly complex components), but only small dimensional accuracy and poorer surface quality is possible.
  • Particularly disadvantageous is the high thermo-mechanical tool load or the correspondingly high tool wear. Shaping in the high temperature range, for example, forging temperature lead to high tooling costs, since either high wear is present or expensive high-temperature tools must be used.
  • the reshaped blanks are processed for cost reasons in air and thereby oxidatively damaged. For example, this leads to scaling in the case of steels. Before the further processing of the components produced thereby must be reworked at least on the surface. A near net shape production of components is thereby very limited achievable at these temperatures.
  • the Si can greatly affect the A1 transformation temperature in the given alloy composition.
  • the high content of Al significantly increases the Si sensitivity of the alloy.
  • Even a slight increase in Si alloy additions leads to a significant increase in the A1 transformation temperature.
  • the alloying of the Si achieves an increase in the optimum forming temperature.
  • the optimum forming temperature is to be understood in particular as meaning the temperature which permits the highest possible forming speeds without damaging the microstructure.
  • the A1 transformation temperature of about 820 ° C for a 6.5% Al, 1.5% Cr, 1.35% C, 0.04% Si UHC lightweight steel Increased by increasing the Si content to only 0.4% already at 865 ° C.
  • the Al content in addition to reducing the density, also has the very significant effect of greatly reducing the scale formation at the hot working temperatures. Since only thin scale layers form, in which only a small surface finish is required, the UHC lightweight steels according to the invention are also particularly suitable for near-net-shape processes. In the case of the UHC lightweight steels according to the invention, it was possible to achieve a corrosion rate reduction of 92 to 99% compared to the conventional 25MoCr4 steels.
  • the Si content also has a significant influence on the decrease in scaling.
  • the UHC lightweight steels according to the invention show only slightly reduced elongations at break compared to Si-free UHC steels.
  • Si is usually added to the alloy melt without special precautions from the furnace lining during alloy melting.
  • this behavior is problematic and must be prevented by complex measures.
  • this Si uptake no longer poses a problem because of their already high Si content. Cost-effective metallurgical production processes are therefore applicable.
  • the alloying elements Al and Si influence each other favorably. Therefore, the Al / Si ratio is of particular interest.
  • an Al / Si ratio between 10 and 20 is selected. More preferably, the Al / Si ratio is 14 to 16 at an Al content of 6 to 7%.
  • the steel-accompanying impurities may likewise be the typical steel alloy companion Ni, Mo, Nb and / or V.
  • fractions of these elements in an amount below 1% are not critical.
  • the Ni, Mo and / or V content is below 0.15 wt.%. Particular preference is given to setting at least Ni and / or V to less than 0.05%.
  • the UHC lightweight steel contains further stabilizing alloying elements selected from the group Nb, Ti, Mg and / or N.
  • the content of these alloying elements is limited according to claim 1 to values below 0.8, preferably below 0.5%. Particularly preferably, the sum of these elements in the range of 0.02 to 0.5 wt.%.
  • the UHC steels are generally not in a structural state that allows a high deformation rate of the hot forming.
  • An ideal structure for this purpose typically corresponds to a structure with superplastic properties.
  • the superplastic forming instead of the superplastic forming, can be deviated from this optimum superplastic structure, however, within wide limits. It is important that there is a homogeneous, fine-grained, spheroidal carbide distribution stable against grain growth and graphite formation in a likewise fine-grained and grain-growth-stable ferrite matrix.
  • the grain size of the microstructure is preferably below 10 ⁇ m. Particularly preferably, the average particle size is below 1.5 ⁇ m.
  • the majority of the grains are preferably spheroidal, with small amounts of lamellar carbide being tolerable for the properties of the UHC steel.
  • thermo-mechanical treatment Only by a special thermo-mechanical treatment is a structure formed which contains the required fine crystallites or grains. At least two phases must be formed which prevent grain growth.
  • the corresponding phases in the compositions according to the invention are composed essentially of the main phase ⁇ -ferrite and secondary phases of ⁇ -carbides. Al and Si stabilize the structure against grain growth.
  • a relatively homogeneous material of pearlite is first prepared, which is a lamellar mixture of ferrite and cementite.
  • this perlite structure is converted into a microstructure in which the carbides are predominantly spheroidal and the ferrite ultrafine-grained.
  • the structure of the UHC lightweight steels preferably has fine spheroid carbides.
  • the average cross-sectional area of the spheroid carbides is preferably below 8 ⁇ m 2 , more preferably below 3 ⁇ m 2 .
  • the volume fraction of the fine spheroid carbides is 25 to 30%.
  • the frequency of carbide particles or particles above 500 nm per surface element to be determined by light microscopy should be above 50,000 carbide particles / mm 2 , preferably above 150,000 carbide particles / mm 2 .
  • a spheroidal shape is much cheaper than a lamellar form of the carbide particles.
  • the average elongation of the carbide particles is preferably below 1.8. Particularly preferably, very roundish particles are formed, with an average elongation between 1 and 1.5.
  • step B typically, strain levels above 1.5 are used. Preferably, degrees of deformation at 1.7 to 4 are used.
  • the UHC lightweight steels according to the invention are preferably used for the production of suspension components, transmission parts, or gears for motor vehicles.
  • a particularly demanding application are connecting rods, which have not been satisfactorily available as a lightweight component.
  • Another aspect of the invention relates to methods of making hot formed UHC lightweight structural members.
  • the remainder of the iron and common steel-accompanying impurities are subjected to hot forming at a temperature in the range of 880 to 1050 ° C in air.
  • hot forming in principle, the various methods known in mechanical engineering can be used for the production of complex-shaped components made of metals. If necessary, make an appropriate adaptation of the cold process to hot forming. Suitable processes include, but are not limited to, hot extrusion, cross rolling, hot bore pressing, hot swaging, hot splining, hot swaging or hydroforming, and forging.
  • the listed UHC steels are not special in hot forming Inert gas atmosphere. Hot forming can therefore take place in the presence of air.
  • the temperatures of the hot working used according to the invention are significantly below the forging temperature of the respective alloy. These comparatively lower temperatures have a further significant advantage for the forming tools. Frequently, conventional steel tools can be used instead of the otherwise required high-temperature tools.
  • the design of the process can be optimized to low process pressure or to high forming speeds, depending on the selected forming process or forming tool. Particularly preferred transformation rates are above 0.5 / s.
  • the method according to the invention is preferably carried out as a near-net-shape method, so that the component is obtained in the most ready-to-use state after the forming and only has to be subsequently reworked on special functional surfaces. Cleaning and polishing the surfaces are considerably easier than with the known steels.
  • the UHC lightweight steels according to the invention likewise have good hardenability (up to> 60 HRC without case hardening).
  • a hardening process takes place. This is in particular conducted directly from the process heat of the forming process and under Luftabschreckung. Thereafter, it can be started in a known manner.
  • tensile strengths of 1500 MPa at an elongation of 8% were measured at room temperature.
  • the Al and Cr content as well as the degree of manufacturing deformation were kept essentially the same and the Si content of 0.039% (UHC steel Si0.04) to 0.38% (UHC steel Si0.4 ) elevated.
  • Fig. 1 are the results of high-temperature corrosion resistance of the two UHC lightweight steels shown.
  • the scale formation at 860 ° C and 910 ° C of the UHC steel with 0.04% Si against the UHC steel with 0.4% Si is shown (UHC steel Si0.04 versus UHC steel Si0.4).
  • Samples of 100x20x3mm were measured at 860 ° C and 910 ° C for up to 60 minutes in air.
  • the increase in weight is an essential measure for the formation of scale.
  • the Si content has a significant influence on the decrease in scaling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (15)

