EP2108061A2 - Crystal growth in a solution in stationary conditions - Google Patents

Crystal growth in a solution in stationary conditions

Info

Publication number
EP2108061A2
EP2108061A2 EP07871782A EP07871782A EP2108061A2 EP 2108061 A2 EP2108061 A2 EP 2108061A2 EP 07871782 A EP07871782 A EP 07871782A EP 07871782 A EP07871782 A EP 07871782A EP 2108061 A2 EP2108061 A2 EP 2108061A2
Authority
EP
European Patent Office
Prior art keywords
solution
chamber
temperature
crystallization
saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07871782A
Other languages
German (de)
French (fr)
Inventor
Alain Ibanez
Julien Zaccaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2108061A2 publication Critical patent/EP2108061A2/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/08Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by cooling of the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Definitions

  • the present invention relates to a new crystal growth crystallogenesis process in solution, in particular adapted to an implementation on an industrial scale to prepare in a controlled and efficient way large single crystals, of the order of a few centimeters or more.
  • a particularly interesting technique in this context is to grow the monocrystal from a molten bath of the desired compound to crystallize, in particular by implementing the usual Czochralski method
  • Such a method has, among others, the advantage to lead to growth rates of particularly high crystals, typically of the order of several centimeters per day.
  • crystalline growth from molten baths is not possible for certain compounds, especially those with non-congruent melting (that is to say which have in the liquid state a composition different from that of the state. solid for example due to chemical decomposition phenomena or peritectics), as well as for those having a phase transition between the molten state and the liquid state in a temperature zone between their melting temperature and the ambient temperature.
  • melt bath technique is in fact unsuitable for the crystallization of numerous compounds such as, among other numerous examples, the ⁇ form of quartz ( ⁇ -SiO 2), certain phosphates (such as KH 2 PO 4 , KTiOPO 4 , by example), some borates (such as YAI 3 (BO 3 ) 4 ), or even some metal halides.
  • ⁇ -SiO 2 the ⁇ form of quartz
  • certain phosphates such as KH 2 PO 4 , KTiOPO 4 , by example
  • some borates such as YAI 3 (BO 3 ) 4
  • metal halides such as, among other numerous examples, the ⁇ form of quartz ( ⁇ -SiO 2), certain phosphates (such as KH 2 PO 4 , KTiOPO 4 , by example), some borates (such as YAI 3 (BO 3 ) 4 ), or even some metal halides.
  • Co refers to the solubility of the compound dissolved at the temperature at which crystallization is performed.
  • This state of supersaturation, required for crystallization in solution, is usually obtained according to two types of methods, namely: by solvent evaporation: according to this first variant, the amount of solvent of the solution during the crystallization is decreased , generally by allowing this solvent to evaporate gradually, resulting in an increase in the ratio of the compound / solvent in the medium, which initially makes it possible to increase the concentration to obtain the supersaturation required to start the crystallization, and then to maintain the state of supersaturation as the compound in solution is consumed to form the crystal.
  • the temperature of the solution is modified so as to induce a decrease in the solubility of the compound to be crystallized in the crystallization solution and to obtain the desired supersaturation.
  • solubility increases with temperature.
  • the desired solubility is reduced by lowering the temperature of the crystallization solution.
  • the decrease in the desired solubility is achieved by increasing the temperature. In temperature change processes, additional control of the reaction conditions is required to maintain the crystallization process.
  • the formation of the crystal obtained by the temperature change consumes the compound in solution, which decreases the concentration of said compound in the crystallization solution, whereby it tends to deviate from the required conditions of saturation.
  • a continuous temperature modification that is to say most often a continuous lowering of the temperature, or more specifically a continuous increase, in the particular case of compounds with retrograde solubility.
  • An object of the present invention is to provide a crystallogenesis process implementing crystalline growth in solution which is suitable for implementation at the industrial level, in particular avoiding the aforementioned drawbacks of currently known solution crystallization methods.
  • the subject of the present invention is a process for preparing a crystal based on a compound (C), by crystalline growth in solution, from a solution (S) supersaturated with said compound (C), wherein: - said crystal growth is carried out in a crystallization chamber maintained at a constant crystallization temperature T 0 ;
  • said crystallization chamber is in fluid communication with a saturation chamber, which comprises an excess of compound (C) to the state of a solid feeder body and is brought to a saturation temperature T 5 constant, different from T 0 this temperature T 3 being chosen so that the solubility of the compound (C) in the solution (S) at the temperature T 5 is greater than the solubility of the compound (C) in the solution (S) at the temperature Tc; and
  • a continuous circulation of the solution (S), preferably at a substantially constant rate, is established between the crystallization and saturation chambers, whereby a constant supersaturation level is maintained within the crystallization chamber;
  • the solution (S) in circulation between the crystallization and saturation chambers is subjected to an elimination treatment of the aggregates likely to form and inhibit the formation of such aggregates, to avoid or inhibit parasitic crystallization nucleation phenomena.
  • the compound (C) used is a compound having a solubility in solution (S) which increases with temperature.
  • the temperature Ts kept constant in the saturation chamber is higher than the temperature Tc kept constant in the crystallization chamber.
  • the compound (C) is, conversely, a compound with retrograde solubility, namely having a solubility in the solution (S) which decreases with temperature.
  • the temperature is, conversely, a compound with retrograde solubility, namely having a solubility in the solution (S) which decreases with temperature.
  • Ts kept constant in the saturation chamber is lower than the temperature Tc kept constant in the crystallization chamber.
  • the crystallization temperature T c of the crystallization chamber and the saturation temperature T 3 of the saturation chamber are both kept constant during the crystallogenesis process.
  • the term "constant temperature” means a temperature which varies as little as possible on either side of a reference value T 0 , this temperature generally varying at most by +/- 0, 1 ° C, more preferably at most +/- 0.05 ° C over time, that is to say that this temperature preferably remains in the range of (T 0 - 0.1 0 C) to (T 0 + 0.1 0 C), more preferably still (T 0 - 0.05 0 C) at (T 0 + 0.05 0 C), more preferably (T 0 - 0.01 0 C) at (T 0 + 0.01 0 C), the acceptable variation of the temperature being a function of the nature of the compound employed, the solvent and also the temperature T 0 .
  • the crystallization temperature T c It is particularly important to maintain constant the crystallization temperature T c , the value of which is advantageously set at +/- 0.05 ° C., preferably at +/- 0.01 ° C., and more preferably at +/- 0.01 ° C. +/- 0.005 0 C near.
  • the regulation of the supersaturation temperature T s may be a little less fine, but remains most often regulated to within +/- 0.1 ° C, preferably to +/- 0.05 0 C, more preferably + / - 0,01 0 C near.
  • the specific maintenance of the crystallization temperature T c and of the saturation temperature T s has constant values, associated with the continuous circulation of the solution (S) between the crystallization and saturation chambers. , induces very particular conditions of crystallogenesis.
  • the method of the invention specifically implements crystalline growth under stationary thermodynamic conditions.
  • the concentration of compound in the saturation chamber (C) remains constant, namely equal to the solubility of the compound (C) at the temperature T 3 .
  • a minimum flow rate of the solution (S) between the crystallization chambers must generally be applied. It is the competence of the specialist in the field to adapt the flow rate of the solution (S) for this purpose, on a case by case basis.
  • the solution (S) which leaves the saturation chamber and which is then injected into the crystallization chamber has a constant constant constant concentration the solubility of the compound (C) at the temperature T 8 .
  • the crystallization temperature T 0 is maintained at a temperature where the compound (C) has a solubility lower than its solubility at the saturation temperature T 5
  • the solution (S) is injected into the crystallization chamber with a concentration of compound (C) greater than the solubility of the compound (C) at the temperature T 8 , that is to say that this solution is constantly in a state of supersaturation within of the crystallization chamber.
  • a state of supersaturation is continuously maintained within the crystallization chamber).
  • the relative supersaturation of the solution (S) is perfectly defined and remains constant during the crystallization.
  • all crystallogenesis conditions are maintained substantially constant throughout the crystal growth.
  • the process of the invention makes it possible in particular to maintain both constant temperature, concentration and supersaturation conditions.
  • the continuous circulation of the solution (s) between the crystallization and saturation chambers takes place at a substantially constant rate.
  • This continuous circulation is generally carried out in a circular manner, the solution (S) starting from the saturation chamber, in the saturated state of compound (C), towards the crystallization chamber along a first channel, then leaving the crystallization chamber to the saturation chamber to "recharge” in compound (C) along a second channel.
  • the stationary thermodynamic conditions of crystalline growth obtained in the context of the process of the invention make it possible in particular to avoid the growth incidents observed with currently known crystalline solution growth processes which implement non-stationary thermodynamic conditions.
  • the conditions for implementing the method of the invention have many other advantages.
  • Work under stationary conditions according to the invention makes it possible in particular to stabilize the crystalline growth conditions, which leads to a significant improvement in the crystalline quality and to the production of crystals of controlled composition, which proves particularly advantageous in the case of intermediate composition crystals, in particular solid solutions or crystals containing one or more doping element (s), the process then making it possible to obtain crystals of homogeneous composition.
  • the process of the invention makes it possible to regulate and very simply define the value of the relative supersaturation of the solution (S) in the crystallization chamber, and hence the rate of crystallization.
  • this regulation operates simply by varying the values of the temperatures Tc and Ts, the supersaturation increasing with the difference in solubility of the compound (C) at the temperatures Ts and Tc.
  • the technique developed by the inventors proves in particular to be much easier to implement than the techniques where the supersaturation is induced by lowering the temperature, where the lowering speed must be continuously adjusted.
  • the method of the invention is not limited as to the degree of supersaturation employed.
  • it makes it possible to work with high levels of supersaturation inducing a very high crystalline growth rate, without inducing the thermal gradient between the core and the outside of the crystal obtained when implementing solution growth techniques by rapid decrease in temperature.
  • the process of the invention whatever the growth rate of the crystal, it remains perfectly thermostated at the temperature T c within the crystallization chamber, from the beginning to the end of its growth.
