EP2109345A1 - Wärmeerzeugendes Element und Heizvorrichtung umfassend ein wärmeerzeugendes Element - Google Patents

Wärmeerzeugendes Element und Heizvorrichtung umfassend ein wärmeerzeugendes Element Download PDF

Info

Publication number
EP2109345A1
EP2109345A1 EP08010213A EP08010213A EP2109345A1 EP 2109345 A1 EP2109345 A1 EP 2109345A1 EP 08010213 A EP08010213 A EP 08010213A EP 08010213 A EP08010213 A EP 08010213A EP 2109345 A1 EP2109345 A1 EP 2109345A1
Authority
EP
European Patent Office
Prior art keywords
heat
generating element
housing
element according
plastic films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08010213A
Other languages
English (en)
French (fr)
Other versions
EP2109345B1 (de
Inventor
Franz Bohlender
Kurt Walz
Michael Niederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Catem GmbH and Co KG
Original Assignee
Eberspaecher Catem GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Catem GmbH and Co KG filed Critical Eberspaecher Catem GmbH and Co KG
Priority to US12/409,637 priority Critical patent/US8395087B2/en
Priority to CN2009101344119A priority patent/CN101557659B/zh
Priority to JP2009096224A priority patent/JP5134579B2/ja
Publication of EP2109345A1 publication Critical patent/EP2109345A1/de
Application granted granted Critical
Publication of EP2109345B1 publication Critical patent/EP2109345B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system