  1. Acier de construction léger UHC ayant une meilleure résistance à l'oxydation caractérisé par sa composition en pourcentage en poids de 1 à 1,6 de C, de 5 à 10 de Al, de 0,5 à 3 de Cr et de 0,1 à 2,8 de Si, éventuellement d'éléments d'alliage stabilisant sélectionnés dans le groupe Nb, Ti, Mg et/ou N dans une quantité comprise entre 0,02 et 0,8 % en poids, et éventuellement d'autres éléments d'alliage de teneur en Ni-Mo et/ou V inférieure à 0,15 % en poids, le reste étant du fer et des impuretés ordinaires accompagnant l'acier.
  2. Acier de construction léger UHC selon la revendication 1, caractérisé en ce que le rapport Al/Si se situe entre 10 et 20.
  3. Acier de construction léger UHC selon la revendication 1 ou la revendication 2, caractérisé en ce que l'acier de construction léger UHC contient des éléments d'alliage stabilisant sélectionnés dans le groupe Nb, Ti, Mg et/ou N dans une quantité comprise entre 0,02 et 0,8 % en poids.
  4. Acier de construction léger UHC selon l'une quelconque des revendications, caractérisé par sa composition en pourcentage en poids de 1,2 à 1,4 de C, de 5,5 à 7,0 de Al, de 1 à 2,0 de Cr et de 0,3 et 0,6 de Si, éventuellement de Ni, Mo et/ou de V d'une teneur inférieure à 0,15, le reste étant du fer et des impuretés ordinaires accompagnant l'acier.
  5. Acier de construction léger UHC selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en Ni- Mo et/ou en V se situe en-dessous de 0,15 % en poids.
  6. Acier de construction léger UHC selon l'une quelconque des revendications, caractérisé en ce que le joint comporte du carbure sphérique fin ayant des surfaces de section transversale moyennes inférieures à 8 µm2.
  7. Acier de construction léger UHC selon l'une quelconque des revendications, caractérisé en ce que le joint comporte du carbure sphérique dans une proportion volumique comprise entre 25 et 30 %.
  8. Procédé de fabrication d'éléments façonnés à chaud constitués d'aciers de construction légers UHC selon l'une quelconque des revendications précédentes à l'aide d'un acier de construction léger UHC qui a une teneur en Si inférieure à 0,8, caractérisé en ce que le façonnage à chaud est effectué à l'air à une température comprise entre 800 et 980°C.
  9. Procédé de fabrication d'éléments structuraux façonnés à chaud constitués d'aciers de construction légers UHC selon l'une quelconque des revendications précédentes à l'aide d'un acier de construction léger UHC qui a une teneur en Si supérieure à 0,8, caractérisé en ce que le façonnage à chaud est effectué à l'air à une température comprise entre 880 et 1 050°C.
  10. Procédé selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que la vitesse de déformation (ε') du façonnage à chaud est réglée sur les valeurs supérieure à 0,1/s.
  11. Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que sur l'acier de construction léger UHC avant le façonnage à chaud est effectuée un façonnage/fabrication à chaud à un degré de façonnage compris entre 1,5 et 4.
  12. Procédé selon l'une quelconque des revendications 8 à 11, caractérisé en ce que le façonnage à chaud de la pièce brute est effectué au moins en partie jusqu'à un degré de façonnage > 2.
  13. Procédé selon l'une quelconque des revendications 8 à 12, caractérisé en ce que l'élément structural façonné à partir de la dureté de processus du façonnage à chaud est durci par trempe à l'air.
  14. Procédé selon l'une quelconque des revendications 8 à 13, caractérisé en ce que des éléments structuraux de châssis, des éléments de fonctionnement, des roues dentées ou une bielle de construction légère sont conçus pour des véhicules automobiles.
  15. Utilisation d'un acier UHC selon l'une quelconque des revendications 1 à 7, destiné à la fabrication d'éléments structuraux pour des moteurs à combustion interne et des composants de transmission pour des véhicules automobiles.
EP07801785.2A 2006-09-07 2007-08-21 Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine Active EP2111475B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006041902A DE102006041902A1 (de) 2006-09-07 2006-09-07 Bauteile aus Ultrahochkohlenstoffhaltigen Stählen mit reduzierter Dichte und hoher Zunderbeständigkeit
PCT/EP2007/007349 WO2008028561A1 (fr) 2006-09-07 2007-08-21 composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance À la calamine