  • the supersaturated solution (S) used is specifically subjected to a treatment making it possible to eliminate the aggregates that may form therefrom and / or to inhibit the formation of such aggregates for avoid or inhibit parasitic crystallization nucleation phenomena.
  • the potential nucleation of parasitic crystallites is a problem that is systematically encountered in any solution crystallization process.
  • This disadvantage is related to the implementation of supersaturated, metastable solutions, where Aggregates are systematically formed from the species in solution. As long as these aggregates have a sufficiently small size (called “subcritical”), they are not stable thermodynamically and therefore do not lead to the formation of crystallites.
  • parasitic crystallites form when the aggregates reach or exceed a critical radius r * .
  • This critical radius r * is all the weaker as the supersaturation is high in the medium, that is to say one moves away from the equilibrium conditions of the system.
  • any type of treatment for removing or dissociating the subcritical aggregates in the supersaturated solution (S) in circulation may be considered within the scope of the invention.
  • this treatment comprises, among other possible means, the submission of the solution (S) to ultrasound between the crystallization chamber and the saturation chamber.
  • this ultrasonic treatment it is advantageous to implement a heat treatment of the solution between the crystallization chamber and the saturation chamber, namely:
  • a heating of the solution (S) between crystallization chamber and the saturation chamber advantageously at a temperature of at least 10 c C higher than that of the saturation temperature T 3 to which is carried the crystallization chamber;
  • a cooling of the solution (S) between the crystallization chamber and the saturation chamber advantageously at a temperature of at least 10 ° C. lower than that of the saturation temperature T 5 .
  • the solution (S) may optionally be subjected to filtration between the crystallization chamber and the saturation chamber, so as to retain any aggregates in formation, which is however not always required.
  • the method of the invention is a very interesting alternative to the currently known processes, insofar as it allows the preparation of very large single crystals with very high speeds by inhibiting the risk of incidents of growth, and more generally allowing access to optimized crystallization properties.
  • the method proposed by the inventors although very simple to implement in practice, both to optimize the crystalline properties obtained and the crystal growth rate.
  • One of the appreciable assets of the method of the invention and it allows to increase the speed of production while jointly lowering the risk of growth incident.
  • the crystal growth rates that can be obtained according to the method of the invention are generally comparable to those recorded with the techniques of molten baths, namely of the order of at least several centimeters per day.
  • Another advantage of the process of the invention with respect to currently known solution crystallization techniques is that it allows the crystalline growth of compounds having very low solubilities or very slight evolutions of solubility with temperature.
  • the process of the invention is more generally adapted to the crystal growth of a large number of chemical compounds.
  • any compound can be used as compound (C) in the process of the invention, provided that it is solubilizable in a solvent.
  • the method of the invention is suitable for the preparation of single crystals substantially free of defects, which may have high dimensions, for example of the order of ten centimeters or more.
  • the invention thus makes it possible to access new single crystals of quality at least similar to that of single crystals obtained by the technique of molten baths, but with compounds (C) which can not be crystallized according to this technique.
  • the invention provides access with fast growth rates to large single crystals, substantially free of defects and based on compounds (C) having no congruent melting point or compounds (C) having a phase transition between the molten state and the solid state.
  • the process of the invention preferably has one or more of the additional characteristics described below.
  • the supersaturation level maintained in the crystallization chamber is advantageously the highest possible, which makes it possible to increase the crystal growth rate all the more.
  • This degree of supersaturation can be modulated very simply by varying the saturation and crystallization temperatures Ts and Tc, and in particular by varying the difference ⁇ T between these two temperatures.
  • the exact value of the degree of supersaturation in the crystallization chamber can vary to a very large extent depending on the nature of the compound (C), but it should be noted that the supersaturation levels that can be achieved according to the invention are higher than those that can be used in current growth processes in solution.
  • the degree of supersaturation can be easily modulated and kept constant at a value ranging generally from 1% to 30%, for example between 1 and 25%, this level of supersaturation which may especially reach values greater than 10%, for example at least 15%, or even at least 20%, which are much higher than the supersaturation rates that can be envisaged with current solution growth processes.
  • the process developed by the inventors can in particular be used for the preparation of potassium biphosphate mass monocrystals of the type used in optical applications, in particular for constitution of LASER type devices.
  • the compound (C) is potassium diphosphate KH 2 PO 4 (KDP), preferably in at least partially deuterated form (DKDP).
  • KDP potassium diphosphate KH 2 PO 4
  • DKDP at least partially deuterated form
  • the temperature T c at which the crystallization chamber is maintained is advantageously in the range between 5 and 80 ° C.
  • the KDP or DKDP crystallization process according to the invention can advantageously be carried out at low temperature, with a temperature T c at which the crystallization chamber is maintained is less than 40 ° C., preferably less than 40 ° C. 30 ° C., for example between 15 and 25 ° C.
  • the crystallization temperature Tc advantageously varies by at most +/- 0.1 ° C., more preferably at most +/- 0.05 ° C.
  • the temperature T c within the chamber of crystallization can be set at 20 ° C +/- 0.005 0 C.
  • the temperature difference (T s -T c ) between the saturation chamber and the crystallization chamber is preferably of the order of a few degrees, this difference temperature can vary depending on T 0 and the desired growth rate.
  • this difference in temperature is between 2 and 30 ° C., this difference preferably being at least 1 O 0 C, for example between 15 and 2O 0 C.
  • the present invention also relates to a device for implementing the method of the invention.
  • This device comprises:
  • a crystallization chamber adapted to the growth of a crystal in solution, and provided with an inlet and an outlet, as well as temperature regulation means making it possible to maintain the said crystallization chamber at a crystallization temperature T c substantially constant, typically at temperatures ranging from -30 0 C to +150 0 C;
  • a saturation chamber suitable for bringing a solution into contact with an excess of solid solute, provided with an inlet in fluid communication with the outlet of the crystallization chamber and an outlet in fluid communication with the entry of the crystallization chamber, as well as temperature control means for maintaining said saturation chamber at a crystallization temperature T 3 substantially constant and distinct from T 0 ;
  • the means allowing the continuous circulation of the solution between the two chambers are provided with sonification means, generally associated with heat treatment means for heating or cooling the solution, and possibly filtration means, as a rule between the exit of the crystallization chamber and the entrance of the saturation chamber.
  • FIG. 1 is a schematic representation of a possible device for implementing the method of the invention
  • FIG. 2 represents a concrete example of a device that can be used to effect the crystallization of the invention.
  • a crystal 1 from a compound (C) (which may for example, but not necessarily be DKDP) within a crystallization chamber 10 provided with an inlet 11 and an outlet 12.
  • the temperature T 0 within this chamber 10 is kept constant by appropriate control means, such as the thermostatic bath 15 shown in FIG. 2.
  • the crystallization chamber is fed continuously with a solution (S) resulting from a saturation chamber 20 provided with an inlet 21 and an outlet 22.
  • This chamber is also maintained at a constant temperature (T s ) by suitable control means, such as the thermostatic bath 25 shown in FIG. 2.
  • T s a constant temperature
  • suitable control means such as the thermostatic bath 25 shown in FIG. 2.
  • T 3 is less than T 0 , for example at least 10 ° C.
  • T 5 differs from T 0 by several degrees, or even several tens of degrees.
  • the saturation chamber contains an excess of compound (C) in the state of a solid feeder body 28, which makes it possible to saturate the solution at the level of said saturation chamber (in the chamber the concentration of the compound (C) in the solution (S) is equal to the saturation concentration of the compound (C) at the temperature T 8 ).
  • the chambers 10 and 20 are generally provided with stirring and homogenizing means, in particular of the type represented in FIG. 2.
  • the flow direction of the solution (S) is indicated by arrows in the figures: the solution leaves the outlet 22 of the saturation chamber 20 towards the inlet 11 of the crystallization chamber 10, then leaves this chamber 10 by the exit 12 and goes back to the input 21 of the saturation chamber.
  • This circulation is provided by suitable means represented by 31 and 32 in the figures, which may in particular be peristaltic pumps as shown in FIG. 2. These means are generally used to ensure a constant flow rate of the solution (S). throughout the crystallogenesis.
  • the saturated solution that leaves the saturation chamber 20 at the temperature T 5 is sent into the growth chamber 10 maintained at a constant temperature distinct from T c , chosen to place the solution in a supersaturation condition, thereby allowing the crystal to grow. 1 from the solution (S).
  • the circulation circuit of the solution (S) comprises, between the outlet 12 of the crystallization chamber and the inlet 21 of the saturation chamber, a chamber 40 provided with sonification means, where it is furthermore preferable that the solution is heat-treated by heating or cooling, in the direction inducing a saturation of the solution, these means making it possible to inhibit the parasitic nucleation phenomena in the solution by limiting the formation of aggregates and / or by disaggregating the aggregates existing.
  • the circulation circuit of the solution (S) may further comprise means for filtering the solution.
  • the process of the invention is very easy to implement and only requires trivial means for precisely regulating temperature and flow rate, which are much easier to use than the control means. required in currently known crystalline growth processes employing a controlled decrease in temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for crystal growth in a solution adapted for the fast, controlled and efficient preparation of large-dimension crystals (1) from a supersaturated solution into a compound. The crystal growth is carried out in stationary conditions. In order to do so, the growth is carried out in a crystallisation chamber (10) maintained at a constant temperature Tc and in fluid communication with a saturation chamber (20) at a temperature Ts that is also constant but different from Tc, the compound solubility at the Ts temperature being higher than compound solubility at the temperature Tc. A continuous solution circulation is established between the crystallisation (10) and saturation (20) chambers, thus maintaining a constant supersaturation ratio in the crystallisation chamber (10). The circulating solution is further submitted to a treatment for removing and inhibiting (40) the formation of aggregates, thus inhibiting the nucleation of parasitic crystallites.