Definitions

  • the present invention relates to a heat-generating element of a heater for air heating, comprising at least one PTC element and voltage applied to opposite side surfaces of the PTC element electrical conductor tracks.
  • a heat-generating element is, for example, from the date of the present applicant EP 1 061 776 known.
  • the heat-generating element is used in particular in a heater for a motor vehicle and comprises a plurality of successively arranged in a row PTC elements which are energized via parallel to each other, flat on opposite sides of the PTC elements voltage applied electrical conductors.
  • the conductor tracks are usually formed by parallel metal strips.
  • the heat-generating elements thus formed are used for example in a heating device for air heating in a motor vehicle, which comprises a plurality of layers of heat-generating elements, abut on the opposite sides of heat-emitting elements. These heat-emitting elements are applied via a holding device in relatively good heat-transfer contact to the heat-generating elements.
  • a holding device of the heating device is formed by a frame in which a plurality of mutually parallel layers of heat-generating and heat-emitting elements are spring-loaded.
  • the heat generating element is formed by a plurality of in a row in a plane successively arranged PTC elements, which are also referred to as ceramic elements or PTC thermistors, which are energized on opposite side surfaces by voltage applied to these tracks.
  • PTC elements which are also referred to as ceramic elements or PTC thermistors, which are energized on opposite side surfaces by voltage applied to these tracks.
  • One of the tracks is formed by a circumferentially closed profile.
  • the other conductor track through a metal strip, which is supported with the interposition of an electrical insulating layer on the circumferentially closed metallic profile.
  • the heat-emitting elements are formed by lamellae arranged in several parallel layers, which extend at right angles to the metal profile which is closed at the circumference.
  • the EP 1 467 599 known generic Heater provided a plurality of circumferentially closed metal profiles formed in the manner described above, which are arranged parallel to each other.
  • the lamellae partially extend between the circumferentially closed profiles and partially protrude beyond them.
  • the electrical traces must be in good electrical contact with the PTC elements. Otherwise, there is the problem of increased contact resistance, which can lead to a local overheating, in particular when using the heat-generating elements in auxiliary heaters for motor vehicles because of the high currents. By this thermal event, the heat-generating element can be damaged.
  • the PTC elements are self-regulating resistance heaters that provide lower heat output at elevated temperature, so local overheating can interfere with the self-regulating properties of the PTC elements.
  • WO 99/18756 From the WO 99/18756 is an immersion heater with PTC heating elements known, which are arranged between electrical conductor tracks, which are each covered with insulating layers for the isolation of the electrical conductor tracks relative to the metallic housing of the immersion heater.
  • the housing sealingly encloses the PTC heating elements.
  • a plate made of an insulating ceramic is provided between the housing and the heat-generating element.
  • the present invention is intended to specify a heat-generating element of a heating device and a corresponding heating device, which offer increased safety.
  • the present invention aims to increase the safety with regard to a possible electrical flashover.
  • the present invention is also intended to mean a heating device having a plurality of heat-generating elements comprising at least one PTC element and electrical traces adjacent to opposite side surfaces of the PTC element and a plurality of heat-emitting elements disposed in parallel layers and applied to opposite sides of the heat-generating element , which can be safely and effectively operated with high currents.
  • a very good dielectric strength for example, of 4 kV and more can be achieved if a multilayer film is provided directly on the conductor, possibly with the interposition of a ceramic layer.
  • This multilayer film is preferably glued directly to the ceramic layer or the conductor track by lamination.
  • the use of a multilayer film can be achieved with basically the same layer thickness compared to a single-layer film, a better mechanical protection, since the interconnected films better mechanical stresses can absorb without cracking and failure, as a single-layer film. Accordingly, to improve the heat transfer with the same or even better mechanical strength, the layer thickness of the insulating layer can be reduced.
  • the insulating layer may be formed solely by the multi-layered film, which is preferably provided on the outside of the heat-generating element, so that a heat-emitting element, such as a lamella, abuts directly against the film.
  • a heat-emitting element such as a lamella
  • one or more ceramic layers can be provided as part of the insulating layer between the film and the conductor track.
  • the insulating layer should preferably rest directly on the electrical conductor tracks, so that the heat transfer from the heat-generating elements to the heat-emitting elements is impaired only to a small extent.
  • the insulating layer should have the best possible thermal conductivity.
  • the aim is a thermal conductivity of more than 4 W / (m K).
  • an insulating layer with an electrical insulation of more than 6 kV / mm has been found.
  • the insulating layer should preferably have an electrical breakdown strength of at least 2000 V, preferably at least 3000 V, in the transverse direction of the layer structure.
  • the insulating layers are fixedly connected to the housing, which is an insulating housing.
  • the insulating layers are on the outside of the electrical conductors and cover them. These in turn receive between them the at least one PTC element which is surrounded by the insulating housing. Accordingly, there is a structure in which the top and bottom of the heat-generating element is covered by the insulating layer, while the intermediate extending end face of the heat-generating element is occupied by the insulating housing. Accordingly, the at least one PTC element is captured and encapsulated by the housing and the insulating layers firmly bonded to the housing from the environment.
  • the housing can form a plurality of receiving openings for receiving individual or multiple PTC heating elements.
  • the wall of a receptacle formed by the housing may be contoured for a plurality of PTC heating elements to space individual PTC elements from each other or to form pitches.
  • an elongated housing receptacle for the arrangement of a plurality of PTC elements in a row can be formed behind one another, wherein the receptacle for individual PTC elements is divided by inwardly projecting webs.
  • the insulating layer can be bonded directly to the electrical conductor.
  • the plastic film is preferably laminated to the ceramic plate, if such is provided.
  • the film preferably has on one side a wax layer of between 10 to 15 .mu.m, in particular under the operating conditions of the heat-generating element, ie at higher temperatures of about 80 ° C, and melts when pressing the insulating layer against the conductor and allows efficient heat transfer.
  • the heat-generating element may be formed by a plurality of successively arranged PTC elements, these two-sided conductive tracks, as well as the interconnects each outside surrounding insulating layers. All components of this layer structure can be connected to one another, in particular adhesively bonded.
  • the electrically conductive insulating layer should in this case preferably project beyond the electrical conductor track, so that the electrically conductive and energized components of the heat-generating element are located at a distance behind the outer, insulated edges of the heat-generating element.
  • the electrical conductor can project beyond the insulating layer to form an electrical contacting point.
  • a known position frame which forms a frame opening for receiving the at least one PTC element and as an insulating housing in the sense of the present Invention can be considered.
  • This known per se positioning frame is, for example, in the aforementioned EP 0 350 528 described and is usually made of a non-conductive material, in particular a plastic material.
  • the position frame is usually formed as an elongate member, which leaves out a frame openings in the plane of the PTC elements or the heat-generating element for one or more PTC elements. In this frame opening or the PTC elements are positioned.
  • Such a position frame can essentially form the insulating housing and be firmly connected to the top and bottom sides of the insulating layers.
  • the insulating layers can be glued or welded to the position frame.
  • the plastic material of the insulating housing may be reshaped to connect the insulating layers to the housing. Any kind of A compound capable of providing a strong and preferably tight connection between the insulating layer and the housing material is suitable for the realization of the invention.
  • plastic films are connected to each other including a Fasergewirkes.
  • the plastic films can for example be laminated on both sides of the Fasergewirke.
  • the fiber knitted fabric can, for example, consist only of fiber strands which are provided substantially parallel to one another and which do not overlap or hardly overlap.
  • a fiber fabric is used, which can better withstand multiaxial stress states within the composite of the at least two plastic films with the fiber fabric arranged therebetween. It is recommended to use fibers whose electrical conductivity is low.
  • thermal stress of the fibers of the knitted fabric is proposed according to a preferred development to use a fabric of glass fibers.
  • the fibers of the knitted fabric are furthermore preferably silicone-soaked, so that a substantially air-free inclusion of the fiber knitted fabric results between the plastic films.
  • a complete wetting of all fiber strands of the knitted fabric moreover, there is also a firm and therefore good bond between the opposing foil layers.
  • each of the multilayer films comprises at least two plastic films glued together.
  • a very effective proposal for good heat transfer through the insulating layer to the outside and for reliable and sufficient insulation has been found to be an insulating layer comprising two multi-layered films bonded together, each of the multi-layered films having two plastic films bonded together. which are glued together directly or with the interposition of a Fasergewirkes.
  • each one of the foils which are interconnected by themselves.
  • the thickness of each individual plastic film should be between 0.05 and 0.09 mm, preferably between 0.06 and 0.08 mm.
  • Suitable materials for forming the plastic film are polyimide, polyamide, silicone or Teflon (PTFE).
  • the layers glued together may be formed identical to the material or formed of different plastic materials. With regard to a good mechanical strength of the interconnected plastic films, these are preferably connected bubble-free, for example by lamination. Suitable for bonding the two plastic films is in particular a silicone-containing adhesive.
  • a housing for circumferential insulation of the PTC heating element with adjacent conductor tracks according to another preferred embodiment of the present invention, it is proposed to connect the insulating layer in each case by means of encapsulation with a housing.