Publications (2)

Publication Number Publication Date
EP2111475A1 EP2111475A1 (fr) 2009-10-28
EP2111475B1 true EP2111475B1 (fr) 2018-03-14

Family

ID=38648331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07801785.2A Active EP2111475B1 (fr) 2006-09-07 2007-08-21 Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine

Country Status (4)

Country Link
US (1) US8257646B2 (fr)
EP (1) EP2111475B1 (fr)
DE (1) DE102006041902A1 (fr)
WO (1) WO2008028561A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019980B4 (de) * 2007-04-27 2018-04-12 Daimler Ag Herstellung von superplastischen UHC-Leichtbaustählen und deren Verarbeitung durch Warmumformung
DE102008032024B4 (de) 2008-07-07 2012-11-08 Daimler Ag Dichtereduzierte UHC-Stähle
DE102010051682B4 (de) 2010-11-17 2012-07-12 Daimler Ag Leichtbau-Kurbeltrieb und Herstellungsverfahren desselben
DE102011112244B4 (de) 2011-09-01 2013-09-05 Daimler Ag Leichtbau-Kolben für Verbrennungsmotoren und Halbzeug sowie Verfahren zu dessen Herstellung
DE102011118297A1 (de) 2011-11-10 2013-05-16 Daimler Ag Kolben für Verbrennungsmotoren und Halbzeug sowie Verfahren zu dessen Herstellung
DE102011118298A1 (de) 2011-11-10 2013-05-16 Daimler Ag Leichtbau-Kolben für Verbrennungsmotoren und Halbzeug sowie Verfahren zu dessen Herstellung
CN104377281B (zh) * 2014-11-24 2017-04-26 武汉钢铁江北集团精密带钢有限公司 一种led贴片支架用冷轧钢及生产方法
CN108220807B (zh) * 2017-12-21 2020-07-24 钢铁研究总院 一种低密度高铝超高碳轴承钢及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1850953A (en) * 1925-06-19 1932-03-22 Percy A E Armstrong Heat, rust, and acid resisting ferrous alloy
DE678324C (de) * 1931-10-16 1939-07-15 Kohle Und Eisenforschung G M B Verwendung einer an sich bekannten Stahllegierung zur Herstellung von elektrischen Heizdraehten
FR831996A (fr) 1937-01-30 1938-09-16 British & Dominions Feralloy L Perfectionnements à la fabrication de la fonte
US4769214A (en) * 1985-09-19 1988-09-06 Sptek Ultrahigh carbon steels containing aluminum
US5445685A (en) * 1993-05-17 1995-08-29 The Regents Of The University Of California Transformation process for production of ultrahigh carbon steels and new alloys
DE102005027258B4 (de) * 2005-06-13 2013-01-31 Daimler Ag Hochkohlenstoffhaltiger Stahl mit Superplastizität