Description

Croissance cristalline en solution dans des conditions stationnaires Crystalline growth in solution under stationary conditions
La présente invention a trait à un nouveau procédé de cristallogenèse par croissance cristalline en solution, notamment adapté à une mise en œuvre à l'échelle industrielle pour préparer de façon contrôlée et efficace des monocristaux de grandes dimensions, de l'ordre de quelques centimètres ou plus.The present invention relates to a new crystal growth crystallogenesis process in solution, in particular adapted to an implementation on an industrial scale to prepare in a controlled and efficient way large single crystals, of the order of a few centimeters or more.
A l'heure actuelle, on connaît différentes techniques de préparation de monocristaux exploitables au niveau industriel.At the present time, various techniques for the preparation of commercially exploitable single crystals are known.
Une technique particulièrement intéressante dans ce cadre consiste à faire croître le monocristal à partir d'un bain fondu du composé qu'on souhaite cristalliser, notamment en mettant en œuvre la méthode usuelle dite de Czochralski Une telle méthode présente, entre autres, l'avantage de conduire à des vitesses de croissance des cristaux particulièrement élevées, typiquement de l'ordre de plusieurs centimètres par jour. Toutefois, la croissance cristalline à partir de bains fondus n'est pas possible pour certains composés, notamment ceux présentant une fusion non congruente (c'est-à-dire qui présentent à l'état liquide une composition différente de celle de l'état solide due par exemple à des phénomènes de décomposition chimique ou à des péritectiques), ainsi que pour ceux présentant une transition de phase entre l'état fondu et l'état liquide dans une zone de température entre leur température de fusion et la température ambiante. Ainsi, la technique du bain fondu se révèle en fait inadaptée pour la cristallisation de nombreux composés tels que, entre autres nombreux exemples, la forme a du quartz (σ-SiO2), certains phosphates (comme KH2PO4, KTiOPO4, par exemple), certains borates (tels que YAI3(BO3)4), ou bien encore certains halogénures métalliques.A particularly interesting technique in this context is to grow the monocrystal from a molten bath of the desired compound to crystallize, in particular by implementing the usual Czochralski method Such a method has, among others, the advantage to lead to growth rates of particularly high crystals, typically of the order of several centimeters per day. However, crystalline growth from molten baths is not possible for certain compounds, especially those with non-congruent melting (that is to say which have in the liquid state a composition different from that of the state. solid for example due to chemical decomposition phenomena or peritectics), as well as for those having a phase transition between the molten state and the liquid state in a temperature zone between their melting temperature and the ambient temperature. Thus, the melt bath technique is in fact unsuitable for the crystallization of numerous compounds such as, among other numerous examples, the α form of quartz (σ-SiO 2), certain phosphates (such as KH 2 PO 4 , KTiOPO 4 , by example), some borates (such as YAI 3 (BO 3 ) 4 ), or even some metal halides.
Pour réaliser la cristallisation de composés non adaptés à la technique du bain fondu, tels que ceux précités, il a été proposé de mettre en œuvre des techniques de croissance en solution, dans lesquelles le composé à cristalliser est initialement dissous dans un solvant, et où la croissance s'effectue en plaçant la solution dans des conditions de sursaturation, c'est-à-dire dans des conditions où le soluté se retrouve à une concentration supérieure à sa solubilité. Dans ce type de procédés, à un instant donné, l'état de sursaturation de la solution dans laquelle la cristallisation est effectuée peut être quantifiée par sa sursaturation relative, désignée par s, qui est calculée par le rapport suivant :To achieve the crystallization of compounds not adapted to the melt bath technique, such as those mentioned above, it has been proposed to implement growth techniques in solution, in which the compound to be crystallized is initially dissolved in a solvent, and where growth is achieved by placing the solution under supersaturation conditions, that is, under conditions where the solute is at a concentration greater than its solubility. In this type of process, at a given instant, the state of supersaturation of the solution in which the crystallization is carried out can be quantified by its relative supersaturation, denoted by s, which is calculated by the following ratio:
. . . (C - CQ). . . (C - C Q )
C0 où : C désigne la concentration en composé dissous dans la solution ; etC 0 where C denotes the concentration of compound dissolved in the solution; and
Co désigne la solubilité c|u composé dissous à la température à laquelle la cristallisation est effectuée.Co refers to the solubility of the compound dissolved at the temperature at which crystallization is performed.
Cet état de sursaturation, requis pour une cristallisation en solution, est usuellement obtenu selon deux types de méthodes, à savoir : - par évaporation de solvant : selon cette première variante, on fait diminuer la quantité de solvant de la solution au cours de la cristallisation, généralement en laissant ce solvant s'évaporer progressivement, ce qui entraîne une augmentation du ratio composé/solvant dans le milieu, qui permet initialement d'augmenter la concentration pour obtenir la sursaturation requise pour débuter la cristallisation, puis de la maintenir l'état de sursaturation au fur et à mesure que le composé en solution est consommé pour former le cristal.This state of supersaturation, required for crystallization in solution, is usually obtained according to two types of methods, namely: by solvent evaporation: according to this first variant, the amount of solvent of the solution during the crystallization is decreased , generally by allowing this solvent to evaporate gradually, resulting in an increase in the ratio of the compound / solvent in the medium, which initially makes it possible to increase the concentration to obtain the supersaturation required to start the crystallization, and then to maintain the state of supersaturation as the compound in solution is consumed to form the crystal.
- par changement de la température : selon cette autre variante, on modifie la température de la solution de façon à induire une diminution de la solubilité du composé à cristalliser dans la solution de cristallisation et à obtenir la sursaturation recherchée. Pour la plupart des composés, la solubilité augmente avec la température. De ce fait, le plus souvent, la diminution de la solubilité recherchée est obtenue en effectuant un abaissement de la température de la solution de cristallisation. II existe néanmoins certains composés particuliers, comme le calcaire par exemple, dont la solubilité est rétrograde, c'est-à-dire qu'elle diminue lorsque la température augmente. Pour ce type de composés, à l'inverse, la diminution de la solubilité recherchée est atteinte en augmentant la température. Dans les procédés par changement de température, un contrôle supplémentaire des conditions de réaction s'avère nécessaire pour maintenir le processus de cristallisation. En effet, la formation du cristal obtenue par le changement de température consomme le composé en solution, ce qui diminue la concentration dudit composé dans la solution de cristallisation, ce par quoi on tend à s'écarter des conditions de .sursaturation requises. Pour contrebalancer ce phénomène de désaturation de la solution et maintenir un état de sursaturation, on peut notamment effectuer une modification continue de la température (à savoir le plus souvent un abaissement continu de la température, ou plus spécifiquement une augmentation continue, dans le cas particulier de composés à solubilité rétrograde).by temperature change: according to this other variant, the temperature of the solution is modified so as to induce a decrease in the solubility of the compound to be crystallized in the crystallization solution and to obtain the desired supersaturation. For most compounds, solubility increases with temperature. As a result, in most cases, the desired solubility is reduced by lowering the temperature of the crystallization solution. There are nevertheless some particular compounds, such as limestone for example, whose solubility is retrograde, that is to say, it decreases when the temperature increases. For this type of compounds, conversely, the decrease in the desired solubility is achieved by increasing the temperature. In temperature change processes, additional control of the reaction conditions is required to maintain the crystallization process. Indeed, the formation of the crystal obtained by the temperature change consumes the compound in solution, which decreases the concentration of said compound in the crystallization solution, whereby it tends to deviate from the required conditions of saturation. To counterbalance this phenomenon of desaturation of the solution and maintain a supersaturation state, it is possible in particular to carry out a continuous temperature modification (that is to say most often a continuous lowering of the temperature, or more specifically a continuous increase, in the particular case of compounds with retrograde solubility).
Les méthodes de cristallisation précitées, par évaporation de solvant ou changement de température, s'avèrent le plus souvent mal adaptées à une mise en oeuvre à l'échelle industrielle pour la préparation de cristaux de dimensions importantes.The aforementioned crystallization methods, by solvent evaporation or temperature change, are most often poorly adapted to an implementation on an industrial scale for the preparation of large size crystals.
A ce sujet, il est tout d'abord à noter que les méthode de cristallogenèse en solution actuellement connues ne permettent pas un contrôle des conditions thermodynamiques et cinétiques de la formation du cristal :In this regard, it should first be noted that the currently known solution crystallogenesis methods do not allow a control of the thermodynamic and kinetic conditions of crystal formation:
- dans le cas d'une croissance cristalline par évaporation de solvant, les conditions de cristallisation (volume du milieu réactionnel, concentration) évoluent sans cesse au cours de la réaction. En particulier la concentration d'impuretés en solution tend à augmenter au cours de la croissance, ce qui induit une augmentation au cours du temps de ('incorporation de ces impuretés dans les cristaux en formation. En outre, le processus d'évaporation lui-même est souvent difficile à contrôler. De ce fait, en pratique, les techniques de croissance cristalline par évaporation de solvant sont uniquement utilisées à l'échelle du laboratoire, et elles n'ont en fait pas trouvé d'application à un niveau industriel.in the case of crystalline growth by evaporation of the solvent, the conditions of crystallization (volume of the reaction medium, concentration) change constantly during the reaction. In particular, the concentration of impurities in solution tends to increase during growth, which induces an increase over time in the incorporation of these impurities into the crystals in formation. The same is often difficult to control, so in practice, crystal growth techniques by solvent evaporation are only used at the laboratory scale, and they have not actually found application at an industrial level.
- de façon similaire, dans les méthodes mettant en œuvre un changement de température, cette modification de la température induit, là encore, une modification des conditions thermodynamiques et cinétiques au cours de la cristallogenèse, et le maintien de la sursaturation au long de la croissance est difficile à maîtriser et reste en fait empirique.similarly, in the methods implementing a temperature change, this modification of the temperature induces, again, a modification of the thermodynamic and kinetic conditions during the crystallogenesis, and maintenance of supersaturation throughout growth is difficult to control and remains in fact empirical.
L'évolution des conditions de la cristallogenèse obtenue dans le cadre des techniques actuelles de croissance cristalline en solution a un impact direct sur la qualité de cristaux produits.The evolution of the conditions of crystallogenesis obtained in the context of current crystalline growth techniques in solution has a direct impact on the quality of crystals produced.