  • This housing can consist of two housing shells, which are interconnected. Housing shells have proven to be particularly suitable which comprise two housing elements which abut one another with the interposition of a compressible element, the sealing effect of which improves when pressure is applied to the heat-generating element from outside. It is particularly thought of incorporation of the heat-generating elements in a frame of an electric heater in which the at least one heat-generating element and externally applied thereto heat-emitting elements are held under bias of a spring and placed against each other, wherein the spring is supported on the inside of the frame ,
  • the plastic material forming the housing encloses at least one edge region of the conductor track, which is usually formed from a sheet-metal strip, so that a relatively rigid housing is provided which is fixed with respect to its contour.
  • the housing is preferably formed of a thermoplastic elastomer, or of silicone.
  • the heat-emitting elements abut with the interposition of at least two interconnected plastic films comprehensive insulating layer on the opposite sides of the heat-generating element. Thereafter, the two plastic films are on the outside of the heat-generating element and form the contact surface for a heat-emitting element, which is formed for example of a meandering bent aluminum or copper strip.
  • FIG. 1 shows a cross-sectional view of a first Ausdusbegsbeiette a heat-generating element 1, which comprises two elongated U-shaped housing elements 2.3, which are each made of plastic injection molded parts.
  • the housing shell elements 2, 3 each have on opposite transverse sides a metal strip 10 and an insulating layer applied thereto 7.
  • the edges of the respective metal strips 10 are wrapped by the housing elements 2, 3 substantially forming plastic material.
  • the two metal strips 10 are connected by molding with the respective plastic material of the housing elements 2, 3.
  • an insulating film 9 is applied, provided by the present on the outside of the heat-generating element 1 Insulating layer 7 is formed exclusively and will be described in more detail below.
  • a sealing strip 4 which circumferentially seals the interior formed by the two housing elements 2, 3 and accommodating a PTC heating element 5 to the outside.
  • the sealing effect of the sealing strip increases with an externally acting on the housing 2, 3 compressive force.
  • the thickness of the sealing strip 4 is chosen so that conceivable thickness-wise manufacturing tolerances of at least one PTC element 5 can be compensated by compression of the sealing strip 4 without abutting the two housing elements.
  • PCT heating elements are subject to certain dimensional variations due to production. If the elastic properties and the dimension of the sealing strip 4 is selected adapted, such thickness tolerances can be compensated by compression of the sealing strip, so that in the conceivable thickness-wise deviations is basically given a circumferential seal the PTC heating element receiving interior.
  • the compression of the sealing strip made of a compressible plastic which is supported on opposite end faces of the two housing elements 2, 3 leads to a certain mobility of the two housing elements 2, 3 transversely to a plane which extends parallel to the lower or upper metal strip 6, 7. With increasing pressure from the outside on the heat-generating element 1, the sealing effect increases by the compressible plastic.
  • the conductor tracks at the front end of the housing elements 2.3 project beyond this, there to possibly overtop the outside of the heat-generating elements surrounding and holding under bias in a layer structure frame and form there electrical frame connections.
  • FIG. 2 a cross-sectional view of a second embodiment is shown. Same components are opposite to the in FIG. 1 shown embodiment with the same reference numerals.
  • FIG. 2 shows an alternative embodiment of a heat generating element 1 in cross-sectional view with a housing consisting of a housing shell element 2, and a shell counter-element 3, which are cup-shaped.
  • Both housing elements 2, 3 are produced as injection-molded plastic parts, by means of which both an insulating film 9 and a metal sheet 10 which directly adjoins the inner side and contacts the PTC heating element 5 are attached by means of extrusion coating.
  • the multilayer film 9 is provided as part of the insulating layer. This insulating film 9 is applied by laminating directly on the metal strip 10.
  • the plate-shaped element thus formed is connected by encapsulation with the plastic material forming the housing elements, which is preferably silicone.
  • the heat-generating element 1 is relatively thin, so that heat generated by the PTC heating element can pass through a conduit to a radiator element 11 almost unhindered.
  • the radiator elements 11 are additionally taken laterally in the embodiment shown by the plastic material of the two housing elements 2.3 and held in position.
  • the edges of the housing elements 2, 3 produced by encapsulation project beyond the aluminum oxide layer 8 on the outside, as a result of which the radiator elements 11 lying directly against the aluminum oxide layer 8 do not extend transversely to the one in FIG FIG. 2 shown layer structure can be moved.
  • FIG. 1 also has that in FIG. 2 shown embodiment for manufacturing simplification two identically designed housing elements 2, 3.
  • Each one of the end faces formed by the edges of the respective housing elements 2 and 3 has a groove 20; the other end face is surmounted by a spring 21.
  • the spring 21 of one of the housing elements 2, 3 is engaged in the complementarily formed groove 20 of the other housing element 3, 2, so that the interior of the housing 2, 3 is sealed.
  • care should be taken that the width of the groove 20 is only slightly larger than the thickness of the spring 21.
  • the depth of the groove 20 and the length of the spring 21 are selected so that when taken in the housing PTC elements 5, these lie flat against the sheet metal strip 10 and that the housing elements 2.3 in shrinkage and / or Setzbeträgen or due to Manufacturing tolerances in particular on the part of the PTC elements 5 can be at least slightly moved towards each other and in the expected manufacturing tolerances or thermal expansion groove 20 and spring 21 with sufficient overlap to seal the housing are engaged.
  • the FIG. 3 shows a side perspective view of exploded layers of the insulating sheet 9, which is provided on the outside of the previously described heat generating element.
  • the insulating film 9 has six layers and consists of two each two-ply plastic films 30, 32, 34, 36, which are each formed identically, have a thickness of 0.07 mm and made of silicone.
  • Each of the plastic films 30 to 36 has a dielectric strength of more than 1.05 kV.
  • the outer plastic film 30 is glued to the adjacent plastic film 32 with the interposition of a glass fiber fabric 38.
  • the glass fiber fabric 38 consists of substantially perpendicular to each other arranged glass fiber strands, which are interwoven with each other.
  • the fiberglass strands are saturated with silicone.
  • the space between the plastic films 30 and 32 is filled with silicone as a whole.
  • a two-ply glass fiber reinforced film 40 is formed.
  • An underlying structure has an underlying two-ply glass fiber reinforced film 42.
  • the two-ply glass fiber reinforced films 40, 42 are each connected by themselves with an adhesive layer, whereby a six-ply insulating film 9 comprising two glass fiber fabric 38 and four plastic films 30, 32, 34 and 36 is formed ,
  • the adhesive layer provided between the multilayer films 40, 42 consists of silicone adhesive.
  • the insulating layer is not on the in FIG. 3 shown embodiment limited.
  • the glass fiber fabric 38 may be provided and other plastic films. At least two films should be bonded together, which has a composite film with a dielectric strength of 2.0 kV and more. Preferably, three of these composite films are used as the insulating layer. This results in a six-layer insulating layer, in which each individual insulating plastic film has a dielectric strength of at least 1.0 kV.
  • the aim is to provide a heat-generating element for use in a heater for the automotive industry, in which the heat-generating element is each secured with a dielectric strength of 300 volts.
  • This protection takes place on the upper and lower sides of the heat-generating element, which usually abut radiator elements, exclusively through the insulating layer 9.
  • the regularly perpendicular extending sides of the heat-generating element 1 is a corresponding protection by the plastic material of the housing 2, 3 provided.
  • a heating device in the form of a circumferentially closed frame 52, which is formed by two frame shells 54.
  • a plurality of mutually parallel layers of identically formed heat-generating elements for example Fig. 1 or 2 .
  • the frame 52 includes a spring, not shown, by which the layer structure is held under pretension in the frame 52.
  • all the heat-emitting elements 56 are disposed immediately adjacent to a heat-generating element 60.
  • the in the Fig. 4 shown heat-emitting elements 56 are formed by meandering bent aluminum sheet metal strips -also identical to the radiator elements 11 according to Fig. 1 or 2.
  • the heat-generating elements are located between these individual heat-emitting elements 56 and behind the longitudinal struts 58 of the Lucasein- or outlet opening of the frame 52 passing through the grid.
  • One of these longitudinal struts 58 is removed in the middle of the frame 52 for the sake of illustration, so that there is a heat generating element 60 can be seen.
  • the frame 52 is preferably made of plastic, whereby the electrical insulation can be further improved.
  • An additional protection especially against unauthorized contact with the live parts of the heater is additionally provided by the grid, which is also formed of plastic and formed integrally with the frame shells 54.
  • a plug connection depart from the power supply and / or control lines through which the heater can be connected in terms of control and Strom machinesshunt in a vehicle.
  • a housing is indicated, which in addition to the plug connection may also have control or regulating elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Die vorliegende Erfindung betrifft ein wärmeerzeugendes Element (1), insbesondere zur Lufterwärmung in einem elektrischen Zuheizer eines Kfz, umfassend wenigstens ein PTC-Heizelement (5) und ein das PTC-Heizelement (5) umgebendes, isolierendes Gehäuse (2, 3) sowie elektrische Leiterbahnen (10), deren Innenflächen an gegenüberliegenden Seiten des PTC-Heizelementes (5) anliegen. Zur Verbesserung dieses wärmeerzeugenden Elementes hinsichtlich der Wärmeübertragung und der Isolierung insbesondere bei einem Einsatz mit Betriebspannungen von bis zu 500 V wird mit der vorliegenden Erfindung vorgeschlagen, die Außenflächen der elektrischen Leiterbahnen jeweils von einer Isolierschicht (7) zu überdecken, die wenigstens zwei miteinander verbundenen Kunststofffolien (30, 32; 34, 36) umfasst, wobei die Isolierschichten fest mit dem Gehäuse zu verbinden. Die vorliegende Erfindung betrifft ferner eine Heizvorrichtung zur Lufterwärmung mit mehreren wärmeerzeugenden Elementen (60) umfassend wenigstens ein PTC-Element (6) und an gegenüberliegenden Seitenflächen des PTC-Elementes (6) anliegende elektrische Leiterbahnen (4) und in parallelen Schichten angeordneten wärmeabgebenden Elementen (56), die an gegenüberliegenden Seiten des wärmeerzeugenden Elementes (60) angelegt gehalten sind, welches zur Verbesserung des Wärmeaustrags und im Hinblick auf eine hohe Sicherheit bei Hochstromanwendungen gemäß der vorliegenden Erfindung wärmeabgebende Elemente hat, die unter Zwischenlage einer Isolierschicht an gegenüberliegenden Seiten des wärmeabgebenden Elementes (56) anliegen, die wenigstens zwei miteinander verbundene Kunststofffolien (30, 32, 34, 36) umfasst.