Also Published As

Publication number Publication date
EP2111475A1 (fr) 2009-10-28
DE102006041902A1 (de) 2008-03-27
US20100021339A1 (en) 2010-01-28
US8257646B2 (en) 2012-09-04
WO2008028561A1 (fr) 2008-03-13

Similar Documents

Publication Publication Date Title
DE60034943T2 (de) Stahlstab oder-grobdraht zur Verwendung beim Kaltschmieden und Verfahren zu deren Herstellung
EP2111475B1 (fr) Composants en acier à ultra haute teneur en carbone, de densité réduite et à haute résistance à la calamine
DE112010003614B4 (de) Hochfeste Schraube
DE60016369T2 (de) Kalt bearbeitbarer stahldraht oder stahlstab und verfahren
EP1309734B2 (fr) Acier et feuillard ou tole d'acier a resistance tres elevee, pouvant etre forme a froid, procede pour produire un feuillard d'acier et utilisations d'un tel acier
DE102005027258B4 (de) Hochkohlenstoffhaltiger Stahl mit Superplastizität
DE102005052069B4 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
EP1837415B1 (fr) Alliages pour palier à roulement
EP1905857B1 (fr) Acier à haute résistance et utilisations d'un tel acier
DE10252240C5 (de) Kugelgraphitguss auf Ferritbasis und Verwendung desselben in einer Abgasanlage
EP1546426B1 (fr) Composition d'acier et pieces matricees fabriquees a partir de cette composition
DE60020263T2 (de) Verwendung eines ausscheidungsgehärteten martensitischen edelstahls
DE112016005223T5 (de) Nicht vergüteter Walzdraht mit ausgezeichneter Kaltverformbarkeit und Herstellungsverfahren davon
DE1508416A1 (de) Verfahren zur Herstellung von Stahlteilen
DE112016005198T5 (de) Walzdraht mit ausgezeichneter Kaltschmiedbarkeit und Verfahren zu seiner Herstellung
EP2009120B1 (fr) Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité
WO2009090228A1 (fr) Composants en acier moulé solide et ductile, à forte teneur en manganèse, procédé de production et utilisation de ceux-ci
EP3323902A1 (fr) Matériau en acier contenant des particules dures, produit de la métallurgie des poudres, procédé de production d'un composant à partir d'un tel matériau d'acier et composant ainsi fabriqué
DE102008032024B4 (de) Dichtereduzierte UHC-Stähle
DE102015220195A1 (de) Aufgekohlter Legierungsstahl mit verbesserter Haltbarkeit und Verfahren zur Herstellung desselben
EP2617855B1 (fr) Acier faiblement alié et composant ainsi fabriqué
DE102018129828A1 (de) Hochfester bainitischer stahl
EP2414552B1 (fr) Pivots à rotule en aciers à structure bainitique pour de véhicules à usage personnel et de véhicules utilitaires légers
DE112008001181B4 (de) Verwendung einer Stahllegierung für Achsrohre sowie Achsrohr
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAUG, TILMANN

Inventor name: POL, FREDERIC

Inventor name: KLEINEKATHOEFER, WOLFGANG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016109

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016109

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007016109

Country of ref document: DE

Owner name: MERCEDES-BENZ GROUP AG, DE

Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007016109

Country of ref document: DE

Representative=s name: JENSEN & SON, GB

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007016109

Country of ref document: DE

Owner name: DAIMLER AG, DE

Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007016109

Country of ref document: DE

Representative=s name: JENSENS IP LIMITED, IE

REG Reference to a national code

Ref legal event code: R082

Ref document number: 502007016109

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007016109

Country of ref document: DE

Representative=s name: JENSENS IP LIMITED, IE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007016109

Country of ref document: DE

Owner name: MERCEDES-BENZ GROUP AG, DE

Free format text: FORMER OWNER: DAIMLER AG, STUTTGART, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007016109

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007016109

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 17