Cette évolution des conditions de la croissance cristalline s'avère particulièrement problématique lorsqu'on souhaite faire croître des cristaux qui ne sont pas à base de composés définis, mais à base de compositions intermédiaires, telles que, par exemple, des solutions solides ou des composés dopés (notamment des compositions intermédiaires de solutions solides de substitution où plusieurs type d'atomes de nature chimique différentes occupent un même site de la structure cristalline et/ou des composés dopés par des éléments interstitiels, comme par exemple des cristaux dopés par des ions d'insertion). En effet, dans ce cas de figure, l'évolution des conditions thermodynamiques et cinétiques s'accompagne le plus souvent de modifications sensibles des mécanismes de formation du cristal. Ces modifications peuvent notamment engendrer une variation du taux d'incorporation des espèces substituantes et/ou interstitielles et donc conduire à des inhomogénéités de la composition du cristal formé. Ces instabilités peuvent également conduire à la formation de défauts dans la structure cristalline (fautes d'empilement, dislocations, ...) et dans les cas extrêmes à l'insertion de solvant dans le cristal. Plus généralement, ces différents phénomènes sont susceptibles de conduire à une dégradation de la qualité cristalline. Typiquement, l'évolution graduelle du taux d'incorporation d'éléments substitutionnels et/ou dopants et/ou d'impuretés peut notamment induire une évolution des paramètres de maille cristalline au fur et à mesure de la croissance, ce qui conduit le plus souvent à des tensions au sein du cristal, source de nombreux défauts cristallins tels que des dislocations, voire des fractures plus macroscopiques. Ces phénomènes sont d'autant plus sensibles que la taille du cristal formé est importante. Un autre problème plus général rencontré avec les méthodes de croissance cristallines en solution actuellement connues est que celles-ci conduisent généralement à des vitesses de croissance cristalline limitées, nettement plus faibles que celles obtenues selon les techniques utilisant les bains fondus. En fait, dans les techniques de cristallogenèse en solution, la vitesse de croissance cristalline est directement proportionnelle à la sursaturation relative de la solution dans laquelle la cristallisation est effectuée.This evolution of the crystalline growth conditions proves particularly problematic when it is desired to grow crystals which are not based on defined compounds, but based on intermediate compositions, such as, for example, solid solutions or compounds. doped (in particular intermediate compositions of solid solutions of substitution where several types of atoms of different chemical nature occupy a same site of the crystalline structure and / or compounds doped with interstitial elements, for example crystals doped with ions of d 'insertion). Indeed, in this case, the evolution of thermodynamic and kinetic conditions is usually accompanied by significant changes in crystal formation mechanisms. These modifications may in particular cause a variation in the rate of incorporation of the substitutive and / or interstitial species and thus lead to inhomogeneities in the composition of the crystal formed. These instabilities can also lead to the formation of defects in the crystalline structure (stacking faults, dislocations, etc.) and in extreme cases to the insertion of solvent into the crystal. More generally, these different phenomena are likely to lead to a degradation of the crystalline quality. Typically, the gradual evolution of the rate of incorporation of substitutive and / or doping elements and / or impurities can in particular induce an evolution of the crystal lattice parameters as the growth progresses, which leads most often to to tensions within the crystal, source of many crystalline defects such as dislocations or even more macroscopic fractures. These phenomena are all the more sensitive as the size of the formed crystal is important. Another more general problem with presently known crystalline solution growth methods is that they generally lead to limited crystalline growth rates, which are significantly lower than those obtained using techniques using molten baths. In fact, in crystallogenesis techniques in solution, the crystal growth rate is directly proportional to the relative supersaturation of the solution in which the crystallization is carried out.
Or, dans la plupart des cas, notamment pour éviter la nucléation spontanée de cristallites, les croissances en solution usuelles sont typiquement réalisées avec des taux de sursaturation s faibles, typiquement autour de 1 à 5%, ce qui correspond à des vitesses de croissance cristalline en solution qui sont de l'ordre de quelques millimètres par jour. Avec ce type de vitesse de croissance cristalline réduite, la préparation de monocristaux de dimensions centimétriques peut prendre plusieurs semaines, voire plusieurs mois. Le temps de préparation est même de l'ordre d'un an ou plus pour certains composés.However, in most cases, in particular to avoid the spontaneous nucleation of crystallites, the usual solution growths are typically carried out with low levels of supersaturation, typically around 1 to 5%, which corresponds to crystalline growth rates. in solution which are of the order of a few millimeters a day. With this type of reduced crystalline growth rate, the preparation of centimeter-size single crystals can take several weeks, or even several months. The preparation time is even of the order of one year or more for certain compounds.
Pour essayer de contrer cette difficulté, il a été développé une technique de croissance cristalline par abaissement de la température dans lesquelles on a proposé de filtrer et de traiter thermiquement la solution afin d'éviter la nucléation spontanée, ce qui autorise une augmentation de la vitesse de diminution de la température dans le but d'augmenter la sursaturation, et par conséquent la vitesse de croissance du cristal. Dans ce cadre, il a en particulier été décrit des procédés de préparation de cristaux géants de diphosphate de potassium KH2PO4 (ou KDP), où on a cherché à augmenter l'état de sursaturation jusqu'à des valeurs de l'ordre de 30 % dans le but d'élever les vitesses de croissance jusqu'à 3 à 4 cm/jour. De telles méthodes s'avèrent certes efficace avec des cristaux de taille relativement faible (de l'ordre de quelques centimètres), mais la vitesse de croissance reste limitée, en pratique, lors de la formation de cristaux de dimensions plus importantes (par exemple de l'ordre d'une dizaine de centimètre ou plus). En effet, les vitesses d'abaissement de température nécessaires à l'obtention de vitesses de croissance cristalline importantes induisent un gradient thermique entre le cœur des macrocristaux en formation et le pourtour du cristal en contact avec la solution plus froide. Ce gradient engendre au sein du cristal des contraintes qui induisent le plus souvent des phénomènes de fracture lorsqu'on emploie des vitesses de croissance trop élevées. Ainsi, bien que des sursaturations de 30% et des vitesses de croissance de 3 cm/jour aient été obtenues, la croissance de monocristaux de grande taille avec ce système basé sur l'abaissement de température ne peu se faire qu'à des vitesses de 1 cm/jour au plus.To try to counter this difficulty, it has been developed a technique of crystal growth by lowering the temperature in which it has been proposed to filter and heat treat the solution to avoid spontaneous nucleation, which allows an increase in speed. of decreasing the temperature in order to increase the supersaturation, and consequently the growth rate of the crystal. In this context, it has been described in particular processes for the preparation of giant crystals of potassium diphosphate KH 2 PO 4 (or KDP), where it has been sought to increase the state of supersaturation up to values of the order 30% in order to increase growth rates to 3 to 4 cm / day. Such methods are certainly effective with crystals of relatively small size (of the order of a few centimeters), but the rate of growth remains limited, in practice, during the formation of crystals of larger dimensions (for example the order of ten centimeters or more). In fact, the rates of temperature decrease required to obtain significant crystalline growth rates induce a thermal gradient between the core of the macrocrystals in formation and the periphery of the crystal in contact with the colder solution. This gradient generates within the crystal constraints that most often induce fracture phenomena when too high growth rates are used. Thus, although supersaturations of 30% and growth rates of 3 cm / day have been obtained, the growth of large single crystals with this system based on the lowering of temperature can be done only at 1 cm / day at most.
Un but de la présente invention est de fournir un procédé de cristallogenèse mettant en œuvre une croissance cristalline en solution qui soit adapté à une mise en œuvre au niveau industriel en évitant notamment les inconvénients précités des méthodes de cristallisation en solution actuellement connues.An object of the present invention is to provide a crystallogenesis process implementing crystalline growth in solution which is suitable for implementation at the industrial level, in particular avoiding the aforementioned drawbacks of currently known solution crystallization methods.
A cet effet, selon un premier aspect, la présente invention a pour objet un procédé de préparation d'un cristal à base d'un composé (C), par croissance cristalline en solution, à partir d'une solution (S) sursaturée en ledit composé (C), dans lequel : - ladite croissance cristalline est effectuée dans une chambre de cristallisation maintenue à une température de cristallisation T0 constante ;For this purpose, according to a first aspect, the subject of the present invention is a process for preparing a crystal based on a compound (C), by crystalline growth in solution, from a solution (S) supersaturated with said compound (C), wherein: - said crystal growth is carried out in a crystallization chamber maintained at a constant crystallization temperature T 0 ;
- ladite chambre de cristallisation est en communication fluide avec une chambre de saturation, qui comprend un excès de composé (C) à l'état d'un corps nourricier solide et est portée à une température de saturation T5 constante, différente de T0, cette température T3 étant choisie de sorte que la solubilité du composé (C) dans la solution (S) à la température T5 soit supérieure à la solubilité du composé (C) dans la solution (S) à la température Tc ; et- said crystallization chamber is in fluid communication with a saturation chamber, which comprises an excess of compound (C) to the state of a solid feeder body and is brought to a saturation temperature T 5 constant, different from T 0 this temperature T 3 being chosen so that the solubility of the compound (C) in the solution (S) at the temperature T 5 is greater than the solubility of the compound (C) in the solution (S) at the temperature Tc; and
- on établit une circulation continue de la solution (S), de préférence à débit sensiblement constant, entre les chambres de cristallisation et de saturation, ce par quoi on maintient un taux de sursaturation constant au sein de la chambre de cristallisation ; eta continuous circulation of the solution (S), preferably at a substantially constant rate, is established between the crystallization and saturation chambers, whereby a constant supersaturation level is maintained within the crystallization chamber; and
- la solution (S) en circulation entre les chambres de cristallisation et de saturation est soumise à un traitement d'élimination des agrégats susceptibles de s'y former et d'inhibition de la formation de tels agrégats, pour éviter ou inhiber les phénomènes de nucléation de cristallites parasites.the solution (S) in circulation between the crystallization and saturation chambers is subjected to an elimination treatment of the aggregates likely to form and inhibit the formation of such aggregates, to avoid or inhibit parasitic crystallization nucleation phenomena.
Selon une première variante du procédé, le composé (C) employé est un composé ayant une solubilité dans la solution (S) qui augmente avec la température. Dans ce cas de figure, la température Ts maintenue constante dans la chambre de saturation est supérieure à la température Tc maintenue constante dans la chambre de cristallisation.According to a first variant of the process, the compound (C) used is a compound having a solubility in solution (S) which increases with temperature. In this case, the temperature Ts kept constant in the saturation chamber is higher than the temperature Tc kept constant in the crystallization chamber.
Selon une variante plus particulière, le composé (C) est, à l'inverse, un composé à solubilité rétrograde, à savoir ayant une solubilité dans la solution (S) qui diminue avec la température. Selon cette deuxième variante, la températureAccording to a more particular variant, the compound (C) is, conversely, a compound with retrograde solubility, namely having a solubility in the solution (S) which decreases with temperature. According to this second variant, the temperature
Ts maintenue constante dans la chambre de saturation est inférieure à la température Tc maintenue constante dans la chambre de cristallisation.Ts kept constant in the saturation chamber is lower than the temperature Tc kept constant in the crystallization chamber.
Dans le procédé de l'invention, la température de cristallisation Tc de la chambre de cristallisation et la température de saturation T3 de la chambre de saturation sont toutes deux maintenues constantes au cours du processus de cristallogenèse. Au sens de la présente description, l'expression "température constante" entend désigner une température qui varie le moins possible de part et d'autre d'une valeur de référence T0, cette température variant généralement au plus de +/- 0,1 °C, plus préférentiellement au plus de +/- 0,05°C au cours du temps, c'est-à-dire que cette température reste de préférence dans la plage de (T0 - 0,10C) à (T0 + 0,10C), plus préférentiellement encore de (T0 - 0,050C) à (T0 + 0,050C), plus avantageusement de (T0 - 0,010C) à (T0 + 0,010C), la variation acceptable de la température étant fonction de la nature du composé employé, du solvant et également de la température T0. Il est tout particulièrement important de maintenir constante la température de cristallisation Tc, dont la valeur est avantageusement fixée à +/- 0,050C près, de préférence à +/- 0,010C près, et plus préférentiellement encore à +/- 0,0050C près. La régulation de la température de sursaturation Ts peut être un peu moins fine, mais reste le plus souvent régulée à +/- 0,10C près, de préférence à +/- 0,050C près, plus avantageusement à +/- 0,010C près. Dans le procédé de l'invention, Ie maintien spécifique de la température de cristallisation Tc et de la température de saturation Ts a des valeurs constantes, associé à la circulation continue de la solution (S) entre les chambres de cristallisation et de saturation, induit des conditions très particulières de cristallogenèse. En particulier, contrairement aux cristallogenèses en solution actuellement proposées, le procédé de l'invention met spécifiquement en oeuvre une croissance cristalline dans des conditions thermodynamiques stationnaires.In the process of the invention, the crystallization temperature T c of the crystallization chamber and the saturation temperature T 3 of the saturation chamber are both kept constant during the crystallogenesis process. For the purposes of the present description, the term "constant temperature" means a temperature which varies as little as possible on either side of a reference value T 0 , this temperature generally varying at most by +/- 0, 1 ° C, more preferably at most +/- 0.05 ° C over time, that is to say that this temperature preferably remains in the range of (T 0 - 0.1 0 C) to (T 0 + 0.1 0 C), more preferably still (T 0 - 0.05 0 C) at (T 0 + 0.05 0 C), more preferably (T 0 - 0.01 0 C) at (T 0 + 0.01 0 C), the acceptable variation of the temperature being a function of the nature of the compound employed, the solvent and also the temperature T 0 . It is particularly important to maintain constant the crystallization temperature T c , the value of which is advantageously set at +/- 0.05 ° C., preferably at +/- 0.01 ° C., and more preferably at +/- 0.01 ° C. +/- 0.005 0 C near. The regulation of the supersaturation temperature T s may be a little less fine, but remains most often regulated to within +/- 0.1 ° C, preferably to +/- 0.05 0 C, more preferably + / - 0,01 0 C near. In the process of the invention, the specific maintenance of the crystallization temperature T c and of the saturation temperature T s has constant values, associated with the continuous circulation of the solution (S) between the crystallization and saturation chambers. , induces very particular conditions of crystallogenesis. In particular, unlike the crystallogenesis in solution currently proposed, the method of the invention specifically implements crystalline growth under stationary thermodynamic conditions.