Description

  • Die vorliegende Erfindung betrifft ein wärmeerzeugendes Element einer Heizvorrichtung zur Lufterwärmung, umfassend wenigstens ein PTC-Element und an gegenüberliegenden Seitenflächen des PTC-Elementes anliegende elektrische Leiterbahnen. Ein solches wärmeerzeugendes Element ist beispielsweise aus der auf die vorliegende Anmelderin zurückgehenden EP 1 061 776 bekannt.
  • Das wärmeerzeugende Element wird insbesondere in einem Zuheizer für ein Kraftfahrzeug eingesetzt und umfasst mehrere in einer Reihe hintereinander angeordnete PTC-Elemente, die über sich parallel zueinander erstreckende, flächig an gegenüberliegenden Seiten der PTC-Elemente anliegende elektrische Leiterbahnen bestromt werden. Die Leiterbahnen sind üblicherweise durch parallele Blechstreifen gebildet. Die so gebildeten wärmeerzeugenden Elemente werden beispielsweise in einer Heizvorrichtung zur Lufterwärmung in einem Kraftfahrzeug eingesetzt, welche mehrere Schichten von wärmeerzeugenden Elementen umfasst, an deren gegenüberliegenden Seiten wärmeabgebende Elemente anliegen. Diese wärmeabgebenden Elemente werden über eine Haltevorrichtung in relativ gutem wärmeübertragenden Kontakt an die wärmeerzeugenden Elemente angelegt.
  • Bei dem vorerwähnten Stand der Technik ist eine Halteeinrichtung der Heizvorrichtung durch einen Rahmen gebildet, in dem mehrere parallel zueinander verlaufende Schichten von wärmeerzeugenden und wärmeabgebenden Elementen unter Federvorspannung gehalten sind. Bei einer alternativen Ausgestaltung, die ebenfalls eine gattungsgemäße Heizvorrichtung offenbart und die beispielsweise in der EP 1-467 599 beschrieben ist, wird das wärmeerzeugende Element durch mehrere in einer Reihe in einer Ebene hintereinander angeordnete PTC-Elemente, die auch als Keramik-Elemente bzw. Kaltleiter bezeichnet werden, gebildet, die an gegenüberliegenden Seitenflächen durch an diesen anliegende Leiterbahnen bestromt werden. Eine der Leiterbahnen wird durch ein umfänglich geschlossenes Profil gebildet. Die andere Leiterbahn durch einen Blechstreifen, der unter Zwischenlage einer elektrischen isolierenden Schicht an dem umfänglich geschlossenen metallischen Profil abgestützt ist. Die wärmeabgebenden Elemente werden durch in mehreren parallelen Schichten angeordnete Lamellen gebildet, die sich rechtwinklig zu dem umfänglich geschlossenen Metallprofil erstrecken. Bei der aus der EP 1 467 599 bekannten gattungsgemäßen Heizvorrichtung sind mehrere in der vorstehend beschriebenen Weise gebildete umfänglich geschlossene Metallprofile vorgesehen, die parallel zueinander angeordnet sind. Die Lamellen erstrecken sich teilweise zwischen den umfänglich geschlossenen Profilen und überragen diese teilweise.
  • Bei den vorerwähnten wärmeerzeugenden Elementen besteht das Erfordernis, dass die elektrischen Leiterbahnen elektrisch gut mit den PTC-Elementen kontaktiert sein müssen. Andernfalls ergibt sich das Problem eines erhöhten Übergangswiderstandes, welches insbesondere beim Einsatz der wärmeerzeugenden Elemente in Zuheizern für Kraftfahrzeuge wegen der hohen Ströme dazu führen kann, dass eine lokale Überhitzung auftritt. Durch dieses thermische Ereignis kann das wärmeerzeugende Element geschädigt werden. Darüber hinaus handelt es sich bei den PTC-Elementen um selbstregelnde Widerstandsheizer, die mit erhöhter Temperatur eine geringere Wärmeleistung abgeben, so dass eine lokale Überhitzung zur Störung der selbstregelnden Eigenschaften der PTC-Elemente führen kann.
  • Im übrigen können sich bei hohen Temperaturen im Bereich eines Zuheizers Dämpfe bzw. Gase entwickeln, die zu einer unmittelbaren Gefährdung der in dem Fahrgastraum befindlichen Personen führen können.
  • Entsprechend problematisch ist die Verwendung der gattungsgemäßen wärmeerzeugenden Elemente auch bei hohen Betriebsspannungen, beispielsweise bei Spannungen bis zu 500 V. Hier besteht zum Einen das Problem, dass die die wärmeabgebenden Elemente anströmende Luft Feuchtigkeit und/oder Schmutz mit sich führt, die in die Heizvorrichtung eindringen und hier einen elektrischen Überschlag, d.h. einen Kurzschluss verursachen können. Zum anderen besteht grundsätzlich das Problem, im Bereich der Heizvorrichtung arbeitende Personen vor den stromführenden Teilen der Heizvorrichtung bzw. des wärmeerzeugenden Elementes zu schützen.
  • Aus der WO 99/18756 ist ein Tauchsieder mit PTC-Heizelemente bekannt, welche zwischen elektrischen Leiterbahnen angeordnet sind, die jeweils zur Isolierung der elektrischen Leiterbahnen gegenüber dem metallischen Gehäuse des Tauchsieders mit Isolierschichten belegt sind. Bei diesem Stand der Technik schließt das Gehäuse die PTC-Heizelemente dichtend ein. Zur Isolierung ist zwischen dem Gehäuse und dem wärmeerzeugenden Element jeweils eine Platte aus einer isolierenden Keramik vorgesehen.
  • Mit der vorliegenden Erfindung soll ein wärmeerzeugendes Element einer Heizvorrichtung sowie eine entsprechende Heizvorrichtung angegeben werden, die eine erhöhte Sicherheit bieten. Dabei will die vorliegende Erfindung insbesondere die Sicherheit hinsichtlich eines möglichen elektrischen Überschlags erhöhen.
  • Speziell soll mit der vorliegenden Erfindung auch eine Heizvorrichtung mit mehreren wärmeerzeugenden Elementen, umfassend wenigstens ein PTC-Element und an gegenüberliegenden Seitenflächen des PTC-Elementes anliegende elektrische Leiterbahnen und mehreren in parallelen Schichten angeordneten wärmeabgebenden Elementen, die an gegenüberliegenden Seiten des wärmeerzeugenden Elementes angelegt gehalten sind, angegeben werden, welche sich mit hohen Strömen sicher und wirkungsvoll betreiben lässt.
  • Zur Lösung des Problems hinsichtlich des wärmeerzeugenden Elementes wird mit der vorliegenden Erfindung vorgeschlagen, das vorerwähnte wärmeerzeugende Element dadurch weiterzubilden, dass die Außenflächen der elektrischen Leiterbahnen jeweils von einer Isolierschicht überdeckt sind, die wenigstens zwei miteinander verbundene Kunststofffolien umfasst und dass die Isolierschichten fest mit dem Gehäuse verbunden sind.
  • Es hat sich gezeigt, dass eine sehr gute Durchschlagfestigkeit beispielsweise von 4 kV und mehr erreicht werden kann, wenn eine mehrlagige Folie unmittelbar auf die Leiterbahn gegebenenfalls auch unter Zwischenschaltung einer Keramikschicht vorgesehen wird. Diese mehrlagige Folie wird vorzugsweise mit der Keramikschicht bzw. der Leiterbahn direkt durch Laminieren verklebt. Durch die Verwendung einer mehrlagigen Folie kann bei im Grunde gleicher Schichtdicke gegenüber einer einlagigen Folie ein besserer mechanischer Schutz erreicht werden, da die miteinander verbundenen Folien mechanische Beanspruchungen besser ohne Rissbildung und Versagen aufnehmen können, als eine einlagige Folie. Dementsprechend kann zur Verbesserung der Wärmeübertragung bei gleicher oder gar besserer mechanischer Festigkeit die Schichtdicke der Isolierschicht vermindert werden. Die Isolierschicht kann allein durch die mehrlagige Folie gebildet sein, die vorzugsweise an der Außenseite des wärmeerzeugenden Elementes vorgesehen ist, so dass ein wärmeabgebendes Element, beispielsweise eine Lamellenlage, unmittelbar gegen die Folie anliegt. Alternativ kann zwischen der Folie und der Leiterbahn auch eine oder mehrere Keramikschichten als Teil der Isolierschicht vorgesehen sein.
  • Die Isolierschicht sollte vorzugsweise unmittelbar an den elektrischen Leiterbahnen anliegen, so dass der Wärmetransport von den wärmeerzeugenden Elementen zu den wärmeabgebenden Elementen nur in einem geringen Maß beeinträchtigt wird. Die Isolierschicht sollte eine möglichst gute Wärmeleitfähigkeit haben. Angestrebt wird eine Wärmeleitfähigkeit von mehr als 4 W/(m K). Als zweckmäßig im Hinblick auf einen möglichst guten Schutz vor Kurzschluss hat sich eine Isolierschicht mit einer elektrischen Isolation von mehr als 6 kV/mm erwiesen. Die Isolierschicht sollte vorzugweise in Querrichtung des Schichtaufbaus eine elektrische Durchschlagsfestigkeit von wenigstens 2000 V vorzugsweise von wenigstens 3000V haben.
  • Bei dem erfindungsgemäßen wärmeerzeugenden Element sind die Isolierschichten fest mit dem Gehäuse verbunden, welches ein isolierendes Gehäuse ist. Die Isolierschichten liegen außenseitig an den elektrischen Leiterbahnen an und decken diese ab. Diese wiederum nehmen zwischen sich das wenigstens eine PTC-Element auf, welches von dem isolierenden Gehäuse umgeben ist. Dementsprechend ergibt sich ein Aufbau, bei dem die Ober- und Unterseite des wärmeerzeugenden Elementes von der Isolierschicht abgedeckt ist, während die sich dazwischen erstreckende Stirnseite des wärmeerzeugenden Elementes von dem isolierenden Gehäuse eingenommen wird. Dementsprechend ist das wenigstens eine PTC-Element durch das Gehäuse und den mit dem Gehäuse fest verbundenen Isolierschichten von der Umgebung abgeschlossen aufgenommen und eingekapselt. Das Gehäuse kann für sich mehrere Aufnahmeöffnungen zur Aufnahme einzelner oder mehrerer PTC-Heizelemente ausbilden. Auch kann die Wandung einer durch das Gehäuse gebildeten Aufnahme für mehrere PTC-Heizelemente konturiert ausgebildet sein, um einzelnen PTC-Elemente voneinander zu beabstanden bzw. um Teilungen auszubilden. So kann beispielsweise eine längliche Gehäuseaufnahme für die Anordnung mehrerer PTC-Elemente in einer Reihe hintereinander ausgebildet sein, wobei die Aufnahme für einzelne PTC-Elemente durch nach innen vorspringende Stege abgeteilt ist.
  • Sofern gewünscht, kann die Isolierschicht direkt mit der elektrischen Leiterbahn verklebt werden. Zur Verbesserung der Wärmeleitfähigkeit zwischen der Leiterbahn und der Isolierschicht sollte der Kleber in einer möglichst dünnen Schicht von unter 20 µm vorgesehen sein. Aus gleichen Gründen ist die Kunststofffolie vorzugsweise auf die Keramikplatte auflaminiert, sofern eine solche vorgesehen ist. Die Folie hat vorzugsweise einseitig eine Wachsschicht von zwischen 10 bis 15 µm, die insbesondere unter den Betriebsbedingungen des wärmeerzeugenden Elementes, d.h. bei höheren Temperaturen von ca. 80°C, und beim Anpressen der Isolierschicht gegen die Leiterbahn aufschmilzt und eine effiziente Wärmeübertragung ermöglicht. Hierbei wirkt es förderlich, die Heizvorrichtung aus sich parallel erstreckenden Lagen von wärmeerzeugenden und wärmeabgebenden Elementen in einem Rahmen anzuordnen und diesen Schichtaufbau unter Federvorspannung in dem Rahmen zu halten, wie dies grundsätzlich bereits aus der auf die Anmelderin zurückgehenden EP 0 350 528 bekannt ist. Eine alternative Ausgestaltung wurde beispielsweise in der EP 1 515 588 beschrieben.
  • Das wärmeerzeugende Element kann für sich durch mehrere hintereinander angeordnete PTC-Elemente, diese beidseitig bedeckende Leiterbahnen, sowie die Leiterbahnen jeweils außenseitig umgebende Isolierschichten gebildet sein. Alle Bauteile dieses Schichtaufbaus können miteinander verbunden, insbesondere verklebt sein. Die elektrisch leitende Isolierschicht sollte hierbei vorzugsweise die elektrische Leiterbahn überragen, so dass sich die elektrisch leitenden und bestromten Bauteile des wärmeerzeugenden Elementes mit Abstand hinter den äußeren, isolierten Kanten des wärmeerzeugenden Elementes befinden. Die elektrische Leiterbahn kann die Isolierschicht zur Ausbildung einer elektrischen Kontaktierstelle überragen.
  • Zur genauen Positionierung der PTC-Elemente wird gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung vorgeschlagen, an dem wärmeerzeugenden Element einen an sich bekannten Positionsrahmen vorzusehen, der eine Rahmenöffnung zur Aufnahme des wenigstens einen PTC-Elementes ausbildet und der als isolierendes Gehäuse im Sinne der vorliegenden Erfindung angesehen werden kann. Dieser an sich bekannte Positionsrahmen ist beispielsweise in der vorerwähnten EP 0 350 528 beschrieben und wird üblicherweise aus einem nicht leitenden Material, insbesondere einem Kunststoffmaterial hergestellt. Der Positionsrahmen wird üblicherweise als längliches Bauteil ausgebildet, der in der Ebene des bzw. der PTC-Elemente des wärmeerzeugenden Elementes für eine oder mehrere PTC-Elemente eine Rahmenöffnungen ausspart. In dieser Rahmenöffnung sind das bzw. die PTC-Elemente positioniert. Ein solcher Positionsrahmen kann im wesentlichen das isolierende Gehäuse bilden und ober- und unterseitig fest mit den Isolierschichten verbunden sein. Hierzu können die Isolierschichten mit dem Positionsrahmen verklebt oder verschweißt sein. Auch kann das Kunststoffmaterial des isolierenden Gehäuses umgeformt werden, um die Isolierschichten mit dem Gehäuse zu verbinden. Jede Art der Verbindung, die geeignet ist, eine feste und vorzugsweise dichte Verbindung zwischen der Isolierschicht und dem Gehäusematerial zu schaffen, ist geeignet für die Verwirklichung der Erfindung.
  • Zur weiteren Verbesserung der miteinander verklebten Kunststofffolien wird gemäß einer bevorzugten Weiterbildung der vorliegenden Erfindung vorgeschlagen, dass diese Kunststofffolien unter Einschluss eines Fasergewirkes miteinander verbunden sind. Die Kunststofffolien können beispielsweise beidseitig auf das Fasergewirke auflaminiert werden. Das Fasergewirke kann beispielsweise lediglich aus im Wesentlichen parallel zueinander vorgesehenen, sich nicht oder kaum überlappenden Fasersträngen bestehen. Vorzugsweise wird indes ein Fasergewebe verwendet, welches mehrachsige Spannungszustände innerhalb des Verbundes der wenigstens zwei Kunststofffolien mit dem dazwischen angeordneten Fasergewebe besser aushalten kann. Zu empfehlen ist die Verwendung von Fasern, deren elektrische Leitfähigkeit gering ist. Auch im Hinblick auf die thermische Beanspruchung der Fasern des Gewirkes wird gemäß einer bevorzugten Weiterbildung vorgeschlagen, ein Gewebe aus Glasfasern zu verwenden. Die Fasern des Gewirkes sind weiterhin vorzugsweise silikongetränkt, so dass sich ein im Wesentlichen luftfreier Einschluss des Fasergewirkes zwischen den Kunststofffolien ergibt. Bei einer vollständigen Benetzung sämtlicher Faserstränge des Gewirkes ergibt sich im Übrigen auch eine feste und daher gute Verbindung zwischen den einander gegenüberliegenden Folienlagen.
  • Insbesondere zur äußeren Isolierung von wärmeerzeugenden Elementen, die in einer Heizvorrichtung zur Lufterwärmung beispielsweise für die Beheizung des Fahrzeuginnenraumes eines Kraftfahrzeuges eingebaut sind, hat es sich als vorteilhaft erwiesen, wenigstens zwei mehrlagige Kunststofffolien miteinander zu verkleben und diese an der Außenseite des wärmeerzeugenden Elementes, die Leiterbahnen mittelbar oder unmittelbar abdecken, vorzusehen. Jede einzelne der mehrlagigen Folien umfasst wenigstens zwei miteinander verklebte Kunststofffolien. Als sehr wirkungsvoller Vorschlag im Hinblick auf eine gute Wärmeübertragung durch die Isolierschicht nach außen und im Hinblick auf eine zuverlässige und hinreichende Isolierung hat sich eine Isolierschicht erwiesen, die zwei mehrlagige und miteinander verklebte Folien umfasst, wobei jede der mehrlagigen Folien zwei miteinander verklebte Kunststofffolien hat, die unmittelbar oder unter Zwischenlage eines Fasergewirkes miteinander verklebt sind.
  • Für die speziell ins Auge gefassten hochvoltigen Anwendungen haben sich in Versuchen zur Überschlagfestigkeit der Folien solche Kunststofffolien als besonders wirkungsvoll erwiesen, die eine Durchschlagsfestigkeit von wenigstens 1,05 kV haben. Diese Durchschlagsfestigkeit wird von jeder einzelnen der Folien bereitgestellt, die für sich miteinander verbunden sind. Die Dicke jeder einzelnen Kunststofffolie sollte zwischen 0,05 und 0,09 mm, vorzugsweise zwischen 0,06 und 0,08 mm liegen. Geeignete Materialien zur Ausbildung der Kunststofffolie sind Polyimid, Polyamid, Silicon oder Teflon (PTFE). Die miteinander verklebten Lagen können stoffidentisch ausgebildet oder aus unterschiedlichen Kunststoffmaterialien gebildet sein. Im Hinblick auf eine gute mechanische Festigkeit der miteinander verbundenen Kunststofffolien sind diese vorzugsweise blasenfrei miteinander verbunden, beispielsweise durch Laminieren. Geeignet zum Verbinden der beiden Kunststofffolien ist insbesondere ein Silikon enthaltender Kleber.
  • Zur umfänglichen Isolation des PTC-Heizelementes mit daran anliegenden Leiterbahnen wird gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung vorgeschlagen, die Isolierschicht jeweils mittels Umspritzen mit einem Gehäuse zu verbinden. Dieses Gehäuse kann dabei aus zwei Gehäuseschalen bestehen, welche miteinander verbunden sind. Als besonders geeignet haben sich Gehäuseschalen erwiesen, die zwei Gehäuseelemente umfassen, die unter Zwischenlage eines kompressiblen Elementes aneinander anliegen, dessen Dichtungswirkung sich bei einer Druckbeaufschlagung des wärmeerzeugenden Elementes von außen verbessert. Dabei wird insbesondere an einen Einbau der wärmeerzeugenden Elemente in einem Rahmen einer elektrischen Heizvorrichtung gedacht, in welchem das wenigstens eine wärmeerzeugende Element und außenseitig daran anliegende wärmeabgebende Elemente unter Vorspannung einer Feder gehalten und gegeneinander gelegt sind, wobei sich die Feder an der Innenseite des Rahmens abstützt.
  • Zur Verbesserung der Festigkeit des Gehäuses wird gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung vorgeschlagen, die Isolierschicht unter Einschluss jedenfalls der Ränder der Leiterbahn mit dem Gehäuse mittels Umspritzen zu verbinden. Das das Gehäuse bildende Kunststoffmaterial umschließt dementsprechend zumindest einen Randbereich der üblicherweise aus einem Blechband gebildeten Leiterbahn, so dass ein verhältnismäßig steifes und hinsichtlich seiner Kontur fest vorgegebenes Gehäuse gebildet ist. Das Gehäuse wird vorzugsweise aus einem thermoplastischen Elastomer, oder aus Silikon gebildet.
  • Zur Lösung des der Erfindung zugrunde liegenden nebengeordneten Problems in Bezug auf die Heizvorrichtung wird vorgeschlagen, die vorerwähnte Heizvorrichtung dadurch weiterzubilden, dass die wärmeabgebenden Elemente unter Zwischenlage einer wenigstens zwei miteinander verbundene Kunststofffolien umfassenden Isolierschicht an den gegenüberliegenden Seiten des wärmeerzeugenden Elementes anliegen. Danach liegen die beiden Kunststofffolien an der Außenseite des wärmeerzeugenden Elementes und bilden die Anlagefläche für ein wärmeabgebendes Element, welches beispielsweise aus einem mäandrierend gebogenen Aluminium- oder Kupferband gebildet ist.
  • Weitere Einzelheiten und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung in Verbindung mit der Zeichnung. In dieser zeigen:
  • Figur 1
    Eine Querschnittsansicht eines ersten Ausführungsbeispiels eines wärmeerzeugenden Elementes mit daran anliegenden Radiatorelementen eines elektrischen Zuheizers;
    Figur 2
    ein zweites Ausführungsbeispiel eines wärmeerzeugenden Elementes;
    Figur 3
    die bei den Ausführungsbeispielen gemäß den Figuren 1 und 2 verwendete Isolierfolie in einer perspektivischen Seitenansicht der einzelnen Lagen der Isolierfolie; und
    Figur 4
    eine perspektivische Seitenansicht eines Ausführungsbeispiels einer Heizvorrichtung.
  • Die Figur 1 zeigt eine Querschnittsansicht eines ersten Ausführuhgsbeispietes eines wärmeerzeugenden Elementes 1, welches zwei längliche U-förmige Gehäuseelemente 2,3 umfasst, die jeweils als Kunststoffspritzgussteile gefertigt sind. Die Gehäuseschalenelemente 2, 3 haben jeweils an gegenüberliegenden Querseiten einen Blechstreifen 10 und eine daran anliegende Isolierschicht 7. Die Ränder der jeweiligen Blechstreifen 10 sind von dem die Gehäuseelemente 2, 3 im wesentlichen bildenden Kunststoffmaterial eingehüllt. Die beiden Blechstreifen 10 sind durch Umspritzen mit dem jeweiligen Kunststoffmaterial der Gehäuseelemente 2, 3 verbunden. An der Außenseite der jeweiligen Gehäuseelemente 2, 3 und die Blechstreifen 10 an deren Längsrand überdeckend ist eine Isolierfolie 9 aufgebracht, durch die vorliegend die auf der Außenseite des wärmeerzeugenden Elementes 1 vorgesehene Isolierschicht 7 ausschließlich gebildet wird und die im weiteren noch ausführlich beschrieben wird.
  • Die einander gegenüberliegenden Stirnseiten der parallel vorgesehen Stege der U-förmigen Gehäuseelemente 2, 3 schließen sich zwischen sich einen Dichtstreifen 4 ein, der den durch die beiden Gehäuseelemente 2, 3 gebildeten und ein PTC-Heizelement 5 aufnehmenden Innenraum umfänglich nach außen abdichtet. Die Dichtwirkung des Dichtstreifens nimmt mit einer von außen auf das Gehäuse 2, 3 wirkenden Druckkraft zu.