Plus précisément, du fait du maintien de la température de saturation Ts à une valeur constante et de la circulation continue de la solution (S) entre les chambres de cristallisation et de saturation, la concentration en composé dans la chambre de saturation (C) reste constante, à savoir égale à la solubilité du composé (C) à la température T3. Pour optimiser cet effet de maintien de la concentration, un débit minimal de circulation de la solution (S) entre les chambres de cristallisation doit généralement être appliqué. Il est des compétences du spécialiste du domaine d'adapter le débit de circulation de la solution (S) à cet effet, au cas par cas.More precisely, because of maintaining the saturation temperature T s at a constant value and the continuous circulation of the solution (S) between the crystallization and saturation chambers, the concentration of compound in the saturation chamber (C) remains constant, namely equal to the solubility of the compound (C) at the temperature T 3 . To optimize this effect of maintaining the concentration, a minimum flow rate of the solution (S) between the crystallization chambers must generally be applied. It is the competence of the specialist in the field to adapt the flow rate of the solution (S) for this purpose, on a case by case basis.
Compte tenu de l'effet de stabilisation de la concentration obtenue selon le procédé de l'invention, la solution (S) qui sort de la chambre de saturation et qui est ensuite injectée dans la chambre de cristallisation a en permanence une concentration constante, égale à la solubilité du composé (C) à la température T8.Given the effect of stabilizing the concentration obtained according to the process of the invention, the solution (S) which leaves the saturation chamber and which is then injected into the crystallization chamber has a constant constant constant concentration the solubility of the compound (C) at the temperature T 8 .
Dès lors, étant donné que, dans la chambre de cristallisation, la température de cristallisation T0 est maintenue à une température où le composé (C) a une solubilité inférieure à sa solubilité à la température de saturation T5, la solution (S) se trouve injectée dans la chambre de cristallisation avec une concentration en composé (C) supérieure à la solubilité du composé (C) à la température T8 , c'est- à-dire que cette solution est en permanence en état de sursaturation au sein de la chambre de cristallisation. Ainsi dans le procédé de l'invention, on maintient en permanence un état de sursaturation au sein de la chambre de cristallisation). Dans la mesure où la température de cristallisation T0 est maintenue sensiblement constante dans la chambre de cristallisation, la sursaturation relative de la solution (S) est parfaitement définie et reste constante au cours de la cristallisation. Ainsi, le procédé mis au point par les inventeurs permet, selon une technique très simple, d'obtenir une sursaturation relative constante dans un procédé de cristallisation en solution.Therefore, since, in the crystallization chamber, the crystallization temperature T 0 is maintained at a temperature where the compound (C) has a solubility lower than its solubility at the saturation temperature T 5, the solution (S) is injected into the crystallization chamber with a concentration of compound (C) greater than the solubility of the compound (C) at the temperature T 8 , that is to say that this solution is constantly in a state of supersaturation within of the crystallization chamber. Thus, in the process of the invention, a state of supersaturation is continuously maintained within the crystallization chamber). Insofar as the crystallization temperature T 0 is kept substantially constant in the crystallization chamber, the relative supersaturation of the solution (S) is perfectly defined and remains constant during the crystallization. Thus, the process developed by the inventors makes it possible, according to a very simple technique, to obtain a constant relative supersaturation in a crystallization process in solution.
De façon plus générale, selon le procédé de l'invention, toutes les conditions de cristallogenèse sont maintenues sensiblement constantes au long de la croissance cristalline. Le procédé de l'invention permet en particulier de maintenir à la fois des conditions de température, de concentration et de sursaturation constantes.More generally, according to the method of the invention, all crystallogenesis conditions are maintained substantially constant throughout the crystal growth. The process of the invention makes it possible in particular to maintain both constant temperature, concentration and supersaturation conditions.
Pour stabiliser encore davantage les conditions de croissance cristalline, on préfère que la circulation continue de la solution (s) entre les chambres de cristallisation et de saturation s'effectue à un débit sensiblement constant. Cette circulation continue est généralement effectuée de façon circulaire, la solution (S) partant de la chambre de saturation, à l'état saturée en composé (C), vers la chambre de cristallisation selon un premier canal, puis repartant de la chambre de cristallisation vers la chambre de saturation pour se "recharger" en composé (C) selon un second canal.To further stabilize the crystal growth conditions, it is preferred that the continuous circulation of the solution (s) between the crystallization and saturation chambers takes place at a substantially constant rate. This continuous circulation is generally carried out in a circular manner, the solution (S) starting from the saturation chamber, in the saturated state of compound (C), towards the crystallization chamber along a first channel, then leaving the crystallization chamber to the saturation chamber to "recharge" in compound (C) along a second channel.
Les conditions thermodynamiques stationnaires de croissance cristalline obtenues dans le cadre du procédé de l'invention permettent en particulier d'éviter les incidents de croissance observés avec les procédés de croissance cristalline en solution actuellement connus qui mettent en oeuvre des conditions thermodynamiques non stationnaires.The stationary thermodynamic conditions of crystalline growth obtained in the context of the process of the invention make it possible in particular to avoid the growth incidents observed with currently known crystalline solution growth processes which implement non-stationary thermodynamic conditions.
Par rapport aux conditions non stationnaires des procédés actuellement connus, les conditions de mise en œuvre du procédé de l'invention présentent de nombreux autres avantages. Le travail dans des conditions stationnaires selon l'invention permet notamment de stabiliser les conditions de croissance cristalline, ce qui conduit à un amélioration significative de la qualité cristalline et à l'obtention de cristaux de composition contrôlée, ce qui s'avère particulièrement avantageux dans le cas de cristaux de composition intermédiaire, notamment de solutions solides ou de cristaux contenant un ou plusieurs élément(s) dopant(s), le procédé permettant alors l'obtention de cristaux de composition homogène. Le procédé de l'invention permet de réguler et de définir très simplement la valeur de la sursaturation relative de la solution (S) dans la chambre de cristallisation, et, partant, la vitesse de cristallisation. Selon l'invention, cette régulation s'opère simplement en jouant sur les valeurs des températures Tc et Ts, la sursaturation augmentant avec la différence de solubilité du composé (C) aux températures Ts et Tc. La technique mise au point par les inventeurs se révèle en particulier beaucoup plus aisée à mettre en oeuvre que les techniques où la sursaturation est induite par abaissement de la température, où la vitesse d'abaissement doit être continuellement ajustée. Dans le procédé de l'invention, au contraire, pour induire la sursaturation requise, il suffit de maintenir constantes et distinctes les températures Ts et T0 dans les chambres de saturation et de cristallisation (avec TS>TC pour les composés dont la solubilité augmente avec la température et Ts<Tc dans le cas de composés à solubilité rétrograde), ce qui est réalisable très aisément et à faibles coût, notamment en utilisant des bains thermostatiques.Compared with the non-stationary conditions of currently known methods, the conditions for implementing the method of the invention have many other advantages. Work under stationary conditions according to the invention makes it possible in particular to stabilize the crystalline growth conditions, which leads to a significant improvement in the crystalline quality and to the production of crystals of controlled composition, which proves particularly advantageous in the case of intermediate composition crystals, in particular solid solutions or crystals containing one or more doping element (s), the process then making it possible to obtain crystals of homogeneous composition. The process of the invention makes it possible to regulate and very simply define the value of the relative supersaturation of the solution (S) in the crystallization chamber, and hence the rate of crystallization. According to the invention, this regulation operates simply by varying the values of the temperatures Tc and Ts, the supersaturation increasing with the difference in solubility of the compound (C) at the temperatures Ts and Tc. The technique developed by the inventors proves in particular to be much easier to implement than the techniques where the supersaturation is induced by lowering the temperature, where the lowering speed must be continuously adjusted. In the process of the invention, on the contrary, in order to induce the required supersaturation, it suffices to keep the temperatures T s and T 0 constant and distinct in the saturation and crystallization chambers (with T S > T C for the compounds of which the solubility increases with the temperature and T s <T c in the case of compounds with retrograde solubility), which is feasible very easily and at low cost, in particular by using thermostatic baths.
En outre, du fait de la mise en œuvre spécifique de conditions de croissance stabilisées, le procédé de l'invention n'est pas limité quant au taux de sursaturation employé. En particulier, il permet de travailler avec des taux de sursaturation élevés induisant une vitesse de croissance cristalline très importante, sans induire le gradient thermique entre le cœur et l'extérieur du cristal obtenu lorsqu'on met en œuvre des techniques de croissance en solution par diminution rapide de la température. Au contraire, dans le procédé de l'invention, quelle que soit la vitesse de croissance du cristal, celui-ci reste parfaitement thermostaté à la température Tc au sein de la chambre de cristallisation, du début à la fin de sa croissance.In addition, due to the specific implementation of stabilized growth conditions, the method of the invention is not limited as to the degree of supersaturation employed. In particular, it makes it possible to work with high levels of supersaturation inducing a very high crystalline growth rate, without inducing the thermal gradient between the core and the outside of the crystal obtained when implementing solution growth techniques by rapid decrease in temperature. In contrast, in the process of the invention, whatever the growth rate of the crystal, it remains perfectly thermostated at the temperature T c within the crystallization chamber, from the beginning to the end of its growth.
De plus, dans le procédé de l'invention, la solution sursaturée (S) mise en œuvre est spécifiquement soumise à un traitement permettant d'éliminer les agrégats susceptibles de s'y former et/ou d'inhiber la formation de tels agrégats pour éviter ou inhiber les phénomènes de nucléation de cristallites parasites. La nucléation potentielle de cristallites parasites est un problème auquel on se heurte systématiquement dans tout procédé de cristallisation en solution. Cet inconvénient est lié à la mise en œuvre de solutions sursaturées, métastables, où se forment systématiquement des agrégats à partir des espèces en solution. Tant que ces agrégats ont une taille suffisamment faible (dite "subcritique"), ils ne sont pas stables thermodynamiquement et ne conduisent donc pas à la formation de cristallites. En revanche, des cristallites parasites se forment lorsque les agrégats atteignent ou dépassent un rayon critique r*. Ce rayon critique r* est d'autant plus faible que la sursaturation est élevée dans le milieu, c'est-à-dire qu'on s'éloigne des conditions d'équilibre du système.In addition, in the method of the invention, the supersaturated solution (S) used is specifically subjected to a treatment making it possible to eliminate the aggregates that may form therefrom and / or to inhibit the formation of such aggregates for avoid or inhibit parasitic crystallization nucleation phenomena. The potential nucleation of parasitic crystallites is a problem that is systematically encountered in any solution crystallization process. This disadvantage is related to the implementation of supersaturated, metastable solutions, where Aggregates are systematically formed from the species in solution. As long as these aggregates have a sufficiently small size (called "subcritical"), they are not stable thermodynamically and therefore do not lead to the formation of crystallites. On the other hand, parasitic crystallites form when the aggregates reach or exceed a critical radius r * . This critical radius r * is all the weaker as the supersaturation is high in the medium, that is to say one moves away from the equilibrium conditions of the system.