  • Die Stärke des Dichtstreifens 4 ist so gewählt, dass denkbare dickenmäßige Fertigungstoleranzen wenigstens eines PTC-Elementes 5 durch Kompression des Dichtstreifens 4 ohne Aneinanderstoßen der beiden Gehäuseelemente ausgeglichen werden können. In diesem Zusammenhang sei darauf hingewiesen, das PCT-Heizelemente fertigungsbedingt gewissen maßlichen Schwankungen unterliegen. Sofern die elastischen Eigenschaften und die Dimension des Dichtstreifens 4 angepasst gewählt wird, können solche dickenmäßigen Toleranzen durch Kompression des Dichtstreifens ausgeglichen werden, so dass bei den denkbaren dickenmäßigen Abweichungen grundsätzlich eine umfängliche Abdichtung das PTC-Heizelement aufnehmenden Innenraums gegeben ist.
  • Die Kompression des sich an gegenüberliegenden Stirnseiten der beiden Gehäuseelemente 2,3 abstützenden Dichtstreifens aus einem kompressiblen Kunststoff führt zu einer gewissen Beweglichkeit der beiden Gehäuseelemente 2,3 quer zu einer Ebene, die sich parallel zu dem unteren bzw. oberen Blechstreifen 6,7 erstreckt. Mit zunehmendem Druck von außen auf das wärmeerzeugende Element 1 steigt die Abdichtungswirkung durch den kompressiblen Kunststoff.
  • Wie üblich können die Leiterbahnen am stirnseitigen Ende der Gehäuseelemente 2,3 diese überragen, um dort, gegebenenfalls die Außenseite eines die wärmeerzeugende Elemente umgebenden und unter Vorspannung in einem Schichtaufbau haltenden Rahmen zu überragen und dort elektrische Rahmenanschlüsse auszubilden.
  • In Figur 2 ist eine Querschnittsansicht eines zweiten Ausführungsbeispiels gezeigt. Gleiche Bauteile sind gegenüber dem in Figur 1 gezeigten Ausführungsbeispiel mit gleichen Bezugszeichen gekennzeichnet.
  • Figur 2 zeigt ein alternatives Ausführungsbeispiel eines wärmeerzeugenden Elementes 1 in Querschnittsansicht mit einem Gehäuse bestehend aus einem Gehäuseschalenelement 2, und einem Schalengegenelement 3, die schalenförmig ausgebildet sind. Beide Gehäuseelemente 2,3 sind als Kunststoffspritzgussteile gefertigt, an denen mittels Umspritzen sowohl eine Isolierfolie 9 wie auch eine innenseitig unmittelbar daran anliegende, das PTC-Heizelement 5 kontaktierende Blechbahn 10 befestigt sind. Auf die Außenseiten der Blechbahn 10 ist die mehrlagige Folie 9 als Teil der Isolierschicht vorgesehen. Diese Isolierfolie 9 ist durch Kaschieren unmittelbar auf den Blechstreifen 10 aufgebracht. Das so gebildete plattenförmige Element ist durch Umspritzen mit dem die Gehäuseelemente bildenden Kunststoffmaterial, welches vorzugsweise Silikon ist, verbunden. In dieser Richtung ist das wärmeerzeugende Element 1 relativ dünn, so dass von dem PTC-Heizelement erzeugte Wärme nahezu ungehindert durch Leitung zu einem Radiatorelement 11 gelangen kann. Die Radiatorelemente 11 werden bei dem gezeigten Ausführungsbeispiel zusätzlich durch das Kunststoffmaterial der beiden Gehäuseelemente 2,3 seitlich gefasst und so in Position gehalten. Speziell überragen die durch Umspritzen erzeugte Ränder der Gehäuseelemente 2,3 die Aluminiumoxidschicht 8 außenseitig, wodurch die unmittelbar an der Aluminiumoxidschicht 8 anliegenden Radiatorelemente 11 nicht quer zu dem in Figur 2 gezeigten Schichtaufbau verschoben werden können.
  • Wie das Ausführungsbeispiel in Figur 1 hat auch das in Figur 2 gezeigte Ausführungsbeispiel zur fertigungstechnischen Vereinfachung zwei identisch ausgebildete Gehäuseelemente 2, 3. Jeweils eine der durch die Ränder gebildeten Stirnseiten der jeweiligen Gehäuseelemente 2 bzw. 3 hat eine Nut 20; die andere Stirnseite wird von einer Feder 21 überragt. Die Feder 21 eines der Gehäuseelemente 2,3 ist in der komplementär ausgebildeten Nut 20 des andere Gehäuseelementes 3,2 im Eingriff, so dass das Innere des Gehäuses 2,3 abgedichtet ist. Hierzu sollte darauf geachtet werden, dass die Breite der Nut 20 nur unwesentlich größer als die Dicke der Feder 21 ist. Die Tiefe der Nut 20 bzw. die Länge der Feder 21 sind so gewählt, dass bei in dem Gehäuse aufgenommenen PTC-Elementen 5 diese flächig an den Blechstreifen 10 anliegen und dass die Gehäuseelemente 2,3 bei Schrumpfung und/oder Setzbeträgen bzw. aufgrund von Fertigungstoleranzen insbesondere auf Seiten der PTC-Elemente 5 zumindest noch geringfügig aufeinander zu bewegt werden können und bei den zu erwartenden Fertigungstoleranzen bzw. Wärmedehnungen Nut 20 bzw. Feder 21 mit hinreichender Überlappung zur Abdichtung des Gehäuses im Eingriff sind.
  • Die Figur 3 zeigt eine perspektivische Seitenansicht von in Explosionsdarstellung gezeigten Lagen der Isolierfolie 9, die auf der Außenseite des zuvor diskutierten wärmeerzeugenden Elementes vorgesehen ist. Die Isolierfolie 9 hat sechs Lagen und besteht aus zwei jeweils zweilagigen Kunststofffolien 30, 32, 34, 36, die jeweils identisch ausgebildet sind, eine Dicke von 0,07 mm haben und aus Silikon bestehen. Jede der Kunststofffolien 30 bis 36 hat eine Durchschlagfestigkeit von mehr als 1,05 kV. Die äußere Kunststofffolie 30 ist mit der benachbarten Kunststofffolie 32 unter Zwischenlage eines Glasfasergewebes 38 verklebt. Das Glasfasergewebe 38 besteht aus im Wesentlichen rechtwinklig zueinander angeordneten Glasfasersträngen, die miteinander verwebt sind. Die Glasfaserstränge sind mit Silikon durchtränkt. Der Zwischenraum zwischen den Kunststofffolien 30 und 32 ist insgesamt mit Silikon ausgefüllt. Durch die beiden Folien 30, 32 und das dazwischen eingeschlossene Glasfasergewebe 38 ist eine zweilagige glasfaserverstärkte Folie 40 gebildet. Einen entsprechenden Aufbau hat eine darunter liegende zweilagige glasfaserverstärkte Folie 42. Die zweilagigen glasfaserverstärkten Folien 40, 42 sind jeweils für sich mit einer Klebeschicht verbunden, wodurch sich eine sechslagige Isolierfolie 9 umfassend zwei Glasfasergewebe 38 und vier Kunststofffolien 30, 32, 34 und 36 gebildet ist. Die zwischen den mehrlagigen Folien 40, 42 vorgesehene Klebeschicht besteht aus Silikonkleber.
  • Die Isolierschicht ist nicht auf das in Figur 3 gezeigte Ausführungsbeispiel beschränkt. So können dem Glasfasergewebe 38 auch weitere Kunststofffolien vorgesehen sein. Es sollten wenigsten zwei Folien miteinander verbunden sein, die eine Verbundfolie mit einer Durchschlagfestigkeit von 2,0 kV und mehr hat. Vorzugsweise werden drei dieser Verbundfolien als Isolierschicht eingesetzt. Dabei ergibt sich eine sechslagige Isolierschicht, bei welcher jede einzelne isolierende Kunststofffolie eine Durchschlagsfestigkeit von wenigstens 1,0 kV hat. Ziel ist es, ein wärmeerzeugendes Element zum Einsätz in einem Zuheizer für die Automobilindustrie anzugeben, bei der das wärmeerzeugende Element jeweils mit einer Durchschlagsfestigkeit von 300 Volt gesichert ist. Diese Sicherung erfolgt an den Ober- und Unterseiten des wärmeerzeugenden Elementes, an welchen üblicherweise Radiatorelemente anliegen, ausschließlich durch die Isolierschicht 9. An den Stirnseiten, d.h. den sich hierzu regelmäßig rechtwinklig erstreckenden Seiten des wärmeerzeugenden Elementes 1 wird ein entsprechender Schutz durch das Kunststoffmaterial des Gehäuses 2, 3 bereitgestellt. Im Hinblick auf eine möglichst gute Durchschlagsfestigkeit bei einem Einsatz des wärmeerzeugendes Elementes mit Betriebsspannungen von bis zu 500 Volt sollten die Isolierschichten jeweils mittels Umspritzen und daher dicht in den Gehäuseelementen 2, 3 aufgenommen sein.
  • In Fig. 4 ist ein Ausführungsbeispiel einer erfindungsgemäßen Heizvorrichtung gezeigt. Diese umfasst eine Halteeinrichtung in Form eines umfänglich geschlossenen Rahmens 52, der durch zwei Rahmenschalen 54 gebildet ist. Innerhalb des Rahmens 52 werden mehrere parallel zueinander verlaufende Schichten von identisch ausgebildeten wärmeerzeugenden Elementen (beispielsweise nach Fig. 1 oder 2) aufgenommen. Ferner enthält der Rahmen 52 eine nicht gezeigte Feder, durch die der Schichtaufbau unter Vorspannung in dem Rahmen 52 gehalten wird. Vorzugsweise werden sämtliche wärmeabgebenden Elemente 56 unmittelbar benachbart zu einem wärmeerzeugenden Element 60 angeordnet. Die in den Fig. 4 dargestellten wärmeabgebenden Elemente 56 sind durch mäandrierend gebogene Aluminium-Blechstreifen gebildet -also identisch zu den Radiatorenelementen 11 gemäß Fig. 1 bzw. 2. Die wärmeerzeugenden Elemente befinden sich zwischen diesen einzelnen wärmeabgebenden Elementen 56 und hinter den Längsstreben 58 eines die Luftein- bzw. Austrittsöffnung des Rahmens 52 durchsetzenden Gitters. Eine dieser Längsstreben 58 ist in der Mitte des Rahmens 52 aus Gründen der Darstellung weggenommen, so dass dort ein wärmeerzeugendes Element 60 zu erkennen ist.
  • Da die wärmeabgebenden Elemente 56 unter Zwischenlage einer Isolierschicht 8 gegen die stromführenden Teile anliegen, sind die wärmeabgebenden Elemente 56, d. h. die Radiatorelemente, potentialfrei. Der Rahmen 52 ist vorzugsweise aus Kunststoff ausgebildet, wodurch die elektrische Isolation weiter verbessert werden kann. Einen zusätzlichen Schutz insbesondere gegen unbefugtes Berühren der stromführenden Teile der Heizvorrichtung wird zusätzlich durch das Gitter geschaffen, welches ebenfalls aus Kunststoff geformt und einteilig mit den Rahmenschalen 54 ausgebildet ist.
  • An einer Stirnseite des Rahmens 52 befindet sich in an sich bekannter Weise ein Steckeranschluss, von dem Energieversorgungs- und/oder Steuerleitungen abgehen, durch welche die Heizvorrichtung steuerungsmäßig und stromversorgungsmäßig in einem Fahrzeug angeschlossen werden kann. An der Stirnseite des Rahmens 52 ist ein Gehäuse angedeutet, welches neben dem Steckeranschluss auch Steuer- bzw. Regelelemente aufweisen kann.
  • Bezugszeichenliste
  • 1
    Wärmeerzeugendes Element
    2
    Gehäuseschalenelement
    3
    Schalengegenelement
    4
    Dichtstreifen
    5
    PTC-Heizelement
    7
    Isolierschicht
    9
    Isolierfolie
    10
    Blechstreifen
    11
    Radiatorelement
    20
    Nut
    21
    Feder
    30
    Kunststofffolie
    32
    Kunststofffolie
    34
    Kunststofffolie
    36
    Kunststofffolie
    38
    Glasfasergewebe
    40
    mehrlagige Folie, außen
    42
    mehrlagige Folie, innen
    52
    Rahmen
    54
    Rahmenschale
    56
    wärmeabgebendes Element
    58
    Längsstreb
    60
    wärmeerzeugendes Element