Ce phénomène est particulièrement marqué dans les procédés de cristallisation en solution connus jusqu'à présent, notamment dans les procédés par abaissement de la température, dans la mesure où ils impliquent de travailler loin des conditions d'équilibre thermodynamique. Dans ce cadre, pour éviter ce phénomène de nucléation parasite, il est connu de traiter et filtrer en continu la solution de croissance afin d'y dissocier les agrégats en formation et d'inhiber leur développement sous forme de cristallites. Il a par exemple été proposé de dissocier les agrégats en en faisant circuler en continu la solution de croissance dans une cellule de traitement où la solution est filtrée de façon très poussée (typiquement par des membranes de porosité de 20 nm) et soumise à une surchauffe.This phenomenon is particularly marked in solution crystallization processes known hitherto, especially in temperature-lowering processes, insofar as they involve working away from thermodynamic equilibrium conditions. In this context, in order to avoid this phenomenon of parasitic nucleation, it is known to continuously treat and filter the growth solution in order to dissociate the aggregates in formation and to inhibit their development in the form of crystallites. For example, it has been proposed to dissociate the aggregates by continuously circulating the growth solution in a treatment cell where the solution is filtered very thoroughly (typically by membranes of porosity of 20 nm) and subjected to overheating. .
Dans le procédé de l'invention, notamment compte tenu des conditions stationnaires établies, il s'avère particulièrement aisé d'appliquer ce type de traitement anti-nucléation de la solution (S) pour inhiber la formation d'agrégats subcritiques et/ou dissocier les agrégats formés.In the process of the invention, especially in view of the established stationary conditions, it is particularly easy to apply this type of anti-nucleation treatment of the solution (S) to inhibit the formation of subcritical aggregates and / or dissociate the aggregates formed.
Dans ce cadre, tout type de traitement permettant d'éliminer ou de dissocier les agrégats subcritiques dans la solution sursaturée (S) en circulation peut être envisagé dans le cadre de l'invention. Avantageusement, ce traitement comprend, entre autres moyens possibles, la soumission de la solution (S) à des ultrasons entre la chambre de cristallisation et la chambre de saturation. Conjointement à ce traitement par ultrasons, on peut avantageusement mettre en œuvre, un traitement thermique de la solution entre la chambre de cristallisation et la chambre de saturation, à savoir :In this context, any type of treatment for removing or dissociating the subcritical aggregates in the supersaturated solution (S) in circulation may be considered within the scope of the invention. Advantageously, this treatment comprises, among other possible means, the submission of the solution (S) to ultrasound between the crystallization chamber and the saturation chamber. In conjunction with this ultrasonic treatment, it is advantageous to implement a heat treatment of the solution between the crystallization chamber and the saturation chamber, namely:
- dans le cas de l'utilisation d'un composé (C) ayant une solubilité augmentant avec la température : un chauffage de la solution (S) entre la chambre de cristallisation et la chambre de saturation, avantageusement à une température d'au moins 10cC supérieure à celle de la température de saturation T3 à laquelle est portée la chambre de cristallisation ;in the case of the use of a compound (C) having a solubility increasing with temperature: a heating of the solution (S) between crystallization chamber and the saturation chamber, advantageously at a temperature of at least 10 c C higher than that of the saturation temperature T 3 to which is carried the crystallization chamber;
- dans le cas de l'utilisation d'un composé (C) ayant une solubilité rétrograde diminuant avec la température : un refroidissement de la solution (S) entre la chambre de cristallisation et la chambre de saturation, avantageusement à une température d'au moins 1O0C inférieure à celle de la température de saturation T5 .in the case of the use of a compound (C) having a retrograde solubility decreasing with temperature: a cooling of the solution (S) between the crystallization chamber and the saturation chamber, advantageously at a temperature of at least 10 ° C. lower than that of the saturation temperature T 5 .
On peut en outre éventuellement soumettre la solution (S) à une filtration entre la chambre de cristallisation et la chambre de saturation, de façon à retenir les éventuels agrégats en formation, ce qui n'est toutefois pas systématiquement requis.Optionally, the solution (S) may optionally be subjected to filtration between the crystallization chamber and the saturation chamber, so as to retain any aggregates in formation, which is however not always required.
Compte tenu de ces différents éléments, le procédé de l'invention constitue une alternative très intéressante aux procédés actuellement connus, dans la mesure où il permet la préparation de monocristaux de dimensions très importantes avec des vitesses très élevées en inhibant les risques d'incidents de croissance, et en permettant plus généralement d'accéder à des propriétés optimisées de cristallisation.Given these different elements, the method of the invention is a very interesting alternative to the currently known processes, insofar as it allows the preparation of very large single crystals with very high speeds by inhibiting the risk of incidents of growth, and more generally allowing access to optimized crystallization properties.
Dans ce cadre, de façon tout à fait surprenante, le procédé proposé par les inventeurs, bien que très simple à mettre en œuvre en pratique, permet à la fois d'optimiser les propriétés cristallines obtenues et la vitesse de croissance cristalline. Un des atouts appréciable du procédé de l'invention et qu'il permet d'augmenter la vitesse de production tout en abaissant conjointement les risques d'incident de croissance. En outre, les vitesses de croissance cristallines qu'on peut obtenir selon le procédé de l'invention sont généralement comparables à celles enregistrées avec les techniques des bains fondus, à savoir de l'ordre d'au moins plusieurs centimètres par jour.In this context, quite surprisingly, the method proposed by the inventors, although very simple to implement in practice, both to optimize the crystalline properties obtained and the crystal growth rate. One of the appreciable assets of the method of the invention and it allows to increase the speed of production while jointly lowering the risk of growth incident. In addition, the crystal growth rates that can be obtained according to the method of the invention are generally comparable to those recorded with the techniques of molten baths, namely of the order of at least several centimeters per day.
Un autre avantage du procédé de l'invention par rapport aux techniques de cristallogenèse en solution actuellement connues est qu'il autorise la croissance cristalline de composés présentant de très faibles solubilités ou de très faibles évolutions de solubilité avec la température. Le procédé de l'invention se révèle plus généralement adapté à la croissance cristalline de très nombreux composés chimiques. En fait, en pratique, tout composé peut être mis en œuvre à titre de composé (C) dans le procédé de l'invention, sous réserve qu'il soit solubilisable dans un solvant. Dans tous les cas, le procédé de l'invention est propre à la préparation de monocristaux sensiblement exempts de défauts, pouvant présenter des dimensions élevées, par exemple de l'ordre de la dizaine de centimètre ou plus. L'invention permet ainsi d'accéder à de nouveaux monocristaux de qualité au moins similaire à celle des monocristaux obtenus selon la technique des bains fondus, mais avec des composés (C) qui ne peuvent pas être cristallisés selon cette technique. En particulier, l'invention permet d'accéder avec des vitesses de croissance rapide à des monocristaux de taille importante, sensiblement exempts de défauts et à base de composés (C) ne possédant pas de point de fusion congruente ou de composés (C) ceux présentant une transition de phase entre l'état fondu et l'état solide.Another advantage of the process of the invention with respect to currently known solution crystallization techniques is that it allows the crystalline growth of compounds having very low solubilities or very slight evolutions of solubility with temperature. The process of the invention is more generally adapted to the crystal growth of a large number of chemical compounds. In fact, in practice, any compound can be used as compound (C) in the process of the invention, provided that it is solubilizable in a solvent. In all cases, the method of the invention is suitable for the preparation of single crystals substantially free of defects, which may have high dimensions, for example of the order of ten centimeters or more. The invention thus makes it possible to access new single crystals of quality at least similar to that of single crystals obtained by the technique of molten baths, but with compounds (C) which can not be crystallized according to this technique. In particular, the invention provides access with fast growth rates to large single crystals, substantially free of defects and based on compounds (C) having no congruent melting point or compounds (C) having a phase transition between the molten state and the solid state.
Quelle que soit la nature du composé (C) mis en œuvre, le procédé de l'invention présente de préférence une ou plusieurs des caractéristiques additionnelles décrites ci-après.Whatever the nature of the compound (C) used, the process of the invention preferably has one or more of the additional characteristics described below.
Dans le procédé de l'invention, le taux de sursaturation maintenu dans la chambre de cristallisation est avantageusement le plus élevé possible, ce qui permet d'augmenter d'autant plus la vitesse de croissance cristalline. Ce taux de sursaturation peut être modulé très simplement en jouant sur les températures de saturation et de cristallisation Ts et Tc, et en particulier en jouant sur la différence ΔT entre ces deux températures. La valeur exacte du taux de sursaturation dans la chambre de cristallisation peut varier en une très large mesure en fonction de la nature du composé (C), mais il est à noter que les taux de sursaturation qu'on peut atteindre selon l'invention sont plus élevés que celles qu'on peut mettre dans les procédés actuels de croissance en solution. Typiquement, selon le procédé de l'invention, le taux de sursaturation peut être aisément modulé et maintenu constant à une valeur allant en général de 1 % à 30%, par exemple entre 1 et 25%, ce taux de sursaturation pouvant notamment atteindre des valeurs supérieures à 10%, par exemple d'au moins 15%, voire d'au moins 20%, qui sont bien supérieures aux taux de sursaturation envisageables avec les procédés de croissance en solution actuels.In the process of the invention, the supersaturation level maintained in the crystallization chamber is advantageously the highest possible, which makes it possible to increase the crystal growth rate all the more. This degree of supersaturation can be modulated very simply by varying the saturation and crystallization temperatures Ts and Tc, and in particular by varying the difference ΔT between these two temperatures. The exact value of the degree of supersaturation in the crystallization chamber can vary to a very large extent depending on the nature of the compound (C), but it should be noted that the supersaturation levels that can be achieved according to the invention are higher than those that can be used in current growth processes in solution. Typically, according to the process of the invention, the degree of supersaturation can be easily modulated and kept constant at a value ranging generally from 1% to 30%, for example between 1 and 25%, this level of supersaturation which may especially reach values greater than 10%, for example at least 15%, or even at least 20%, which are much higher than the supersaturation rates that can be envisaged with current solution growth processes.
Selon un mode de réalisation très spécifique de l'invention, le procédé mis au point par les inventeurs peut notamment être mis en œuvre pour la préparation de monocristaux massiques de diphosphate de potassium, du type de ceux utilisés dans des applications optiques, notamment pour la constitution de dispositifs de type LASER. Dans ce cadre particulier, le composé (C) est le diphosphate de potassium KH2PO4 (KDP), de préférence sous forme au moins partiellement deutérée (DKDP). Le procédé de l'invention permet de réaliser aisément et rapidement des cristaux de qualité optique à base de ces composés.According to a very specific embodiment of the invention, the process developed by the inventors can in particular be used for the preparation of potassium biphosphate mass monocrystals of the type used in optical applications, in particular for constitution of LASER type devices. In this particular context, the compound (C) is potassium diphosphate KH 2 PO 4 (KDP), preferably in at least partially deuterated form (DKDP). The process of the invention makes it possible to easily and rapidly produce optical quality crystals based on these compounds.
Il est à souligner que bien qu'une partie de la description qui va suivre est faite spécifiquement en référence à la préparation de cristaux de KDP ou de DKDP, ce mode de réalisation n'est qu'un mode parmi d'autres et ne saurait être considéré comme limitatif de l'invention.It should be emphasized that although part of the following description is made specifically with reference to the preparation of KDP or DKDP crystals, this embodiment is only one mode among others and would not be considered as limiting of the invention.