Claims (15)

  1. Wärmeerzeugendes Element (1), insbesondere zur Lufterwärmung in einem elektrischen Zuheizer eines Kfz, umfassend wenigstens ein PTC-Heizelement (5) und ein das PTC-Heizelement (5) umgebendes, isolierendes Gehäuse (2, 3) sowie elektrische Leiterbahnen (10), deren Innenflächen an gegenüberliegenden Seiten des PCT-Heizelementes (5) anliegen,
    dadurch gekennzeichnet,
    dass die Außenflächen der elektrischen Leiterbahnen (10) jeweils von einer Isolierschicht (7) überdeckt sind, die wenigstens zwei miteinander verbundene Kunststofffolien (30, 32; 34, 36) umfasst und
    dass die Isolierschichten (7) fest mit dem Gehäuse (2, 3) verbunden sind.
  2. Wärmeerzeugendes Element nach Anspruch 1, dadurch gekennzeichnet, dass die Kunststofffolien (30, 32; 34, 36) unter Einschluss eines Fasergewirkes (38) miteinander verbunden sind.
  3. Wärmeerzeugendes Element nach Anspruch 2, dadurch gekennzeichnet, dass die Kunststofffolien (30, 32; 34, 36) unter Einschluss eines Glasfasergewebes (38) miteinander verbunden sind.
  4. Wärmeerzeugendes Element nach Anspruch 3, dadurch gekennzeichnet, dass die Kunststofffolien (30, 32; 34, 36) unter Einschluss eines silikongetränkten Fasergewirkes (38) miteinander verbunden sind.
  5. Wärmeerzeugendes Element nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Isolierschicht (7) jeweils wenigstens zwei miteinander verbundene Kunststofffolien (30, 32; 34, 36) umfassende Folien (40) umfasst, die miteinander verklebt sind.
  6. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die miteinander verbundenen Kunststofffolien (30, 32; 34, 36) eine Durchschlagfestigkeit von wenigstens 2,00 kV haben.
  7. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die wenigstens zwei miteinander verbundenen Kunststofffolien (30, 32, 34, 36) unmittelbar an der elektrischen Leiterbahn (10) anliegen und dass die wenigstens zwei miteinander verbundenen Kunststofffolien (30, 32; 34, 36) auf der Außenseite des wärmeerzeugenden Elementes (1) vorgesehen sind.
  8. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Isolierschicht (7) mittels Umspritzen mit dem das PTC-Heizelement (5) umgebenden isolierenden Gehäuse (2, 3) verbunden ist.
  9. Wärmeerzeugendes Element nach Anspruch 8, dadurch gekennzeichnet, dass die Isolierschicht (7) unter Einschluss der Ränder der Leiterbahn (10) mit dem Gehäuse (2, 3) verbunden ist.
  10. Wärmeerzeugendes Element nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Gehäuse (2, 3) aus Silikon gebildet ist.
  11. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das die Kunststofffolie (30, 32; 34, 36) bildende Material ausgewählt ist aus der Gruppe bestehend aus: Polyimid, Polyamid, Silikon.
  12. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kunststofffolie (30, 32; 34, 36) eine Dicke von zwischen 0,05 mm und 0,09 mm, vorzugsweise von zwischen 0,06 mm und 0,08 mm hat.
  13. Wärmeerzeugendes Element nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die miteinander verbundenen Kunststofffolien (30, 32; 34, 36) über einen Silikon enthaltenden Kleber miteinander verbunden sind.
  14. Heizvorrichtung mit mehreren wärmeerzeugenden Elementen (60) umfassend wenigstens ein PTC-Element (6) und an gegenüberliegenden Seitenflächen des PTC-Elementes (6) anliegende elektrische Leiterbahnen (4) und in parallelen Schichten angeordneten wärmeabgebenden Elementen (56), die an gegenüberliegenden Seiten des wärmeerzeugenden Elementes (60) angelegt gehalten sind,
    dadurch gekennzeichnet,
    dass die wärmeabgebenden Elemente (56) unter Zwischenlage einer wenigstens zwei miteinander verbundene Kunststofffolien (30, 32, 34, 36) umfassenden Isolierschicht (7) an den gegenüberliegenden Seiten des wärmeerzeugenden Elementes (56) anliegen.
  15. Heizvorrichtung zur Lufterwärmung gekennzeichnet durch wenigstens ein wärmeerzeugendes Element nach einem der Ansprüche 1 bis 13.
EP08010213A 2008-04-11 2008-06-04 Wärmeerzeugendes Element und Heizvorrichtung umfassend ein wärmeerzeugendes Element Not-in-force EP2109345B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/409,637 US8395087B2 (en) 2008-04-11 2009-03-24 Heat-generating element and heating device comprising the same
CN2009101344119A CN101557659B (zh) 2008-04-11 2009-04-09 发热元件及包括该发热元件的加热装置
JP2009096224A JP5134579B2 (ja) 2008-04-11 2009-04-10 発熱体及び発熱体を備えた暖房装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008018617 2008-04-11

Publications (2)

Publication Number Publication Date
EP2109345A1 true EP2109345A1 (de) 2009-10-14
EP2109345B1 EP2109345B1 (de) 2010-07-28

Family

ID=40854994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010213A Not-in-force EP2109345B1 (de) 2008-04-11 2008-06-04 Wärmeerzeugendes Element und Heizvorrichtung umfassend ein wärmeerzeugendes Element

Country Status (6)