Dans le cadre spécifique de la mise en œuvre de KDP ou de DKDP à titre de composé (C), la température Tc à laquelle est maintenue la chambre de cristallisation est avantageusement dans la gamme comprise entre 5 et 80 0C. Selon un mode de réalisation plus particulier, le procédé de cristallisation de KDP ou de DKDP selon l'invention peut être avantageusement conduit à basse température, avec une température Tc à laquelle est maintenue la chambre de cristallisation est inférieure à 4O0C, de préférence inférieure à 3O0C, par exemple entre 15 et 25°C. Par ailleurs, la température de cristallisation Tc varie avantageusement au plus de +/-0,10C, plus préférentiellement au plus de +/- 0,050C. Ainsi, typiquement, la température Tc au sein de la chambre de cristallisation peut être fixée à 20°C +/- 0,0050C.In the specific context of using KDP or DKDP as compound (C), the temperature T c at which the crystallization chamber is maintained is advantageously in the range between 5 and 80 ° C. In a more particular embodiment, the KDP or DKDP crystallization process according to the invention can advantageously be carried out at low temperature, with a temperature T c at which the crystallization chamber is maintained is less than 40 ° C., preferably less than 40 ° C. 30 ° C., for example between 15 and 25 ° C. Moreover, the crystallization temperature Tc advantageously varies by at most +/- 0.1 ° C., more preferably at most +/- 0.05 ° C. Thus, typically, the temperature T c within the chamber of crystallization can be set at 20 ° C +/- 0.005 0 C.
Par ailleurs, lorsque le composé (C) est le KDP ou le DKDP, la différence de température (Ts-Tc) entre la chambre de saturation et la chambre de cristallisation est de préférence de l'ordre de quelques degrés, cette différence de température pouvant varier en fonction de T0 et de la vitesse de croissance souhaitée.Moreover, when the compound (C) is KDP or DKDP, the temperature difference (T s -T c ) between the saturation chamber and the crystallization chamber is preferably of the order of a few degrees, this difference temperature can vary depending on T 0 and the desired growth rate.
Typiquement, cette différence de température est comprise entre 2 et 300C, cette différence étant avantageusement d'au moins 1 O0C, par exemple comprise entre 15 et 2O0C.Typically, this difference in temperature is between 2 and 30 ° C., this difference preferably being at least 1 O 0 C, for example between 15 and 2O 0 C.
Les monocristaux massiques de DKDP substantiellement exempt de défaut susceptibles d'être obtenus selon ce mode de réalisation spécifique de l'invention, présentant avantageusement au moins une dimension supérieure ou égale à 10 cm, constituent, selon un aspect particulier, un autre objet de la présente invention.The DKDP mass monocrystals substantially free of defects that can be obtained according to this specific embodiment of the invention, advantageously having at least one dimension greater than or equal to 10 cm, constitute, according to a particular aspect, another object of the invention. present invention.
Ces monocristaux de DKDP présentent de très bonnes qualités et sont notamment essentiellement exempt de défauts et présentent un rapport deutérium/hydrogène homogène au sein du matériau, ce qui en fait de très bon matériaux pour des applications optiques.These single crystals of DKDP have very good qualities and are in particular essentially free from defects and have a homogeneous deuterium / hydrogen ratio within the material, which makes them very good materials for optical applications.
Selon un aspect plus spécifique, la présente invention a également pour objet un dispositif pour la mise en oeuvre du procédé de l'invention. Ce dispositif comprend :According to a more specific aspect, the present invention also relates to a device for implementing the method of the invention. This device comprises:
- une chambre de cristallisation, adaptée à la croissance d'un cristal en solution, et munie d'une entrée et d'une sortie, ainsi que de moyens de régulation de température permettant de maintenir ladite chambre de cristallisation à une température de cristallisation Tc sensiblement constante, typiquement à des températures allant de -300C à +1500C ;a crystallization chamber, adapted to the growth of a crystal in solution, and provided with an inlet and an outlet, as well as temperature regulation means making it possible to maintain the said crystallization chamber at a crystallization temperature T c substantially constant, typically at temperatures ranging from -30 0 C to +150 0 C;
- une chambre de saturation, adaptée à la mise en contact d'une solution avec un excès de soluté solide, munie d'une entrée en communication fluidique avec la sortie de la chambre de cristallisation et d'une sortie en communication fluidique avec l'entrée de la chambre de cristallisation, ainsi que de moyens de régulation de température permettant de maintenir ladite chambre de saturation à une température de cristallisation T3 sensiblement constante et distincte de T0 ; eta saturation chamber, suitable for bringing a solution into contact with an excess of solid solute, provided with an inlet in fluid communication with the outlet of the crystallization chamber and an outlet in fluid communication with the entry of the crystallization chamber, as well as temperature control means for maintaining said saturation chamber at a crystallization temperature T 3 substantially constant and distinct from T 0 ; and
- des moyens permettant la circulation continue d'une solution entre les deux chambres, de la sortie de la chambre de saturation vers l'entrée de la chambre de cristallisation, et de la sortie de la chambre de cristallisation vers l'entrée de la chambre de saturation, ces moyens de circulation étant en outre munis de moyens d'élimination des agrégats susceptibles de se former dans la solution en circulation et d'inhibition de la formation de tels agrégats.means for the continuous circulation of a solution between the two chambers, from the exit of the saturation chamber to the entrance of the crystallization chamber, and from the exit of the crystallization chamber towards the entrance of the chamber of saturation, these means of circulation being in further provided means for removing aggregates likely to form in the circulating solution and for inhibiting the formation of such aggregates.
Selon un mode de réalisation avantageux, les moyens permettant la circulation continue de la solution entre les deux chambres sont munis de moyens de sonification, généralement associés à des moyens de traitement thermique de chauffage ou refroidissement de la solution, et éventuellement de moyens de filtration, en règle générale entre la sortie de la chambre de cristallisation et l'entrée de la chambre de saturation.According to an advantageous embodiment, the means allowing the continuous circulation of the solution between the two chambers are provided with sonification means, generally associated with heat treatment means for heating or cooling the solution, and possibly filtration means, as a rule between the exit of the crystallization chamber and the entrance of the saturation chamber.
L'invention sera encore davantage illustrée au moyen des Figures ci- annexées où :The invention will be further illustrated by means of the appended figures in which:
- la Figure 1 est une représentation schématique d'un dispositif possible pour la mise en œuvre du procédé de l'invention ;- Figure 1 is a schematic representation of a possible device for implementing the method of the invention;
- la Figure 2 représente un exemple concret de dispositif utilisable pour effectuer la cristallisation de l'invention.FIG. 2 represents a concrete example of a device that can be used to effect the crystallization of the invention.
Sur ces figures est représentée la croissance d'un cristal 1 à partir d'un composé (C) (qui peut par exemple, mais non nécessairement, être du DKDP) au sein d'une chambre de cristallisation 10 munie d'une entrée 11 et d'une sortie 12. La température T0 au sein de cette chambre 10 est maintenue constante par des moyens de régulation appropriés, tels que le bain thermostatique 15 représenté sur la Figure 2.In these figures is represented the growth of a crystal 1 from a compound (C) (which may for example, but not necessarily be DKDP) within a crystallization chamber 10 provided with an inlet 11 and an outlet 12. The temperature T 0 within this chamber 10 is kept constant by appropriate control means, such as the thermostatic bath 15 shown in FIG. 2.
La chambre de cristallisation est alimentée en continue par une solution (S) issue d'une chambre de saturation 20 munie d'une entrée 21 et d'une sortie 22. Cette chambre est également maintenue à une température constante (Ts) par des moyens de régulation appropriés, tels que le bain thermostatique 25 représenté sur la Figure 2. Dans le cas de la croissance de DKDP, la température T3 est inférieure à T0, par exemple d'au moins 100C. Dans le cas le plus général, T5 diffère de T0 de plusieurs degrés, voire de plusieurs dizaines de degrés. La chambre de saturation contient un excès de composé (C) à l'état d'un corps nourricier solide 28, ce qui permet de saturer la solution au niveau de ladite chambre de saturation (dans la chambre 20 la concentration en le composé (C) dans la solution (S) est égale à la concentration à saturation du composé (C) à la température T8).The crystallization chamber is fed continuously with a solution (S) resulting from a saturation chamber 20 provided with an inlet 21 and an outlet 22. This chamber is also maintained at a constant temperature (T s ) by suitable control means, such as the thermostatic bath 25 shown in FIG. 2. In the case of the growth of DKDP, the temperature T 3 is less than T 0 , for example at least 10 ° C. In the case of more generally, T 5 differs from T 0 by several degrees, or even several tens of degrees. The saturation chamber contains an excess of compound (C) in the state of a solid feeder body 28, which makes it possible to saturate the solution at the level of said saturation chamber (in the chamber the concentration of the compound (C) in the solution (S) is equal to the saturation concentration of the compound (C) at the temperature T 8 ).
Les chambres 10 et 20 sont généralement muni de moyen d'agitation et d'homogénéisation notamment du type représenté sur la Figure 2.The chambers 10 and 20 are generally provided with stirring and homogenizing means, in particular of the type represented in FIG. 2.
Le sens de circulation de la solution (S) est indiqué par des flèches sur les figures : la solution part de la sortie 22 de la chambre de saturation 20 vers l'entrée 11 de la chambre de cristallisation 10, puis sort de cette chambre 10 par ia sortie 12 et repart vers l'entrée 21 de la chambre de saturation. Cette circulation est assurée par des moyens adaptés représentés par 31 et 32 sur les figures, qui peuvent notamment être des pompes péristaltiques telles que représentées sur la Figure 2. Ces moyens sont généralement mis en œuvre pour assurer un débit constant de la solution (S) tout au long de la cristallogenèse.The flow direction of the solution (S) is indicated by arrows in the figures: the solution leaves the outlet 22 of the saturation chamber 20 towards the inlet 11 of the crystallization chamber 10, then leaves this chamber 10 by the exit 12 and goes back to the input 21 of the saturation chamber. This circulation is provided by suitable means represented by 31 and 32 in the figures, which may in particular be peristaltic pumps as shown in FIG. 2. These means are generally used to ensure a constant flow rate of the solution (S). throughout the crystallogenesis.
La solution saturée qui sort de la chambre de saturation 20 à la température T5 est envoyée dans la chambre de croissance 10 maintenue à une température constante distincte de Tc, choisie pour placer la solution en condition de sursaturation, permettant ainsi la croissance du cristal 1 à partir de la solution (S).The saturated solution that leaves the saturation chamber 20 at the temperature T 5 is sent into the growth chamber 10 maintained at a constant temperature distinct from T c , chosen to place the solution in a supersaturation condition, thereby allowing the crystal to grow. 1 from the solution (S).
La solution (S) appauvrie en composé (C) par consommation dans la croissance cristalline sort ensuite de la chambre de cristallisation pour se réenrichir en composé 5c) dans la chambre de saturation 20.The solution (S) depleted in compound (C) by consumption in the crystalline growth then leaves the crystallization chamber to re-enrich in compound 5c) in the saturation chamber 20.
Avantageusement, le circuit de circulation de la solution (S) comprend, entre la sortie 12 de la chambre de cristallisation et l'entrée 21 de la chambre de saturation, une chambre 40 munie de moyens de sonification, où il est en outre préférable que la solution soit traitée thermiquement par chauffage ou refroidissement, dans le sens induisant une sous-saturation de la solution , ces moyens permettant d'inhiber les phénomènes de nucléation parasite dans la solution en limitant la formation d'agrégats et/ou en désagrégeant les agrégats existant. Par sécurité, le circuit de circulation de la solution (S) peut en outre comprendre des moyens de filtration de la solution. Comme cela ressort des figures, le procédé de l'invention est très aisé de mise en oeuvre et nécessite uniquement des moyens triviaux de régulation précise de température et de débit, bien plus aisés à utiliser que les moyens de régulation requis dans les procédés de croissance cristalline actuellement connus mettant en oeuvre une diminution contrôlée de la température. Advantageously, the circulation circuit of the solution (S) comprises, between the outlet 12 of the crystallization chamber and the inlet 21 of the saturation chamber, a chamber 40 provided with sonification means, where it is furthermore preferable that the solution is heat-treated by heating or cooling, in the direction inducing a saturation of the solution, these means making it possible to inhibit the parasitic nucleation phenomena in the solution by limiting the formation of aggregates and / or by disaggregating the aggregates existing. For safety, the circulation circuit of the solution (S) may further comprise means for filtering the solution. As can be seen from the figures, the process of the invention is very easy to implement and only requires trivial means for precisely regulating temperature and flow rate, which are much easier to use than the control means. required in currently known crystalline growth processes employing a controlled decrease in temperature.