Country Link
US (1) US8395087B2 (de)
EP (1) EP2109345B1 (de)
JP (1) JP5134579B2 (de)
CN (1) CN101557659B (de)
DE (1) DE502008001033D1 (de)
ES (1) ES2345574T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337425A1 (de) 2009-12-17 2011-06-22 Eberspächer catem GmbH & Co. KG Elektrische Heizvorrichtung und wärmeerzeugendes Element einer elektrischen Heizvorrichtung
EP2393336A1 (de) 2010-06-04 2011-12-07 Behr France Rouffach S.A.R.L. Wärmeübertrager
EP3101999A1 (de) 2015-06-02 2016-12-07 Eberspächer catem GmbH & Co. KG Ptc-heizelement und elektrische heizvorrichtung für ein kraftfahrzeug umfassend ein solches ptc-heizelement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2322492T3 (es) * 2006-10-25 2009-06-22 EBERSPACHER CATEM GMBH & CO. KG Elemento generador de calor para un dispositivo calefctor y procedimiento de fabricacion del mismo.
DE102010004034A1 (de) * 2010-01-05 2011-07-07 Valeo Klimasysteme GmbH, 96476 Elektrische Heizvorrichtung für Fahrzeuge mit Hochspannungs-Bordnetz
JP5535740B2 (ja) * 2010-04-14 2014-07-02 三菱重工業株式会社 熱媒体加熱装置およびそれを用いた車両用空調装置
CN101945505A (zh) * 2010-08-31 2011-01-12 上海吉龙经济发展有限公司 一种双重水路密封的ptc加热器
US20140124500A1 (en) * 2012-11-05 2014-05-08 Betacera Inc. Insulated heater
USD757917S1 (en) * 2013-11-27 2016-05-31 Jahwa Electronics Co., Ltd. Electric heater mounted on air conditioner for vehicle
CN103945574B (zh) * 2014-03-25 2015-11-25 常熟市林芝电热器件有限公司 Ptc发热芯自动装配机的薄膜带及电极片转移机构结构
CN104640246A (zh) * 2015-01-19 2015-05-20 常熟市林芝电热器件有限公司 移动式空调用的安全、节能型加热器结构
EP3101998B1 (de) 2015-06-02 2020-12-16 Eberspächer catem GmbH & Co. KG Ptc-heizelement sowie elektrische heizvorrichtung umfassend ein solches ptc-heizelement und verfahren zum herstellen einer elektrischen heizvorrichtung
US11319916B2 (en) 2016-03-30 2022-05-03 Marine Canada Acquisition Inc. Vehicle heater and controls therefor
JP7131178B2 (ja) * 2018-07-30 2022-09-06 株式会社デンソー 発熱部材
DE102019204665A1 (de) * 2019-03-06 2020-09-10 Eberspächer catem Hermsdorf GmbH & Co. KG PTC-Heizelement und eine elektrische Heizvorrichtung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327282A (en) * 1978-10-21 1982-04-27 Firma Fritz Eichenauer Electrical resistance heating element
EP0350528A1 (de) 1988-07-15 1990-01-17 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Radiator
WO1999018756A1 (en) 1997-10-07 1999-04-15 A.T.C.T.-Advanced Thermal Chip Technologies Ltd. Immersible ptc heating device
EP1061776A1 (de) 1999-06-15 2000-12-20 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Heizvorrichtung zur Lufterwärmung
EP1318694A1 (de) * 2001-12-06 2003-06-11 Catem GmbH & Co.KG Elektrische Heizvorrichtung
EP1467599A2 (de) 2003-04-12 2004-10-13 Eichenauer Heizelemente GmbH & Co.KG Vorrichtung zur Aufnahme von Keramik-Heizelementen und Verfahren zur Herstellung einer solchen
EP1515588A1 (de) 2003-09-10 2005-03-16 Denso Corporation Effizient herstellbares Hochleistungs-Heizelement
EP1768458A1 (de) * 2005-09-23 2007-03-28 Catem GmbH & Co.KG Wärmeerzeugendes Element einer Heizvorrichtung
DE102007032896A1 (de) * 2006-08-22 2008-03-13 Modine Korea Llc., Asan Stabanordnung mit PTC-Vorrichtungen und diese enthaltender Vorwärmer
EP1916873A1 (de) * 2006-10-25 2008-04-30 Catem GmbH & Co.KG Wärmeerzeugendes Element für eine elektrische Heizvorrichtung und Verfahren zur Herstellung derselben

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481057A (en) * 1980-10-28 1984-11-06 Oximetrix, Inc. Cutting device and method of manufacture
JPS63259929A (ja) 1987-08-08 1988-10-27 新興化学工業株式会社 耐熱性電気絶縁体
JPH0718124U (ja) * 1993-08-12 1995-03-31 株式会社美装 暖房用パネル
JPH07142151A (ja) 1993-09-27 1995-06-02 Toyo Ink Mfg Co Ltd パネル状ヒーター
US6602810B1 (en) * 1995-06-06 2003-08-05 The Boeing Company Method for alleviating residual tensile strain in thermoplastic welds
JP2004146093A (ja) 2002-10-22 2004-05-20 Nitto Shinko Kk 絶縁紙
FR2846732B1 (fr) * 2002-11-04 2005-12-30 Espa Gaine de ventilation notamment pour systeme de conditionnement d'air
DE502006000793D1 (de) * 2005-09-23 2008-07-03 Catem Gmbh & Co Kg Wärmeerzeugendes Element einer Heizvorrichtung
JP2007118779A (ja) * 2005-10-28 2007-05-17 Calsonic Kansei Corp ヒータ構造
CN201031754Y (zh) * 2007-03-23 2008-03-05 戴怀斗 柴油滤清器加热装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327282A (en) * 1978-10-21 1982-04-27 Firma Fritz Eichenauer Electrical resistance heating element
EP0350528A1 (de) 1988-07-15 1990-01-17 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Radiator
WO1999018756A1 (en) 1997-10-07 1999-04-15 A.T.C.T.-Advanced Thermal Chip Technologies Ltd. Immersible ptc heating device
EP1061776A1 (de) 1999-06-15 2000-12-20 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Heizvorrichtung zur Lufterwärmung
EP1318694A1 (de) * 2001-12-06 2003-06-11 Catem GmbH & Co.KG Elektrische Heizvorrichtung
EP1467599A2 (de) 2003-04-12 2004-10-13 Eichenauer Heizelemente GmbH & Co.KG Vorrichtung zur Aufnahme von Keramik-Heizelementen und Verfahren zur Herstellung einer solchen
EP1515588A1 (de) 2003-09-10 2005-03-16 Denso Corporation Effizient herstellbares Hochleistungs-Heizelement
EP1768458A1 (de) * 2005-09-23 2007-03-28 Catem GmbH & Co.KG Wärmeerzeugendes Element einer Heizvorrichtung
DE102007032896A1 (de) * 2006-08-22 2008-03-13 Modine Korea Llc., Asan Stabanordnung mit PTC-Vorrichtungen und diese enthaltender Vorwärmer
EP1916873A1 (de) * 2006-10-25 2008-04-30 Catem GmbH & Co.KG Wärmeerzeugendes Element für eine elektrische Heizvorrichtung und Verfahren zur Herstellung derselben

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337425A1 (de) 2009-12-17 2011-06-22 Eberspächer catem GmbH & Co. KG Elektrische Heizvorrichtung und wärmeerzeugendes Element einer elektrischen Heizvorrichtung
EP2393336A1 (de) 2010-06-04 2011-12-07 Behr France Rouffach S.A.R.L. Wärmeübertrager
EP3101999A1 (de) 2015-06-02 2016-12-07 Eberspächer catem GmbH & Co. KG Ptc-heizelement und elektrische heizvorrichtung für ein kraftfahrzeug umfassend ein solches ptc-heizelement

Also Published As

Publication number Publication date
JP2009259823A (ja) 2009-11-05
JP5134579B2 (ja) 2013-01-30
DE502008001033D1 (de) 2010-09-09
CN101557659A (zh) 2009-10-14
US8395087B2 (en) 2013-03-12
US20090255914A1 (en) 2009-10-15
ES2345574T3 (es) 2010-09-27
EP2109345B1 (de) 2010-07-28
CN101557659B (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
EP2109345B1 (de) Wärmeerzeugendes Element und Heizvorrichtung umfassend ein wärmeerzeugendes Element
EP1916874B1 (de) Wärmeerzeugendes Element einer Heizvorrichtung
EP3416456B1 (de) Elektrische heizvorrichtung und ptc-heizelement für eine solche
EP1916873B1 (de) Wärmeerzeugendes Element für eine elektrische Heizvorrichtung und Verfahren zur Herstellung derselben
EP3101998B1 (de) Ptc-heizelement sowie elektrische heizvorrichtung umfassend ein solches ptc-heizelement und verfahren zum herstellen einer elektrischen heizvorrichtung
EP2724086B1 (de) Wärmeübertrager
EP2607121B2 (de) Elektrische Heizvorrichtung, insbesondere für ein Kraftfahrzeug
EP1768457B1 (de) Wärmeerzeugendes Element einer Heizvorrichtung
EP2395295B1 (de) Wärmeübertrager
EP2299201B1 (de) Elektrische Heizvorrichtung
EP2190256B1 (de) Wärmeübertrager
EP1768459A1 (de) Wärmeerzeugendes Element einer Heizvorrichtung
EP2608632A1 (de) Elektrische Heizvorrichtung und Rahmen hierfür
DE102014206861A1 (de) Temperiervorrichtung für eine elektrische Energieversorgungseinheit
EP3493650A1 (de) Elektrische heizvorrichtung
EP3475978B1 (de) Wärmeleitender isolator
DE10115776A1 (de) Sammelschienentragplatte für einen elektrischen Anschlußkasten
DE102019208130A1 (de) PTC-Heizelement und eine elektrische Heizvorrichtung
EP2685784A1 (de) Heizvorrichtung
EP2393336B1 (de) Wärmeübertrager
DE102019204472A1 (de) Wärmeerzeugendes Element und elektrische Heizvorrichtung enthaltend ein solches
DE102014219852A1 (de) Thermoelektrischer Generator, insbesondere für ein Kraftfahrzeug
DE102018218667A1 (de) PTC-Heizmodul und ein Verfahren zum Herstellen des PTC-Heizmoduls
EP2346304B1 (de) Wärmeübertrager
EP2395296B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502008001033

Country of ref document: DE

Date of ref document: 20100909

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2345574

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001033

Country of ref document: DE

Effective date: 20110429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120625

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130605

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170622

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210621

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001033

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103