Claims

REVENDICATIONS
1. Procédé de préparation d'un cristal à base d'un composé (C), par croissance cristalline en solution, à partir d'une solution (S) sursaturée en ledit composé (C), dans lequel : - ladite croissance cristalline est effectuée dans une chambre de cristallisation (10) maintenue à une température de cristallisation T0 constante ;A process for preparing a crystal based on a compound (C), by crystalline growth in solution, from a solution (S) supersaturated with said compound (C), wherein: said crystal growth is carried out in a crystallization chamber (10) maintained at a constant crystallization temperature T 0 ;
- ladite chambre de cristallisation (10) est en communication fluide avec une chambre de saturation (20), qui comprend un excès de composé (C) à l'état d'un corps nourricier solide (28), et est portée à une température de saturation Ts constante, différente de Tc, cette température T3 étant choisie de sorte que la solubilité du composé (C) dans la solution (S) à la température T3 soit supérieure à la solubilité du composé (C) dans la solution (S) à la température Tc ; - on établit une circulation continue de la solution (S) entre les chambres de cristallisation et de saturation, ce par quoi on maintient un taux de sursaturation constant au sein de la chambre de cristallisation, etsaid crystallization chamber (10) is in fluid communication with a saturation chamber (20), which comprises an excess of compound (C) in the state of a solid feeder body (28), and is brought to a temperature constant saturation T s , different from T c , this temperature T 3 being chosen so that the solubility of the compound (C) in the solution (S) at the temperature T 3 is greater than the solubility of the compound (C) in the solution (S) at temperature T c ; a continuous circulation of the solution (S) is established between the crystallization and saturation chambers, whereby a constant supersaturation rate is maintained within the crystallization chamber, and
- la solution (S) en circulation entre les chambres de cristallisation et de saturation est soumise à un traitement d'élimination des agrégats susceptibles de s'y former et d'inhibition de la formation de tels agrégats, pour éviter ou inhiber les phénomènes de nucléation de cristallites parasites.the solution (S) in circulation between the crystallization and saturation chambers is subjected to an elimination treatment of the aggregates liable to form therein and to the inhibition of the formation of such aggregates, in order to avoid or inhibit the phenomena of nucleation of parasitic crystallites.
2 Procédé selon la revendication 1 , dans lequel le traitement d'élimination des agrégats et d'inhibition de la formation de tels agrégats dans la solution (SJ en circulation comprend la soumission de ladite solution (S) à des ultrasons entre la chambre de cristallisation et la chambre de saturation.The process according to claim 1, wherein the aggregate removal and inhibition of formation of such aggregates in the circulating SJ solution comprises subjecting said solution (S) to ultrasound between the crystallization chamber. and the saturation chamber.
3. Procédé selon la revendication 1 ou 2, dans lequel le composé (C) a une solubilité dans la solution (S) qui augmente avec la température, et dans lequel la température Ts maintenue constante dans la chambre de saturation (20) est supérieure à la température Tc maintenue constante dans la chambre de cristallisation (10). The process according to claim 1 or 2, wherein the compound (C) has a solubility in solution (S) which increases with temperature, and wherein the temperature Ts kept constant in the saturation chamber (20) is greater than at the temperature Tc kept constant in the crystallization chamber (10).
4. Procédé selon la revendication 3, dans lequel dans lequel le traitement d'élimination des agrégats et d'inhibition de la formation de tels agrégats dans la solution (S) en circulation entre les chambres de cristallisation et de saturation comprend la soumission de la solution (S) à des ultrasons, associé à un chauffage de la solution (S) entre la chambre de cristallisation et la chambre de saturationThe process according to claim 3, wherein the aggregate removal and inhibition of formation of such aggregates in the circulating solution (S) between the crystallization and saturation chambers comprises the submission of the solution (S) with ultrasound, associated with a heating of the solution (S) between the crystallization chamber and the saturation chamber
5. Procédé selon la revendication 1 ou 2, dans lequel Ie composé (C) est un composé a une solubilité dans la solution (S) qui diminue avec la température, et dans lequel la température Ts maintenue constante dans la chambre de saturation (20) est inférieure à la température Tc maintenue constante dans la chambre de cristallisation (10).The process according to claim 1 or 2, wherein the compound (C) is a compound having a solubility in solution (S) which decreases with temperature, and wherein the temperature Ts kept constant in the saturation chamber (20). ) is lower than the temperature Tc kept constant in the crystallization chamber (10).
6. Procédé selon la revendication 5, dans lequel le traitement d'élimination des agrégats et d'inhibition de la formation de tels agrégats dans la solution (SJ en circulation comprend la soumission de la solution (S) à des ultrasons, associé à un refroidissement de la solution (S), entre la chambre de cristallisation et la chambre de saturation.The method of claim 5, wherein the aggregate removal and inhibition of formation of such aggregates in the circulating SJ solution comprises subjecting the solution (S) to ultrasound, associated with a cooling the solution (S) between the crystallization chamber and the saturation chamber.
7. Procédé selon l'une quelconque des revendication 1 à 6, dans lequel la circulation continue de la solution (SJ entre les chambres de cristallisation et de saturation s'effectue à un débit sensiblement constant.7. A process according to any one of claims 1 to 6, wherein the continuous circulation of the solution (SJ) between the crystallization and saturation chambers takes place at a substantially constant rate.
8. Procédé selon l'une quelconque des revendications 1 à 7, où le taux de sursaturation maintenu constant dans la chambre de cristallisation supérieur à8. Process according to any one of Claims 1 to 7, in which the level of supersaturation kept constant in the crystallization chamber greater than
10%.10%.
9. Procédé selon l'une quelconque des revendications 1 à 8, où le composé (C) est du diphosphate de potassium KH2PCU ou du diphosphate de potassium sous une forme au moins partiellement deutérée.The process according to any one of claims 1 to 8, wherein the compound (C) is KH 2 PCU potassium diphosphate or potassium diphosphate in at least partially deuterated form.
10. Procédé selon la revendication 6, conduit à basse température, où la température Tc à laquelle est maintenue la chambre de cristallisation est inférieure à 40°C, de préférence inférieure à 300C, par exemple entre 15 et 25°C. 10. The method of claim 6, conducted at low temperature, wherein the temperature T c at which the crystallization chamber is maintained is less than 40 ° C, preferably less than 30 0 C, for example between 15 and 25 ° C.
11. Procédé selon la revendication 9 ou 10, où la différence de température (T3- T0) entre la chambre de saturation et la chambre de cristallisation est comprise entre 2 et 300C.11. The method of claim 9 or 10, wherein the temperature difference (T 3 - T 0 ) between the saturation chamber and the crystallization chamber is between 2 and 30 0 C.
12. Monocristal sensiblement exempt de défaut susceptible d'être obtenu selon le procédé de l'une quelconque des revendications 1 à 8, où le composé (C) ne possède pas de point de fusion congruente ou bien présente une transition de phase entre l'état fondu et l'état solide.A substantially defect-free single crystal obtainable by the process of any one of claims 1 to 8, wherein the compound (C) does not have a congruent melting point or has a phase transition between the melted state and solid state.
13. Monocristal massique de DKDP sensiblement exempt de défaut susceptible d'être obtenu selon le procédé des revendications 9 à 11 , essentiellement exempt de défauts et présentant un rapport deutérium/hydrogène homogène au sein du matériau.13. DKDP mass monocrystal substantially free from defects obtainable according to the method of claims 9 to 11, substantially free of defects and having a homogeneous deuterium / hydrogen ratio within the material.
14. Dispositif pour la mise en œuvre du procédé de l'une des revendications 1 à 9, comprenant :Apparatus for carrying out the method of one of claims 1 to 9, comprising:
- une chambre de cristallisation (10), adaptée à la croissance d'un cristal (1 ) en solution, et munie d'une entrée (11 ) et d'une sortie (12), ainsi que de moyens de régulation de température (15) permettant de maintenir ladite chambre de cristallisation à une température de cristallisation Tc sensiblement constante ;a crystallization chamber adapted to the growth of a crystal in solution, and provided with an inlet 15) for maintaining said crystallization chamber at a substantially constant crystallization temperature T c ;
- une chambre de saturation (20), adaptée à la mise en contact d'une solution avec un excès de soluté solide (28), munie d'une entrée (21) en communication fluidique avec la sortie (12) de la chambre de cristallisation et d'une sortie (22) en communication fluidique avec l'entrée (11 ) de la chambre de cristallisation, ainsi que de moyens de régulation de température (25) permettant de maintenir ladite chambre de saturation (20) à une température de cristallisation T3 sensiblement constante et distincte de Tc ; eta saturation chamber (20), suitable for bringing a solution into contact with an excess of solid solute (28), provided with an inlet (21) in fluid communication with the outlet (12) of the chamber of crystallization and an outlet (22) in fluid communication with the inlet (11) of the crystallization chamber, and temperature control means (25) for maintaining said saturation chamber (20) at a temperature of crystallization T 3 substantially constant and distinct from T c ; and
- des moyens permettant la circulation continue d'une solution entre les deux chambres (31 ,32), de la sortie (22) de la chambre de saturation vers l'entrée (1 1 ) de la chambre de cristallisation, et de la sortie (12) de la chambre de cristallisation vers l'entrée (21 ) de la chambre de saturation, ces moyens de circulation étant en outre munis de moyens (40) d'élimination les agrégats susceptibles de se former dans la solution en circulation et d'inhibition de la formation de tels agrégats.means for continuously circulating a solution between the two chambers (31, 32), from the outlet (22) of the saturation chamber to the inlet (1 1) of the crystallization chamber, and from the outlet (12) of the crystallization chamber to the inlet (21) of the saturation chamber, these circulation means being further provided with means (40) for eliminating the aggregates likely to form in the circulating solution and inhibit the formation of such aggregates.
15. Dispositif selon la revendication 14, dans lesquels les moyens permettant la circulation continue de la solution entre les deux chambres comprennent des moyens (40) de sonification.15. Device according to claim 14, wherein the means for the continuous flow of the solution between the two chambers comprise sonication means (40).
16 Dispositif selon la revendication 15, où les moyens de sonification (40) sont associés des moyens de traitement thermique de chauffage ou refroidissement de la solution dans le sens induisant une sous-saturation de la solution. Apparatus according to claim 15, wherein the sonication means (40) are associated heat treatment means for heating or cooling the solution in the direction inducing under-saturation of the solution.
EP07871782A 2006-12-06 2007-12-03 Crystal growth in a solution in stationary conditions Ceased EP2108061A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655343A FR2909687B1 (en) 2006-12-06 2006-12-06 CRYSTALLINE GROWTH IN SOLUTION UNDER STATIONARY CONDITIONS
PCT/FR2007/001980 WO2008081103A2 (en) 2006-12-06 2007-12-03 Crystal growth in a solution in stationary conditions

Publications (1)

Publication Number Publication Date
EP2108061A2 true EP2108061A2 (en) 2009-10-14

Family

ID=38326133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07871782A Ceased EP2108061A2 (en) 2006-12-06 2007-12-03 Crystal growth in a solution in stationary conditions

Country Status (5)

Country Link
US (1) US8771379B2 (en)
EP (1) EP2108061A2 (en)
JP (1) JP2010511589A (en)
FR (1) FR2909687B1 (en)
WO (1) WO2008081103A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362335B (en) 2009-04-15 2016-02-17 加利福尼亚大学董事会 For the low temperature continuous circulation reactor that the water-based of ZnO film, nanostructure and body monocrystalline is synthesized
CN102071459A (en) * 2009-11-23 2011-05-25 中国科学院福建物质结构研究所 Calculation method of temperature reducing program in quick growth of large-size potassium dihydrogen phosphate (KDP) monocrystals
CN102534778A (en) * 2012-03-14 2012-07-04 青岛大学 Omnibearing growing method for KDP (Potassium Dihydrogen Phosphate) crystals
FR3087451B1 (en) * 2018-10-17 2020-11-06 Commissariat Energie Atomique PROCESS FOR MANUFACTURING A MONOCRISTAL BY GROWTH IN A SOLUTION ALLOWING A TRAP OF PARASITE CRYSTALS
RU2717800C1 (en) * 2019-05-27 2020-03-25 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Method of growing water-soluble monocrystals, using solution conditioning
RU2745770C1 (en) * 2020-07-21 2021-03-31 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" Device for growing crystals from solution at constant temperature
RU2765557C1 (en) * 2021-06-29 2022-02-01 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" Device for growing crystals from solution at constant temperature
CN115261968B (en) * 2022-07-20 2023-08-04 江西新余新材料科技研究院 Crystal growth device and method and KDP crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459869A (en) * 1946-08-10 1949-01-25 Bell Telephone Labor Inc Crystal growing apparatus
JPS623090A (en) * 1985-06-28 1987-01-09 Hiroto Kuroda Production of nonlinear crystal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB482096A (en) * 1936-07-14 1938-03-23 Telefunken Gmbh Improvements in or relating to the production of crystals
GB676212A (en) * 1949-02-14 1952-07-23 Standard Telephones Cables Ltd Improvements in or relating to methods and apparatus for growing crystals
JPS6136191A (en) * 1984-07-30 1986-02-20 Rigaku Denki Kogyo Kk Apparatus for growing solution single crystal
JPS61191588A (en) * 1985-02-16 1986-08-26 Univ Osaka Growth of water-soluble ionic crystal using electrodialysis
JP2610638B2 (en) * 1988-02-29 1997-05-14 ポリプラスチックス株式会社 Single crystal manufacturing method
JPH0742189B2 (en) 1989-11-28 1995-05-10 清蔵 宮田 Crystal growth method and apparatus
JP3913819B2 (en) 1996-10-24 2007-05-09 正大 中塚 High-speed growth method for water-soluble crystals
JP4816633B2 (en) * 2007-12-26 2011-11-16 三菱化学株式会社 Method for producing nitride single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459869A (en) * 1946-08-10 1949-01-25 Bell Telephone Labor Inc Crystal growing apparatus
JPS623090A (en) * 1985-06-28 1987-01-09 Hiroto Kuroda Production of nonlinear crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEIGH HAGENSON THOMPSON ET AL: "The rate enhancing e!ect of ultrasound by inducing supersaturation in a solid}liquid system", CHEMICAL ENGINEERING SCIENCE, 1 January 2000 (2000-01-01), pages 3085 - 3090, XP055609155, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0009250999004819/pdfft?md5=7c1ae4777f0ad112e7b327c8d516aead&pid=1-s2.0-S0009250999004819-main.pdf> *

Also Published As

Publication number Publication date
FR2909687B1 (en) 2009-03-27
US20110142741A1 (en) 2011-06-16
WO2008081103A2 (en) 2008-07-10
WO2008081103A3 (en) 2008-09-12
US8771379B2 (en) 2014-07-08
FR2909687A1 (en) 2008-06-13
JP2010511589A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
WO2008081103A2 (en) Crystal growth in a solution in stationary conditions
EP0042901B1 (en) Process for controlling the oxygen content of silicon ingots pulled by the czochralski method
EP0720595B1 (en) Method of resolution of two enantiomers by crystallization
EP2496736B1 (en) Method for preparing single-crystal cubic sesquioxides and uses thereof
WO2009047408A1 (en) Continuous crystallisation method
WO2009047423A2 (en) Method for the synthesis of ticon, tion and tio nanoparticles by laser pyrolysis
EP3024963B1 (en) Method for preparing single-crystal cubic sesquioxides
FR2470157A1 (en) METHOD AND DEVICE FOR STABILIZING WINE OR OTHER BEVERAGES
EP0215691A1 (en) Process for the flux synthesis of crystals of the KTiOP04 type or monophosphate of potassium and titanyl
FR2600832A1 (en) ACTIVE PRODUCT FOR THE PRODUCTION OF LASER BARS
FR2729678A1 (en) Substd. potassium titanate-phosphate solid soln. single crystal
EP2323962B1 (en) Method for obtaining adn crystals through crystallization in a viscous medium
EP0060744A1 (en) Method of preparing Hg1-x Cdx Te crystals
JP5833127B2 (en) Apparatus and method for crystallizing inorganic or organic substances
JP2008050240A (en) Method for producing cesium boric acid compound crystal and cesium boric acid compound obtained by the same
JPWO2004094705A1 (en) Fluoride crystal production equipment
JP4650345B2 (en) Method for producing silicon single crystal
Sun et al. Nucleation kinetics, micro-crystallization and etching studies of l-histidine trifluoroacetate crystal
JP4682350B2 (en) Crystal growth method and apparatus
RU2324018C2 (en) Production process for growing crystals of gallium scandium gadolinium garnets for passive q-switches
JP2875699B2 (en) Lithium tantalate single crystal and method for producing the same
CH427754A (en) Method for growing a single crystal of garnet
RU2278912C1 (en) Method of production of the single-crystal silicon (versions)
JPS63319297A (en) Method and device for producing organic crystal
KR20030058714A (en) Thermal shield in Apparatus of growing a single crystalline silicon ingot and method for fabricating single crystalline silicon ingot using thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090605

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200211